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a b s t r a c t 

Molecular dynamics simulations are employed to study the mechanical properties of nanoporous Cu x Zr 1-x 

metallic glasses (MGs) with five different compositions, x = 0.28 , 0.36, 0.50, 0.64, and 0.72, and poros- 

ity in the range 0.1 < φ < 0.7. Results from tensile loading simulations indicate a strong dependence of 

Young’s modulus, E, and Ultimate Tensile Strength (UTS) on porosity and composition. By increasing the 

porosity from φ = 0.1 to φ = 0.7, the topology of the nanoporous MG shifts from closed cell to open-cell 

bicontinuous. The change in nanoporous topology enables a brittle-to-ductile transition in deformation 

and failure mechanisms from a single critical shear band to necking and rupture of ligaments. Genetic 

Programming (GP) is employed to find scaling laws for E and UTS as a function of porosity and com- 

position. A comparison of the GP-derived scaling laws against existing relationships shows that the GP 

method is able to uncover expressions that can predict accurately both the values of E and UTS in the 

whole range of porosity and compositions considered. 

© 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Benefiting from a disordered atomic arrangement, metallic 

lasses (MGs) have many unique properties, such as high hard- 

ess, strength, and wear resistance [1–3] . By introducing pores 

n their structure, porous MGs (PMGs) synergize the qualities of 

orous structures and MGs. That enables strong and lightweight 

aterials, which are suitable for various structural and functional 

pplications, such as catalysis [ 4 , 5 ], sensing [6] , dye degradation

7] , membrane filters [8] , and gas absorption [9] . PMGs can be

btained by various methods such as water vapor release [10] , 

alt dissolution [11] , and low-pressure infiltration of hollow car- 

on microspheres [12] . Some possible applications of PMGs ben- 

fit from a high surface to volume ratio, i.e., high specific area. 

MGs with pore size in the nanometer scale maximize the specific 

rea and are gaining more and more interest from the community. 

anaka et al. [13] fabricated Pd-based nanoporous MGs (NPMGs) 

y chemical dealloying a Pd 30 Ni 50 P 20 MG. The 30–60 nm sized 

anopores were shown to enhance remarkably the catalytic activ- 

ty and reusability. Jiao et al. [14] fabricated 3-dimensional bicon- 

inuous NPMGs by selectively dealloying of spinodally decomposed 
∗ Corresponding author. 

E-mail address: branicio@usc.edu (P.S. Branicio) . 
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G precursors and passivation. The underlying dealloying process 

an be adjusted for tuning the pore size in such nanoporous struc- 

ures. The stochastic nature of the spinodal decomposition process 

nd the nano-length scale of the porous features result in a high 

pecific surface area making such material a promising candidate 

or gas absorption. 

While MGs have attracted considerable interest due to their 

echanical properties, their significant brittleness, which can lead 

o catastrophic failure, notably limits their possible applications. 

urprisingly, recent studies of the mechanical properties of NPMGs 

ave suggested that the introduction of pores and nanopores is 

ble to alleviate the brittleness inherent to MGs. Atomistic inves- 

igations, e.g., using molecular dynamics (MD) simulations, have 

een increasingly used to complement experiments and unveil 

he underlying deformation mechanisms of NPMG during tensile 

oading [15–19] . Sopu et al. [15] employed MD to study Cu 64 Zr 36 

PMGs and concluded that a structure with nanopores with opti- 

ized size and distribution could achieve homogenous plastic de- 

ormation while maintaining the strength close to that of mono- 

ithic bulk MGs (BMGs). Liu et al. [16] investigated the mechanical 

ehavior of Ta NPMGs and found that the spatial distribution of 

ores and pore sizes have a strong influence on the displayed duc- 

ility. Lin et al. [17] simulated the tensile loading mechanical re- 

ponse of Cu Zr NPMGs with well-defined cylindrical ligaments 
50 50 

https://doi.org/10.1016/j.actamat.2022.118255
http://www.ScienceDirect.com
http://www.elsevier.com/locate/actamat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actamat.2022.118255&domain=pdf
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Table 1 

Thermal and mechanical properties of BMG samples with differ- 

ent composition. Glass transition temperature (T g ), molar volume 

( ̄V ), Young’s modulus (E), and ultimate tensile strength (UTS) val- 

ues are shown with appropriate units. 

T g (K) V̄ (cm 

3 /mol) E (GPa) UTS (GPa) 

Cu 25 Zr 75 644 12.25 50.5488 1.84 

Cu 36 Zr 64 650 11.47 54.5683 2.13 

Cu 50 Zr 50 664 10.49 59.6166 2.42 

Cu 64 Zr 36 686 9.52 69.5546 3.31 

Cu 72 Zr 28 699 9.049 71.8196 3.26 
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nd observed a slenderness ratio dependent failure by necking. Liu 

t al. [18] investigated the tensile loading behavior of stochastic 

u 64 Zr 36 bicontinuous NPMGs showing an anomalous ductile be- 

avior, displaying an extended plastic regime and a gracious failure 

y collective ligaments necking. They described the deformation 

echanism as a synergistic combination of delocalized necking of 

igaments mostly aligned with the loading direction and concur- 

ent progressive reorientation of remaining ligaments. In a simi- 

ar study, Zhang et al. [19] investigated the sensitivity of the me- 

hanical properties of Cu 50 Zr 50 bicontinuous NPMG to porosity and 

emperature. They also attributed the plasticity found to the bend- 

ng of the ligaments. Experimentally, it is challenging to directly 

pply tensile loading simulations on nanoporous samples. Instead, 

anoindentation experiments are often conducted to evaluate the 

ensile behavior of nanoporous samples. Zhang et al. [20] em- 

loyed nanoindentation, tension, and compression loading to eval- 

ate the deformation behavior of Cu 55.4 Zr 35.2 Al 7.5 Y 1.9 NPMG pre- 

ared using selective dissolution and found bending of ligaments 

nd collapse of ligament nodes in the early stage of deformation, 

ollowed by plastic deformation and failure of ligaments. 

