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ABSTRACT OF THE DISSERTATION

Hashing, Caching, and Synchronization: Memory Techniques for Latency Masking
Multithreaded Applications

by

Skyler Arron Windh

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2018

Dr. Walid A. Najjar, Chairperson

The increase in size and decrease in cost of DRAMs has led to a rapid growth of in-memory

solutions to data analytics. In this area, performance is often limited by the latency and

bandwidth of the memory system. Furthermore, the move to multicore execution has put

added pressure on the memory bandwidth and often results in additional latency.

Irregular applications, by their very nature, suffer from poor data locality. This

often results in high miss rates for caches and many long waits to off-chip memory. Histor-

ically, long latencies have been dealt with in two ways: (1) latency mitigation using large

cache hierarchies, or (2) latency masking where threads relinquish their control after issu-

ing a memory request. Multithreaded CPUs are designed for a fixed maximum number of

threads tailored for an average application. FPGAs, however, can be customized to specific

applications. Their massive parallelism is well known, and ideally suited to dynamically

manage hundreds, or thousands, of threads. Multithreading, in essence, trades memory

bandwidth for latency.

vii



This thesis describes the use of CAMs (Content Addressable Memories) as synchro-

nizing caches for hardware multithreading. We demonstrate and evaluate this mechanism by

implementing multithreaded datapaths for Breadth First Search, Hash-Join, and Group-By

Aggregation. Synchronization between concurrent threads is typically implemented using

expensive in-memory locks that are accessed via atomic operations. CAMs allow us to move

the lock on chip, increase the multithreading, and achieve better performance.
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Chapter 1

Introduction

Fast database analytics over large collections of customer data is key concern for

any modern business, looking to get an edge over its competitors. In recent years many

companies have sprung up offering their own in-memory database solutions. Oracle’s Exa-

data [106], and Pivotal Software’s Greenplum [60] have built custom machines for memory

intensive workloads. On the other hand IBM’s Netezza [75], and Teradata’s Kickfire [81]

approached the problem using off the shelf reprogrammable hardware, i.e. integrated FPGA

boards.

The proliferation of these solutions is to try and solve the problem of the giant gulf

between our data and compute. In the Big Data era, we are producing data at tremendous

rates and our compute has gotten faster than it has ever been. Yet, we still cannot feed

the compute cores fast enough for all algorithms. Despite the progress made in multi-core

architectures, the major performance limitations come from the memory latency (known

as the memory wall figure 1.1b), that restricts the scalability of such memory-bounded
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(a) DRAM capacity and bandwidth improve at the cost of latency.

0

1000

2000

3000

1990 1992 1994 1996 2000 2002 2004 2006 2008 2010 2012 2014 2016

C
lo

ck
 (

M
H

z)

Peak CPU Performance

Peak Memory Performance

(b) The ”Memory Wall” between CPU and memory performance.

Figure 1.1: The Memory Wall describes the increasing gap between CPU performance and
memory performance. As this latency gap grows, any irregular application pays a higher
and higher performance cost on modern processor architectures. Figures from [38]

algorithms. This performance bottleneck is evident in the historical trends in Figure 1.1a.

Over the last 20 years, capacity and bandwidth have followed the scaling of Moore’s law,

improving 128x and 20x respectively. However, latency has only improved about 30% since

1999.
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A memory access can take anywhere from 100 to 200 CPU cycles - equivalent to

the execution of 100s of instructions. The most common solution to the memory latency

problem is the use of extensive cache hierarchies that occupy up to 80% of a typical pro-

cessor die area. This latency mitigation approach relies on data (spatial and temporal) and

instruction localities. Multithreaded execution [85, 122] has been proposed as an alternative

approach that relies on the masking of memory latency by switching to a ready but waiting

thread when the currently executing thread encounters a long latency operation, such as a

main memory access. Several different multithreading models (simultaneous, fine-grained

temporal, coarse-grained temporal) have been proposed along these. They can be distin-

guished by how close in time instructions from different threads may be executed. In this

thesis, the focus will be on coarse-grained temporal multithreading.

Despite wide acceptance of caching as a latency mitigation method of choice this

thesis explores an alternative approach by supporting multiple outstanding memory requests

from various independent threads. This multithreading architecture is implemented on

FPGAs and optimized to process relational database workloads. The design is similar to

the multithreading approach used in the SUN UltraSPARC architecture (for example, the

UltraSPARC T5 [56] can support eight threads per core and 16 cores per chip). However,

because our FPGA implementation is able to support deeper pipelining and custom threads

with extremely small contexts, it can maintain thousands (instead of tens) of outstanding

memory requests and hence drastically increases concurrency and therefore throughput.

Furthermore, the multithreaded execution maximizes the utilization of the available memory

bandwidth.

3



Adding to the complications of achieving performance is the proliferation of multi-

core, many-core, and highly parallel hardwares. No longer is it good enough to simply write

efficient single threaded CPU code. If programmers aren’t targeting parallelization, they

miss out on the resources that modern architectures are providing. The next generation

CPU release will most likely have more parallelism advancements than any clock frequency

gains. In the world of FPGAs, implementing a single compute engine is not enough for any

real performance. Designs need to replicate and use as much area as possible. Parallelization

is the way to win modern performance.

In this dissertation, we will look at all of aforementioned issues. We will start by

looking at the growth of tools in the FPGA space that try to extract parallel solutions from

High Level software code. And we’ll also look at the limitations of these tools Then we

show how to exploit this massive multithreading to break through the memory wall and

provide performance for irregular applications. We also describe the use of CAMs (Content

Addressable Memories) as synchronizing caches for hardware multithreading. We demon-

strate and evaluate this mechanism by implementing multithreaded datapaths for Breadth

First Search, Hash-Join, and Group-By Aggregation. Synchronization between concurrent

threads is typically implemented using expensive in-memory locks that are accessed via

atomic operations. CAMs allow us to move the lock on chip, increase the multithreading,

and achieve better performance. Given their irregular memory nature, these algorithms

incur poor spatial locality, thus traditional CPU approaches rely on vast caches to attempt

to alleviate the latency penalty. Since an FPGA takes an alternative approach it requires

massive parallelism to compete with the CPU’s order of magnitude faster clock frequency.
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Chapter 2

Background

This thesis focuses on irregular algorithms for data analytics. This section presents

some general background needed to understand the algorithms that will be implemented.

We first give a general overview of multithreading since it is such an overloaded word with

several architectural meanings. After covering the models we discuss several architectures

that implement each style. We then cover the MT-FPGA execution model and how we

implement our hybrid of SMT and coarse-grained temporal multithreading. Finally we’ll

cover the growth of FPGA heterogeneous computing, the Convey HC-2EX architecture, im-

plementing CAMs on FPGAs, and finally the use of FPGAs for database query processing.

2.1 Multithreaded Architectures

The goal of a processor is to fully utilize all hardware resources in any given

cycle. However, many times instructions have data dependencies and they cannot execute

until all dependencies are met. Compilers can do some work reordering instructions to
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Figure 2.1: Various multithreading models

minimize delay slots in a stream of instructions. And the hardware in the processor can

further expand on this by issuing instructions out of order and letting several instructions

try to acquire as many dependencies concurrently as possible. However, even with all this

advanced instruction scheduling there are often still delay slots to be found.

Multithreaded execution tries to get around this problem by filling slots with

instructions from independent threads. Figure 2.1 shows schedules under different multi-

threading techniques. In the traditional superscalar processor(figure 2.1a), several instruc-

tions in a single thread are scheduled to fill available issue slots. Some cycles will be able to

use all resources, but sometimes pipeline bubbles are inevitable. Many modern processors

with out-of-order superscalar architectures like the IBM Power and Intel Skylake feature

support for simultaneous multithreading (SMT) (figure 2.1b). SMT maintains multiple in-

dependent threads active in a given core and will take instructions from each thread and

issue them to execution units as available. Since each thread is maintained in an active

state, there is the benefit that there is no context switching. However, it comes at the

6



cost of increased complexity in the hardware and increased pressure on hardware resources.

Each thread may be in a completely different address space and they may keep thrashing

local cache and register resources. Extracting peak performance requires diligent effort on

the programmer to make sure threads are grouped together wisely.

2.1.1 Temporal Multithreading

In contrast, the fine-grained threading model(figure2.1c) is rather simple. The

processor is built around the concept that every thread will be swapped out in a fixed

interval, e.g. every cycle. Then, you can hide delay slots by having as many threads as the

longest stall in the system. If the current instruction causes a stall, it doesn’t matter because

the processor is swapping in a new thread and this thread won’t be executing for n cycles

and the data dependency will already be filled. This model provides high throughput since

it is always rotating threads and also provides deterministic, easy to understand behavior.

However, this comes at the expense of individual thread performance. Each thread is getting

kicked out even if the current instruction won’t cause a stall. In fine-grained multithreading

with n threads, Compute heavy code with m stall free instructions will take n ∗m cycles to

execute instead of the m cycles it would take on a traditional pipeline.

Finally, the coarse-grained multithreading model (figure2.1d) tries to take the

simpler model of fine-grained and provide better single threaded performance. Instead of

swapping threads out in fixed intervals, coarse-grained multithreading only swaps threads

out when an instruction triggers a long-latency operation (e.g. memory request). In this

case, a thread can continue to make progress while it has instructions to execute. When it

needs to wait for data, it can wait in buffers while other threads progress. Single-threaded
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performance is restored, however, it is at the cost of non-determinism and higher conflicts

in shared resources. Coarse-grained multithreading must also maintain enough threads to

hide the latency of the requests.

Both fine-grained and coarse-grained multithreading fall in a class called temporal

multithreading because they have the idea of using multithreading to hide the time of long-

running operations.Because of this, both have the property that they need significantly

more threads than the SMT model. SMT threading needs a number of threads relative

to the amount of execution units in the core. The other two models require a number of

threads relative to the length of the memory latency. And as we saw in the introduction, the

memory wall has been growing for decades, continually pushing up the latency. Between

the two classes there is a trade-off of less threads and complicated cores for SMT, and order

of magnitude more threads but simpler cores for temporal.

2.2 Latency Masking Multithreaded Architectures

In the early 90s the Tera Corporation, built the Tera MTA. The MTA design

consisted of 256 processors sharing 64 GB of memory organized as a distributed NUMA

architecture. Its interconnection network allowed better scaling to a larger number of pro-

cessors. It also forced instruction requests through a shared cache lowering the network

traffic. Custom processors supported the issuing of one memory request per thread per

cycle. The maximum memory latency from any processor to any memory module was 128

cycles. Each processor could support up to 128 active threads. The MTA design [18] was

later evolved into the Cray XMT. While the MTA had only 256 processors the XMT ma-
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chine could support up to 8,192 processors, but the largest ones built had 512 processors.

The shared memory was also increased from 1 TB to 128 TBs for the MTA, and the clock

speed was improved from 220 MHz to 500 MHz.

2.3 MT-FPGA Execution Model

MT-FPGA (Multithreading on FPGAs) [66] is an execution model that combines

the memory masking ability of multithreaded execution with a customized data path. This

Figure 2.2: Hiding Memory Latency

execution model suspends the thread as soon as it performs a long latency read and a

waiting ready thread is given the chance to execute. It performs decoupling by buffering
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the returned data in the order it was requested. This execution model exhibits following

advantages:

1. Can support hundreds of outstanding memory requests, hence massive parallelism

2. Full utilization of the datapath

3. The state of the thread is extremely small, and can therefore cater to more number

of pending threads, stored on a FIFO.

A recent tool called CHAT uses the MT-FPGA model. This compilation tool generates

customized hardware support for multithreaded execution on FPGAs and claims to ease

the hardware development effort for complex irregular kernels. Using just one accelerator

FPGA, CHAT shows a speed-up of up to 50x over a single Intel Xeon on simple irregular

kernels. Similarly, a database hash-join system demonstrated in [64] is also designed using

a MT-FPGA model. Throughput results show a speedup between 2x and 3.4x over the

best multi-core approaches with comparable memory bandwidths on uniform and skewed

datasets.

Designing an engine that supports enough threads to hide latency like Figure 2.2

follows a simple model. The high level idea of the model can be seen in Figure 2.3. The

compute can be viewed as the datapath block. A thread continues to execute until it needs

memory. At this point, the thread will issue the request and move itself into the Waiting

threads FIFO. Because the hardware guarantees in memory responses, we know that the

next response must belong to the thread at the front of the FIFO. A memory response will

add the data to the threads state and the thread will move to the Ready threads FIFO and
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Figure 2.3: MT-FPGA Architecture Model

wait until the datapath reactivates the thread. Since these datapaths are pipelined, we can

activate a thread every cycle as long as there are no memory threads. And, the pipelined

datapath means we can design the compute only thinking about one thread moving through

each state. We don’t need to worry about synchronization unless there are shared resources.

And in that case, we can use a CAM, as this thesis will show later.

The achievable throughput in this model is demonstrated in Figure 2.4. In Fig-

ure 2.4a shows the 3 states of the MT-FPGA model states: Build-up, Steady, and Tear

Down. In the Build-up state, threads are getting started and begin issuing requests. Since

we do not yet have enough threads making requests, the throughout will be less than the

peak bandwidth. Once execution has fully started we transition to the steady state. In the

steady state, threads issue requests every cycle and memory is responding with new data

every cycle. In this state the throughput is exactly the peak bandwidth since memory is

working every cycle. As execution begins to wind down, we transition to the tear down

state. Threads finish their work and terminate and we no longer have enough threads to

mask latency. In this state, throughput begins dropping as we see more latency. The overall

throughput of the full execution is simply the average throughput of all three stages.
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Figure 2.4: Execution in the MT-FPGA model has 3 states: Build-up, Steady, and Tear
Down. In the build up phase, threads are just getting started and issuing requests so we are
not yet masking latency. In the steady state, a thread issues a request every cycle and we
receive a response every cycle. in the Tear-Down stage, we start losing masking as threads
terminate. The overall throughput is the average of these three stages
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Figure 2.4b shows why this simple model works so well. As we increase the time

the system stays in the steady state, our average throughput will continually increase and

approach the full system bandwidth. And the more data the system needs to process,

the easier it is to maximize the time in the steady state. This model pairs well with the

continued growth of the Big Data era where queries are now running on Terabytes of data.

The other benefit of this model is that it works independent of regular or irregular memory

access patterns. As long as the engine issues requests every cycle, the throughput will

approach the peak bandwidth of the system.

2.4 FPGA Heterogeneous Computing

FPGA architectures have evolved from their early stages (supporting simple 8-

bit logic operations), into large logic arrays capable of concurrently executing multiple

complex instructions. They have historically been used as off-chip accelerators where CPUs

can offload compute intensive workloads, and read back the results. However, in recent

years the FPGA has been trending closer and closer to the CPU. Xilinx currently offers

a Zynq [136] line of chips that couples the FPGA’s reconfigurable fabric with an ARM

processor, and Intel’s recent acquisition of Altera suggests this trend will continue. However,

it is currently still more common to see the FPGA connected with the CPU over a PCIe

bus. Microsoft Research incorporated multiple Stratix-V FPGAs into a 48 node server

that was used to accelerate the Bing search engine [110]. Alpha Data announced a CAPI

environment, which allows Xilinx All Programmable devices to connect with IBM Power8

architectures [11]. Convey Computers, Maxeler Technologies, and Pico Computing are all
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companies currently offering FPGA platforms over PCIe, which have been actively used in

the research community to show acceleration and power savings compared to CPUs and

GPUs [64, 37].

Different FPGA architectures are optimized for various use cases: HPC computa-

tions, database workloads or packet processing. The designs proposed in this paper utilize

only the off-chip memory interface, which makes them general enough to be ported between

most currently available FPGA platforms. For simplicity we choose only one platform, the

Convey-WX, to implement and run all our designs. The Convey architecture offers a shared

global memory space between hardware and software, which eliminates any variability due

to the memory architecture and allows us to do direct performance comparison.

2.5 Convey HC-2ex Platform

The Convey HC-2ex is a heterogeneous platform that offers a shared global memory

space between the CPU and FPGA regions. As shown in Figure 2.5a the memory is divided

into regions connected through PCIe with portions closer to the CPU, and portions closer

to the FPGAs. The software region has 2 Intel Xeon E5-2643 processors running at 3.3

GHz with a 10 MB L3 cache. In total the software region has 128 GB of 1600 MHz DDR3

memory. The system has a peak memory bandwidth of 51.2 GB/s.

The hardware region has 4 Xilinx Virtex6-760 FPGAs connected to the global

memory through a full crossbar. Each FPGA has 8 64-bit memory controllers running at

300MHz (Figure 2.5b). The FPGA logic cells run in a separate 150 MHz clock domain

to ease timing and are connected to the memory controllers through 16 channels. These
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(a) The Convey HC-2ex software and hardware regions.

(b) Convey HC-2ex FPGA AE wrapper.

Figure 2.5: The Convey HC-2ex architecture. Separation into software and hardware regions
in shown in (a). In hardware region each FPGA has 8 memory controllers, which are split
into 16 channels for the FPGA’s logic cells as shown in (b).

memory channels provide a highly parallel 8,192 simultaneous outstanding requests. The

hardware region has 64 GB of 1600 MHz DDR3 RAM. Each FPGA has a peak memory

bandwidth of 19.2 GB/s.
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2.6 CAMs on FPGA

A CAM (also known as an associative memory), is an array that can perform

efficient entry-matching (i.e. answer membership queries). Its operation is the inverse of a

Random Access Memory (RAM): when presented with a search word the CAM returns all

the locations whose content matches that word. Each CAM bit consists of a flip-flop with a

comparator matching it to the corresponding bit in the search word. The outputs of all the

bit positions in a word are ANDed to generate the (mis)match for that word. The CAM’s

ability to perform a search in unit time comes at a high cost of area, energy and long clock

cycle time (due to the long wires for the bit-wise AND and propagating the search word to

all the entries)

As the number of entries in the CAM increases, the achievable clock frequency

of the circuit drops. This limitation either restricts the size of the CAM or increases the

number of cycles it takes to perform an update operation. Nonetheless, CAMs have proven

to be very useful in domains such as networking (e.g. implementing an IP table in a network

router). Recently we explored how CAMs can be used to accelerate the breadth first search

algorithm [131].

In a streaming environment CAMs can maintain a cache of recently seen unique

items and allow quick access to them without stalling the pipeline. This fast cache look-

up mechanism can also be used as a fine-grained address-based synchronization primitive,

which avoids long latency trips to main memory and does not require special hardware.

Consider the case when a CAM is assigned to guard a particular memory partition. It

can be configured to hold the addresses of the values that need synchronized access. If all
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memory requests within a partition are first submitted to the CAM, before being routed to

the memory, the accesses to identical addresses are serialized locally in the CAM. In this case

a CAM entry serves as an exclusive lock, which gets released (flushed from the CAM) after

the request(s) completion. In [8] we discuss how to use this approach for synchronization

in the multithreading group-by aggregation algorithm.

To the best of our knowledge all previous FPGA implementations relied on spe-

cialized platform features to provide synchronization primitives. In our previous work [64]

we used atomic operations provided by the now discontinued Convey MX architecture [45].

Each word in memory maintains a locking bit that can be set by a memory instruction.

The Convey development kit provides test and set instructions that can be executed from

the FPGA to lock the memory location while the operation is executed. Leveraging CAMs

for synchronization increases the portability of our design. This moves all synchronization

operations internal to the FPGA, and can be done on any architecture. In addition, this

design provides more selective fine-grained synchronization primitives in comparison to the

Convey-MX, which places a lock on all FPGA-memory communication channels.

It was shown that implementing fully-associative matching logic for CAMs on both

Altera and Xilinx FPGAs introduces a 60x overhead compared to regular BRAMs [139].

This drawback makes implementing large CAMs on reconfigurable fabrics notoriously hard.

Dhawan et al. [51] explored various designs of CAMs and introduced a trade-off between

CAM size and update time.
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2.7 Query Processing on FPGAs1

Many research works in the early 1980s were dedicated to the design and archi-

tecture of database machines - specialized hardware, designed solely for the purpose of

storing and processing large amounts of data. These architectures were utilizing parallel

data processing by tightly coupling processing units with disk-based storage. The stagnated

growth of disk bandwidth coupled with the continuous increase of storage density implied

that data management systems were mostly IO bound. At the same time the rapid perfor-

mance advances of off-the-shelf processors (due to Moore’s law) made the database machine

very cost-ineffective [27]. This allowed a handful of processors to operate on a large num-

ber of parallel disk I/O operations thus avoiding the rigid pairing of storage and compute

units. The interest gradually shifted from intra-node database machine-style parallelism

to shared-nothing systems, providing effective easy to scale inter-node parallelism [50, 49].

The depletion of the processing frequency growth finally discontinued the “free ride” on

performance scaling. Abundance of cheap main memory diminished the role of I/O-related

overhead as a main bottleneck. Nevertheless, the growing gap between memory access la-

tency and the processor’s computational capabilities (“memory wall”) brings up the data

access overhead, but on a different level (“memory is the new I/O”). At the same time, the

limited bandwidth of current network technology has restricted the scaling potential of the

shared-nothing systems. The aforementioned hardware trends as well as The availability of

new generation of data processing hardware (GPUs, FPGAs, ASICs) revived the interest

in specialized hardware-accelerated database systems. Recently several research projects

1This section worked on collaboratively with colleague Prerna Budhkar
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proposed building hybrid CPU-GPU systems [141, 29, 61, 126, 58]. These systems are de-

ployed on a traditional CPU architecture, but use the GPUs as a co-processor to accelerate

easy-to-parallelize parts of the query processing.

Several academic projects have worked towards simplifying the use of custom hard-

ware for query processing. For instance, the Glacier library [101] implements a component

library that generates query-specific FPGA circuits for various streaming queries. This ap-

proach is suitable for scenarios with few queries that are known in advance. Queries that

fall under typical stream processing applications run longer which justifies invoking a time-

consuming synthesis process for every new query. The synthesis time to build an engine is

high, and needs to be amortized over many runs to be practical. The technique has been

shown useful for event processing systems like high frequency trading [115]. The Q100 [134]

architecture is a fixed platform with many ASIC database processing units. A query stream

is scheduled through the necessary units. Resources may go unused for a given query, but

the platform avoids long build times.