While monolithic MGs have well defined mechanical proper- 

ies, those of NPMGs depend on their porous structure topology. 

fforts have been spent in developing scaling laws for NPMGs 

ased on experimental results and theoretical calculations [19–

6] . However, current scaling laws are developed empirically or 

ased on simplified topology models that consider only poros- 

ty as a variable. Functional relationships depending on multiple 

ariables, such as porosity and composition, can be developed us- 

ng Artificial Intelligence (AI) based methods. The emergence of AI 

ethods is bringing a new dawn to the development of materi- 

ls science [ 27 , 28 ]. Machine Learning (ML) and Genetic Program- 

ing (GP) algorithms have been experiencing resurgence in recent 

ears within the materials science community [ 29 , 30 ]. AI technolo- 

ies can provide researchers with tools to overcome the barriers 

etween designing, synthesizing, and processing materials by ac- 

elerating simulations [ 31 , 32 ], prediction of properties [ 26 , 33–36 ],

esign of synthetic routes [ 37 , 38 ], optimization of experimental 

arameters [ 39 , 40 ], and enhancement of characterization methods 

 41 , 42 ]. As for nanoporous materials, it is challenging to predict

he mechanical properties due to their complex geometry. A suit- 

ble AI method, such as GP, which mimics natural selection, can 

e employed to describe the functional relationship between bi- 

ontinuous NPMGs mechanical properties and system variables. 

Motivated by Darwin’s theory of natural selection, GP is a pow- 

rful evolutionary technique commonly used to automatically gen- 

rate programs suitable for user-defined tasks [43] . AI technolo- 

ies are currently enabling the uncovering of physical laws. Among 

he AI methods, GP is a promising technique to acomplish sym- 

olic regression, allowing one to find suitable mathematical mod- 

ls describing data, when little knowledge of the data structure or 

istribution is available [ 44 , 45 ]. Within the GP-based symbolic re- 

ression (GPSR), expressions are randomly generated and evolve in 

uccessive generations, which improve the description of the rela- 

ionships of interest [46] . GPSR has already been applied to numer- 

us problems [47] . In contrast to other AI methods [48–50] , one 

an derive physical insights from the expressions obtained with the 

P method. Chopra et al. [51] developed GP models to predict the 

ompressive strength of concrete based on in situ data from litera- 

ure. Cai et al. [52] used GPSR to derived heat transfer correlations, 

ncluding the equation functional and its parameters, from exper- 

mental data on heat transfer measurements, which were used to 

redict the performance of thermal components. Langdon and Bar- 

ett [52] applied GP in drug discovery by evolving simple, biolog- 

cally interpretable, in silico models of human oral bioavailability. 

armpalexis et al. [52] found a function mapping levels of four 

olymers to three different properties of a pharmaceutical release 
2 
ablet with help of GPSR. Recently, Im et al. [53] applied the GP 

ethodology to identify governing equations in non-linear multi- 

hysics systems. 

In the present work, we use MD simulations to study the me- 

hanical properties of CuZr bicontinuous NPMGs. We then apply 

PSR to derive scaling laws describing the mechanical behavior as 

 function of system variables and compare them against exist- 

ng scaling relationships. The results indicate that the GPSR-derived 

odels are able to predict accurately both the Young’s modulus, E, 

nd ultimate tensile strength (UTS) as a function of relative density 

nd alloy composition. This research demonstrates that the GPSR 

s able to uncover expressions that can predict accurately the me- 

hanical properties and also provide physical insights into complex 

ystems. 

. Methods 

.1. Model generation and morphology characterization 

Initially, cubic CuZr BMG simulation cells with 5.4 nm sides 

re prepared following the same procedure as reported previously 

54] . Five different compositions, 0.25, 0.36, 0.50, 0.64, and 0.72 

u are selected to study the effect of compositions on the me- 

hanical behavior of bicontinuous NPMG. We chose this composi- 

ion range because it is reported that the experimental CuZr BMGs 

an be synthesized within this range [55] . Periodic boundary con- 

itions are applied along the three cartesian directions. The small 

MG cubic system is then replicated multiple times along the x, y , 

nd z directions to obtain large BMG samples. To study the effect 

f ligament size (ligament diameter) while controlling the porosity, 

e create Cu 64 Zr 36 BMG samples with different side lengths vary- 

ng from 43.2 nm to 81.0 nm. For all the other compositions, we 

se a sample side length of 54 nm. The large systems containing 

12 - 3,375 small cubes are then relaxed at 800 K for 0.25 ns to

inimize periodic patterns in the sample. The final BMG models 

re obtained after subsequent quenching to 50 K using a -15 K/ps 

ooling rate. The glass transition temperature, T g , molar volume, 
¯
 , as well as the values of E and UTS of the BMG samples with

ifferent concentrations are shown in Table 1 . 

To generate a bicontinuous nanoporous structure based on the 

MG sample, we use the level set method reported previously by 

iu and Branicio [56] . Different level sets are then applied to gener- 

te samples with various relative densities. In order to ensure the 

ame morphology for all the samples with different side lengths, 

e keep the product of the wavenumber q 0 and the side length L 

onstant: 

 0 L = C o , (1) 

here C o denotes a constant. The morphologies of the samples 

ith different porosities are shown in Fig. 1 (a). 

Taking three 2-nm slices at random positions along each direc- 

ion, we employ the AQUAMI package [57] to evaluate the aver- 

ge ligament size, based on measures of the ligament diameter, 

nd ligament size distribution for samples with side length of 54 
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Fig. 1. Initial bicontinuous nanoporous metallic glass (BNPMG) structures for samples with relative density ρ = 0.3, 0.4, 0.5, 0.6, and 0.7 and corresponding curvature 

distributions. Colors in the lower plots indicate principal curvature probability density. Yellow, red, and purple boxes indicate regions with concave, convex, and saddle 

surfaces. Dashed lines indicate opposite values of the principal curvatures while the dotted lines indicate identical values. 

Fig. 2. Ligament size distributions for the initial structures with relative density 

ρ = 0.3, 0.4, 0.5, 0.6, and 0.7. 
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m based on suitable images generated using the surface mesh 

ool of OVITO [58] . The algorithm implemented in AQUAMI as de- 

cribed by Stuckner et al. [57] first searches and identifies all lig- 

ments and their medial axis. The shortest distance between po- 

itions along the ligament medial axis and ligament surface atoms 

s noted. Double of the distance gives the ligament diameter, or 

igament size. The ligaments diameter measurement is made on 

everal points in every ligament, generating thousands of measure- 

ents from each image. The ligament size distribution is displayed 

n Fig. 2 and indicates that the average ligament size varies from 

3.5 to ∼6.2 nm. 