Netezza [75] is a complete DBMS that uses FPGAs as a filter between the hard

disk and main memory. Customizable queries are sent to the FPGAs which utilize their

close proximity to the hard disk to quickly filter relations before sending them to memory.

The platform tries to reduce the costly data transfers from disk to main memory [119]. The

trade off for this approach is that all requests must start on disk. In-memory databases

cannot leverage the addition hardware FPGAs. Another full DBMS, Kickfire [81], uses

FPGA hardware accelerators connected through either PCIe or hyper transport. It defines

various database operations as HARP logic that consists of a hardware circuit and a large
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memory systems. All queries are analyzed by Teradatas C2 software, which decides if it

should handle the job itself,send it back the the DBMS, or offload it to HARP logic. The

customized hardware supports many common relational database operations [28, 71, 94]
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Chapter 3

High Level Language Tools for

Reconfigurable Computing

This first chapter looks at the flexibility of High Level Synthesis tools. The goal

of these tools is to take an algorithm description in a high level language like C/C++ and

automatically generate a synthesizable hardware circuit. They provided automated testing

facilities for both software and hardware models to try and improve the speed of iterating on

hardware design. The hardest, most expensive part of FPGA development tends to be the

engineering hours contributed to making and testing the design. Any progress in bringing

down development time is extremely beneficial. An insightful webcomic (figure 3.1) on this

idea is called ”Compiling” by Randall Munroe [137]. As true as waiting for compilation is

in the software world, it is painfully more true with hardware. With several projects over

the years that took more than 24 hours to build for the FPGA, sometimes creativity wins

over productivity.
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Figure 3.1: xkcd: Compiling - sometimes there is no other option than jousting in the
lab.[137]

While the tools are making tremendous progress, they are not a silver bullet. They

generally only work on a subset of the high level language, at the time of this research they

only focused on regular compute cores, and they did not support dynamic memory. In

this project[132], we look at the tools from the programmer’s perspective. How easy it is

to describe a design, how easy it is to explore different hardware configurations, and how

much of the process to tool automates.

3.1 High Level Synthesis and FPGAs

In recent years we have witnessed a tremendous growth in size and speed of FPGAs

accompanied by an ever widening spectrum of application domains where they are exten-

sively used. Furthermore, a large number of specialized functional units are being added to
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their architectures such as DSP units, multi-ported on-chip memories and CPUs. Modern

FPGAs are used as platforms for configurable computing that combine the flexibility and

re-programability of CPUs with the efficiency of ASICs. Commercial as well as research

projects using FPGA accelerators on a wide variety of applications have reported speed-

up, over both CPUs and GPUs, ranging from one to three orders of magnitude as well as

reduced energy consumption per result ranging from one to two orders of magnitude. Ap-

plication domains have included signal, image and video processing, encryption/decryption,

decompression (text, integer data, images etc), data bases [98] [99], dense and sparse linear

algebra, graph algorithm, data mining, information processing and text analysis, packet

processing, intrusion detection, bioinformatics, financial analysis, seismic data analysis, etc.

FPGAs are programmed using Hardware Description Languages (HDLs) such as

VHDL, Verilog, SystemC and SystemVerilog that are used for digital circuit design and

implementation. In these languages the circuit to be mapped on an FPGA is designed at

a fairly low level: the data paths and state machine controllers are built from the bottom

up, timing primitives are used to provide synchronization between signals, the registering of

data values is explicitly stated, parallelism is implicit and sequential ordering of events must

be explicitly enforced via the state machine. Traditionally trained software developers are

not familiar with such programming paradigms. Beyond the program development state,

the tool chains are language and vendor specific and consist of a synthesis phase where the

HDL code is translated to a netlist, mapping where logic expressions are translated into

hardware primitives specific to a device, place and route where hardware logic blocks are

placed on the device and wires routed to connect them. This last phase attempts to solve
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an NP-complete problem using heuristics, such as simulated annealing, and may take hours

or days to complete depending on the size of the circuit relative to the device size as well

as the timing constraints imposed by the user. The steepness of the learning curve for such

languages and tools makes their use a daunting and expensive proposition for most projects.

This paper provides a qualitative survey of the currently available tools, both

research and commercial ones, for programming FPGAs as hardware accelerators. We start

with a historical prospective on the use of FPGA-based hardware accelerators (Section

3.1.1) showing that the role of FPGAs as accelerators emerged very shorty after their

introduction, as glue-logic replacements, in the 1980s. In Section 3.1.2 we discuss the

efficiency of the hardware computing model over the stored program model and review the

challenges posed by using High-Level Languages (HLLs) as programming tools to generate

hardware structures on FPGAs. Related works and five High-Level Synthesis (HLS) tools

are described in Section 3, three commercial tools: Xilinx Vivado, Altera OpenCL, Bluespec

BSV, and two university research tools: ROCCC and LegUp. We use a simple image filter,

dilation, and AES encryption routines to describe the style of programming these tools and

explore their capabilities in implementing compiler-based transformations that enhance the

throughput of the generated structure (Section 3.3 and Section 3.4). Area, performance

and power results for both benchmarks are compared in Section 3.5 and, finally, concluding

remarks are presented in Section 3.6. Note: in this paper we report results and compare

tools only to the extent allowed by the terms of the user license agreements.
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3.1.1 A Historical Perspective

The use of FPGAs as hardware accelerators is not a new concept. Very shortly

after the introduction of the first SRAM-based FPGA device (Xilinx, 1985) the PAM (Pro-

grammable Active Memory) [22][127] was conceived and built at the DEC Paris Research

Lab (PReL). The PAM P0 consists of a 5x5 array of Xilinx XC3020 FPGAs (Figure 3.2)

connected to various memory modules as well as to a host workstation via a VME bus. It

had a maximum frequency of 25MHz, 0.5 MB of RAM, and communicated on a host bus

of 8 MB/s. The PAM P1 was built using slightly newer FPGA, the Xilinx XC3090. It

operated with a maximum frequency of 40MHz, 4 MB of RAM, and used a 100 MB/s host

bus. It was described as ”universal hardware co-processor closely coupled to a standard host

computer”[23]. It was evaluated using ten benchmark codes [23] consisting of: long multi-

plication, RSA cryptography, Ziv-Lempel compression, edit distance calculations, heat and

Laplace equations, N-body calculations, binary 2D convolution, Boltzman machine model,

3D graphics (including translation, rotation, clipping and perspective projection) and dis-

crete cosine transform. It is interesting to note that most of these benchmarks are still

today subjects of research and development efforts in hardware acceleration. Berlin et al.

in [23] conclude that PAM delivered a performance comparable to that of ASIC chips or

supercomputers, of the time, and was one to two orders of magnitude faster than software.

They also state that because of the PAM’s large off-chip I/O bandwidth (6.4 Gb/s) it was

ideally suited for ”on-the-fly data acquisition and filtering,” which is exactly the computa-

tional model, streaming data, adopted by most of the hardware acceleration projects that

rely on FPGA platforms.
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2 Two PAM architectures

Our assessment is based on two PAM architectures realized at DEC Paris Research Lab.,
DECPeRLe-0 (see [BRV89]) and DECPeRLe-1 which we respectively refer to asP0 and P1 in
the following.

Each PAM is built around a large array of bit-level configurable logic cells (hereafter called
Programmable Active Bits or PABs) in which the application-specific hardware operator is
programmed. This array is surrounded with local RAM banks used as a cache (wide and
fast enough to match the PAM’s processing bandwidth), a programmable clock generator, and
some additional non-configurable logic to manage the host bus interface and the download
process.

RAM RAM

RAM

RAM

Ext I/O Ext I/O

DATA

ADR

CNTR

VME-Bus

Dwld/Rdb

Cntr

The above figure sketches the architecture of P0 (1988). The central computational array is
made of a 5 5 matrix of Xilinx XC3020 Programmable Gate Arrays [Xil87]; it has two
32-bit wide RAM banks on the south and east sides, a VME bus interface on the west side
and general-purpose interface connectors on the north side. The control and bootstrap logic is
implemented in two extra XC3020 (non user-programmable). Finally, additional bus switching
resources are provided for global data routing (represented here with diamond-shape boxes).

The architecture of P1 was designed after two years of P0 usage . It features a 4-times-bigger
central computational matrix with accordingly wider RAM, a faster host interface, and a much
more flexible global interconnection network for data routing and switching.

March 1993 Digital PRL

Figure 3.2: Architecture of the DEC PReL PAM P0

This first reconfigurable platform was rapidly followed by the SPLASH 1 (1989)

and SPLASH 2 (1992) [112, 30, 111, 73, 109] projects at the Supercomputer Research Center.

Each were linear arrays of FPGAs with local memory modules. They were designed for

accelerating string-based operations and computations such as edit distance calculations.

The SPLASH 2 was reported to achieve four orders of magnitude speedup, over a SUN

SPARC 10, on edit distance computation using dynamic programming.

Table 3.1: Architecture parameters of the SPLASH 1 and SPLASH 2 accelerators

SPLASH 1 SPLASH 2

Year 1989 1992

FPGA XC3090 XC4010

4-LUT/board 10,240 13,600

Max. bandwidth 1 MB/s 100 MB/s

Memory/FPGA 128 KB 512 KB

Interconnect Linear array Linear array, broadcast

The PAM and SPLASH projects put the foundation of reconfigurable computing

by using FPGA-based hardware accelerators. In the past two decades the density and
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speed of FPGAs have grown tremendously: the density by several orders of magnitude,

the clock speed by just over one order of magnitude. Both of these projects could each

be easily implemented on single moderately sized modern FPGA device. However, the

main challenge to FPGAs as hardware accelerators, namely the abstraction gap between

application development and FPGA programming, not only remains unchanged but has

probably gotten worse due to increase in complexity of the applications enabled by the

larger device sizes. FPGA hardware accelerators are still beyond the reach of traditionally

trained application code developers.

3.1.2 Hardware and Software Computing Models

In this section we discuss two issues that define the complexity of compiling HLLs

to hardware circuits: (1) the semantic gap between the sequential stored-program execution

model implicit in these languages and (2) the effects of abstractions, or lack thereof, on the

complexity of the compiler.

Efficiency and Universality

The stored program model is a universal computing model: it is equivalent to a

Turing machine with the limitations on the size of the tape imposed by the virtual address

space. It can therefore be programmed to execute any computable function. Hardware

execution, on the other hand, is not universal unless it has an attached microprocessor. It

is, however, extremely efficient. Consider an image filter applied on a 3 × 3 pixel window

over a frame: the forall loop implemented in hardware can be both pipelined (let d be the

pipeline depth) and unrolled as to compute multiple windows concurrently, let the unroll
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factor be k. In the steady state d×k operations are being executed concurrently producing

k output results per cycle. On a CPU, the innermost loop of a typical image filter requires

20 to 30 machine instructions per loop body including nine load instructions. Assuming

an average instruction level parallelism (ILP) of two, each result takes 10 to 15 machine

cycles - which is the ratio of the respective clock speeds of CPUs and GPUs to FPGAs.

However, that same loop can be replicated many times on the FPGA achieving a much

higher throughput (at least an order of magnitude). Furthermore, the ability to configure

local customized storage on the FPGA makes it possible to reduce the number of memory

accesses, mostly reads, by reusing already fetched data resulting in a more efficient use of the

memory bandwidth and lower energy consumption per task [90]. Hence the higher speedup

or throughput observed on a very wide range of applications using FPGA accelerators over

multi-cores (CPUs and GPUs). Further details on CPU efficiency for image filters are

discussed in Section 3.3.1.

Semantics of the Execution Models

CPUs and GPUs are inherently stored-program (or von Neumann) machines and

so are the programming languages used on these. Most of the languages in use today reflect

the stored program paradigm. As such they are bound by its sequential consistency, both at

the language and machine levels. While CPU and GPU architectures exploit various forms of

parallelism, such as instruction, data and thread-level parallelisms, they do so circumventing

the sequential consistency implied in the source code internally (branch prediction, out-of-

order execution, SIMD parallelism, etc.), while preserving the appearance of a sequentially

consistent execution externally (reorder buffers, precise interrupts etc.). The compiling
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of a HLL code to a CPU or GPU is therefore the translation from one stored program

machine model, the HLL, to another, the machine’s Instruction Set Architecture (ISA).

In the stored program paradigm the compiler can generate a parallel execution only when

doing so is provably safe. In other words when the record of execution can be proved, by the

compiler, to be either identical or equivalent to the sequential execution. For example, in

a single level forall loop, any interleaving of the iterations produces a correct result. Also,

in a single threaded CPU execution the producer/consumer relationship is not a parallel

construct since the semantics imply that all the data must be produced before any datum

can be consumed. Hence all the data is stored in memory by the producer loop before the

consumer loop starts execution.

A digital circuit, on the other hand, is inherently parallel, spatial, with distributed

storage and timed behavior. HDLs (e.g. VHDL, Verilog, SystemC and Bluespec) are ar-

guably the most commonly used parallel languages. In a digital circuit the producer/con-

sumer relation is a parallel structure: the data produced is temporarily stored in a local

buffer the size of which is determined by the relative rates of production and consumption.

Furthermore, any implementation would be expected to include back pressure and synchro-

nization mechanisms to (1) halt the production before the buffer is full and (2) stall the

consumption when the buffer is empty to achieve a correct implementation. Buffering the

data is not necessary when compiling individual kernels (e.g. stand-alone filters). However,

it becomes a necessity, and often a major challenge, when compiling larger systems. Con-

sider data streaming through a series of filters: buffers and back-pressure are necessary to
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Table 3.2: Features and characteristics of Stored Program and Spatial computation models

Stored Program Spatial Computing

Storage &
data access

Central, large, virtual address
space. Multi-level caches

Distributed, small, physical.
Streaming data. Limited
caching. No virtual memory

Parallelism Dynamic - separate ILP, DLP,
TLP

Static - integrated ILP, DLP,
TLP

Sequencing Central, static, sequentially
consistent

Data-flow, asynchronous

Data-Path Pre-designed, one size fits all.
Dynamic data dependencies

Customized, very deep
pipelines. No dynamic data
dependencies

hold the data between filters. Automatically inferring efficient buffering schemes without

user assistance in the forms of pragmas or annotations is a major challenge.

Edwards [53] makes the case that C-based languages are not well suited for HLS.

The major challenges described in the paper for C-based languages apply to most HLLs.

These challenges are the lack of: (1) timing information in the code, (2) size-based data types

(or variable bit length data types), (3) built-in concurrency model(s), (4) local memories

separated from the abstraction of one large shared memory. While all these points are

valid, the main attraction of C-based languages is familiarity. Most HLS tools using C-

based languages provide workarounds for one or more of these obstacles as described in

[53].

The abstraction and semantic gaps between the hardware and software computing

models are summarized in Table 3.2. Translating a HLL to a circuit requires a transforma-

tion of the sequential to a spatial/parallel, with the creation of custom sequencing, timed

synchronizations, distributed storage, pipelining, etc. The storage in the von Neumann
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model is abstracted in a single large virtual address space with uniform access time (in

theory). The spatial model is better served with multiple local small memories. The par-

allelism in the von Neumann model can be dynamic: threads are created and complete

relinquishing resources. In hardware every thread must be provisioned with resources stati-

cally. The software model relies on an implicit sequential consistency where all instructions

execute in program order and no instruction starts before all the previous instructions have

completed execution. The hardware execution is data flow driven.

Raising the abstraction level of FPGA programming to that of CPU or GPU

programming is a daunting task that is yet to be fully completed. It is of critical importance

in the programming of accelerators as opposed to the high-level design of arbitrary digital

circuit, which is the focus of high-level synthesis. Hardware accelerators differ from general

purpose logic design in one important way: the starting point of logic design is a device

whose behavior is specified by a hardware description code implemented in a HDL such as

VHDL, Verilog, SystemC, SystemVerilog, or Bluespec. The starting point of a hardware

accelerator is an existing software application a subset of which, being frequently executed,

is translated into hardware. That subset is, quasi by definition, a loop nest. Hopefully that

loop nest is parallelizable and can therefore exploit the FPGA resources. By focusing on

loop nests, the task of compiling HLLs to FPGAs is simplified and opportunities for loop

transformations and optimizations abound. The ROCCC compiler takes this approach and

is described later in this paper.
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3.2 Related Work

As the number of tools supporting HLS for FPGAs has increased so has the number

of surveys comparing and contrasting such tools. However, the rapidly shifting landscape of

HLS tools for reconfigurable computing makes most endeavors obsolete within a few years.

A description of the historical evolution of HLS tools, starting with the pioneering work

in the 1970s can be found in [92]. The authors offer an interesting analysis of the reasons

behind the successes and failures of the various generations of HLS tools. While the survey

is not focused on HLS tools for FPGAs, it does mention several FPGA-specific tools, such

as Handel-C, as well as general HLS tools that could be used for FPGAs.

The major research efforts in compiling high-level languages to reconfigurable com-

puting are surveyed in [36]. The paper offers an in-depth analysis of the tools available at

that time. AutoESL is described in [44]. The paper also provides an extensive survey of

HLS in general and of tools specifically for FPGA programming. In [54] the authors re-

viewed six high level languages/tools based on programming productivity and generated

hardware performance (frequency, area). User experience of using the targeted languages is

recorded and normalized as a measure of productivity in this study. However, most of the

tools evaluated in this work are no longer supported by their developers.

An extensive evaluation of 12 HLS tools in terms of capabilities, usability and

quality of results is presented in [93]. The authors use Sobel edge detection to evaluate the

tools along eight specific criteria: documentation, learning curve, ease of implementation,

abstraction level, data types, exploration, verification and quality of the results. Daoud et

al. [48] survey past and current HLS tools.

32



3.2.1 Xilinx Vivado HLS

Vivado High-Level Synthesis is a complete HLS environment from Xilinx. It has

been in development for the last several years following Xilinx’s acquisition of AutoESL[57]

[7] [142]. Vivado HLS is available as a component of Xilinx’s larger Vivado Design Suite

or as a standalone tool. Like most HLS tools, Vivado HLS is mostly oriented towards core

generation over full system design. It is possible to create hybrid designs with portions of

code running on a soft-core processor communicating with custom hardware accelerators.

However, the recommended work-flow [103] requires exporting the IP core from HLS and

importing into the full Vivado Design Suite. As a Xilinx tool, there is significant support for

different boards of multiple families of Xilinx FPGAs (7-series Virtex, Artix, Zynq, etc.).

Depending on requirements, the hardware accelerator can be exported as one of several

different Xilinx specific core formats for simple integration into other products, or just the

HDL specification.

The Vivado HLS tool is built using LLVM [89][133] compiler framework. As such

it has access to many software optimizations (e.g. loop-unrolling, loop-rotation, dead-code

elimination, etc). However, hardware and software programing paradigms are inherently

different so we cannot expect all of LLVM’s optimizations to work seamlessly for HLS.

Several studies using Vivado HLS to generate FPGA accelerators have been demonstrated,

including Dynamic Data Structures[133], Sobel Filter [93], Control Algorithms for Power

Converters [102], and real-time embedded system vision [72].
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Figure 3.3: Vivado HLS Workflow

User Experience

Typical design flow (Figure 3.3) starts with C code compiled to a pure software

implementation and a self-validating testbench to verify correctness. The user must specify

the top function in the code that they wish to synthesize to hardware. The GUI provides the

user a list of code regions (targeted at loops, function bodies, and other bracketed regions)

that can be optimized using synthesis directives to guide the RTL generation.

At the function level, directives include inline, instantiate (local optimization),

dataflow (improve concurrency), pipeline (improve throughput), and interface (function

defines an interface), among others. At the loop level, dataflow pipelining, and the common

optimizations of loop-unrolling, loop-merging, loop-rotation, dead-code elimination, etc.

are also available. The interface directive higlights an important aspect of the flexibility in

Vivado HLS – the ability to generate user specified I/O protocols. Documentation highlights

the convenience of using Xilinx’s AXI4 interfaces in terms of compatibility with their IP
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catalog, however, the tool does not prevent custom protocols, and thus increases portability.

The tool also provides the ability to set custom bit-widths for all variables in a design,

leading to more efficient use of area.

The directives guiding the optimizations can be defined directly in the source

code using #pragmas, similar to OpenCL code. They can also be defined separately in

a directives.tcl file that the synthesis tools will apply before RTL generation. The second

option creates the flexibility of maintaining multiple solutions testing different optimizations

using the same source code. As design space exploration is a generally iterative and time

consuming process,[14] this can reduce the development time.

3.2.2 Altera OpenCL

Open Computing Language (OpenCL) is a programming language originally pro-

posed by Apple Inc. and maintained by the Khronos Group [80]. The OpenCL specification

provides a framework for programming parallel applications on a wide variety of platforms

including CPUs, GPUs, DSPs, and FPGAs [124]. Moreover, OpenCL is a royalty-free,

cross-platform, cross-vendor standard that targets supercomputers, embedded systems and

mobile devices. OpenCL allows the programmers to use a single programming language

to target a combination of different parallel computing platforms. Parallel computation is

achieved through both task-level and data-level parallelism.

The OpenCL framework provides an extension of C (based on C99) with paral-

lel computing capabilities and the OpenCL APIs, which is an open standard for different

devices. In the OpenCL programming model, a host is connected to one or more accel-

erator devices running OpenCL kernels. Device vendors provide OpenCL compilers and
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runtime libraries necessary to run the kernels. The host program is written in standard C

to query, select, and initialize compute devices. Communication between the host program

and accelerators is established through a set of abstract OpenCL library routines. Each

accelerator device is a collection of compute units with one or more processing elements.

Each processing element executes code as SIMD or SPMD.