.2. Simulation details 

After the generation of the bicontinuous nanoporous structure, 

he NPMG samples are relaxed at 50 K for 0.6 ns. The structure is 

hen deformed under uniaxial tensile loading along the x -direction 

t a constant 3 × 10 8 s −1 strain rate. The temperature is main- 

ained at 50 K and the stresses on the perpendicular directions to 

he loading, i.e., y and z directions, are kept at zero. The atomic- 

evel stress and strain are calculated by LAMMPS [59] and OVITO, 

espectively. 

All MD simulations used in the generation of the simulation 

odel and to perform tensile loading tests are performed with 

AMMPS. The interatomic potential proposed by Mendelev et al. 

60] is used to describe interactions in the Cu-Zr binary alloy. All 

imulations use a constant integration timestep of 1 fs. 
3 
.3. Genetic programming 

To study the scaling laws of NPMGs, we employ GPSR to obtain 

ymbolic expressions that can describe well the relation between 

roperties, such as Eand UTS, and other variables, which in our 

ase, are porosity and composition. The symbolic expressions are 

epresented by binary expression trees [61] . There are two types 

f tree nodes. The first type is operation nodes, e.g., plus, minus, 

ultiplication, division, and exponential. The second type is ter- 

inal nodes. Terminal nodes are variables and parameters. Among 

he first type, i.e., operation nodes, there are still two subtypes. 

he first one is binary operation nodes, e.g., plus and minus. The 

econd type is unary operation nodes, e.g., exponential and sine. 

he binary operation nodes always have two child nodes, while the 

nary nodes only have a left child node. In this work, we chose to 

ave unary operation nodes that are differentiable functions. This 

hoice is made to allow efficient optimization of coefficients using 

he gradient-based Levenberg–Marquardt algorithm. In the litera- 

ure, one can find implementations of the GPSR method also us- 

ng nondifferentiable or discontinuous functions, such as the abso- 

ute function, | x | , step function, θ (x ) , or sign function, sign (x ) [53] .

owever, such functions prevent the use of highly efficient meth- 

ds to obtain the optimized coefficients, and one has to resort to 

ess efficient methods, e.g., by using the GP method itself. 

Nodes of differet types and values are randomly chosen with 

ssigned probabilities when creating a random expression. Fig. 3 (a) 

llustrates an example of the binary tree representation of the sym- 

olic expression given in Eq. (2) 

 

x 
y 

[
exp ( x + y ) + 

0 . 5 

sin ( x − y ) 

]
(2) 

Each generation contains 80 symbolic expressions as its popula- 

ion. The parameters, if there are any, in each expression are fitted 

y the Levenberg–Marquardt algorithm. The efficiency of the GPSR 

ethod is enhanced with the use of the Levenberg–Marquardt al- 

orithm. Without resorting to efficient methods, the GPSR would 

ypically take ∼50,0 0 0 generations to find solutions with similar 

ccuracy as those obtained in this work, which is obtained with 

00 generations. Using the efficient GPSR method, the required 

omputational resources are modest, e.g., it takes about 40 min- 

tes to reach a solution running the current GPSR implementation 

n an Intel Xeon E5-4660v4 processor. Expressions in each gen- 

ration are sorted according to a score calculated based on the 
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Fig. 3. Binary tree representations of symbolic expressions used in Genetic Pro- 

gramming (GP). (a)-(c) are examples of binary tree representations. (b) and (c) are 

two different binary trees of equivalent symbolic expressions. Circles and hexagons 

represent binary and unary operations, respectively. Squares represent terminals, 

i.e., numbers or variables. 
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κ

κ

ean square difference between predicted and true values, and a 

enalty value based on the number of nodes and coefficients. Evo- 

utionary processes are then applied to each generation of sym- 

olic expressions. The top 15% expressions in each generation are 

egarded as “elite” and are passed directly to the next generation. 

he remaining expressions in the next generation are obtained 

rom the current generation of expressions following two evolu- 

ionary steps: crossover between two expressions, and possible 

utation of the offspring expressions obtained from the crossover 

tep. In the crossover step, two expression trees are chosen and 

ach one of them is randomly cut at a certain node resulting in 

 branch. The branches are then attached to the other tree at the 

ode where it was cut. In the mutation step, an offspring tree is 

ut at a certain node and a randomly generated subexpression is 

ttached to that location. Similar to a natural selection process, ex- 

ressions in the population with low scores have a higher chance 

o crossover and to have an offspring than those with high scores. 

ach offspring expression has a 20% chance to mutate, otherwise it 

s directly passed to the next generation. Crossover and mutation 

teps occur iteratively with the current generation of expressions 

ntil the complete set of 80 expressions of the next generation is 

btained. After many generations of such evolutionary processes, 

he top expressions are expected to be able to predict well the 

caling law of the mechanical behavior of NPMGs. 

Several practical concerns need to be addressed in the GP algo- 

ithm. The first one is the generation of exceedingly long expres- 

ions, which may lead to overfitting. To alleviate this, we add a 

enalty to the number of nodes, i.e., the more nodes contained 

n the expression, the larger the penalty is. A restriction is also 

pplied to the depth of the expressions trees, which is limited to 

even. An additional concern is the existance of equivalent expres- 

ions, i.e., expressions with different binary tree representations 
4 
et the same value, e.g., Eqs. (3) and (4) . The binary tree repre-

entations of Eqs. (3) and (4) are shown in Fig. 3 (b) and (c). 

 x ( 2 + 3 y ) (3) 

 x + 6 xy (4) 

The GP algorithm is implemented in Python with help of 

umPy, Sympy, and SciPy libraries.To avoid equivalent expressions 

n the population, we take advantage of the capabilities of the 

ympy library. Each generated expression is checked for any equiv- 

lence in the population. If an equivalent expression is found in 

he population the newly generated expression is eliminated. 