In the FPGA industry, both Altera and Xilinx have announced support of OpenCL

HLS in their FPGA development tools. Altera released an OpenCL SDK in 2013 that

supports a subset of the OpenCL 1.0 specifications. Xilinx started to support OpenCL in

their Vivado HLS tool in April 2014. In this paper we focus on the Altera OpenCL SDK.

Figure 3.4: The OpenCL system overview, image from [118].

The Altera OpenCL SDK provides software programmers an environment based

on a multi-core programming model that abstracts away the underlying hardware details

while maintaining efficient use of FPGA resources. The Altera OpenCL compiler (AOC) is

an offline compiler that translates OpenCL to Verilog and runtime libraries for the host ap-

plication API and hardware abstractions. The OpenCL system overview is shown in Figure

3.4. Unlike the OpenCL compiler for CPUs and GPUs, where parallel threads are executed
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on different cores, AOC transforms kernel functions into deeply pipelined hardware circuits

to achieve parallelism. AOC uses a CLANG front-end to parse OpenCL extensions and

intrinsics to produce unoptimized LLVM IR [39]. The middle-end performs optimization

with about 150 compiler passes such as loop fusion, auto vectorization, and branch elim-

ination. On the back-end, the compiler instantiates Verilog IP and manages control flow

circuitry of loops, memory stalls, and branching. Finally the generated kernel is loaded

onto an Altera FPGA using an OpenCL compatible hardware image. Various applications

using OpenCL to program FPGA accelerators have been demonstrated, such as information

filtering [39], Monte Carlo simulation [118], finite difference [47], particle simulations [47],

and video compression [40].

User Experience

The AOC is designed for software programmers to construct parallel FPGA ap-

plications. It has a similar command line interface to the GCC compiler. All OpenCL

codes must be included in a single text file before passing to the compiler. The AOC will

generate transformations, create Quartus II project files and perform synthesis, place and

route, and bitfile generation for FPGA execution. There are several compiler optimizations

that can be applied to OpenCL code: kernel vectorization, static memory coalescing, gen-

erating multiple compute units, and loop unrolling. Optimizations, when invoked by the

user, are applied automatically by the compiler on the whole code to improve processing

efficiency. In addition, the programmer can specify attributes, such as num compute units

and num simd work items, in the source code to manually control the degree of kernel vec-
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torization and parallel compute units respectively, as shown in Figure 3.5. When setting

the num simd work items attribute, the data path within a compute unit is replicated

to increase throughput and can also lead to memory coalescing. On the other hand, the

num compute units attribute will also duplicate all the control logic which may increase the

number of global memory access. Figure 3.6 shows the difference between these two opti-

mizations. Both techniques can be combined to further increase the parallelism at a cost

of higher memory bandwidth usage and more FPGA resource occupation. Furthermore,

AOC allows users to specify the loop unrolling factor by setting the pre-processor directives

(#pragma unroll). In Figure 3.5, the loop iteration is unrolled 16 times. If the amount of

unrolling is not specified, AOC will fully unroll the loop. Moreover, the AOC can perform

resource-driven optimizations that analyze various combinations of compute unit number,

work group size, loop unrolling factor and number of shared resources under the constraints

of available hardware resources and memory bandwidth to determine the optimal choice of

these values. The resource-driven optimizer is invoked when the programmer sets the -O3

switch in the compiler.

attribute ((num simd work items(1)))
attribute ((num compute units(3)))
kernel

void SampleKernel( global int ∗ restrict a in ,
global int ∗ restrict a out)

{
int i ;
#pragma unroll 16
for( i = 0; i < 128; ++i)

....
}

Figure 3.5: Sample OpenCL kernel function with programmer set attributes.
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Figure 3.6: OpenCL compiler optimization techniques to increase parallelism.

To test the OpenCL code functionality, AOC provides an OpenCL emulator to

simulate the behaviour of the OpenCL kernel program. The emulated kernel is used as

a dynamically linked C++ library that can be called from a host program. To compile

the OpenCL code for emulation, the -march=emulator option should be included in the

compilation. Programmers can write a host program to verify if the OpenCL kernel works

as designed. In addition, basic C functions like printf can be used inside the OpenCL

kernel with the emulator to check intermediate values. When the emulator is used, no

compiler optimizations can be applied. At present, there is no RTL simulations for hardware

programmers to test the generated Verilog kernel.

3.2.3 Bluespec System Verilog

Bluespec System Verilog (BSV) [105] [104] is a high level hardware description

language built upon the synthesizeable subset of SystemVerilog. BSV’s behavioral model is

based on Atomic Rules and Interfaces. The rules ensure parallelism, which is well suited for
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complex hardware designs. BSV also provides powerful abstraction mechanisms that were

previously believed to be suited only for software applications. BSV derives most of these

abstractions from System Verilog, such as module and module hierarchies, loops, and user-

defined data types (enum, struct, tagged union). BSV provides architectural transparency

- meaning the programmer, not the tool, expresses the architecture of a the design. This

transparency places the tool in an area between HLS and HDL; it abstracts away some

of the complexities of working at the hardware level, yet it loses some of the automation

provided by many HLS tools. BSV has strong type-checking which ensures all objects

are compatible and conversion functions are valid [5]. BSV also provides strong static

checking by preventing movement of values to/from currently unused modules - ensuring a

synchronizing mechanism must be used to cross clock boundaries. All of these features help

eliminate timing errors.

Language Semantics

In conventional Verilog, values are typically kept synchronized by using an always

block. In BSV, Rules are used to describe how data is moved from one state to another.

The rules are atomic in nature, meaning the execution of each rule should be considered

independently. A Rule is triggered when all of its preconditions are met. Preconditions are

boolean expressions, which are purely combinational logic and do not have any side effects.

All actions within a rule occur simultaneously, implying all rules should be composed of in-

dependent actions. Rules help in achieving higher concurrency and avoiding race conditions.

The independent nature of rules allows hardware to execute multiple rules concurrently.
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interface Product Interface ;
method int readResult ;
method Action setValues ( int p, int q, int r) ;

endinterface

(∗ synthesize ∗)
module product (Product Interface ) ;

Reg#(int) x <− mkReg (0) ;
Reg#(int) y <− mkReg (0) ;
Reg#(int) z <− mkReg (0) ;
Reg#(int) result <− mkRegU ;

Reg#(Bool) b <− mkReg (False) ;

rule toggle ;
b <= !b ;

endrule

rule r1 (b) ;
result <= x ∗ y ;

endrule

rule r2 (!b) ;
result <= x ∗ z ;

endrule

method readResult = result ;

method Action setValues ( int p, int q, int r) ;
x <= p ;
y <= q ;
z <= r ;

endmethod

endmodule

Figure 3.7: Multiplication example in BSV.

A BSV module’s interface consists of methods instead of a ports list. A method

is similar in concept to a function, it takes in arguments and returns a result. However,

they differ in that a method also carries with it a set of implicit conditions. Each method

has an associated Ready signal (output port) and an Enable signal (input port) if it is

an Action method. Because BSV does not accept standard C like the other HLS tools

presented in this paper, we show a simple BSV code to multiply two integer values for
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syntax clarification (Figure 3.7). The module named product provides Product Interface.

Product Interface has two methods. The readResult is a Value Method, which forms the

output port of the module. The second method setValues takes three arguments and forms

the input port of the module. The attribute synthesize tells the BSV compiler to generate

a separate hardware implementation (Verilog) of the following module. We then define four

registers of type int and instantiate them with a BSV defined module mkReg. Finally we

apply different rules to compute the product.

BSV uses a dynamic scheduler which allows multiple rules to be executed in each

clock cycle. The compiler, guided by the scheduler, performs a detailed analysis of all

the rules and their interactions with each other and maps the design into the clocked, syn-

chronous hardware. This mapping permits multiple rules to be executed in each clock cycle,

however, it may also give rise to a situation where two or more rules conflict (e.g. limited

resources). In the absence of user guidance, the compiler arbitrarily chooses which rule to

prioritize and issues a warning. As shown in Figure 3.8, the BSV compiler makes sure that

all the control logic is dictated solely by the applicable rules, thus functional correctness is

achieved.

User Experience

Bluespec compilation can be controlled from the Bluespec GUI or from the com-

mand line interface. It is very important for the programmer to understand how Bluespec
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Figure 3.8: Scheduling of Rules in BSV

language semantics get converted to RTL. For example, to interact with the module we

need ports which are formed by Bluespec interfaces [93].

The RTL code is generated by scanning each line of the Bluespec code. All the

Bluespec design entity names are preserved in the RTL code generated by the compiler.

For example, in Bluespec, methods are used to bring data into the module and send out

of the module. Methods eventually form port signals of the same name in the RTL, which

makes the RTL code more readable and traceable [93].

The benefit of BSC over C-based synthesis tools is that BSC does not invent the

architecture for us. With C-based synthesis, the designer writes an (often sequential) algo-

rithm, and the C-based tool figures out an architecture to implement that algorithm. With

BSC, the designer chooses the architecture, writes BSV to express the desired hardware

43



implementation, and BSC generates that hardware. However the designer may not have

many choices for design exploration since the design entry is at the hardware level.

3.2.4 LegUp 3.0 (U. Toronto)

LegUp [33][34] is an integrated HSL environment that is developed and maintained

at the University of Toronto. The project’s goal is to take existing C applications in their

entirety, compile and run them on an FPGA. This differs from most HLS tools that focus

on compiling only specific regions of code to hardware. Currently, LegUp targets two Altera

platforms – a Cyclone II on the DE2 board, and a Stratix IV on the DE4 board. Design

choices like the soft-core processor and the communication bus are tightly coupled to these

specific boards, and porting them to other platforms would be a non-trivial task. However,

the hardware accelerator cores themselves have only a few Altera specific components, and

can be ported with little effort.

LegUp supports three types of compilation: pure software, pure hardware, and a

hybrid approach. In a pure software compilation, LegUp only generates assembly code that

can be run on a Tiger MIPS [123] soft-core processor, enabling the FPGA to handle almost

all of the C language standard. However, it limits the performance and energy efficiency. In

a pure hardware compilation, LegUp generates a custom circuit for the entire application.

However, only a subset of the C language is supported for hardware acceleration. For

example, dynamic memory and recursive functions do not make sense as a circuit. It

should be noted that these limitations are ubiquitous among all HLS tools. In a hybrid

compilation, LegUp generates a custom circuit for only part of the application, and assembly

code is generated for the rest. LegUp keeps any hardware calls from software transparent
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to the user by automatically inserting them into the assembly code. Support exists for both

blocking and non-blocking hardware calls. Blocking calls improve the energy efficiency, but

non-blocking calls will improve the performance.

Figure 3.9: LegUp 3.0 Target Architecture

Figure 3.9 shows the complete hybrid architecture that LegUp generates. It has

a single Tiger MIPS processor and can have multiple hardware accelerators depending on

the application. All memory data is stored in an off-chip memory, but an on-chip cache

is used to improve performance. All communication is carried across Altera’s Avalon bus

[3]. Targeting a single type of architecture has its trade-offs. A shared global memory

space prevents costly data offloading, and assuming only one type of bus simplifies the

communication protocols. However, it results in very specialized hardware accelerators.

Their performance is limited by the Avalon bus’s bandwidth, and cannot be extended to

higher bandwidth architectures. LegUp is currently a very specific tool, but extensions

could make it more general.

Typical design flow for an application starts with the C code compiled into a pure

software implementation. LegUp provides a built in profiler to help identify computation
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intensive code regions that are strong candidates for hardware acceleration. This stage

is not automated: the user must mark functions for hardware compilation. LegUp then

generates the necessary accelerators in Verilog and the application is recompiled to insert

the necessary hardware calls. The entire design can be simulated to verify correctness and

then synthesized for the target FPGA. These steps are repeated iteratively until the designer

is satisfied with the performance.

Similar to several other tools, LegUp is based on the LLVM compiler framework.

The impact of various LLVM optimisations on the performance of the generated hardware

structures is explored in [35]. Extra passes are added to LLVM for HLS and work in three

phases: allocation, scheduling, and binding. The allocation stage determines the available

hardware based on the target architecture and manages the application’s constraints like

clock speed and power consumption. Scheduling orders the operations. Currently, only as-

soon-as-possible scheduling is supported, but because of LLVM’s modular design this pass

can be easily changed. Binding reduces resource utilization for complex instructions (i.e.

multiply or divide) by multiplexing the data path through a single component. A weighted

bipartite matching heuristic is used to handle the binding problem.

User Experience

Being a research tool, LegUp is not primarily concerned with usability. Installation

can be difficult because it requires specific versions of standard tools. The LegUp website

[88] does offer an Ubuntu virtual machine, for VirtualBox, with the tools already setup.
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The user interfaces with the compiler through command line, but comprehensive

makefiles and many example are provided to help get new users started. Most operations

can be handled through a provided makefile, from compiling and simulating to automatic

project creation and synthesis. Optimizations are applied in two locations: For hardware

specific optimizations (e.g. pipelining) the user needs to create a .tcl script. Common

software optimizations (e.g. loop-unrolling) can be passed directly to the LLVM compiler

through the makefile.

3.2.5 ROCCC 2.0 (UC Riverside)

The Riverside Optimizing Compiler for Configurable Computing (ROCCC) [125]

is a C to VHDL compiler built using SUIF [130] and LLVM [87]. ROCCC was initially de-

veloped at the University of California Riverside. ROCCC 2.0 was developed by Jacquard

Computing Inc. with funding from the AFRL under an SBIR contract. ROCCC 2.0 is

freely available on GitHub. The SUIF toolset is used to implement the high-level transfor-

mations, such as loop and array transformations, and generates an intermediate represen-

tation, CIRRF (Compiler Intermediate Representation for Reconfigurable Fabrics) [62], a

readable text file. The CIRRF code is then passed to LLVM for further low-level optimiza-

tions and VHDL generation. Hardware specific optimisations, such as pipelining, expression

tree balancing etc., are implemented in the second pass of LLVM. The ROCCC design puts

a special emphasis on user driven transformations and optimisations whose objective is to

maximise throughput by exploiting the inherent parallelism and reducing the area footprint

of the generated code [31]. Another objective is reducing the number of memory accesses

per output result by automatically reusing already fetched data [63].
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The designs in ROCCC are divided between two abstractions: systems and mod-

ules. Systems perform the main computations that are being accelerated for the application.

They are based around for-loops that allow them to process streams of data and access mem-

ory through arrays. The system generated code is the only code that can read and write

external data. Modules are designed to implement a specific task and are used as function

calls from systems or other modules. Both modules and systems have a variable number of

parameters that represent I/O ports in the underlying hardware core. These abstractions

provide reusability and ease of development for large systems with multiple levels of com-

plexity. ROCCC also allows the addition and use of external cores in projects as if they

were another function call.

ROCCC provides a number of high-level optimizations. They include: division

elimination, multiply elimination, loop-unrolling, module inlining, redundancy, systolic ar-

ray generation[32], loop-fusion, and Temporal Common Subexpression Elimination (TCSE)

[69]. Additionally, ROCCC provides some low-level optimizations. They include: maximize

precision, copy reduction, fanout tree generation, and arithmetic balancing. System code

has access to all these optimizations whereas modules do not have the systolic array genera-

tion, loop-fusion, and TCSE optimizations. All loops in modules are fully unrolled because

modules do not stream data. ROCCC is designed to create platform independent hardware

structures. However, by default larger FIFOs use vendor-specific IP cores to improve tim-

ing. They are wrapped in an InferredBRAM component to allow easy portability. Similar

to most C-to-FPGA tools, ROCCC is only able to compile a subset of C that works well

with FPGAs. Features like dynamic memory allocation and recursion are not supported.

48



User Experience

ROCCC development is accomplished through the Eclipse IDE with custom plu-

gins for the GUI. Since the idea behind HLS tools is to make hardware development easier,

using Eclipse provides a small learning curve to ROCCC. Short and straightforward tutori-

als are available online [6]. Those comfortable with the Eclipse IDE will be able to produce

systems at the same rate that they would produce a software project. Adding modules

and other IP cores to projects is done through their respective menu screens after choosing

to import them on the ROCCC drop-down menu. After writing the C code for either a

module or system, clicking the build button brings up a menu process. The menu process

involves selecting optimizations, setting a pipeline preference, and managing I/O streams.

All of which have their benefits to a circuit described in the tutorial. A deep understanding

of how the hardware works in order to test it is not required since ROCCC provides a

test bench generation process. It involves including .txt files with sequences of inputs and

expected outputs. The user can verify the circuit from the console output of the simulator.

3.3 Dilation Kernel Example

In this section, we use a simple image processing operation, dilation, to demon-

strate the use of various HLS tools. Dilation sets the value of the center pixel of a window

(in our case 3x3) to the maximum of all values in that window. In the case of a greyscale im-

age, it will make white regions brighter and reduce dark spots as shown in Figure 3.11. We

start with a black and white image with the white letters ”UCR” crisscrossed with black
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// s l i d e window a c r o s s image
f o r ( i = 0 ; i < HEIGHT ; ++i ) {

f o r ( j = 0 ; j < WIDTH; ++j ) {

maxRow1 = MAX( img [ i ] [ j ] ,
img [ i ] [ j +1] ,
img [ i ] [ j + 2 ] ) ;

maxRow2 = MAX( img [ i +1] [ j ] ,
img [ i +1] [ j +1] ,
img [ i +1] [ j + 2 ] ) ;

maxRow3 = MAX( img [ i +2] [ j ] ,
img [ i +2] [ j +1] ,
img [ i +2] [ j + 2 ] ) ;

f i m g [ i ] [ j ] = MAX( maxRow1 ,
maxRow2 ,
maxRow3 ) ;

}
}

(a) Dilation code in C. Same code was
used for the ROCCC compilation

f o r ( i = 0 ; i < HEIGHT ; ++i ){
maxCol1 = MAX( img [ i ] [ 0 ] ,

img [ i + 1 ] [ 0 ] ,
img [ i + 2 ] [ 0 ] ) ;

maxCol2 = MAX( img [ i ] [ 1 ] ,
img [ i + 1 ] [ 1 ] ,
img [ i + 2 ] [ 1 ] ) ;

f o r ( j = 0 ; j < WIDTH; ++j ) {
maxCol3 = MAX( img [ i ] [ j +2] ,

img [ i +1] [ j +2] ,
img [ i +2] [ j + 2 ] ) ;

f i m g [ i ] [ j ] = MAX( maxCol1 ,
maxCol2 ,
maxCol3 ) ;

// s h i f t maxes f o r r e u s e
maxCol1 = maxCol2 ;
maxCol2 = maxCol3 ;

}
}

(b) Optimized Dilation code in C. These
optimizations, plus data reuse, are ap-
plied by ROCCC to reduce memory reads
(Table 3.5)

Figure 3.10: Assume WIDTH and HEIGHT are defined in terms of filter size. A simple
change to access pattern and order of calculations makes a significant difference for CPU
optimization opportunities

(a) Crisscrossed UCR Logo (b) Clean UCR Logo following Dilation

Figure 3.11: Dilation Example

lines. After several passes of a dilation, the cross marks are removed and a clean UCR

logo shows through. Dilation is rather amenable to comparisons because it uses simple,
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(d) Example Dilation Circuit, multi-line
buffer

Figure 3.12: Examples of Näıve implementations(Top) vs. Smart optimizations(Bottom)

straight-forward C code, an efficient circuit is not too challenging to generate, yet compilers

optimizations can result in very large performance increases.

The simplest way to implement this filter that follows directly from the sequential

description from the C code can be seen in Figure 3.12a. In this circuit, we simply register

the nine pixels within the window and then compare pairs of two pixels to find the max of

the nine pixels. While simple to generate from the source, it has two major drawbacks -

latency and wasted memory requests. Without a mechanism to save values from window

to window, we waste 66% effort re-fetching the same data as seen in Figure 3.13.
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Window i Window i+1

Overlap

Pixel

Figure 3.13: Overlapping region of adjacent Dilation windows can lead to smart optimiza-
tion or redundant memory requests

A slightly improved version can be seen in Figure 3.12b. Balancing the arithmetic

between the max operations helps to reduce latency, but does nothing to help with the mem-

ory accesses. Unintelligent use of data can cause excessive uses of the memory subsystem,

and really hinder performance - especially throughput.

Figure 3.12c demonstrates the type of circuit we would like to see produced by

the HLS tools. By using temporal common sub-expression elimination, we have data reuse

between windows, maximizing the utilization of the memory system. This layout allows for

the streaming of 3 rows of the image from memory, and we take the max of the current

column. The max is registered and shifted through a buffer for use in the next cycle. After

the initial three cycle latency for the buffer to be filled, this circuit can produce one pixel

per cycle. We can further increase performance by duplicating this design on the FPGA
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by unrolling the inner loop. Each kernel on the device would process overlapped streams of

the image, creating data reuse vertically as well as horizontally. This design yields itself to

low latency, good data management, and the ability to scale as the resources on the chip

allow.

A final possible optimization, represented in Figure 3.12d, uses a line buffer (sup-

ported by AOC): an entire row of the image is shifted onto the FPGA and a window of

three pixels is used to generate the max. Great performance with this technique is possible

as long as there are enough resources on the FPGA to accommodate all the necessary line

buffers. It may not be feasible when using large images.

3.3.1 CPU Implementation

In the introduction, we proposed an argument about the efficiency of FPGAs in

relation to CPUS, and how FPGA codes can achieve their speed-up relative to traditional

software. Before presenting the how the various HLS tools implement the following bench-

marks, we feel it is prudent to have a baseline software implementation (compiled with GCC

4.6.3, -O3) for comparison.