. Results 

.1. Geometrical and morphological features of bicontinuous NPMG 

The initial NPMG structures for 5 different porosities, ρ = 0 . 3 , 

 . 4 , 0 . 5 , 0 . 6 and 0 . 7 , are shown in Fig. 1 . The structures are self-

imilar to each other due to the level set method, i.e., the struc- 

ures are generated from a common topology by scaling the poros- 

ty level. These bicontinuous structures consist of connected solid 

nd porous phases. Fig. 1 also shows the normalized curvature dis- 

ribution for the different initial NPMG structures. The two princi- 

al curvatures κ1 and κ2 are calculated by intially fitting bivariate 

urfaces represented by Eq. (5) , considering the position of each 

urface atom and other surface atoms in its neighborhood, using 

he least square method 

 ( x, y ) = ax 2 + by 2 + cxy + dx + ey + g (5)

here ( x, y, z ) ar e Cartesian coordinates and a , b, c, d, e , and g

re parameters to be determined. 

Once the parameters are found, the bivariate surface equation 

q. (5) can be reformulated into Eq. (6) : 

f ( x, y, z ) = x 2 + by 2 + cxy + dx + ey + g − z = 0 (6)

hich provides an implicit surface representation. The first- and 

econd-order derivatives can be calculated as shown in Eq. (7) : 

f x = d + 2 ax + cy, f y = e + 2 by + cx, f z = −1 , f xx = 2 a, f yy = 2 b, 

f zz = 0 , f xy = c, f xz = 0 , f yz = 0 

(7) 

The tangent planes and normal directions can be ex- 

ressed with first-order derivatives of the function f given in 

q. (6) . The tangent plane on ( x 0 , y 0 , z 0 ) other than (0, 0, 

) is given by f x (x 0 , y 0 , z 0 )(x − x 0 ) + f y (x 0 , y 0 , z 0 )(y − y 0 ) +
f z (x 0 , y 0 , z 0 )(z − z 0 ) = 0 , and the normal direction is given by

f x (x 0 , y 0 , z 0 ) , f y (x 0 , y 0 , z 0 ) , f z (x 0 , y 0 , z 0 )) on that point.

he two principal curvatures can then be analytically calculated 

62] based on the first- and second-order derivatives shown in 

qs. (8) –(11) : 

H = ( −1 or 1 ) × f 2 x ( f yy + f zz ) + f 2 y ( f xx + f zz ) + f 2 z ( f xx + f yy ) 

2 ·
(

f 2 x + f 2 y + f 2 z 

)3 / 2 

− f x f y f xy + f x f z f xz + f y f z f yz (
f 2 x + f 2 y + f 2 z 

)3 / 2 
(8) 

K = 2 
f x f y ( f xz f yz − f xy f zz ) + f x f z ( f xy f yz − f xz f yy ) + f y f z ( f xy f xz − f yz f zz ) (

f 2 x + f 2 y + f 2 z 

)2 

+ 

f 2 x 

(
f yy f zz − f 2 yz 

)
+ f 2 y 

(
f xx f zz − f 2 xz 

)
+ f 2 z 

(
f xx f yy − f 2 xy 

)
(

f 2 x + f 2 y + f 2 z 

)2 

(9) 

1 = κH −
√ ∣∣κ2 

H 
− κK 

∣∣ (10) 
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Fig. 4. Tensile loading engineering stress-strain relationships for the BNPMG sam- 

ples investigated. (a) Stress-strain curves for Cu 64 Zr 36 samples with different rela- 

tive densities. (b) Stress-strain curves for samples with relative density ρ= 0.5 and 

different com positions. 
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√ ∣∣κ2 
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∣∣ (11) 

It should be noted that to better fit the local surface, we rotate 

he Cartesian coordinates in order to align the z and normal direc- 

ions. The sign of the mean curvature κH shown in Eq. (8) is 1 (-1)

hen the calculated surface normal is the same (opposite) as the 

ctual normal, which can be determined following a procedure de- 

ailed elsewhere [18] . The curvatures are then normalized by the 

pecific area. The curvature distribution for the ρ = 0.5 structure 

s symmetric with respect to the dashed lines in Fig. 1 (c). Most 

f the surface at this porosity level is composed of saddle points. 

he surface has equal amounts of concave and convex areas indi- 

ated by the yellow and red rectangular regions, respectively. The 

emaining plots indicate that by increasing (decreasing) the rela- 

ive density by 0.1, the surface displays more concave (convex) ar- 

as. As the relative density reaches ρ = 0.7 ( ρ = 0.3) the structure 

ontains mostly concave (convex) surface. 

An important characteristic in bicontinuous NPMG is the liga- 

ent size distribution. Fig. 2 shows the calculated ligament size 

istributions for the 5 initial NPMG structures. In the calculation of 

he ligament sizes, we used 2 nm-thick slices randomly cut from 

he structures. These cross-sections are then used to evaluate the 

igament size, which is done using the AQUAMI software [57] . For 

elative densities from ρ = 0.3 to ρ = 0.7 the estimated ligament 

ize increases from 3.6 to 6.3 nm. 

.2. Mechanical properties of bicontinuous CuZr NPMG 

We first focus on the mechanical properties of the samples with 

 Cu concentration of 0.64. The engineering stress-strain curves 

or Cu 64 Zr 36 NPMG during tensile loading simulation for 7 sam- 

les, of which the relative density varies from 0.3 to 0.9, are rep- 

esented in Fig. 4 (a). The curves indicate a steady drop in both the

tiffness and strength of the samples as the relative density de- 

reases. For the samples with relative densities in the range from 

= 0.3 to ρ = 0.7, the stress decreases gradually after reaching 

he apex (UTS) and the samples fail at around the strain value 

= 0.4. In contrast, the samples with relative densities ρ = 0.8 

nd ρ = 0.9 display a distinct behavior. The UTS is much higher ( >

.5 GPa) compared to the other 5 samples. In addition, the stress 

evel drops sharply after reaching the UTS, indicating a different 

eformation mechanism. The stress-strain curves then stabilize at 

 certain level. This is a typical observation when simulating BMGs 

ith periodic boundary conditions [63] . 

To investigate the effect of composition on the mechanical be- 

avior of the CuZr NPMG samples, we consider the systems with 

nitial dimensions 53.79 nm × 53.79 nm × 53.80 nm and vary 

he Cu concentration of the samples with different porosities. For 

ach combination of porosity and composition a tensile loading 

imulation is performed to calculate the stress-strain relationship. 

ig. 4 (b) shows the engineering stress-strain curves obtained for 

amples with relative density ρ = 0.5 and Cu x Zr 1- x composition 

 = 0.72, 0.64, 0.50, 0.36, and 0.25. After performing the com- 

lete set of tensile loading simulations we evaluate the E and the 

TS for each case. For the systems with relative density ρ = 0.5, 

t can be observed from the elastic regions that the E values in- 

rease with Cu concentration from 0.25 to 0.64. The exception is 

he Cu 72 Zr 28 sample, which has a lower E value compared to the 

u 64 Zr 36 sample. All samples display their UTS values at around 

.8 strain. The UTS values also increase with Cu concentration 

rom 0.25 to 0.64. In contrast it drops in value from concentra- 

ion 0.64 to 0.72. All bicontinuous NPMG samples with relative 

ensity ρ = 0.5 exhibit considerable plasticity compared to their 

MG counterpart. Nevertheless, a clear change in plastic defor- 

ation mode and increase in ductility is observed in Fig. 4 (b) 
5 
hen Cu concentration drops from 0.64 to 0.25. In particular, the 

u 25 Zr 75 system experiences a long plastic deformation regime dis- 

laying no signs of failure in the strain range displayed in Fig. 4 (b).

onetheless, the ductilities are similar for Cu 72 Zr 28 and Cu 64 Zr 36 

amples. The complete set of E and UTS values, calculated from 

he mechanical behavior of the samples with different relative 

ensity–composition combinations is displayed in Fig. 5 . It can be 

bserved that for low relative density samples, the values of E and 

TS are similar for different compositions. For relative densities 

ifferent than ρ = 0.5, the plots also indicate that the values of E 

nd UTS increase with Cu concentration from 0.25 to 0.64. The re- 

ults indicate that the E and UTS values for Cu 64 Zr 36 and Cu 72 Zr 28 

re similar at all relative densities considered. 

For a system with given relative density and composition, we 

an expect an effect of the system size on the mechanical behav- 

or, since the ligament size will scale with the size of the struc- 

ure. To evaluate the possible size effects, additional simulations 

re performed. We construct multiple Cu 64 Zr 36 samples with dif- 

erent system sizes to evaluate the dependence of the mechani- 

al behavior on the ligament size while preserving the porosity 

nd other morphological features. We consider system sizes in the 

ange from 43.03 nm × 43.03 nm × 43.04 nm to 80.69 nm × 80.69 

m × 80.71 nm. We perform a series of tensile loading simula- 

ions considering all combinations of system size and relative den- 

ity for the fixed Cu 64 Zr 36 composition. Fig. 6 displays the values 

f E and UTS evaluated from the stress-strain curves obtained from 

he tensile loading simulations. It should be noted that for systems 

ith small dimensions, low relative density, i.e., ρ = 0.3, cannot be 

chieved since the ligaments at those system are unstable and will 

ollapse during the relaxation phase due to their exceedingly small 
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Fig. 5. Young’s modulus and ultimate tensile strength (UTS) for samples with dif- 

ferent compositions as a function of relative density. 

Fig. 6. Young’s modulus and UTS for Cu 64 Zr 36 samples with different system sizes 

as a function of relative density. 
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ize, i.e., ligament sizes smaller than 2.8 nm. The results show that 

either E nor UTS have a clear dependence on system size. The val- 

es for these two physical quantities are close for all system sizes 

nd do not show any clear trend with increasing or decreasing sys- 

em size while keeping the porosity and other morphological fea- 

ures constant. 
6 
.3. Different deformation and failure modes for different relative 

ensities 

To better understand the change in overall elastic and plastic 

eformation modes for the samples with different relative den- 

ity we need to quantify the local deformation developed in the 

tructures during the tensile loading process. Fig. 7 shows the von 

ises atomic local strain [64] , for the representative samples with 

= 0.4, 0.7, and 0.9 at an overall engineering strain of 0.36. One 

an observe a transition in deformation and failure modes from 

ow to high relative density. The deformation of the samples with 

= 0.4 and ρ = 0.7 is dominated by the deformation of liga- 

ents in the structure. Those ligaments initially deform elastically 

nd after exceeding their tensile strength develop necking and fail. 

he structures fail when massive failure of ligaments is triggered 

hroughout the nanoporous structure as reported previously [18] . 

In contrast, the deformation in the sample with ρ = 0.9 oc- 

urs following a distinct mechanism. Different than the bicontin- 

ous nanoporous samples with low relative density, the system 

ith ρ = 0.9, which has closed pores, deforms and fails in a sim- 

lar way as a typical BMG, i.e., by generation and evolution of a 

ritical shear band. Nonetheless, different than in a BMG, where 

hear transformation zones (STZs) are generated homogeneously 

hroughout the samples during tensile loading, in the sample with 

= 0.9, the plastic deformation onset is dominated by STZs that 

re generated heterogeneously at the pores of the structure. The 

TZs evolve, generating an array of incipient shear bands in the 

anoporous structure, which delocalize plastic deformation, result- 

ng in smoother stress release from the UTS point compared to that 

isplayed by a BMG sample. Eventually, one of the incipient shear 

ands becomes critical, and dominate the deformation of the struc- 

ure as displayed in Fig. 7 (c). The critical shear band traverses the 

tructure at nearly 45 degrees with the loading direction in a sim- 

lar way as a dominant shear band in a BMG. The change in de- 

ormation and failure mode observed from the analysis of the mi- 

rostructures evolution is consistent with the stress-strain curves 

hown in Fig. 4 (a). 