Figure 3.10 shows two implementations of the dilation filter: in Figure 3.10a, we

have a simple, direct interpretation of dilation (taking care not to do a completely serial

implementation like Figure 3.12a) and in Figure 3.10b a programmer optimized version

to take advantage of TCSE. Since a major focus of this paper is how much the tool can

accomplish for the programmer, we started with the direct implementation to determine

the level of efficiency GCC could achieve.
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In the direct case, the compiled assembly for x86 has 32 instructions for the inner

loop, meaning 32 machine instructions executed for every output pixel generated. Another

issue with the assembly is the lack of register reuse. Register allocation is a particularly

hard problem with compilers, and in this case reusing registers for the next iteration of the

loop was not identified - all nine pixels used in a window are loaded with move instructions

from memory. Depending on the memory hierarchy and caching structure, this could also

be a detriment to performance.

Unrolling only provides a minor benefit to the simple software implementation and

yields a total of sixty instructions. In this case, all the compiler can accomplish is duplicating

the body of the inner loop once, without any register reuse between the unrolled loop bodies

as evidenced by the 18 load requests. Overall, the code executes 30 instructions per output

pixel.

In generating the optimized version of the code, we wrote it specifically to force

value reuse between iterations. We implemented four different versions, including cache

blocked memory accesses to determine the best performing implementation - row based

access and non-memory blocking. The dilation filter by default reuses a lot of values that

will be brought to cache as it passes over the rows, so blocking the accesses only adds

overhead and reduces performance. For value reuse, we simply pre-compute the two maxes

of the initial columns of the current window before iterating over the rows of the image.

This minor re-organization simplifies the inner loop to only calculate one new max from the

input, write the output, and then shift two of the current maxes to reuse on the following

iteration.
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The compiler performs more extensive optimisations on this implementation. Dur-

ing initialization in the outer loop, the code executes forty-six instructions and stores two

results in this stage with 12 loads, for a total of twenty-three Instructions per output pixel.

Loop unrolling is able to unroll the inner loop six iterations, for a much better stride over

the majority of the data. During this stage, the code does 18 loads and six stores and

executes 76 instructions, for 12.67 instructions per output pixel.

With the best compiler optimizations applied to an already hand-optimized version

of the dilation code, the peak performance we saw was 13 instructions per output pixel.

CPUs run at an order of magnitude faster clock frequencies, but still has to execute at

least an order of magnitude more instructions and thus, clock cycles. And that ignores

any many-cycle-stalls from memory misses. The key point we want to highlight is that

in order to achieve that performance, a programmer had to be knowledgeable about the

possible shortcomings of the platform and spend development time altering the source to

generate the desired assembly performance - the tools could not achieve that independently.

Contrast this to some of the following examples where näıve code and a compiler flag are

enough to generate well optimized hardware implementations.

3.3.2 Vivado HLS

To implement the dilation project in VivadoHLS, we started with the sample C

code provided in the beginning of the section, except for a minor difference in the parameter

list. To have VivadoHLS process the input as a stream, and thus pass the input as a

pointer, a protocol must be created to interface between the stream and the circuit. Since
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the information we are interested in is how the tool compiles the kernel and not the data

passing, we elected to use an input array of fixed size to avoid the extra overhead.

With that minor change, VivadoHLS was able to compile the given source to

hardware. The tool also uses the programmer-provided software test harness to generate a

hardware testbench to validate correctness. It is possible to go from C to VHDL without

ever looking at a waveform - a benefit to software developers without experience in hardware

development. By default, VivadoHLS does not apply any optimizations. It is easy to get a

working RTL solution, but the tool will only do exactly as the programmer directs. In this

example, the first solution generated had similar performance characteristics to Figure 3.12a.

Adding simple directives to the inner loop like pipelining and unrolling and the resulting

RTL resembles Figure 3.12c. VivadoHLS is capable of creating some of the best solutions,

but it does require the knowledge of what optimizations to apply when and where.

3.3.3 OpenCL

We have implemented dilation in OpenCL by using a single loop structure, as in

AOC, nested loops should be avoided for performance considerations [2, 1]. Note that, for

a single loop structure, the output image has the same size as the input image. Also, the

edge values may not be correct since all loop iterations should have the same computation.

However, this is a minor issue for image processing as edges are typically not the region of

interest. The OpenCL implementation code is shown in Figure 3.14. The code was compiled

with and without optimizations(-O3), however, the generated hardware description is not

human-readable and it is not possible to observe the effects of the optimizations on the

56



generated circuits. We did observe significant changes in the resource utilizations and the

clock frequency.

#define R 1080
#define C 1920

kernel
void max filter ( global unsigned ∗ restrict p i ,

global unsigned ∗ restrict p o)
{

unsigned rows[2∗C+3]; // line buffer
const unsigned iterations = R∗C;
unsigned count = 0, wimMax= 0;
while (count != iterations )
{ // infer shift registers as line buffer

#pragma unroll
for (unsigned i = C∗2 + 2; i > 0; −−i)
{

rows[ i ] = rows[i − 1];
rows[0] = p i[count ];

}
winMax = 0;
#pragma unroll
for (unsigned i = 0; i < 3; ++i)
{

#pragma unroll
for (unsigned j = 0; j < 3; ++j)
{

unsigned p = rows[i∗C+j];
if (max pix < p)

winMax = p;
}

}
p o[count++] = max pix;

}
}

Figure 3.14: OpenCL implementation of Dilation using a single loop structure.

3.3.4 Bluespec System Verilog

The Bluespec dilation module reads three rows of an image matrix at a time. It

forms the pipeline of incoming data and as soon as the window of 3x3 is received, the
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module outputs the maximum value in a window. The Bluespec module is built similar to

Figure 3.12c. The interface to dilation in BSV is declared as depicted in Figure 3.15.

t y p e d e f I n t #(16) s i z e ;
i n t e r f a c e I n c o m i n g d a t a ;
method A c t i o n i n p u t i n ( s i z e a , s i z e b , s i z e c ) ;
method Bool i s P i p e F l u s h ( ) ;
method s i z e o u t d a t a ( ) ;
method Bool done ( ) ;

e n d i n t e r f a c e

Figure 3.15: BSV Interface to dilation module.

The interface has three methods. An Action method usually causes some state

change. In this example input in is an Action method and brings in three inputs a,b,c into

a module. The out data method is a Value method which outputs data from the module. In

our case we return 16 bit wide maximum value of 3x3 window from the module, which the

Bluespec compiler names the same as method name, out data. The other two methods act

as the control signals to the outside modules . The done method terminates the execution of

a module and isPipeflush method let the other module know that pipeline is being flushed.

The dilation module is shown in Figure 3.16. The module begins by importing packages

and is instatiated with two parameters: height and width of an image. As we can see in

Figure 3.16, rule incr writes to wCount and rule check reads the value of wCount, the BSC

attribute descendency urgency guides the compiler to schedule the more urgent rules first

in case both of these rules fire in the same cycle. We then apply rules to compute the

maximum value of window. Each of the rules have some conditions specified under which

they fire. The pseudo-code can be seen in Figure 3.16.
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import I n c o m i n g d a t a : : ∗ ;
import V e c t o r : : ∗ ;

module mkTb #(parameter s i z e h e i g h t , parameter s i z e width )
( I n c o m i n g d a t a ) ;

f u n c t i o n s i z e maxOf3 ( s i z e x , s i z e y , s i z e z ) ;
l e t temp = max ( x , y ) ;
r e t u r n max ( temp , z ) ;

endfunct ion

(∗ d e s c e n d i n g u r g e n c y = ” check , i n c r ” ∗)
r u l e s h i f t t o s t a g e 1 ( ! p i p e f l u s h && v a l i d 0 ) ;

s t a g e 1 [ 0 ] <= s t a g e 0 [ 0 ] ;
s t a g e 1 [ 1 ] <= s t a g e 0 [ 1 ] ;
s t a g e 1 [ 2 ] <= s t a g e 0 [ 2 ] ;
v a l i d 1 <= v a l i d 0 ;

endru le

r u l e i n c r ( ! p i p e f l u s h && v a l i d 0 ) ;
wCount <= wCount + 1 ;

endru le

r u l e check ( ! p i p e f l u s h && wCount == width−1 ) ;
p i p e f l u s h <= True ;

endru le

r u l e f i n d m a x ( v a l i d 2 ) ;
l e t temp max0 = maxOf3 ( s t a g e 0 [ 0 ] , s t a g e 0 [ 1 ] , s t a g e 0 [ 2 ] ) ;
l e t temp max1 = maxOf3 ( s t a g e 1 [ 0 ] , s t a g e 1 [ 1 ] , s t a g e 1 [ 2 ] ) ;
l e t temp max2 = maxOf3 ( s t a g e 2 [ 0 ] , s t a g e 2 [ 1 ] , s t a g e 2 [ 2 ] ) ;
l e t t e m p f i n a l = maxOf3 ( temp max0 , temp max1 , temp max2 ) ;

max of window <= t e m p f i n a l ;
m a x o f a l l s t a g e <= True ;

endru le

method A c t i o n i n p u t i n ( s i z e a , s i z e b , s i z e c )
i f ( ! p i p e f l u s h ) ;
s t a g e 0 [ 0 ] <= a ;
s t a g e 0 [ 1 ] <= b ;
s t a g e 0 [ 2 ] <= c ;
v a l i d 0 <= True ;

endmethod
endmodule

Figure 3.16: Dilation implementation in BSV.
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As a part of verification, testbenches are manually written in Bluespec. In our

case, we instantiate a dilation module in our testbench module. We keep sliding our win-

dow one column at a time and as soon we reach the width of an image we slide our window

by one row. We repeat the steps until the last window can be formed. In this testbench,

the top-level interface is ”Empty”, which means when we see the synthesized verilog, we

can see only clock and reset lines. Bluespec provides a test driver module for modules with

”Empty” interfaces which applies reset and then drives the clock indefinitely.

3.3.5 LegUp 3.0

As we previously stated LegUp targets a very specific architecture, and this limits

any generated kernel’s bandwidth to 2 memory channels. Even though these kernels cannot

be optimized to run with higher bandwidth they can be optimized to improve the bandwidth

utilization. Table 3.5 shows the performance results as we apply loop unrolling to the

dilation kernel. An important note we want to point out is that for every test, the total

number of write memory accesses is exactly the same because LegUp only duplicates the

hardware engines, but does not merge their computations.

However, duplicating the engines does increase the number of available memory

requests. LegUp’s FSM can then schedule the requests closer together to improve bandwidth

utilization. This also improves the number of runtime cycles. Clock frequency is affected

as the kernel is unrolled due to larger resource utilization on the FPGA. Overall runtime is

also affected as shown in Table 3.5.
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3.3.6 ROCCC 2.0

The ROCCC implementation of dilation starts with the C code shown in Figure

3.10a. The same code was used in [125] to demonstrate the TCSE optimization. The sample

code uses a modular approach which replaces each section of if-statements with a call to

a MAX module. The current version of ROCCC would not unroll either the inner loop or

the outer loop more than twice with the modular approach. In order for ROCCC to unroll

either loop further, the code had to be written with the max functions inlined by hand.

To take advantage of the loop unrolling, input and output streams were added

to the circuit through the ROCCC GUI. Multiple input streams divide up the number

of memory accesses, further reducing the execution time. Each extra window gained from

loop unrolling shares the bottom two rows with the window above it, meaning that an extra

input stream is required for the bottom row of the new window. With no unrolling, three

inputs (one input for each row of the 3x3 window) and one output were used. The amount

of outputs is equal to the amount of times the loop is unrolled and the number of inputs is

two more than the number of times the loop was unrolled. For example, two unrolls uses

four inputs and two outputs.

The circuit that ROCCC generates processes input similar to the circuit depicted

by Figure 3.12c. The MAX component represents the if-statements sequence inside the

nested loop. Every cycle an element from each row of the 3x3 window is pulled in through

a FIFO. Once all three elements of the row are in, they get compared and the max from

each row goes to the next comparison block to produce the maximum number of the 3x3

window. This specific example is a dilation circuit with three input streams. With only one
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input stream there would be just one FIFO for all three MAX components. Loop unrolling

and adding the appropriate amount of input streams creates multiple compute units.

3.4 AES Encryption Kernel Example

The Advanced Encryption Standard (AES) [4] is a symmetric block cipher that can

be used to encrypt and decrypt information to protect electronic data. The AES algorithm

has become the default choice for various security services in numerous applications.[68].

The encryption process converts plaintext into an unintelligible form known as cipher-text,

and decryption is the inverse of this process. AES processes the data in 128-bit input blocks

using a key size of 128, 192, or 256 bits. With respect to those key sizes, the algorithm

executes 10, 12, or 14 iteration rounds of transformations. The five core operations of the

algorithm are KeyExpansion, AddRoundKey, SubBytes, ShiftRows, and MixColumns. A

visual flow-graph of the algorithm can be seen in Figure 3.17. The input block, called

the state array, is constructed as a 4x4 matrix of bytes. The state array goes through the

appropriate amount of processing rounds where the subBytes, ShiftRows, MixColumns, and

AddRoundKey steps are performed on the state array. After the final round, the state array

contains the encrypted data.

For this paper, we focused on the KeyExpansion and MixColumns operations of

the AES encryption algorithm with a 128-bit key. Both steps of the algorithm are more

computationally intensive than the rest, meaning they do more than a single operation on

each element of the state array. The KeyExpansion algorithm takes the four 32-bit words of

the input key and expands the key into 44 words. The AddRoundKey operation XORs four
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Figure 3.17: AES Flow Graph

of the key words at a time, which requires four words for each round and an additional four

during the initial round before the main encryption rounds begin. The SubBytes algorithm

makes use of a pre-computed array of round constants and a substitution box to generate

the next four words based on the key words of the previous iteration or the initial four

key words. ShiftRows is a transposition step where the last three rows of the state array a

rotated cyclically. Finally, the MixColumns algorithm is simply a matrix multiplication of

the state array with a predefined array composed of the values 0x01, 0x02, and 0x03. The

arithmetic for the matrix multiplication in this step is done in the Galois field GF(28) in

which addition becomes XOR and multiplication becomes bit shifting and XORing.
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3.4.1 Implementing AES

When implementing AES in hardware, the HLS tools divided themselves into two

groups: those capable of compiling the entire source into functioning hardware code and

those that had to break each sub-component of the algorithm into individual components

to be combined by hand.

VivadoHLS and LegUp were able to compile the C source with little or no modi-

fication, and provided good design space exploration. LegUp also allowed the programmer

to specify how much of the AES code should be executed in hardware or software. To

compile with the Altera OpenCL Compiler, we simply adapt the original C code to have

one input and one output stream as the plain text and encrypted text respectively, and add

appropriate OpenCL grammars (function qualifiers, attributes, and et al). Then the code

can be directly compiled by AOC and an executable file is generated. However, as noted

previously, there are no human-readable Verilog files and corresponding RTL simulation

methods provided by AOC, which prevents examining the generated architecture.

ROCCC and Bluespec System Verilog, however, required more direct effort to

handle AES. ROCCC is currently unable to compile source with multiple loops at the same

nesting level within the same system. Input streams must be accessed within a for-loop

and all inputs will be accessed at every iteration of the loop. In ROCCC each system

contains only one top-level loop. Multiple systems can be configured in producer/consumer

relationships. In order to implement AES in ROCCC, each component of AES had to be

compiled as its own system and then combined together. Since BSV is closer to the HDL
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Table 3.3: Area utilization and timing results for the pass-through filter.

Tool Unroll # LUTs Registers BRAM DSP Clock Freq.

ROCCC 1 243 298 1 0 338 MHz
8 645 1479 9 0 337 MHz
16 1008 2746 16 0 260 MHz
32 1675 5298 30 0 279 MHz

LegUp 8 282 271 0 0 376 MHz

level than HLS, each component had to be built by hand with significant effort on the

programmer.

3.5 Synthesis Results

In this section we report on the FPGA area and performance results where appli-

cable. Note that LegUP and ROCCC were designed with different goals in mind. LegUp

focuses on compiling a large subset of the C language. ROCCC focuses on streaming appli-

cations, which require a smaller subset of C, with an emphasis on extensive user-directed

compile-time transformations and optimizations. We first start with a simple pass-through

filter to establish the baseline data for both tools. Results are reported for a Xilinx Virtex-7

(XC7VX690T) using ISE 13.4.

3.5.1 Pass-Through Filter

We compiled a pass-through Filter using ROCCC and LegUP to obtain a baseline

for the resource utilization in each compiler. Using different unrolling factors we report the

results in Table 3.3. Resource utilization is reported as the total occupied slices (LUTs and

registers), BRAM, and DSP elements. We also report the clock frequency after placement

65



and routing. However, our designs did not use pin assignments, or did they specify a target

clock frequency. Faster results are likely possible with higher effort in the synthesis tools.

Unrolling is handled very differently in ROCCC than in LegUp. Since ROCCC

does not support the use of arbitrary aliases (pointers) within loop bodies, ROCCC can

detect the independence of loop iterations and generate parallel and separate loop bodies,

one for each unrolled iteration. ROCCC does not make any assumptions regarding the

interface to the outside world, e.g. memory, therefore unrolling eight folds would require

that eight data elements can be fetched each cycle. As expected the resource utilization

scales linearly with the unroll factor. Pass-through is a minimalist design, and most of its

resources cannot be shared as the design is unrolled.

LegUp supports the whole C language including pointers. The LegUp architecture

assumes two memory channels for all memory requests. Unrolling, by hand, can increase

the number of parallel instructions within a loop body, which in turn allows for better

utilization of the two memory channels. The compiler does not do any code analysis to

identify loop-level parallelism and exploit unrolling. In Table 3.3 we report an unroll factor

of eight because it is the smallest value possible in LegUp. Parallelism could easily be added

to the LegUp design by modifying the C code.

It is worth mentioning that, due to architectural assumptions made by each com-

piler, LegUp does not utilize BRAMs in its design, while ROCCC utilizes multiple BRAMs.

ROCCC generates a general-purpose kernel for any architecture, which includes architec-

tures having high bandwidth and large memory latencies that often support many out-

standing requests. If the datapath should stall for some reason, the outstanding requests

66



Table 3.4: Dilation area utilization

LegUp

unroll LUTs reg. FIFO18E1 FIFO36E1 DSP48

1 3142 4883 0 0 4
8 3142 4883 0 0 4
16 3292 4981 0 0 4

ROCCC

unroll LUTs reg. FIFO18E1 FIFO36E1 DSP48

1 1065 1426 4 4 12
8 2903 4092 18 21 33
16 5486 8133 33 38 102

will be buffered in the BRAMs. In contrast, LegUp assumes a local cache will handle all

memory requests. Therefore, the request latencies are always short and the design will have

few outstanding requests.

3.5.2 Area Utilization

In Table 3.4 we report the number of LUTs registers, FIFOs and DSPs used by

the LegUp and ROCCC implementation of dilation. For BRAMs, Xilinx Virtex-7 uses

FIFO36E1 blocks, which are true dual-port 36Kb BRAMs.

As the loop is unrolled, the area utilized by the ROCCC implementation grows

linearly (from 1,065 to 10,763 LUTs) while that of LegUp stays relatively constant. The

unrolling in LegUp affects mainly the scheduling of by FSM and does not increase the area

used by the logic. In fact, in Table 3.5, the number of memory reads performed by the

LegUp code stays constant while the one by the ROCCC code decreases.
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Table 3.5: Dilation runtime performance

LegUp

Runtime
unroll Freq(MHz) Memory Reads cycles ms

1 167 20676040 99453175 595.53
8 167 20676040 99453175 595.53
16 167 20676040 61103567 365.89

ROCCC

Runtime
unroll Freq(MHz) Memory Reads cycles ms

1 155 2071440 99453175 13.39
8 147 259200 99453175 1.76
16 145 129600 61103567 0.90

3.5.3 Runtime Performance

Table 3.5 shows LegUp and ROCCC’s runtime performance on the dilation as the

kernel is unrolled. How each tool targets streaming applications is immediately evident

in how both tools unroll their designs. As the kernel is unrolled, LegUp will duplicate

some of the hardware, but the kernel is always limited to two memory channels. The main

performance benefits come from the FSM’s memory scheduling. Higher unrolling means

more memory request are available sooner, which yields better bandwidth utilization. In

fact, unrolling less than eight is not possible in LegUp as evidenced in the table. No

unrolling unroll and eight unrolls performs the same because there is no difference in the

code. Unrolling is more like a software optimization that improves scheduling than pure

hardware replication. On the other hand, ROCCC’s focus on streaming applications allows

it to fully utilize any memory channels it has available. Therefore, unrolling affects the

hardware, input channels, and output channels together. Going from no unroll to 16 unrolls
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Table 3.6: AES Encryption Steps - Area, Frequency, and Power

LegUp

AES step reg. LUTs FIFOs Freq(MHz) Power (W)

MixColumns 606 536 0 470 21.59

KeyExpansion 784 827 0 320 15.73

ROCCC

AES step reg. LUTs FIFOs Freq(MHz) Power (W)

MixColumns 813 450 6 265 13.59

KeyExpansion 2231 1001 9 370 17.67

shows a 14.9X speedup compared to LegUp’s 2.5X speedup. Comparing the 32 unrolled

versions of each, where ROCCC can assume 34 streams, ROCCC shows a 536X speedup.

3.5.4 AES Performance and Power

Table 3.6 shows LegUp and ROCCC’s performance and power results for the Mix-

Columns and KeyExpansion algorithms in AES. Power estimates were generated using

Xilinx’s Power Estimator (XPE) version 2014.2 and using the reported clock rate. It is

interesting to note that if the power estimation is kept to the default of 250MHz, both tools

achieve about 13 Watts - meaning very similar designs architecturally. The main difference

comes from the different clock frequencies achieved by each tool. ROCCC was able to per-

form strongest on KeyExpansion since it is purely compute while LegUp performed well on

MixColumns, which benefits from the memory scheduling of LegUps FSM.