.4. Scaling laws uncovered by GPSR 

It is instructive to understand how the mechanical properties 

f nanoporous materials scale with their structural features. In this 

ork, GPSR is applied to find scaling relationships between ma- 

erials properties: E and UTS ( σu ) and bicontinuous nanoporous 

ariables: relative density ( ρ) and Cu concentration ( c). Each value 

f E and UTS corresponding to a combination of relative density 

nd composition considered in this work is used as input data 

or the GPSR. The initial population of 80 expressions describ- 

ng the relationships is generated randomly. After multiple GPSR 

uns, we obtain various expressions that are able to describe ac- 

urately the scaling relationships between mechanical properties 

nd system variables. We display four such expressions developed 

or E and UTS in Tables 2 and 3 , respectively. The correspond- 

ng root mean square error (RMSE) and normalized root mean 

quare error (NRMSE) are calculated and displayed aside to quan- 

ify the accuracy of the expressions. The RMSE is calculated as 

MSE = 

√ ∑ N 
i =1 ( x i −̂ x i ) 

2 

N , where N is the number of data point, x i the 

ctual observations and 

̂ x i the estimated observations. The NRMSE 

s calculated as NRMSE = 

RMSE 
max ( x i ) −min ( x i ) 

. The variety of equations 

nd their diverse structures show the ability of the GP method 

t uncovering scaling laws with considerably independent forms. 

he top expressions in the two tables are considered the best scal- 

ng relations based on their accuracy and compactness. While they 

ay not provide the ultimate lowest NRMSE values they have a 
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Fig. 7. Deformation and failure of Cu 64 Zr 36 BNPMG samples with different relative densities. (a) and (b) samples fail by collective necking and failure of ligaments at ρ= 0.4 

and 0.7. (c) the sample with ρ= 0.9 fails by shear banding. 

Table 2 

Scaling law for Young’s modulus obtained by Genetic Programming. 

Expression RMSE (GPa) NRMSE 

E = ( c( 2 c + 2 ) + 2 . 5 )( ρ2 ( a 0 + ρ) − 1 ) 1.57 0.022 

E = cρ( a 0 + ρ)( a 1 + a 2 c ) 1.24 0.037 

E = a 0 + c + ρ( a 1 + a 2 e 
1 . 5 c + ( a 3 + a 4 ρ)( a 5 + c ) + ( a 6 + a 7 ρ

2 ) sin ( 2 c ) ) + 

2 
ρ 0.046 0.0038 

E = ρ( a 1 + c )( a 2 + a 3 ρ) + ( a 0 + c ) log (ρ) 0.53 0.012 

Table 3 

Scaling law for ultimate tensile strength obtained by Genetic Program- 

ming. 

Expression RMSE (GPa) NRMSE 

σu = 2 ρ( a 0 + ρ) × e c 0.12 0.49 

σu = ( a 0 ρ + cρ) 
2 . 5 

0.13 0.54 

σu = ( a 0 + a 1 cρ
a 2 
ρ )( a 3 + ρ)( c + ρ) 0.11 0.46 

σu = ρ2 ( 2 c + ρ)( a 0 ρ
a 1 c+ a 2 ρ+ a 3 c c + a 4 ρ + c ) 0.11 0.46 
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Fig. 8. Comparison between existing and GP derived scaling laws accuracy for the 

Young’s modulus and UTS. (a) Predicted vs. simulated values for the Young’s modu- 

lus and (b) UTS of samples with different relative densities and compositions. Per- 

fect correlation is indicated by the reference orange line. 

4

4

h

elatively simpler functional form and a lower number of coeffi- 

ients. 

It should be noted that in the GPSR implementation used in this 

ork, we allow the algorithm to use coefficients, such as a 0 , a 1 , etc,

hat are fitted, and also constants, which are multiples of 0.5, such 

s 0.5, 1, 1.5, 2, etc, which are kept fixed. This allows the genera-

ion of expressions with common physical roots such as x 2 , x 
2 , and 

1 √ 

( 1 −x ) 
. The comparison between the true values of E and UTS vs. 

hose calculated from the first expressions shown in Table 2 and 

able 3 , are displayed in Figs. 8 (a) and 8 (b), respectively. The or-

nge lines are used as reference and indicate perfect matching. 

esides the values predicted with the equations developed with 

PSR, Fig. 8 also shows values predicted with existing scaling laws 

22] : 

E 

E b 
= C 1 

(
C 2 ρ + ρ2 

)
(12) 

u = σb C 3 ρ (13) 

here E is the Young’s modulus of the foam, E b and σb are the 

oung’s modulus and the UTS of the bulk material, and C 1 , C 2 ,

nd C 3 are constants to be determined. To obtain the values of 

 b and σb used in Eqs. (11) and (12) additional tensile simulations 

re conducted for bulk Cu 25 Zr 75 , Cu 36 Zr 64 , Cu 50 Zr 50 , Cu 64 Zr 36 , and

u 72 Zr 28 MGs. The calculated Young’s moduli are 38.36, 42.97, 

7.35, 59.25, and 59.78 GPa, while the UTS are 1.84, 2.13, 2.42, 3.31, 

nd 3.26 GPa, respectively. 
7 
. Discussions 

.1. System size effect on mechanical properties 

As we change the system size, we found that the ligament size 

as negligible influence on the mechanical properties of bicontinu- 
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Fig. 9. Fraction of Full Icosahedra (FI) and connected FI as a function of Cu concen- 

tration in CuZr MG alloys. The lines are guides to the eye. 
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us NPMG for all compositions when the porosity and other mor- 

hological features are kept fixed. Similar results have been found 

n the study of open cell porous Cu 50 Zr 50 MG structures with 

= 0 . 5 by Zhang et al. [23] . The results obtained from tensile load-

ng simulations indicate the absence of dependence between E, the 

TS, and the yield strength with the ligament size. Arguably, the 

bsence of a clear effect of ligament size is linked to the absence 

f a change in deformation mode for the MG ligaments, which 

hould occur at much larger critical ligament size as reported for 

G nanopillars [ 65 , 66 ]. These results for MG samples contrast with

he behavior predicted for crystalline nanoporous materials. Sun 

t al. [22] investigated the effect of ligament size on the mechani- 

al properties of bicontinuous nanoporous gold and found negligi- 

le changes in the values of E and the yield strength. Nonetheless, 

hey found that UTS values decrease with increasing ligament size. 

he small ligament size used in this work is expected to introduce 

ignificant surface energy and cause tension-compression asym- 

etry. Indeed, bicontinuous Cu 50 Zr 50 MG studied by Zhang et al. 

23] demonstrate different E and yield strength under tensile load- 

ng and compressive loading due to the large specific area. Both 

alues are slightly higher under tensile loading. In addition, they 

uggest the tension-compression asymmetry is more significant in 

amples with larger porosity. The tension-compression asymmetry 

as also been reported in bicontinuous nanoporous gold samples 

 67 , 68 ]. 