3.6 Conclusion

In this paper we have addressed one of the main obstacle to a wider adoption of

FPGA-based reconfigurable hardware accelerators, namely the programmability of FPGA
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devices. We have shown that, historically, the use of FPGA accelerators has immediately

followed their introduction in the mid 1980s. We have discussed the challenges that must

be overcome to raise the abstraction level of FPGA programming to levels similar to those

in software. We have identified five high-level programming tools currently available, both

research and commercially, that attempt to raise the abstraction level and make it easier for

traditionally trained software developers to write applications for FPGA accelerators. These

tools are Xilinx Vivado HLS, Altera OpenCL Compiler, Bluespec BSV, LegUp (University of

Toronto) and ROCCC (University of California Riverside). We describe the user interaction

in using these tools and, using image dilation filter and AES encryption algorithm, we report

on how the code is expressed and compiled and discuss the resulting utilization. A summary

of the main features of these HLS tools is in Table 3.7.

Table 3.7: Summary of tools features

VivadoHLS OpenCL BSV LegUp 3.0 ROCCC 2.0

Developed
By

Xilinx Inc. Altera Bluespec University of
Toronto

UC Riverside

Targets Xilinx FPGAs Generic(inc.
GPUs)

Generic Mostly Generic Generic

Origin Commercial Commercial Commercial Academic Academic

Learning
Curve

Small Moderate Large Small Small

Interface
& Opti-
mizations

GUI develop-
ment. Local,
user driven
optimizations

Command line
interface. Basic
global optimiza-
tions

GUI devel-
opment hand
optimized.

Command line
interface. Basic
global opti-
mizations (.tcl
scripts necessary
for hardware
optimizations)

GUI develop-
ment. Local,
user driven
optimizations
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Chapter 4

CAMs as Synchronizing Caches for

Multithreaded Workloads

Great progress has been made in the area of High Level synthesis. However,

from the last chapter we were able to see that the tools were not yet perfect in extracting

performance out of highly regular and deterministic code. If the tools are not ready for the

regular case, extracting performance from irregular applications is a non-starter. Inspired by

work from my colleague Dr. Robert Halstead [67], we decided to look at further applying the

multithreaded FPGA model to other application domains[131]. In particular, we decided

to look at the Breadth First Search algorithm to test the utility of CAMs as synchronizing

caches and multithreading over irregular problems. As data continues to grow at significant

rates and our computation infrastructure gets more and more distributed, our algorithms

become more and more irregular. Graph representations are particularly well suited to

representing many of these problems, and Breadth First Search is often an important low-
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level operation that sits at the base of many graph algorithms. Improving the performance

of BFS can have a direct impact on the overall performance of an algorithm.

4.1 Accelerating Breadth First Search

Graphs are the most natural and efficient way to represent social and biological

systems, where nodes represent entities such as people, web sites and genes whereas edges

represent the interactions (relationship, communication and regulations). As these problems

grow in scale, parallel computing resources are required to meet their computational and

memory requirements. This has motivated a substantial amount of work that deals with the

design and optimization of graph exploration algorithms, in particular BFS designs, either

for commodity processors[96, 97, 140, 70, 116] or for dedicated hardware [128, 13, 24, 16,

74, 143, 79].

A multi-threaded graph engine was developed by [96] which implements a seman-

tic graph database on commodity clusters. They have addressed the issue of irregular

memory accesses by using lightweight software multi-threading and data aggregation. This

implementation was able to maintain constant query throughput with the scaling of dataset

size.

A parallelized BFS algorithm was described by [9] on multi-core architectures.

They used a bitmap to keep track of visitation status of a node and demonstrated speedup

over previous work. A significant speedup was shown by [20] on distributed memory ma-

chines. GPUs have also been chosen by some to speedup computations in variety of applica-

tions, including graph processing. A level synchronous BFS kernel for GPUs was proposed
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in [74] and showed improved performance over previous implementations. A slightly differ-

ent approach was used in [95] to elevate the graph processing performance. This method

used a prefix sum approach for cooperative allocation. In [143], the authors have presented a

GPU programming framework for improving GPU-based graph processing algorithms. An-

other graph processing framework was proposed by [79]. This method uses G-shards and

concatenated window representation to store graphs in GPU global memory and provide

better performance over other state-of-art implementations.

With the advent of heterogeneous machines, such as Convey HC-1/HC-2 [16],

which support cache coherent shared virtual memory accesses from both the software (CPU

execution) and the hardware (FPGA execution), application acceleration has become much

more feasible . For example, the Convey HC-2 has four Virtex-6 LX760 FPGAs, further

allowing multiple sections of an application to be written to a FPGA without need of re-

configuration at runtime. A reconfigurable architecture for parallel BFS is presented in

[13]. This method worked well for graphs with out-degree up to 32, but does not scale to

outperform the approach in [24] for higher degrees. It uses level-synchronous BFS algo-

rithm and uses a customized CSR representation to achieve a high throughput. The design

approach proposed in [24] is based upon serializing execution and processing of data within

an engine and parallelizing access to off-chip memory. The processing engine sequentially

issues multiple requests to memory and use on-chip RAM to store data from memory.

There are multiple reference implementations of the BFS implementation. In the

top-down approach (Figure 4.1a), each parent vertex in the current queue visits all its

children and adds them to a next queue then next becomes current. In the bottom-up
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(a) Top Down (b) Bottom Up (c) Hybrid

Figure 4.1: The three main approaches to the Breadth First Search algorithm.
(a)Top Down starts at the root and visits each child per level. The highlighted intersections
show the redundant work that top down creates and drops the efficiency of the algorithm.
(b)Bottom up divides the graph into partitions and different threads continually process
the same set of nodes checking if any parent was visited. (c)Hybrid Starts top down to
generate a large frontier of nodes, then switches to bottom up to finish. Hybrid is generally
the most efficient implementation of BFS.

approach (Figure 4.1b), the processor continually checks each unvisited vertex to see if

it has a neighbor that was visited during the previous level. The work presented in [21]

emphasized that both top-down and bottom-up approaches are beneficial when applied

to different parts of the graph. This hybrid method (Figure 4.1c) starts with top-down

traversal on the host side and switches to bottom-up on the coprocessor after a specific cut-

off level. Based on the similar observation [128] came up with a hybrid approach to perform

breadth first search with concurrent processing on both the host and the coprocessor and

achieved significant performance. This method initially starts with the top-down approach

on the host, copies the result in the coprocessor memory, which is later used by BFS. For

larger frontiers, bottom-up BFS is said to be more efficient [21] because once the vertex

has found a parent it need not check rest of its neighbors. Recently, this work[144] did an

extensive comparison of each BFS approach on CPU-FPGA heterogeneous platforms.
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Figure 4.2: BFS Thread Flow

4.2 Hardware Multithreaded Breadth First Search

We designed the BFS kernel for large-scale graphs that would be too large to

store locally on the FPGA. Since memory requests incur long latencies, we use the MT-

FPGA approach to mask latency and utilize the available bandwidth. The implementation

also uses custom CAMs as on chip synchronizing caches to reduce the number of memory

requests and redundant jobs (Figure 4.1a). We accomplish this by allowing the kernels to
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merge any requests to the same node into a single job. This is an important optimization

for handling nodes the have multiple shared children.

Figure 4.2 shows the flow chart of one job through the BFS engine. Each edge

in the graph is a unique job and assigned a thread on the FPGA. We start by initializing

the engine with the start node in the graph. Following the example graph in Figure 4.3

that would be node 0. The software hand-off to the FPGA initializes the start id to 0 and

sets the level to 0. The scheduler assigns the node to its designated kernel (0 in this case)

by doing the modulus of the number of engines. Since this is in binary and the number of

engines is a power of two, modulus is simply a bitwise-and.

The kernel starts by adding an entry into its CAM for (id:0, level:1). It then

requests the node data from memory. This will bring the stored level, count of neighbors,

and the pointer to the neighbor list. Once all requests have been made, we set the level for

the arriving nodes (node 0s level + 1) in a queue and the thread can write node 0s level to

memory and terminate.

Figure 4.3: BFS Example Graph
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Following the graph, the requests that node 0 made to memory would return nodes

1 and 6. Those flow through the ring network with the updated level information from node

0 and are scheduled to their respective engines. The same process happens for those nodes

in parallel, and both request node 5. Eventually, both requests for node 5 are scheduled

into kernel 5, where the jobs will merge in the internal CAM.

One of the limitations of a top-down approach to BFS is the enumeration of

multiple redundant edges as nodes can have multiple common siblings. Using CAMs in this

way can compress each of those possible jobs into a single job. This provides a mechanism to

synchronize these threads on the FPGA instead of having to block on each thread finishing

a level and writing out to memory. As long latency requests to memory are costly, so is

synchronizing in memory.

4.3 Implementation

The left half of Figure 4.4 shows the in-memory graph representation. Much of the

previous work on BFS relies on using a CSR representation for increased memory density.

However, we argue that this representation is limiting to the representational power of

graphs. This is evident with the recent growth in node-based graph databases and models

like the Property Graph Model [12]. Our graphs our formed with the property graph model

in mind, thus we use an adjacency-list style representation. It would only require a minor

modification of the kernel to fetch additional key-value pairs from within the node object

and support filtered graph searches.
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Figure 4.4: BFS Engine Layout

In this paper, we implemented the FPGA designs for the Convey HC-2ex plat-

form; however, the designs are platform independent and only require in-order responses to

memory requests to port to other platforms. The HC-2ex provides 4 Virtex 6 FPGAs, each

with 16 independent memory channels connected through a full cross-bar with a theoretical

peak bandwidth of 19.2 GB/s. Peak performance is dependent on the number of kernels

used and the clock frequency. Since the kernel runs at a 150 MHz system clock, assuming no

stalls, taking into account our 2 word node representation would provide a throughput of 75

Million Traversed Edges per second (MTEPS) per kernel. Since each kernel occupies only

one memory channel, this design can scale to 16 independent kernels per FPGA, giving a

theoretical peak of 1.2 GTEPS per FPGA. The right portion of Figure 4.4 shows the layout
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Figure 4.5: BFS Kernel Layout

and memory channels of the BFS engine and the use of a ring network to schedule the work

of each kernel. This allows the kernels to work independently and not individually coor-

dinate with each other. The kernel design is comprised of several FIFOs for coordination,

a CAM, a BRAM, and a custom unit we call GATHER NEIGHBORS. A job enters the

kernel and first checks the CAM if it can merge and terminate. Otherwise, it continues in

the kernel fetching node information from memory. Once the memory responds, the kernel

flushes the job from the CAM, checks if the node has already been visited, and either ter-

minates the job or sends the neighbor list address to GATHER NEIGHBORS and writes

the nodes level value to memory. GATHER NEIGHBORS, issues requests for all the IDs

in the neighbor list and sends the responses back to the scheduler with the previous nodes

level plus one. The layout can be seen in Figure 4.5.
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4.4 Experimental Evaluation

Throughput and CAM Utilization

For this project, we experimented on the usefulness of the CAM by running our

system on random and R-MAT graph data using GT-graph, a suite of synthetic graph

generators[15]. R-MAT graphs exhibit the power law property, which makes them useful

for testing since many real-world graph relationships also follow a power law.

Graph Details Merge Threads

Nodes Edges
Max
In-flight
Requests

MTEPS Update Same Level Stale % Merged

R
M

A
T 32 128 68 2.5 15 41 29 66%

64 512 198 9.1 2 247 67 62%

1k 32k 1476 17.5 5563 12067 7947 80%

R
an

d
om

1K 8k 1312 31.97 257 4328 738 65%

2k 32k 1558 35.6 2421 10579 2909 48.5%

4k 64k 1798 37 1520 38337 4113 67%

Table 4.1: Throughput and merged jobs for BFS on various graphs with 8 FPGA kernels

Table 4.1 shows the graph details, throughput in MTEPS, and the usefulness of

the CAM for a handful of smaller graphs. First note the Max In-flight requests column.

This is directly tied to the multithreading model, and we need to be able to maintain

significant outstanding requests to mask the latency. For a system with an average of 150

cycle response latency, for 8 engines we need at least 8 ∗ 150 = 1200 outstanding requests

to fully mask latency. As our graph size grows, we are able to sustain at least that many

requests. As this number grows, we also see the throughput(MTEPS) grow as well, showing

that our throughput increases as we stay in the steady state longer and amortize the build-
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up and tear-down phases. Finally, The far right of the table shows the counts of jobs that

were able to be terminated early in the CAM. There are three cases: (a) update jobs that

come into the engine with a lower level than is currently stored.

FPGA Area Utilization

# Kernels Registers LUTs BRAMs

1 6,595 (0.7%) 12,790 (2%) 3 (0.1%)

4 27,011 (2%) 56,673 (11%) 10 (1%)

16 104,776 (11%) 216,215 (45%) 40 (5%)

Table 4.2: FPGA Resource utilization.

Table 4.2 shows the resource utilization (registers, LUTs and BRAMs used) for

the different FPGA designs with scaling number of engines. The use of resources scales

linear with the number of engines, which is a positive sign for routability. It is also worth

noting that device usage is reasonably small, with 16 engines taking less than 50% of the

device LUTs. It would be possible to further explore expanding this system by adding more

engines and multiplexing requests over memory channels. This would increase the number

of concurrent threads, increase the number of outstanding requests, and ensure that the

system could spend more time in the steady state fully masking memory latency.

4.5 Conclusion

In this chapter, we have motivated the use of CAMs as synchronizing caches for ir-

regular applications. In conjunction with using a highly multithreaded datapath to support

hundreds of threads masking memory latency, the CAMs can take advantage of this long
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latency to merge jobs and reduce the number of memory requests overall. We demonstrated

this design using a breadth first search through a graph, using a graph representation that

could easily expand to support the property graph model and richly annotated graphs. This

work showed the resource usage and estimated performance of a few engines on a single

FPGA, and showed that it could scale to using all the FPGAs on the Convey HC-2ex to

completely utilize all available memory bandwidth and provide good throughput for graph-

based algorithms. Future work could look at how we could expand this technique to improve

the throughput of a bottom up approach to BFS.
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Chapter 5

Processor-Side Locking for FPGA

Multithreading of In-Memory

Hash-based Operators

Joins and group-by aggregations are two memory intensive operators affecting the

performance of Relational databases. Their efficient implementation becomes even more

important as we enter the Big Data era, where systems need to deal with increasingly

larger datasets. Recent paradigm shifts in multi-core processor architectures have reinvig-

orated research into how the join and aggregation algorithms can leverage these advances.

The FPGA community has also been developing new architectures with the potential to

push performance even further. While hashing is a common approach used to implement

both operations, its poor spatial locality can hinder performance on multi-core processor

architectures which rely on mitigating the latency by using large cache hierarchies. Multi-
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threaded architectures can better cope with poor spatial locality by masking memory/cache

latencies with many outstanding requests. However, the number of parallel threads even

in the most advanced multithreaded processors (UltraSPARC) is not enough to fully cover

the main memory access latency. Instead, the hardware reconfigurability of FPGAs en-

ables deeper execution pipelines that maintain thousands (instead of tens) of outstanding

memory requests - drastically increasing concurrency and throughput.

In this chapter we present extensions to our first end-to-end in-memory FPGA

hash join implementation. The FGPA uses massive multithreading during the build and

probe phases to mask long memory delays, while concurrently managing hundreds of thread

states locally. When considering “skinny” relations throughput results show a speedup be-

tween 2x and 3.4x over the best multi-core approaches with comparable memory bandwidths

on uniform and skewed datasets; however, this advantage diminishes for extremely skewed

datasets. We also provide an FPGA hash join implementation that can handle larger key

sizes and arbitrarily wide tuple sizes. Using the TPC-H benchmarks the FPGA implemen-

tation shows around 1.5x speedup over the best multi-core implementations.

We further present extensions to our first end-to-end in-memory FPGA group-by

implementation. In this context we explore how Content Addressable Memories (CAMs)

can be intermixed within our multithreaded designs to act as a synchronizing cache, which

enforces locks and merges jobs together before they are written to memory. Even though

CAMs limit the number of active jobs to a few hundred, leveraging them within our ag-

gregation implementation achieves speedups up to 10x in terms of throughput over CPU

implementations across 5 types of data distributions.
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5.1 Related Work

5.1.1 Hash-Join

Many recent works consider the in-memory implementation of join and aggregation

relational operators (hash- or sort-based). The seminal paper by Manegold et al. [91]

emphasized the importance of TLB misses for in-memory database operations and proposed

a radix clustering algorithm to keep the partitions cache resident. Later performance of hash

joins were studied [25] primarily by comparing simple hardware-oblivious algorithms and

hardware-conscious approaches (since the radix clustering algorithm is tightly tailored to

the underlying hardware architecture). The experimental results showed that the simple

implementations surpass approaches based on radix clustering. However recently, Balkesen

et al. [17] applied a number of optimizations and found that hardware-conscious solutions

are in most cases prevalent over the hardware-oblivious in terms of throughput.

Sort-merge joins on modern CPUs were initially considered by Kim et al. [82].

This implementation explored the use of SIMD operations and hypothesized that sort-

merge join performance will surpass the hash-based algorithms, given wider SIMD regis-

ters. Subsequent work [10] implemented a NUMA-aware sort-merge algorithm that scaled

almost linearly with the number of computing cores. This algorithm did not use any SIMD

parallelism, but it was reported to be already faster than its hash join counterparts. Re-

cently, Balkesen et al.[18] reconsidered the issue and found that hash joins still have an edge

over sort-merge implementations even with the latest advance in width of SIMD registers

and NUMA-aware algorithms. Kocberber et al.[84] demonstrated a latency masking multi-
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threaded version of hash-join on the Sparc T4 under the name of “Asynchronous Memory

Access Chaining”.

5.1.2 Aggregation

In addition to joins, group-by aggregation operator, relying on multi-threaded ar-

chitectures to boost its performance, was also extensively researched. One of the earliest

works [42] explores different aggregation implementations on chip multiprocessors (CMPs)

and concludes that performance largely depend on input characteristics like key cardinality,

thus opting for adaptive strategy based on sampling. However, this work focuses mainly on

non-partitioned versions of algorithms. Follow up work from the same authors [43] specifi-

cally explores the partitioning step of hash aggregation in the same CMP environment and,

in line with [91], emphasizes the thread coordination as a key component of this step. The

work by Ye et al. [138] considers both partitioning-based and non-partitioned aggregation

implementations and proposes several hybrid approaches, which outperform previous im-

plementations on Intel Nehalem architecture. Finally, Wang et al. [129] describes novel

NUMA-aware partitioned in-memory hash aggregation algorithm, which avoids cache co-

herency misses and minimizes locking costs.

While the software community has examined both hash and sort-merge for join and

aggregation operators the FPGA community has concentrated on sort-merge approaches.

The reasons for this are twofold. Firstly, sorting and merging implementations are easily

parallelized on FPGA architectures. For example, sorting networks like bitonic-merge [76]

and odd-even sort [86] are well established designs for FPGAs; Casper et al.[37] developed

a multi-FPGA sort-merge algorithm, while other works [114, 135] used sort-merge as part

86



of a hardware database processing system. Secondly, building an in-memory hash table

efficiently is non-trivial task because of the required synchronization.

Commercial platforms like IBM’s Netezza[75] and Teradata’s Kickfire[81] offer

FPGA solutions for Database Management Systems. They cover a full range of database

operations from selection and projection, to joins and aggregation. However, because of

their proprietary nature specific implementation details, and measurements are difficult to

obtain. Some patent information is available [28, 71, 94], but it is difficult to determine,

specifically, how operations are handled with the available literature. By contrast the scope

of this work is much narrower. We look at how FPGAs can be used to improve only join and

aggregation, which has been historically the most time intensive operations in analytical

query workloads.

An FPGA-accelerated implementation of group-by aggregation was first consid-

ered by Mueller et al. [100]. This work also utilized CAMs in the implementation of the

aggregation operator, but in a very narrow scope, i.e. using CAMs to match an incoming

tuple with the appropriate group. Hence the work continued long tradition of using CAMs

to answering set-membership queries (previously explored in applications like click-fraud,

online intrusion detection [19]). Our design also uses CAMs, but is different from previous

approaches in two ways: (i) in addition to the key we store and update the aggregate value

locally in the CAM, and (ii) we use CAMs as a synchronization primitive to resolve conflicts

during updates. Further details and related work on CAMs can be found in Section 2.6.
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5.2 Group-By Aggregation on FPGA

In our design we assume the input relation fits in main memory but is too large to fit

locally on the FPGA’s memory. The mixed read-write nature of aggregation in conjunction

with multiple outstanding requests requires us to use explicit synchronization to ensure

correctness. Using atomic operations is one option, but this approach severely impacts

the performance. Moreover, unlike the join operator, aggregated tuples exhibit temporal

locality. We propose a novel multithreaded aggregation implementation based on CAMs.

The design leverages explicit synchronization combined with the cache-like properties of the

CAM. This fits perfectly in the context of group-by aggregation: firstly, the latency of a

single aggregation job is hundreds of cycles, which means many interleaved jobs can have

identical keys. With a CAM we can merge these jobs pre-aggregating the result locally

on the FPGA and reduce the number of outstanding memory requests. This merging is

achieved by leveraging cache properties of the CAM (allowing us to hold the aggregate value

for a particular key). It also allows up to alleviate skewed data distributions, where a subset

of values appears as duplicate more often than the rest. Secondly, CAMs allow the FPGA

to enforce locking on specific memory channels, therefore decrease granularity of the locks

and boost the performance.

5.2.1 Fine Grained Locking

In the original aggregation design[8], our locks were implemented at the granularity

of hash table buckets (figure 5.1a). This guaranteed that only one thread was working on a

list in the hash table at a time and it was free to modify the list as needed. With exclusive
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(a) Coarse grain locks stop threads at the bucket level and prevent concurrent searching
through the linked list.
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(b) Fine grain threads lock at the node level, increasing thread concurrency and only syn-
chronize structural changes.

Figure 5.1: Multithreaded Architecture details

access to the list, the threads can perform node inserts in sorted order to improve the merge

phase. However, such coarse-grained locking has a big impact on the parallelism the system

is able to achieve. This is especially noticeable on skewed datasets where a majority of keys

might map to the same bucket. All of those threads must stall and wait for the previous

thread to finish. And the wait for each thread increases hundreds of cycles for each node

added to the list. Each thread must pay this penalty even if it is only going to increment

the count in a node and not modify the list structure.
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Figure 5.2: Lock free reads. Thread β is reading past the lock C has on node 1.