.2. Compositional effect on mechanical properties 

Changes in composition typically lead to changes in the me- 

hanical properties of materials. Our results indicate that the val- 

es of E and UTS increase with Cu concentration in the concen- 

ration range from x = 0.25 to 0.64. However, there is no clear 

hanges in E and UTS values for concentrations beyond x = 0.64. 

imilar results have been found in the study of Cu 50 Zr 50 and 

u 64 Zr 36 BMGs [69] , in which the Cu 50 Zr 50 samples display lower 

alues of E, yield stress, and UTS. In addition, higher Cu concen- 

ration significantly decrease the observed ductility of bicontinu- 

us NPMGs, as observed in Fig. 4 (b). This is in agreement with 

bserved behavior in BMGs [69] . Previous investigations indicate 

hat a higher fraction of atomic icosahedra motifs in the amor- 

hous structure is linked to the higher strength and lower plas- 

icity displayed by samples with higher Cu concentration [ 70 , 71 ]. 

ard et al. [55] found that increase of Cu fraction in CuZr MG 

eads to increase of the fraction of Cu centered < 0,0,12,0 > full 

cosahedra (FI) until it reaches a maximum value at 0.7 Cu fraction, 

ollowed by a slight decrease with further increasing of Cu fraction. 

 higher density of icosahedra in the structure may lead to a net- 

ork of interconnected icosahedra motifs. The network then be- 

aves as a backbone that is resistant to stress-induced shear trans- 

ormations during deformation. Imran et al. [72] studied the me- 

hanical properties of Cu 25 Zr 75, Cu 50 Zr 50 , and Cu 75 Zr 25 MGs us- 

ng indentation tests and conclude that samples with higher Cu 

oncentrations display higher hardness and resistance force at the 

ame load depth. Lee et al. [73] suggested that the connectivity 

f icosahedra network reaches 98% at 0.65 Cu fraction. Our results 

gree with these results and suggest that a high interconnectiv- 

ty of icosahedra motifs is achieved at x = 0.64 [ 55 , 73 ]. To further

upport our analysis we estimate the fraction of interconnected 

cosahedra motifs of the samples used in this work. We first use 

oronoi analysis to identify all atoms centered in FI atomic con- 

gurations. Then we apply coordination analysis to evaluate the 

patial connectivity of these FI-centered atoms, i.e., by calculating 

he fraction of FI-centered atoms that have at least one bond with 

ther FI-centered atoms. The results for each system with different 

u concentration are shown in Fig. 9 . The fraction of FI-centered 

toms increases sharply as Cu concentration increases from 0.25 
8 
o 0.64, followed by a slower pace of increase from 0.64 to 0.72 

u concentration. On the other hand, the fraction of connected FI- 

entered atoms increases with the Cu concentration but saturates 

hen the concentration exceeds 0.64. These results are in good 

greement with those reported in the literature [ 55 , 73 ]. 

.3. Existing scaling laws with relative density 

It is interesting to compare the scaling laws obtained by the GP 

ethod with existing scaling laws. After thoroughly studying the 

echanical properties of open-cell foams with micron or larger 

haracteristic length scale, Gibbs and Ashby proposed the well- 

nown scaling law [74] for Young’s modulus based on Timoshenko 

eam theory shown in Eq. (14) , 

E 

E b 
= C 4 ρ

2 (14) 

here C 4 is a coefficient to be determined. In the study of Cu 50 Zr 50 

icontinuous NPMGs, Zhang et al. [19] found the relation between 

oung’s modulus and relative density to be in good agreement 

ith Eq. (14) . From our results, after converting Eq. (14) to E =
 b C 4 ρ

2 and finding the optimized value for C 4 , considering all data, 

he obtained NRMSE value is about 5%. 

While this accuracy is satisfactory, the scaling law proposed by 

un et al. [22] shown in Eq. (12) describes better how the me- 

hanical properties scale with the relative density of bicontinuous 

PMGs, i.e., NRMSE value of 1.2%. The proposed scaling law shown 

n Eq. (12) combines the effect of porosity [74] as well as the ef- 

ect of ligaments deformation [75] . Sun et al. [22] used the cubic 

rray unit cell model established by Gibbs and Ashby, which can 

ccount for the effect of ligaments [74] . The relative density ρ was 

ssumed to be related to the ligament aspect ratio by ρ ∝ ( d/l ) 2 , 

here d and l are the ligament size and length, respectively. In ad- 

ition, the normalized Young’s modulus was also assumed to fol- 

ow the same relationship 

E 
E b 

∝ ( d/l ) 2 [22] . 

Thus, E 
E b 

∝ ρ . The linear term was then added to Eq. (14) to ob-

ain the proposed scaling law shown in Eq. (12) . We use our data

alues for Young’s modulus at different relative densities of MGs 

f different Cu concentrations and Eq. (12) to find the optimized 

alues for the coefficients C 1 and C 2 . The comparison between the 

imulation results and values obtained from Eq. (12) is shown in 

ig. 8 (a). We can see that this scaling law fits well the simulation 

ata, displaying an NRMSE of 1.2%. The results show that the rela- 

ionship provided in Eq. (12) further improves the agreement with 

imulation results from that obtained using Eq. (14) . 

Equation (12) was first proposed to describe the scaling rela- 

ion for nanoporous gold [22] . Later it was also applied to study 
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anoporous aluminum by Winter et al. [76] , who also found good 

greement. 

In the original work of Sun et al. [22] , Eq. (12) was tested con-

idering relative densities in the range from 0.24 to 0.36, which is 

ignificantly narrower than those in our study. Our results show 

hat Eq. (12) is also able to accurately predict the Young’s modu- 

us of bicontinuous CuZr NPMG considering a wide range of rela- 

ive densities and also compositions. The fact that the same scaling 

aw applies both for nanoporous crystalline metals and MGs re- 

eals that their mechanical behavior is intrinsically similar, at least 

n the elastic region. 