The first insight motivating the fine-grained locking comes from the benefits of the

top level filter CAM. All new tuples that enter the aggregation start at the filter CAM. If

the key already exists, it is incremented in the CAM and the thread terminates. If the key

does not exist in the filter CAM and there is space, the key is added and a thread starts the

hash table search. This construction guarantees that all threads searching the hash table

are unique - they will never try to update the count in the same node because they all

have different keys. We can take advantage of this design and move the lock lower to node

pointers (figure 5.1b). This enables synchronizing where it matters, when a thread wants

to insert in the list and make a structural change.

Lock Free Reads

If we only lock for structural changes (inserting a node), that means only writes

are protected. That begs the question - is it safe for threads to read past a lock? Consider
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the possible situations of a thread progressing down a list (figure 5.2). There are only three

possible outcomes:

1. β > x: C’s lock on node 1 is irrelevant and it is safe for β to proceed. It will either

find the key or need to insert later in the list.

2. β = x: In this case, β has found its node and can increment the count without

synchronization.

3. β < x: Thread β has progressed too far and must insert. However, insert is gated by

locking the next node of the previous pointer. It will safely synchronize on C’s lock

and will try again after the lock is free.

There are several benefits to using this design where reads are not locked. First, at

no point does a thread need to stall until it needs to insert. If reads had to wait for the lock,

these fine grain locks could deteriorate to behavior like the coarse grain lock - a thread blocks

the start of the list and all work stops. However, the more important benefit comes from

the behavior of the aggregation algorithm. For any given aggregation, the cardinality of the

key can be much smaller than the size of the data table that is being scanned. Therefore,

there will be a slightly contentious period at the beginning of the execution where keys are

getting inserted. But once all keys have been seen once and inserted in their respective

locations in the table, the rest of the execution will proceed without any locks.
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Figure 5.3: A state diagram for jobs in the aggregation engine.

5.2.2 Aggregation Engine Workflow

Our design of an aggregation operation uses a custom hardware datapath called

aggregation engine. Initially each tuple from the relation is streamed from memory, gets

assigned to a separate FPGA thread (job) and starts its pipelined execution. Figure 5.3

shows the state diagram for a single thread inside the aggregation engine. The Filter CAM

is used to merge jobs with identical keys, hence reduces the memory request contention and

minimizes the synchronization overhead. However due to hash collisions the synchronization

cannot be avoided completely; thus the Lock CAM is used to acquire locks on the hash table,

ensuring its integrity.

Table 5.1 shows an example of events and contents of Filter CAM, Lock CAM

and main memory HashTable, while the input stream consists of 5 tuples with the following
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keys: A, C, A, B, A. The design assumes the COUNT aggregation function, thus the Filter

CAM maintains an occurrence count of duplicate keys. However, other functions could be

potentially applied. Note that operations updating the CAMs are performed immediately,

whereas main memory HashTable accesses (e.g., search, entry update, entry insert) take

several cycles to finish. For example, Job 1 sends a request to search value A in a hash

table and gets response only at Cycle3. Lock CAM maintains the locks for all addresses

which are currently being modified. Notice that all jobs only acquire locks after searching

memory. Locks are only needed when creating a new node. Even though both Job 1 and

Job 2 need to search the same bucket, they won’t synchronize until after finding the list is

empty and trying to add a new node. Job 1 finishes first and is able to get the lock and Job

2 finds it must wait in the next cycle. Once a job completes, it invalidates the record in

both CAMs and frees up resources for other jobs. Jobs, waiting for a place in a CAM, will

continually cycle through a FIFO until the resource is available. Whenever there is a hit

in the Lock CAM the job waits until the lock is released, e.g. Job 2 resumes its work only

at Cycle5. Job 3 provides an example of early termination, because its value was locally

aggregated in Filter CAM in Cycle3. After Cycle5 we see more concurrency as 3 threads

are searching the list. Job 2 provides an example of fine-grained locking in Cycle7. The

thread gets to the end of the list and locks the next pointer of node A. At the same time,

Job 5 is able to find node A in the list and update its count without any locks. Finally,

Job 4 is able to finish in Cycle10 after a long memory request and waiting for a free cycle

in the Lock CAM.
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5.2.3 FPGA Design Optimizations & Trade-offs

The main factor limiting performance of this memory-bounded problem the is effi-

cient use of available memory bandwidth. In this paper we use a Convey-HC-2ex machine,

but our designs are platform independent. In the Convey the communication between the

FPGA and main memory relies on the abstraction called channel. Each channel supports

independent and concurrent read/write accesses to memory. The original design of our

aggregation engine required 4 memory channels: one for streaming the input tuples, one for

accessing the in-memory hash table, and finally two channels for the bucket lists read/write

operations. Since the Convey-HC-2ex has 16 memory channels, we replicated 4 engines

(164 ) on a single FPGA thus leveraging inter-engine parallelism. Our original experiments

showed that some memory channels were idle for almost 70% of the total execution time.

Since the channels within an engine are statically assigned to perform different functions

of the pipeline, back pressure from some components (e.g. job recycling through CAM

synchronization) introduces stalls and decreases the effective throughput.

In order to increase memory utilization we then multiplexed a pair of engines on

the same set of memory channels, thus allowing the same channel to be used by two different

engines. This means that the following engine operations (e.g. send and receive tuple request

and response, read and write respective values to the hash table, read and write entries

into respective bucket list) can run concurrently on two different engines. The multiplexed

design increases the number of CAMs that could be placed on the FPGA, leading to further

improvement in throughput. Unlike the original design, the new multiplexed engine uses 5

95



memory channels (adding an extra channel for accessing the in-memory hash table). This

allows us to place 6 engines (2 ∗ b165 c) on a single FPGA.

In this latest design, to further improve the utilization of memory bandwidth, we

have reduced the number of memory channels down to 2 per engine. Each engine uses

a channel for streaming in the tuples, and all requests to the hash table and linked lasts

are multiplexed internally through another channel. This construction enables up to 8

engines per FPGA. While multiplexing more requests over a given channel likely increases

the latency of any given job, it enables the engine to always have a request available to

issue and can keep the engine in the steady state longer. As the percentage of execution

time in the steady state increases relative to the build-up and drain-out phases, the overall

throughput of the system increases.

Each engine uses its own CAM for synchronization. As a result, values are ag-

gregated in separate hash tables, which requires an extra merging phase at the end of the

computation. Merging overhead grows as we increase the number of engines per FPGA,

but it is an overhead that is amortized as the size of the dataset grows.

5.3 Experimental Results

We chose the Convey HC-2ex as our target FPGA platform because of its high

bandwidth memory access. In particular, the memory system that interfaces to the FPGA

allows up to 16 concurrent memory requests per cycle per FPGA. The FPGA aggregation

implementation is compared in terms of overall throughput against the best multi-core

approaches [42, 138] running on a single processor with 4 parallel threads. We proceed with
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a short description of the Convey HC-2ex, followed by a summary of the various software

aggregation algorithms as well a description of the datasets used in the experiments.

5.3.1 Software Implementations

In order to evaluate our FPGA-based solution we have implemented the following

state-of-the-art multithreaded software aggregation algorithms: (i) Independent Tables[42],

(ii) Shared Table [42], (iii) Hybrid Aggregation [42], (iv) Partition with Local Aggregation

Table [138] and (v) Partition & Aggregate [138]. Here, (i) and (ii) are considered as non-

partitioned approaches, while (iii) and (iv) are hybrid, and (v) is a partitioned approach.

• Independent Tables [42] is the approach most similar to our hardware implementa-

tion. The tuples are evenly split among separate software threads (without partition-

ing), and each thread aggregates result into its own hash table. Once the aggregation

is complete all tables are merged together, which requites write synchronization.

• Shared Table (with locking or atomic synchronization) [42] splits the tuples

evenly between threads, but all threads aggregate their results into a single hash table,

hence no extra merge step is required. The algorithm could use different synchro-

nization primitives: either pthread mutex implementation or Intel-specific hardware

atomic instructions. Preliminary experiments showed that atomic primitives are sig-

nificantly better on low key cardinalities, and don’t have any difference from mutexes

on medium and large cardinalities, so we choose atomics as a default synchronization

primitive in all further experiments.
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• Hybrid Aggregation [42] is a combination of two previous approaches. This algo-

rithm allocates a small hash table for each thread. The size of the table is calculated

based on the processor’s L2 size to avoid cache misses. If the local table has enough

space for a new value, or the value already exists in the table, that tuple is locally

aggregated. Once the local table is filled and the next tuple requires a new slot, the

oldest entry in the cached table will be spilled into larger shared table, residing in

main memory, thus maintaining only “hot” data in L2 cache. Once aggregation is

complete all small cached tables are merged into the large shared table. Merge step

is synchronized as in Independent Tables case.

• Partition & Aggregate [138] (also known as count-then-move [43]) uses individual

tables per thread, but before aggregation is performed the tuples are partitioned,

in contrast to all aforementioned approaches. Separate partitioning step makes sure

that all threads will work on non-overlapping values, hence aggregation could be done

without any synchronization and the final tables are simply concatenated, rather than

merged. As with the partitioned join implementations radix clustering algorithm is a

backbone of this preliminary step.

• PLAT (Partitioning with Local Aggregation Table) [138] is a combination of

two previous techniques. The algorithm takes advantage of the fact that we are per-

forming an additional data scan, while doing a preprocessing step. While partitioning

tuples into groups with mutually exclusive keys, each thread tries to aggregate values

into its own small L2-resident table, as in Hybrid Aggregation approach. Values that

do not fit into the small table are partitioned using radix clustering algorithm. Once
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preprocessing is done standard lock-free aggregation is applied. In the end all ta-

bles, which were produced during aggregation, are concatenated together, while local

aggregation tables are synchronously merged in.

5.3.2 Dataset description

We use five datasets with various s key distributions, namely: Uniform, Heavy

Hitter, Moving Cluster [42], Self Similar and Zipf 0.5.

• In the Uniform dataset all key values are picked from uint64 key range with uniform

probability. After that generated key/value pairs are randomly shuffled.

• A half of the tuples in the Heavy Hitter dataset [42] share the same a key value.

The remaining key values are picked uniformly and evenly distributed throughout the

the entire relation.

• In the Moving Cluster dataset [42] tuples are grouped into clusters depending on

their key values. Lower key values are more likely to appear at the beginning of the

relation, whereas tuples with higher key values are tend to appear at the end of the

relation.

• Self Similar uses Pareto rule to model key distribution in a dataset: a single key

value is shared by 20% of the tuples. Of the remaining 80% of tuples 20% of those

share another key value. This process is repeated recursively to generate the relation.

Tuples are randomly shuffled. The generation algorithm is described by Gray et al.

[59].
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• In the Zipf dataset key values follow the Zipf distribution with a skew coefficient of

0.5. The generation algorithm appears in aforementioned work[59].

Each dataset consists of several benchmarks with cardinalities ranging from 210 to

222 unique keys. The relation size in all of the experiments was 256 million tuples (in line

with previous research [138]). Each dataset used the same 8-byte wide tuple format, which

is commonly used for performance evaluation of in-memory query processing algorithms

[18, 26, 25] and represents a popular column-wise storage format. The first 4 bytes of the

tuple hold the unique primary key, while the rest is reserved for the grouping key. Since we

are only interested in counting records with the same grouping keys, our tuples do not store

any other information. However, none of the design choices prevent the use of “wide” tuples

(i.e. containing fields other than primary and grouping keys). This could be easily supported

by adding a key extraction component into the FPGA design. Moreover experimenting with

such “skinny” tuple format yields the best performance for software implementations, since

it minimizes the cache capacity misses, which would decrease caching effectiveness otherwise.

5.3.3 Effect of Filter CAM size

The throughput of a multithreaded engine is dictated by the number of threads

needed to fully mask latency. In this fine-grained locking engine, one of the key controls

on the number of threads concurrently working is the size of the Filter CAM. Since every

entry in the Filter CAM starts a thread searching the hash table for a node, we started by

experimenting on the effect of the CAM size on throughput. Figure 5.4 shows how varying
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Figure 5.4: Aggregation throughput of single engine for 256M tuples as Filter CAM size is
changed.

the CAM size changes throughput for two of the data distributions. The other distributions

show similar results as these two graphs depending on their skew.

For the uniform distribution (figure 5.4a) there is a sharp drop in throughput

where cardinality grows larger than the Filter CAM size. As we increase cardinality, the

uniform distribution means that there will be little temporal locality in the tuple stream
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and pre-aggregation provides little help. As the CAM size increases there are diminishing

returns on the throughput. A CAM size of 32 definitely drops the performance, but 64 or

128 provide similar numbers. Especially for larger cardinality where hash table searching

dominates.

For the heavy hitter distribution (figure 5.4b) there is a similar drop in throughput

where cardinality grows larger than the Filter CAM size. However, in this instance the Filter

CAM size definitely affects the achievable throughput when hash searching dominates. A

CAM size of 32 keeps the throughput similar to the uniform distribution. Cam sizes of 64

and above nearly double the throughput as the Filter CAM is able to provide some benefit

in the skewed data. Again, there are diminishing returns for the CAM size above 64.

5.3.4 Throughput Evaluation

Figure 5.7 displays the throughput of the group-by aggregation as the key cardi-

nality is increased, obtained for various datasets. Throughput was measured across 2 FPGA

engine designs (multiplexed[8], Fine-Grain Locking with CAM64), and five software (two

non-partitioned, two hybrid and one partitioned) implementations. We chose to implement

the Fine-grain locking engine using CAM 64 because the smaller CAM is easier to meet

timing and get more engines routed on the FPGA. FGL-CAM64 has 8 engines per FPGA.

Throughput for skewed Heavy Hitter dataset Figure 5.6b resembles the results for Self Sim-

ilar dataset Figure 5.5b, while the throughput for moderately skewed data Zipf 0.5 5.7a is

similar to the results obtained for Uniform dataset Figure 5.5a. Software implementations
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Figure 5.5: Aggregation throughput for uniform and self similar datasets with 256M tuples

demonstrate the best performance on Moving cluster dataset Figure 5.6a due to the prop-

erty of the data distribution: similar grouping keys appear in the input stream clustered

together, increasing CPU-cache hit rates.

Despite all the differences in data distribution CPU aggregation performance

mainly depends on the dataset’s key cardinality. While the number of unique keys is low,
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Figure 5.6: Aggregation throughput for moving cluster and heavy hitter datasets with 256M
tuples

hash tables can fit into the CPU cache entirely. However, as the cardinality increases, cache

misses start to hamper the throughput due to high latency memory round-trips. Software

performance severely deteriorates at cardinalities higher than 218 on all datasets for all al-

gorithms. Another trend, which appears in all experiments, is that the Independent Tables

approach yields the best result across all software algorithms. Nevertheless, that algorithm
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Figure 5.7: Aggregation throughput for moving Zipf 0.5 datasets with 256M tuples.

exhibits poor scalability, since the amount of memory needed for aggregation processing

grows linearly with the number of parallel threads and the key cardinality. As the num-

ber of parallel threads increases, the amount of available memory could quickly become

a bottleneck. We could also see that hybrid algorithms (PLAT and Hybrid Aggregation)

outperform traditional partitioned (Partition & Aggregate) and non-partitioned (Shared

Table) approaches by amortizing the cache miss cost and sustain a throughput around 400

MTuples/sec. This trend continues for cardinalities up to 216, which marks the end of L3-

cache residency. After that point the performance advantage of hybrid algorithms vanishes

and drops below 100 MTuples/sec.

The FPGA performance also drops as the key cardinality increases, however this

effect is much less profound. Unlike the software throughput, this result is explained by the

overhead, introduced by the post-processing merge step. However the overall performance

is still up to 10x higher than the software throughput. The results also clearly show the
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benefits of the fine grained locking over the multiplexed design. There is always one of the

FGL implementations better than the multiplexed design. However, it is interesting to note

that each implementation jumps back-and-forth between distributions of which is better.

On the skewed datasets, it is more important to have the larger CAMs than to have the

2 extra engines. For the less clustered datasets, it is better to have the extra engines over

the CAM space. This implies that the best performance would be found with getting 8

engines routed using the CAM128. This should be possible with a couple more iterations of

timing analysis and further pipelining. All FPGA designs have the same amount of memory

bandwidth available to them, so increased throughut comes from three main factors. First,

reducing the number of channel allocations lets us use more engines and hence see increased

inter-engine parallelism. Second, because we are multiplexing more requests over the same

channel, this design is able to use the available bandwidth more efficiently. This better

efficiency improves the latency masking and increases throughput. Last, the fine grain

locks mean that we only need to do locking in the beginning of execution while the first

nodes are being inserted. The remainder of the execution is lock free.

Discussion: It should be noted that the performance benefits of the FPGA-based

approaches come not from architecture-specific features, but from multithreading and ef-

ficient memory usage, which allows to utilize the available memory much better than any

of the software implementations. Figure 5.8 depicts the ratio of effective average mem-

ory bandwidth to peak theoretical memory bandwidth for the best software (Independent

Tables) and FPGA implementations while varying dataset sizes and key cardinalities. Hard-

ware mutithreading approach allows our FPGA implementation to keep the ratio almost
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Figure 5.8: Ratio of average effective memory bandwidth to peak theoretical bandwidth
achieved by the Independent Tables software algorithm and the FGL CAM64 design with
8 engines per FPGA for varying dataset sizes and key cardinalities.

constant, irrespective of dataset size or key cardinality. On the contrary, the ratio for the

software approach varies greatly. The effective memory bandwidth of the CPU implemen-

tation tends to grow as the size of the relation increases (from 8M to 128M), whereas the

FPGA-based approach is less susceptible to data size variations. For low cardinality the

aggregated relation and hash table are cached and there are almost no memory accesses,

hence the ratio approaches 0. The software ratio peaks at around 0.5 for cardinality 218,

but drops significantly for higher key cardinalities. For very large cardinalities the FPGA

implementation ratio is almost 5 times higher.

5.3.5 Effects of the Merge Operation

The Figure 5.9 shows aggregation throughput while the size of the datasets having

Uniform key distribution is increased. The parallel FPGA aggregation step has almost

constant throughput of about 550 MTuples/sec, even on very high cardinalities. The merge
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step introduces an overhead, however it comes at a fixed price. This cost depends solely on

the key cardinality because aggregation reduces the initial input into a constant number of

streams which should be merged. Hence as the size of the relation grows the merge step

overhead gets amortized, so that the full throughput is almost constant for relations greater

than 128 million tuples.

5.3.6 FPGA Area Utilization

Table 5.2 shows the resource utilization (registers, LUTs, and BRAMs used) for

the three FPGA aggregation designs (multiplexed, FGL-CAM64, FGL-CAM128) as the

number of engines is scaled up. The biggest drivers of resource usage in these engines are

the CAMs. The CAMs are the largest components in the engines and dictate size and

timing constraints. It’s interesting to note that the 8 engine FGL design is only slightly
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# Engines Registers LUTs BRAMs

1 Original 99,597(11%) 87,194(18%) 126(17%)

3-MUX 179,641(18%) 200,175(42%) 250(34%)

1, CAM64 90,254(9%) 78,306(16%) 74(3%)

8, CAM64 200,989(21%) 199,533(42%) 144(6%)

1, CAM128 91,897(9%) 84,783(17%) 75(3%)

6, CAM128 181,049(19%) 181,049(42%) 130(6%)

Table 5.2: FPGA resource utilization for aggregation
engines.

larger than the 6 engine FGL design, and that is entirely due to the smaller CAMs. Both

designs are comparable to the previous design, showing that the increased complexity of

the lower level locks is not too complex to implement in hardware. We were also able to

save significantly in BRAM usage as well. The aggregation design uses only 42% of the

available resources showing there is still room to incorporate other relational operations on

the FPGA fabric.

5.4 Hash Join using CAMs

The presented hash join engine in our prior work [64] is in line with previous

research efforts [17, 25, 82], where all relations were broken into “skinny” tables with small

tuples (8 or 16 byte key/value pairs). The focus is on finding matching tuples between

relations, but we also outline how the approach can be extended with existing research to

further improve performance. That work relied upon atomic instructions provided by the

Convey MX machine for synchronizing hash table updates. In this section, we describe how

the build phase can be made platform agnostic using CAMs for synchronization and how

the probe phase can be extended to support left-, right-, and full outer joins. We target
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datasets that are too large to store locally on the FPGA, and therefore all data structures

are stored in global memory. The join phases are nicely split such that the every tuple in

the build relation incurs write to the data structures, and every tuple in the probe relation

only reads from these data structures. This separation simplifies the hash table operations

for both the CPU and FPGA, compared to other hash-based algorithms (i.e. group-by

aggregation in Section 5.2).

5.4.1 Build Phase Engine

Since our target datasets are too large to keep in local FPGA BRAMs, our design

trades off small and fast on-chip memory for larger but slower off-chip memory. The build

engine copes with the long memory latencies by issuing thousands of threads and maintain-

ing their states locally on the FPGA. Because of the FPGA’s inherent parallelism, multiple

threads can be activated during the same cycle while other threads are issuing memory

requests and going idle.

The entire build relation along with the hash table and the linked lists are stored in

main memory as shown in Figure 5.10. Our hash table uses the chaining collision resolution

technique: all elements hashed to the same bucket are connected in a linked list, and the

hash table holds a pointer to the list’s head. We use a special value (0xFFF...FFF) to

represent empty buckets and end of chains in the hash table.