There are alternative scaling laws proposed in the literature for 

he mechanical behavior of nanoporous materials [ 21 , 77 , 78 ]. Pia

t al. [77] studied the effective Young’s modulus of nanoporous 

old obtained from selective dissolution of Ag from a Ag 70 Au 30 al- 

oy, which was followed by thermal annealing. The ligament size 

f the nanoporous gold samples varied from 5 to 200 nm. They 

implified the geometry of the nanoporous structure to that of a 

epresentative cubic unit cell and derived a scaling law of effec- 

ive Young’s modulus as a function of the shape factors of the lig- 

ments, as well as the Young’s modulus and Poisson ratio of bulk 

old. Mangipudi et al. [21] investigated the stiffness of nanoporous 

old considering three independent topologies: (i) 3D reconstruc- 

ion from tomography of experimental nanoporous gold samples 

ii) spinodal decomposed structure obtained from phase field sim- 

lations and (iii) a gyroid structure. They claimed that while the 

caling law of Young’s modulus for all topologies can be well de- 

cribed by Eq. (14) , the pre-factor C 4 is linearly dependent on 

he genus of the particular nanoporous structure. Badwe et al. 

78] studied the tensile properties of dealloyed nanoporous gold. 

he samples were thermally annealed to coarsen the ligaments. 

he Young’s modulus was found to obey a power law. However, 

he calculated exponent was larger than that predicted by the 

ibson-Ashby scaling law shown in Eq. (14) . They further general- 

zed the scaling law of Young’s modulus proposing the law shown 

n Eq. (15) 

E 

E b 
= C 1 ( C 2 ρ + ρn ) + C 3 (15) 

Among the scaling relationships proposed in the literature, the 

odified Gibbs and Ashby law provided in Eq. (12) is the most 

ffective and succinct at describing relationships in a large range 

f relative densities. 

As for the UTS, Sun et al. [22] proposed a linear relationship be- 

ween the UTS and the relative density as shown in Eq. (13) . It was

emonstrated that Eq. (13) can describe well the scaling relation 

etween porosity and UTS for bicontinuous nanoporous gold [22] . 

owever, as illustrated in Fig. 8 (b), the actual values of the UTS 

f CuZr bicontinuous NPMGs deviate considerably from the pre- 

ictions of Eq. (13) with the value of the coefficient C 3 optimized 

o the data. The corresponding NRMSE is found to be 15%. Similar 

ignificant deviation in the predictions of UTS were also reported 

or Cu 50 Zr 50 bicontinuous NPMGs [19] . This contrast in results be- 

ween crystalline and amorphous samples implies that the scaling 

aw for UTS of crystalline and amorphous materials is intrinsically 

istinct, which is expected since crystalline and amorphous metals 

eform plastically following different mechanisms. 

.4. Comparison of GPSR uncovered and existing scaling laws 

The GPSR method is able to generate functional expressions 

ith different forms that can accurately describe the scaling re- 

ationships between mechanical properties and system variables as 

hown in Table 2 and Table 3 . For simplicity, only the top two ex-

ressions in Tables 2 and 3 are used in the calculation of the pre-

ictions shown in Figs. 8 (a) and 8(b), respectively, as GP scaling 
9 
aws for E and UTS. Those two expressions are able to describe 

ell the values of E and UTS of bicontinuous nanoporous CuZr 

Gs, with NRMSE 2.2% and 5% for E and UTS, respectively. Com- 

ared to the predictions made with Eq. (13) , which is the current 

caling law for nanoporous gold, the predictions of the GP scal- 

ng law for UTS display a much better agreement with the simula- 

ion data. The corresponding NRMSE for the GP scaling law at 5% 

s much lower than that of the the current scaling law at 15%. The 

P method is able to uncover the nonlinear relationship between 

TS and relative density and assign appropriate expressions to it. 

As for the predictions of the Young’s modulus, the results indi- 

ate that both the current scaling law and the GP derived relation- 

hip predictions are in good agreement with the simulation data, 

ith corresponding NRMSE of 1.2% and 2.2%, respectively. Even 

hough the agreement is good in both cases, the GP scaling law 

s slightly less accurate than the predictions made with Eq. (12) . 

However, it should be noted that the scaling law derived with 

he GPSR method is universal and applicable to all compositions. 

n contrast, the current scaling law requires knowledge of the E b 
alue, which is used as an additional parameter to define the spe- 

ific scaling law at each composition. Instead, the GP method is ca- 

able of uncovering the dependence of E b on composition, which 

s typically not a simple increasing or decreasing relationship and 

ncorporating it in the universal scaling law predicted. For instance, 

oth E and UTS of bulk Cu x Zr 1- x MG increase from x = 0.25 to 0.64,

nd keep the same value in the range 0.64 < x < 0.72. 

While the accuracy of the predictions using the GP derived uni- 

ersal scaling law is good, it can be further improved if one al- 

ows more complicated expressions, with more fitting coefficients, 

o describe the nonlinear relationships, e.g., the third expression in 

able 2 . An important aspect of the GP method is that it is also

ble to retrieve the scaling law proposed based on physical in- 

ights, e.g., the second expression in Table 2 has the same form 

s the current scaling law shown in Eq. (12) . 

. Conclusions 

In this work, we have investigated the mechanical properties of 

icontinuous nanoporous CuZr MGs with different relative densi- 

ies, system sizes, and compositions during tensile loading using 

D simulations. While the samples have self-similar structures, 

he relative density dictates the surface morphology and ligament 

ize. We found that the system size of bicontinuous NPMG has lit- 

le impact on the mechanical properties while the relative density 

nd the Cu concentration have strong effects. A brittle-to-ductile 

ransition occurs at relative density 0.7. Bicontinuous NPMGs with 

arge relative density, e.g., 0.9, fail by developing a critical shear 

and, which is nucleated at large pores, while those with small 

elative density fail by progressive necking of ligaments. We em- 

loyed the GP method to unravel universal scaling laws and com- 

ared their predictions with that of existing scaling laws. The scal- 

ng law based on Gibbs and Ashby’s theory considering the effect 

f ligaments can be applied well to Young’s modulus of bicontin- 

ous nanoporous CuZr MGs. However, the existing linear scaling 

aws for UTS of nanoporous structure are not able to offer accurate 

redictions to the bicontinuous NPMGs studied in this work. Rela- 

ionships uncovered by GPSR are able to find succinct expressions 

o describe accurately the dependence of mechanical properties on 

elative density and Cu concentration with physical insights. 
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The data that support the findings of this study are available 

rom the corresponding author on request. 
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