Figure 5.10 also shows how the build engine (FPGA logic) makes requests to the

main memory data structures utilizing 4 channels. In the FPGA logic, local registers are

programed at runtime and hold pointers to the relation, hash table, and linked lists. They
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Figure 5.10: The FPGA Build Phase Engine.

also hold information about the number of tuples, the tuple sizes, and the join key position

within the tuple. Lastly, the registers hold the hash table size, which is used to mask off

results from the hash function. The Tuple Request component will create a thread for each

tuple and issues a request for its join key. The design assumes the join key size is between 1

and 4 bytes, and it is set at runtime with a register. In Section 5.5 we show how this design

can be extend to handle larger keys and tuples of arbitrary sizes. Requests are continually

issued until all tuples have been processed, or the memory architecture issues a stall. Once

a thread issues a request the tuple’s pointer is added to the thread state, and the thread

goes idle.

As join key requests are completed, the thread is reactivated, and the key along

with its hash value are stored in the thread’s state. The Write Linked List component writes

the key and tuple pointer to a new node into the appropriate linked list bucket. Instead

of issuing an atomic swap command as in the previous design, the Hash Table Manager
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component issues several requests protected by the cam to do the update. First, the thread

checks the contents of the CAM to see if the hash table bucket is currently being updated. If

the address is in the CAM, the thread must recycle in a FIFO and wait. If the address is not

in the CAM, the thread writes the address and now has exclusive access to the hash table

bucket. With the lock secured, the thread issues a read for the old bucket head pointer.

Once we get a response from memory, the old bucket head pointer is added to the thread’s

state and the thread issues a write of the updated value. When memory responds with a

write complete message, the address is flushed from the CAM, freeing the lock for other

threads. Synchronization is needed here because a single FPGA engine can have hundreds

of threads in flight, and issuing separate unprotected reads and writes would create race

conditions. After the write is complete, the new node pointer is added to the thread’s state.

As the write requests are fulfilled the thread is again reactivated, and the Update

Linked List component updates the bucket chain pointer. If no previous nodes hashed to

that location then the hash table read request will return the empty bucket value, which by

design is also used to signify the end of a list chain. Otherwise, the old head pointer that

was returned is used to extend the list.

The key insight to this design is to realize that all items in the relation must end

up in the linked list memory space. Since we know the number of elements, we know exactly

how much memory we need in the linked-list node space. Instead of dynamically allocating

nodes with keys as we see them, the keys can have a fixed location in memory and it is

the next pointer slot that changes based on the current state of the hash table. We are

effectively building the linked list around the nodes as they sit in memory. If there are n
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elements in the relation, the linked-list structure will be 2 ∗ n (one word for the key, and

one word for the next pointer). Every i′th element will always end up in the 2 ∗ i position

and its next pointer will always be at 2 ∗ i + 1. The dynamic nature of the list building

comes from swapping the pointers out of the hash table to write into the linked-list table.

Figure 5.11 gives a visual example.

5.4.2 Probe Phase Engine

The probe engine also assumes that all data structures are stored in main memory.

Like the build engine it uses memory masking to cope with high memory latency and

maintain peak performance. Because no data is stored locally for either engine, the same

FPGA used during the build phase can be reprogrammed with the probe engine (useful

for smaller FPGA). Larger FPGAs can hold both engines and switch state depending on

the required computation. The prior design[64] of the probe engine only handled inner-join

queries. If keya and keyb are in both the build and probe tables, then the joined tuple

was emitted. In this current design, we support the full array of join variants: inner, left,
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Figure 5.12: The FPGA Probe Phase Engine.

right, and full outer join. These can be toggled on and off in the data path to configure the

join operation desired. Left outer join has no performance overhead as the work to identify

the null match is already done while answering an inner join. For the right outer join, the

design incurs one final scan of the build table to emit the tuples in the build table that were

not matched during the query.

Figure 5.12 shows how the probe engine makes requests to the data structures in

main memory (using 5 channels). Issuing threads, tuple requests and hashing are handled

the same way as in build engine. Again, the join key and the tuple’s pointer are stored in

the thread’s state. Because the probe phase only reads data structures, there is no need

for synchronizing operations. The thread only looks up the proper head pointer by probing

hashed key into the table. The special value (0xFFF...FFF) is again used to identify empty

table buckets; if this value is returned then the probe tuple cannot have a match and is
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dropped from the FPGA datapath for inner join or emitted with null for left join. Otherwise,

the thread is sent to the New Job FIFO.

During the probe phase each node in a bucket chain must be checked for matches.

A thread is not aware of the bucket chain length without iterating through the whole chain.

Therefore, threads are recycled within the datapath until they reach the last node in the

chain. The Probe Linked List component takes an active thread and requests its list node.

We devote two channels to this component because it issues the bulk of read requests, and

its performance is vital to the engine’s throughput.

After the proper node is retrieved from memory the Analyze Job component deter-

mines if there was a match. Matching tuples are sent to the Join Tuple component. If the

query is handling a right outer join, then the engine will issue a write to the hash table node

to mark it as matched. This enables the final scan of right outer join to identify unmatched

nodes in the build relation. If a node is the last in the bucket chain then its thread is

dropped from the datapath for inner join and emitted with null for left join. Otherwise, its

next node pointer is updated in the thread’s state and is sent to the Recycled Job FIFO. The

datapath can be improved to drop threads once a match is found, but this is only possible

if the build relation’s join key is unique. An Arbiter component is used to decide the next

active thread, which will be sent to the Probe Linked List component. Priority is given to

the recycled threads, thus reducing the number of concurrent jobs and ensuring that the

design will not deadlock. Otherwise, when the recycled job FIFO fills, its back pressure

would stall the memory responses, causing the memory requests to stall, thus preventing

the arbiter from issuing a new job. As matches are found, the Join Tuple component merges
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the probe tuple’s pointer (from the thread) with the build tuple’s pointer (from the node

list) and sends the result out of the engine.

5.4.3 Possible Optimizations

In practice joins are typically combined with selections and projections, in an

effort to minimize intermediate result sizes (e.g., push selections and projections close to

the relation). This approach can also be used here to further improve performance.

Predicate evaluation could filter out tuples, and alleviate memory utilization by

creating gaps in the FPGA datapath. This could improve the build phase performance

because it removes some of the waiting threads do for CAM locks to free. The gaps could

also mitigate back-pressure in the probe phase caused by long node chains. By adding the

selection hardware on the FPGA, the latency will increase, however since the design is fully

pipelined [119] this would not affect the throughput.

Projection and the join step (i.e., using the tuple pointers to actually create the

joined result) are ideal candidates for FPGA acceleration. Both are naturally parallel

and streamable. Many works have leveraged these operations to improve performance

[120, 114, 65]. In the special case where an entire tuple fits in one memory word the

probe engine presented in this section can be easily extended to perform the join step. The

engine already joins the pointers, but a little modification can replace them with the values

instead. The case when a tuple length exceeds memory word size, thus requiring multiple-

cycle lookup is covered further in Section 5.5.1. In order to capture the real effect of FPGA

multithreading in the join operation, our implementation does not consider the selection,

projection and join step.
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Partitioning is a common optimization applied to multi-core hash join, which can

eliminate costly thread synchronization by keeping the partitioned tuples cache resident

[117]. However, the multithreaded approach used on the FPGA requires hundreds of out-

standing requests, and would still enforce some form of synchronization to avoid race con-

ditions. Moreover hardware design does not rely on caching since in general case hash join

has neither spatial nor temporal locality, thus partitioning will not be able to decrease the

total number of jobs.

5.4.4 Experimental Results

In this section we show how our approach is implemented on a Convey MX archi-

tecture. We explain how the engines can be duplicated to increase parallelism and better

utilize the available memory bandwidth. FPGA synthesis is known to be a time intensive

process. The designs presented here are general enough to handle different join queries

without needing to re-synthesize the FPGA logic. Our FPGA implementation is com-

pared, in terms of overall throughput, to the best multi-core approaches we could find [17].

We attempt to match the FPGA’s and CPU’s memory bandwidth (38.4 GB/s for the FPGA

vs 51.2 GB/s for the CPU) because hash join is a memory bounded problem. Scalability

and area utilization results are also presented.

FPGA & Software Implementations

The hash join approach presented in this section is implemented using the Convey

HC-2EX platform (Section 2.5), but the proposed methods are platform independent. The

Probe Engines are easily ported between boards because the FIFOs (Xilinx IP Cores) are
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the only component specific to the FPGA and could be easily replaced with generic FIFOs.

The Build Engines are also portable because they utilize CAMs for synchronization instead

of the atomic instructions of the previous design.

Peak FPGA performance depends on the number of concurrent engines, and their

clock frequency. The number of engines is limited by the memory bandwidth. The Convey

HC-2EX has 16 memory channels per FPGA, which run at 150MHz. The build engine

described in Section 5.4.1 requires 4 channels, and therefore each FPGA can hold 4 engines.

Assuming no stalls the peak throughput for the build phase is 600 MTuples/s (4 x 150) per

FPGA. Similarly, the probe engine mentioned in section 5.4.2 uses 5 memory channels, and

therefore each FPGA can hold 3 engines. The probe phase has a peak throughput of 450

MTuples/s per FPGA.

The state-of-the-art multi-core hash join approach [17] we compare against has

2 types of join algorithms: a hardware-oblivious non-partitioned joins and a hardware-

conscious algorithms, which performs preliminary partitioning of their input. Both imple-

mentations perform the traditional hash join with build and probe phases, however they

differ in the way they are utilizing multi-core CPU architecture. The non-partitioned ap-

proach performs the join using the hash table which is shared among all threads, therefore

relying on hyper-threading to mask cache miss and thread synchronization latencies. The

partitioning-based algorithm performs preliminary partitioning of the input data to avoid

contention among executing threads. Later during the join operation each thread will pro-

cess a single partition without explicit synchronization. The Radix clustering algorithm,

which is a backbone of the partitioning stage needs to be parameterized with the number
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of TLB entries and cache sizes, thus making the approach hardware-conscious. In our ex-

periments we use a two pass clustering and produce 214 partitions, which yields the best

cache residency for our CPU architecture.

Dataset Description

Our experimental evaluation uses four datasets. Within each dataset we have a

collection of build and probe relation pairs ranging in size from 220 to 230 elements. Each

dataset uses the same 8-byte wide tuple format, which is commonly used for performance

evaluation of in-memory query engines [26]. The first 4 bytes hold the join key, while the

rest is reserved for the tuple’s payload. Since we are only interested in finding matches

(rather than joining large tuples), our payload is a random 4-byte value. However, it could

just as easily be a pointer to an actual arbitrarily long record, identified by the join key.

The first dataset, termed Unique, uses incrementally increasing keys which are

randomly shuffled. It represents the case when the build relation has no duplicates, thus keys

in the hash table are uniformly distributed with exactly one key per bucket (assuming simple

modulo hashing). The next dataset (Random) uses random data drawn uniformly from

uint32 value range. Keys are duplicated in less than 5% of the cases for all build relations

having less then 228 tuples. The largest relations have no more than 20% duplicates. For this

dataset, bucket lists average 1.6 nodes when the hash table size matches the relation size,

and 1.3 nodes when the hash table size is double the relation size. The longest node chains

have about 10 elements regardless of the hash table size. To explore the performance on

non-uniform input, the keys in the final two datasets are drawn from a Zipf distribution with

coefficients 0.5 and 1.0 (Zipf 0.5 and Zipf 1.0 respectively); these datasets are generated
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using the algorithms described by Gray et al. [59]. In Zipf 0.5 44% of the keys are duplicated

in the build relation. The bucket list chains have on average 1.8 keys regardless of the hash

table size, while the largest chains can contain thousands of keys. In Zipf 1.0 the build

relations have between 78% and 85% of duplicates. Their bucket list chains have on average

from 4.8 to 6.7 keys. The longest chains range from about 70 thousand keys in the relation

with 220 tuples to about 50 million in the 230 relation.

Throughput evaluation

We report the multi-core results for both partitioning-based and non-partitioned

algorithms. Results are obtained with a single Intel Xeon E5-2643 CPU, running on full

load with 8 hardware threads. However because of the memory-bounded nature of hash

join we use two FPGAs to offset the CPUs bandwidth advantage: a single CPU has 51.2

GB/s of memory bandwidth while two FPGAs have 38.4 GB/s (even with this bandwidth

adjustment, the CPU still has almost a 30% advantage). Obviously, given of the parallel

nature of hash join, the CPU and FPGA performance could easily be improved by adding

more hardware resources.

Figures 5.13 and 5.14 shows the join throughput for two build relations, with 221

and 228 tuples respectively, while increasing the probe relation size from 220 to 230 for all

datasets mentioned in Section 5.4.4. The FPGA performance shows two plateaus for the

Unique, Random and Zipf 0.5 data distributions on Figures 5.13a, 5.13b and 5.14a.

The FPGA sustains a throughput of 820-850 MTuples/s when the probe phase

dominates the computation (that is, when the size of the probe relation is much larger
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Figure 5.13: Unique and Random throughput as the build relation size is increased.
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(b) Zipf 1.0 dataset

Figure 5.14: Zipf throughput as the build relation size is increased.
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than the size of the build relation) and it is close to the peak theoretical throughput of

900 MTuples/s which can be achieved with 6 engines on 2 FPGAs. When the build phase

dominates the computation, synchronization restrict FPGA throughput to about 425 MTu-

ples/s (in the FPGA 228 plot, the throughput stays almost constant until the probe relation

becomes comparable in size to the build relation). Clearly, in real-world applications the

smaller relation should be used as the build relation. In the worst case we can expect FPGA

throughput to be 500 MTuples/s when both relations are of the same size. For the highly

skewed dataset, Zipf 1.0, (shown in Figure 5.14b) the FPGA throughput decreases signifi-

cantly and varies widely depending on the specific data. This happens because extremely

long bucket chains create a lot of stalling during the probe phase, thus greatly affecting the

throughput.

When compared to the results in the previous work, the throughput numbers and

trends are nearly identical. Only the extremely skewed dataset Zipf 1.0 shows a perfor-

mance hit from synchronizing in the CAM. For non-skewed datasets, synchronizing with

the CAM provides platform independent performance.

The CPU results are consistent with the experiments presented in [17]. The parti-

tioned algorithm peak performance is around 250 MTuple/s across all datasets, regardless

of whether computation is dominated by the build or the probe phase. It is also not af-

fected by the data skew. For the non-partitioned algorithm, the throughput depends on

the relative sizes of the relations. We have seen the same pattern in the FPGA case, when

the throughput of the build phase is lower than the probe phase. The non-partitioned algo-

rithm always behaves worse than the FPGA approach. Interestingly, for the Unique dataset,
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the non-partitioned version has better throughput than the partitioned one, because the

bucket chain lengths are exactly one. As the average bucket chain length increases (moving

from the Unique to the Random to the skewed datasets) the throughput of non-partitioned

approach drops. For the highly skewed Zipf 1.0 dataset, it falls approximately to 50 MTu-

ples/s. Averaging the data points within all datasets yields the following results: the FPGA

shows a 2x speedup over the best CPU results (non-partitioned) on Unique data, and a 3.4x

speedup over the best CPU results (partitioned) on Random and Zipf 0.5 data. The FPGA

shows a 1.2x slowdown compared to the best CPU results (partitioned) on Zipf 1.0 data.

Scalability

To examine scalability, in the next experiments we attempt to match the band-

width between software and hardware as closely as possible: every four CPU threads are

compared to one FPGA (note that this still provides a slight advantage to the CPU in terms

of memory bandwidth). We examine two cases, when the probe relation is much larger than

the build one, and when they are of equal size.

Figures 5.15a,5.16a and 5.17a show the results when the probe phase dominates

the computation. The FPGA scales linearly on datasets Unique, Random and Zipf 0.5

(Figure 5.15a). However, for the Zipf 1.0 dataset, the performance does not scale because

of the high skew. Each probe job searches through an average of 4.8 to 6.7 nodes in the

linked list. Therefore most jobs are recycled through the datapath multiple times. Having

too many jobs being recycled, limits the ability of a new jobs to enter the datapath, causing

back pressure and stalling. The partitioned algorithm scales as the number of threads

increases but at a lower rate than the FPGA approach (depicted on Figure 5.16a). The
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non-partitioned algorithm shows a drop in performance while moving from 8 to 12 threads

because of the NUMA latency emerging while moving from 1 to 2 CPUs (Figure 5.17a).

The FPGA scales at a lower rate when the build and probe relation are of the

same size (Figure 5.15b), since the throughput of the build phase scales at a lower rate and

is a larger percentage of the overall runtime. However, this is significantly better scaling

than our prior results, where the scaling of the build started to flatline after 2 FPGAs. The

CAMs provide better scaling over more FPGAs than the atomic instructions. The slope of

the scale graph is almost comparable to the CPU implementations (shown on Figures 5.16b

and 5.17b) again with the exception of highly skewed data.

5.5 Hash Join with Arbitrary Size Tuples

The presented hash join engine in our prior work [64] is in line with previous

research efforts [17, 25, 82], where all relations were broken into “skinny” tables with small

tuples (8 or 16 byte key/value pairs). While this approach is valid for in-memory column-

oriented databases, it is not practical for traditional DBMSs with row-major storage format.

In this section we show how our FPGA engines can be extended to support both

wider tuples, and larger key length. This is done by modifying the initial memory requests

to support variable tuple lengths, and increasing the FPGA’s internal datapath to support

wider keys and values. The updated engines are compared with modified versions of the

partitioned and non-partitioned software approaches from Section 5.4. The performance of

the modified join implementation is then evaluated using the TPC-H benchmark.
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Figure 5.15: FPGA Throughput comparison as the bandwidth and number of threads are
increased.
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Figure 5.16: Partitioned CPU throughput comparison as the bandwidth and number of
threads are increased.
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Figure 5.17: Non-partitioned CPU throughput comparison as the bandwidth and number
of threads are increased.
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Figure 5.18: Wide tuples are stored as contiguous memory blocks, but the join operation
only needs the key value. Its offset can be computed at runtime.

5.5.1 Supporting Variable Tuple Lengths

The build engine and probe engine datapaths are logically similar to those pre-

sented in Sections 5.4.1 and 5.4.2. Only the Tuple Request component is modified allowing

us to issue non-sequential memory requests for the join keys. This change is done to correctly

handle the scenario, when tuples occupy multiple memory locations. Consider a sample tu-

ple from the TPC-H Orders table, shown in Figure 5.18. The size of this tuple is 72-bytes.

Assume that we implement the join operation (table orders ./custkey table customer). In

the build phase only the join key (custkey which is 8-byte long) is kept inside the hash

table, and in the probe phase only the join key is needed to determine a match. Therefore,

the join operation only needs to consider 8 bytes from each tuple. However, once a match

is verified the full tuple data will have to be streamed into the FPGA and merged. Since

only the join key is used to identify a match we can reuse the key/value pair model from

the previous section. The value is a memory pointer to the actual tuple. To compute the

stride length, runtime programmable registers are used to hold the tuple’s width and the
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field’s offset value for a given relation. In our example the field offset is 8-bytes. This allows

the FPGA to handle various tuple sizes without needing to be re-synthesized.

Using only the join key to identify matches presents an additional challenge during

the probe phase. Since it is not known a priori if a tuple has a match, unnecessarily

streaming a large tuple would hinder performance. This issue exacerbates as the tuple width

increases. In addition, after synthesis the FPGA datapath has a fixed maximum width. Any

tuple larger than the datapath will require multiple cycles to transfer between components.

A fixed width key/value pair allows the FPGA designer to optimize the datapath such that

all threads flow through the pipeline stages in a single cycle. One approach is to cache the

tuple locally (i.e. on-chip BRAMs). However, careful design is needed since jobs are not

guaranteed to complete in order (due to variable length linked lists) and the cache could

become fragmented. In addition the cache size must be large enough to store all running

jobs (in the thousands for high-bandwidth architectures).

Lastly we need to address the issue of a join key that spans multiple words in

memory. In Figure 5.18 the join key is nicely placed inside a single word of memory and

thus it requires a single memory request. This is a common case when using aligned C

structs, which pad short tuple fields with zeros to store them in memory. However some

databases (especially in-memory DBMSs) could eliminate this padding to achieve better

data compression. Such optimization could cause the join key to be split across two words

of memory. The modified Tuple Request component handles this case by issuing multiple

memory requests. A reorder block is used to realign the join key before sending it out of

the Tuple Request component.
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5.5.2 Increasing the Key/Value Size

As 8-byte memory words are becoming the standard we now describe how the build

engine and probe engine are expanded to support the larger key & value sizes. Increasing

the key and value sizes requires the FPGA’s datapath to be widened. From a design

perspective the modification boils down to simple change of variables type from uint32 t to

uint64 t. Throughout the HDL specification wire sizes are increased from 32-bits to 64-bits

as well. Increasing the key and value sizes also increases the memory bandwidth demands,

requiring design changes since the Convey bandwidth is fixed. The memory channels could

be reallocated, but it will reduce the number of engines per FPGA. The FPGA engines

could also duplex extra requests through the same physical channels, but it will effectively

double the execution time.

With this in mind our implementation opted to keep the number of engines per

FPGA the same (4 engines per FPGA), and increased the number of memory requests over

certain channels. Each tuple for the wider datapath requires one extra memory request

during the build phase. The Write Linked List component now breaks the key/value pair

into two distinct memory writes. Because this is not an atomic operation we duplex the

writes together through the same channel.

For the probe engine, earlier experiments (Section 5.4.4) showed that the archi-

tecture can achieve close to peak performance. In the updated design a minimum of two

extra memory accesses are required for the following reasons. First, in the initial design

the build phase key/value pairs fit in a single word of memory, but in the updated design

they occupy two words of memory. Second, the updated design outputs two 8-byte values
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instead of two 4-byte values merged into a single 8-byte word. Because the probe phase

requires two extra requests, two physical channels could be duplexed; one from the Probe

Linked List component and another from the Join Tuple component. However, duplexing

any memory channel doubles the number of memory requests, and will cut the throughput

performance in half. A better option is to reallocate the memory channels per each FPGA,

so that the updated design uses 7 channels per engine. As a result, only two updated probe

engines will fit in the 16 available memory channels for the Convey FPGAs, whereas the

previous design (Section 5.4.4) could fit three probe engines with the same channel budget.

Therefore, the throughput performance is decreased only by one third.

5.5.3 Adjustments to software approaches

Although the memory is byte-addressable for both hardware and software join

implementations, CPUs incur special kind of memory access reading in the whole L1 cache

line (64 bytes on our architecture) and bringing it into the cache to take advantage of the

locality. However, increasing the tuple length cannot utilize any of the locality properties,

neither temporal (tuples are read only once both during build and probe phases), nor spatial

(size of the tuple typically is greater than a single cache line). Thus the extensive caching,

which could not be disabled, only puts additional pressure on memory bandwidth, effectively

deceasing the processing throughput.

Because such penalty should be paid each time the join key is accessed we choose to

implement a projection step and materialize the intermediate result in a form of key/value

pairs, with the same format used in Section 5.4.4. Projection step essentially allows us

to amortize join key access overhead by allocating additional memory to store projected
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relations. Our initial experiments showed that executing projection as a separate step,

without incorporating it into build or probe phase, yields better performance results due to

better locality.

5.5.4 Experimental Results

All results obtained in this subsection were collected by running tests on the Con-

vey HC-2ex platform. In Section 5.4.4 we showed that FPGA performance is predictable

for most relations; the exception being highly skewed datasets. However these experiments

used “skinny” key/value relations. In this subsection we show that the same FPGA pre-

dictability holds for larger real world datasets. Results show that the join performance on

two tables (Orders and Customer) from the TPC-H benchmark suite with varying scale

factors.

TPC-H Dataset

For our wide tuple experiments we used the TPC-H benchmark from the Transac-

tion Processing Performance Council. It is a decision support benchmark which is tradition-

ally used to compare analytical query performance on commercial database systems. The

schema consists of 8 different relations, and 22 unique queries. A scale factor (SF) is used

to control the datasets’ size, and allows it to generate relations between 1GB and 100TBs.

While the absolute size of the relations might vary, their relative sizes are fixed. For example

the size of the Orders table is 10 times bigger than the size of Customer relation, regardless

of the SF.
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Figure 5.19: FPGA throughput results for the build and probe phases as the TPC-H scale
factor is increased.

As discussed in Section 5.4.3 the FPGA can offer significant speed up for selection

and projection. However, our intent is to study only the join performance, and to remove

any variability in our tests we ignore all other operations. Our experiments perform the

Orders ./custkey Customer operation, which is used in queries Q3, Q5, Q7, Q8, Q10, Q13,

and Q18. For all tests the smaller Customer table is used as the build relation, and the

Orders table is used as the probe relation. We use the qGen utility to generate 10 datasets

with the scale factor varying between 1 and 10.
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Figure 5.20: FPGA and CPU total throughput performance as the TPC-H scale factor is
increased. Results include both the build and probe phase execution times. The partitioned
CPU performance also includes the preprocessing time.

Throughput Results

As in Section 5.4.4, we compare the throughput results between one CPU to two

FPGAs, in effort to match the memory bandwidth. Figure 5.19 shows the FPGA throughput

results for the build phase and probe phase separately. We see that the build phase is still

bottlenecked by synchronization as it was in Section 5.4.4. Peak performance for 8 engines at

150MHz and one duplexed memory channel per FPGA is 600 MTuples/sec, while sustained

performance is around 200 MTuples/sec.

The probe phase achieves near peak performance (about 550 MTuples/sec), again

in line with the experiments from Section 5.4.4. Because of the increased key/value pair
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size only 4 engines could fit on two FPGAs, thus the combined peak theoretical throughput

is 600 MTpules/sec.

In Figure 5.20 we show the end-to-end throughput for all three approaches: FPGA,

CPU Partitioned, and CPU Non-Partitioned. In the TPC-H benchmark the probe table is

10x larger than the build table, and therefore dominates the computation time. This does

not have a big impact on both CPU approaches, but for the FPGA it skews the performance

toward the probe phase’s throughput. The FPGA achieves throughput results between 450

MTuples/sec and 475 MTuples/sec depending on the scale factor. Non-partitioned CPU

algorithm achieves better throughput (between 300 and 350 MTuples/sec) in comparison to

partitioning-based one (between 50 and 100 MTuples/sec). In the Customer relation each

join key is encountered exactly once, and therefore its key distribution is identical to the

Unique dataset from Section 5.4.4. As explained earlier, this is why the non-partitioned

approach performs better than it’s partitioning-based counterpart.

5.6 Conclusions

In this paper we implemented and evaluated two relational database operations,

join and aggregation, using hardware multithreading techniques on FPGA hardware accel-

erators. The data structures are kept in global memory, which increases the access latency

compared to on-chip BRAMs, but allows us to tackle much larger problem sizes. Multi-

threading allows the FPGA to mask the longer latency by issuing thousands of job threads.

In Section 5.2 we used the same multithreading techniques to implement a group-

by aggregation function on the FPGA. Aggregation is a more complex operation because
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jobs can either update an existing node, or create a new node. Compared to hash join where

every job in the build relation creates a new node, and every job in the probe relation only

reads the data structures. We evaluate the FPGA against five software approaches (both

partitioned, and non-partitioned) over five different datasets. Experiments show a sharp

decline in performance for the software approaches as the cardinality increases. The FPGA’s

throughput is unaffected by the benchmark’s cardinality, and can sustain between 300 and

600 MTuples/sec depending on the key distribution.

In Section 5.4 we presented a hash join design for key/value store databases.

Throughput experiments over three datasets, ranging from uniform to slightly skewed,

showed that the FPGA can outperform the best currently available software implemen-

tations by 2x to 3.4x. However, on extremely skewed datasets the FPGA’s performance

suffered compared to software approaches.

In Section 5.5 we extended our hash join design to support wider tuples, and larger

key sizes. We proved that our design is not only limited to column-major storage formats,

but can offer performance improvements in traditional row-based DBMSes. We tested out

implementation on join queries from the TPC-H benchmark suite. Throughput results

dropped compared to the key/value design for both the FPGA and software. However,

the FPGA outperformed the non-partitioned CPU results by 1.3x to 1.5x. The FPGA

outperformed the partitioned CPU results by over 4x.
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Chapter 6

Better Building Blocks

One of the key drivers of the performance and efficiency of the latency masking

multithreaded model is the efficient use of memory requests. A perfect example of this can

be seen in the Breadth First Search algorithm (Chapter 4). It would be possible to report

an extremely high throughput on a graph with one node by simply requesting that one

node over and over continuously. This simple construction lets us guarantee a request every

cycle, and fully mask latency. However, it should be obvious to the reader that even though

the throughput would look high, the implementation provides little utility. This implies

that we want to do requests every cycle, but for perfect utility we would like each request

to provide progress. There is a notion of efficiency of requests such that some requests

accomplish work and other requests accomplish nothing.

It was under that insight that we demonstrated in Chapter 4 how to use a CAM to

reduce redundant requests in the top down algorithm. However, one of the limiting details

of that design is how large of a CAM we can make reach timing. More CAM space means
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that we can have more threads operating concurrently. And more CAM IDs in flight means

more jobs that might be able to be merged.

In the previous chapters, we were limited to CAM depths of 128 or in some cases

64. In this Chapter, we will give another example from the aggregation algorithm to show

we are not perfectly saturating memory because of the CAM size. We then explore what is

the bottle neck in the CAM and how we can develop a batter CAM that’s less limiting.

6.1 Improving CAM Performance

To validate the importance of depth to performance, we focused on how varying

the CAM size influences throughput of the aggregation engine. Figures 6.1a and 6.1b show

the single engine throughput for varying CAM sizes. There are two main take-aways. CAM

size does affect performance, but there are diminishing returns. For this application, that

limit is the memory response time. The Convey-WX runtime simulates memory with a fixed

300 cycle response time. That is apparent in the graphs since the throughput increases up

until CAM size 256. The throughput between CAM 256 and CAM 512 is indistinguishable.

It is also noteworthy that the performance reduction for really small CAMs cancels out the

steady state performance gains typically seen in multithreaded applications.

The other sizes show the CAM as lock design works and still shows the typical

multithreaded performance ramp. The distribution differences between the datasets seems

to have negligible effects on performance. However, A CAM size of 128 is too small. The

results in our previous work would see a 10-15% performance boost simply by increasing
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(a) Throughput varying CAM size, random dataset

(b) Throughput varying CAM size, zipf 05̇ dataset

the CAM size. It is worthwhile to explore different CAM architectures to make it easier to

meet timing at larger sizes.
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Figure 6.2: Pipelined CAM layout

To ease timing constraints, we took some insights from the ASIC CAM research

area and implemented a pipelined CAM with power gating at each stage. By breaking the

CAM search logic into smaller stages, the timing reduces to the timing of the width of each

stage. At 16 bit wide stages, CAMS as deep as 2K were able to meet 200 MHz timing.

Gating the search logic at each pipeline stage helps the design reduce dynamic power usage.

Most search words will fail early in the word. The gating logic only activates a search stage

if the previous stage matched. By the end, only a few rows will likely be searching. Figure

6.2 shows a visual breakdown of the layout, and Verilog code for the implementation is

available on bitbucket[108].

6.2 Cuckoo Hashing

Another primitive common in the previous chapters is the use of a hash table. A

hash table is needed for fast lookups of keys for quick updates. However, not all hash table

models are equal. The previous implementations used a traditional hash table that used

a separate chaining strategy for collisions. If collision rate is small, the linked lists won’t

cost too much overhead in searching the lists. But if the skew of the dataset increases, the
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length of the linked-lists can become a significant bottleneck in the performance. All of our

threads will continually hopping down the same lists over and over again to find the slot

where they need to do work. In terms of multithreading efficiency, we can think of these as

inefficient, redundant requests.

With that in mind, we started looking at other hash table models to alleviate

this skewed data issue. And in particular, a model that provides constant time access.

Constant time access means we won’t pay repeatedly growing inefficient requests. We may

not eliminate all inefficient requests, but we putting a constant bound on it should really

improve the overall efficiency.

6.2.1 Related Work

Traditional hash tables and their assorted conflict resolution techniques (separate

chaining, linear probing, etc.) provide an expected O(1) lookup cost that can degenerate to a

worst case O(n) search through all stored elements. Improving the worst case behavior and

guaranteeing O(1) lookups is the motivation behind the Cuckoo Hash [107]. Initially, the

cuckoo hash used two tables and two hash functions chosen from a universal hash family. A

universal hash function has the property that most data will be widely and evenly scattered

even if input elements are close in numerical order. A function from this family will generally

provide minor collisions with another function from within the family. The cuckoo hash

takes advantage of this property to spread the input items over the underlying tables as

evenly as possible.
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Figure 6.3: Inserting item x into a cuckoo hash table: the insertion into T1 evicts y, which
in turn evicts z before the insertion is completed. Arrows denote alternate hash locations
for each element.

Example: Consider inserting item X into the hash table Figure 6.3. First, X is

hashed using h1() to its location in table T1. Checking this location leads to two outcomes

- either the slot is empty, in which case X is stored here and the insert is finished, or, the

slot is occupied, say by Y . In the occupied case, Y is evicted and rehashed it using h2() to

find its location in T2. Storing Y in T2 may result in “kicking out” an item. This continues

until all keys are able to “find a nest”.

This construction guarantees that there are only two locations that an element

can exist in the table, and thus O(1) lookups. However, the likelihood that any given insert

will succeed is only guaranteed while the table utilization is under 50%. Later work showed

that increasing the number of hash functions (d-ary cuckoo hashing) as well as increasing

the associativity of each location could significantly increase the max capacity utilization

[55, 113]. By using four functions with one bucket per cell, 97% utilization is achievable.

Using a small stash (in the form of a CAM) could allow for schemes that only require
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one memory move per insert [83]. A well configured cuckoo hash can provide good cache

properties and outperform linear probing (often chosen over other schemes for its cache

behavior) [113].

The cuckoo hash idea was first used on an FPGA [121] as a component for a

Network Intrusion Detection algorithm; however, it was specifically built for the problem

and was not a general purpose. Recently, a more generic hash implementation was demon-

strated that charted its utilization up to 3 tables [78]. Cuckoo hashing was also used by

[52] to build a low latency table for high frequency algorithmic stock trading. Bloom filters

were used in [41] to build a low latency key-value store which have analogous properties to

cuckoo hashes. More recently, Cuckoo hashes were used in the Caribou system[77] to build

an in memory key-value story for a near-data processing in database engine imlplemented

with FPGAs. The cuckoo hash was used to improve the throughput of random accesses to

memory.

6.2.2 Implementation

Guided by the results of the previous research, we implemented a configurable soft-

ware model in C++ so we can test the utility of a cuckoo hash for the group-by aggregation

algorithm. One benefit of a software model is the flexibility in testing many configurations.

This model was designed to take the number of underlying cuckoo tables as a parameter

and randomly construct universal hash functions for each table. The interface to the model

can be seen in Figure 6.4
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struct hashItem
{

unsigned key;
unsigned address;
unsigned count;
...

};

class CuckooHash
{
private :

std :: vector<UniversalHashFunction> hashFunctions;
std :: vector< std :: vector< std :: vector<hashItem> > > cuckooTables;
std :: vector<hashItem> stash;
std :: mt19937 64 rand engine;

//stats collection
unsigned timesToStash = 0;
unsigned memoryRequestCount = 0;

public :
CuckooHash();
CuckooHash(unsigned numFunctions, unsigned tableSize, unsigned numBuckets, unsigned stashSize);

void insert (hashItem hItem, std :: function<void(hashItem &h)> updateIfContains);
void remove(hashItem hItem);
...

};

Figure 6.4: Cuckoo Hash Software Model interface

Each insert into the table can cause several memory accesses as there is an unknown

number of cuckoo bounces. There are also interactions with the internal eviction cache used

to cap the worst case depth. The model keeps count of each and every interaction with

memory to report to the total number of requests at the end of execution. Running this

model with our aggregation input dataset of size 8M and 220 cardinality, The independent

tables algorithm uses 394 million memory requests to answer the query while the cuckoo

hash model only uses 51 million requests. That’s approximately 7.7x less memory requests,

and the gap should grow with larger datasets. The code for this model is available publicly

at bitbucket[46].
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Chapter 7

Conclusions

Many analytics processes today are becoming more and more irregular as data

continues to grow and our processing gets more and more distributed. With data at such

massive scales, caches become less and less useful and processing cores spend a majority

of their time idle. In this thesis, we have presented several ideas on how to work around

the problem of the “memory wall”. By employing a coarse-grained temporal multithread-

ing model, we can effectively hide the latency of slow DRAM. FPGAs provide a flexible

fabric with the ability to design custom pipelines and FIFO based thread ordering to im-

plement this model. However, it is not limited to FPGAs and all of this work could also be

implemented as an ASIC chip.

In a model whose performance depends on a massive number of threads, it is

inevitable that some algorithms will need synchronization for correctness. This thesis has

shown that we can use Content Addressable memories as extremely flexible synchronizing

caches to fill that role. The short cycle memory-lookup means we can use these primitives
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as a cache to extract performance out of streams that have any type of locality. This

caching can boost the performance of our multithreading engines. The quick lookup also

means we can store memory addresses and use them as locks to synchronize threads and

guarantee serial access to memory. This flexible primitive is platform independent and

brings synchronization closer to the processor.

To demonstrate these ideas, this thesis implements this model for several irregular

applications: Breadth First Search, Group-By Aggregation, and Hash-join. All applications

used both multithreading and CAMs to achieve performance.

In Chapter 3, we explored the use of tools to automate the design of algorithms

from the programmers perspective. We looked at both academic projects and commercial

offerings and compared their usability and performance. While the tools were useful for

some applications, they were still limited in scope and needed significant expertise and

hand-holding to guide them to the best hardware circuits. We concluded while the tools

were useful for regular applications, irregularity was still a ways off.

In Chapter 4, we implemented a Breadth First Search engine using a ring network

of kernels. Each kernel was able to operate independently with hundreds of threads issuing

requests. Those memory responses were then able to filter through a CAM to remove

redundant work and make sure the bandwidth was efficiently used. For several example

graphs, we clearly showed that the multithreading effect builds as the graphs get larger and

more time is spent in the steady state issuing requests every cycle. And the CAMs proved

to be effective, eliminating between 50% - 80% of redundant jobs.
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In Chapter 5, we demonstrated how to use the CAM as a synchronizing cache

for aggregation and hash-join. We improved an aggregation engine to move the locking

to the lowest level of the hash table to improve the concurrency. We showed a boost in

performance over prior FPGA designs and achieved over 10x performance over software

designs.

Finally, in Chapter 6 we explored how to further improve these models by improv-

ing the base primitives they are built from. One of the challenges of the CAM is getting

it to meet timing on the FPGA as the size grows. We showed that there are diminishing

returns for the size of the CAM in some contexts, yet we still were not able to reach the size

for best performance. We explored how to improve the design of the CAM to get better

timing, and developed a flexible, pipelined CAM than can be tuned for application needs.

That CAM was able to scale up to 2k deep and still meet 200MHz timing.

This chapter also showed how we could improve the performance of hash based

algorithms using a better hash table. Cuckoo hashes provide constant O(1) lookup while

also achieving 99% capacity with reasonable worst case insert guarantees. We implemented

a software model showing the group-by aggregation using the cuckoo hash and showed

it ran with over 5x less memory requests. That should provide more thorughput to the

multithreaded design as the memory requests are more efficient and spend less time hopping

through the table.
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[69] Jeffrey Hammes, A. P. Wim Böhm, Charlie Ross, Monica Chawathe, Bruce A. Draper,
Robert Rinker, and Walid A. Najjar. Loop fusion and temporal common subexpression
elimination in window-based loops. In Proceedings of the 15th International Parallel &
Distributed Processing Symposium (IPDPS-01), San Francisco, CA, page 142, 2001.

[70] Pawan Harish and PJ Narayanan. Accelerating large graph algorithms on the gpu
using cuda. In International conference on high-performance computing, pages 197–
208. Springer, 2007.

[71] Foster D. Hinshaw, David L. Meyers, and Barry M. Zane. Programmable streaming
data processor for database appliance having multiple processing unit groups. Patent:
US 7577667 B2, 2009.

[72] J. Hiraiwa and H. Amano. An FPGA implementation of reconfigurable real-time
vision architecture. In Advanced Information Networking and Applications Workshops
(WAINA), pages 150–155, March 2013.

[73] D.T. Hoang. Searching genetic databases on Splash 2. In IEEE Workshop on FPGAs
for Custom Computing Machines, pages 185–192. CS Press, Loa Alamitos, CA, 1993.

154



[74] Sungpack Hong, Sang Kyun Kim, Tayo Oguntebi, and Kunle Olukotun. Accelerating
cuda graph algorithms at maximum warp. In ACM SIGPLAN Notices, volume 46,
pages 267–276. ACM, 2011.

[75] IBM Netezza. www.ibm.com/software/data/netezza/, 2014.

[76] M.F. Ionescu and K.E. Schauser. Optimizing Parallel Bitonic Sort. In Proceedings of
the 11th International Symposium on Parallel Processing, pages 303–309, 1997.

[77] Zsolt István, David Sidler, and Gustavo Alonso. Caribou: Intelligent distributed
storage. Proc. VLDB Endow., 10(11):1202–1213, August 2017.

[78] Lukas Kekely, Martin Zadnik, Jiri Matousek, and Jan Korenek. Fast lookup for
dynamic packet filtering in fpga. In Design and Diagnostics of Electronic Circuits &
Systems, 17th International Symposium on, pages 219–222. IEEE, 2014.

[79] Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N Bhuyan. Cusha: vertex-
centric graph processing on gpus. In Proceedings of the 23rd international symposium
on High-performance parallel and distributed computing, pages 239–252. ACM, 2014.

[80] Khronos. https://www.khronos.org/news/press/2008/12.

[81] Kickfire. http://www.teradata.com/, 2015.

[82] Changkyu Kim, Tim Kaldewey, Victor W. Lee, Eric Sedlar, Anthony D. Nguyen,
Nadathur Satish, Jatin Chhugani, Andrea Di Blas, and Pradeep Dubey. Sort vs.
Hash Revisited: Fast Join Implementation on Modern Multi-core CPUs. Proceedings
of the VLDB Endowment, 2(2):1378–1389, August 2009.

[83] Adam Kirsch and Michael Mitzenmacher. The power of one move: Hashing schemes
for hardware. Networking, IEEE/ACM Transactions on, 18(6):1752–1765, 2010.

[84] Onur Kocberber, Babak Falsafi, and Boris Grot. Asynchronous memory access chain-
ing. Proc. VLDB Endow., 9(4):252–263, December 2015.

[85] J.T. Kuehnand and B.J. Smith. The Horizon supercomputing system: architecture
and software. In Proceedings of the 1988 ACM/IEEE Conference on Supercomputing,
pages 28–34, 1988.

[86] M. Kumar and D.S. Hirschberg. An Efficient Implementation of Batcher’s Odd-Even
Merge Algorithm and Its Application in Parallel Sorting Schemes. IEEE Transactions
on Computers, 100(3):254–264, March 1983.

[87] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong Pro-
gram Analysis & Transformation. In Proceedings of the 2004 International Symposium
on Code Generation and Optimization (CGO’04), Palo Alto, California, Mar 2004.

[88] LegUp. http://legup.eecg.utoronto.ca/.

[89] LLVM. http://llvm.org.

155



[90] X. Ma, W.A. Najjar, and A.K. Roy-Chowdhury. Evaluation and acceleration of high-
throughput fixed-point object detection on FPGAs. Circuits and Systems for Video
Technology, IEEE Transactions on, PP(99):1–1, 2014.

[91] Stefan Manegold, Peter Boncz, and Martin Kersten. Optimizing Main-Memory Join
on Modern Hardware. IEEE Transactions on Knowledge and Data Engineering,
14(4):709–730, July 2002.

[92] Grant Martin and Gary Smith. High-level synthesis: Past, present, and future. IEEE
Design & Test of Computers, 26(4):18–25, 2009.
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