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ABSTRACT

An exact numerical coupled-channel integration treatment
has been applied to the alpha decay of odd-mass spheroidal
nuclei. V'The only ﬁon-central coupling of importance betweeh
an emitted alpha particle and rotational final statés in the
daughter nucleus involves the intrinsic quadrupole moment

of the daughter. - The nuclei 253Esand 255

Fm are ideal cases
to examine since alpha trénsitions to the favored bands are
well known and angulér distribution data from low temperature
nuclear alignment is available.

We examined in detail two commonly used approximations;
first, that near the nuclear sﬁrface.there is zero projection
of orbital angulér momentum of favored alpha waves along the
cylindrical symmetry akis of the daughter nucleus and second,
that the intensity of each alpha-particle L-wave is propQrtional
to the product of a squaréd Clebsch-Gordan coefficient (times)
the (calculated) spherical barrier penetrébility factor. It
is found that neither approximation holds within experimental
error, and Mz # 0 alpha wave componehtﬁ must be introduced at
the nuclear.surfaée to give agfeément with experimental intensities

for both 2 = 2 and % = 4 waves.
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I. Introduction
Whenga%spheroidal_nucleus undergoes decay, the noncentral
electromagnetic_field permitsvexchange of energy between lnternal
nuclear exc1tatlon and the external alpha partlcle.“The N
noncentral coupllngs of greatest 1mportance 1nvolve collectlvely
enhanced rotatlonal E2 tran51t10ns>1n deformed nuclel.u.Startlng
with boundary conditicns set at the spheroidal nnclear eqrface,
the formal problem involves propagation of the alpha particle
wave function outward through the anisotropic barrier to some ‘
distanceiwhere ceupling effects are negligible. | H
Although other researchers have performed the numerical
integratiqnqu coupled channel equations for the alpha decay
of‘evenjevenysphereidal nuclei, there has been little analogous
work Qn‘the alpha decay of odd-mass nuclei. In the latter case, an
alpha partlcle wave of a glven orbltal angular momentum 2 may
branch to more than one energy level of the daughter nucleus. Thus,
233 '

for the favored alpha decay of U Chasman and Rasmussenl

considered the decay of the s wave to the 5/2 level and the branching



of the d wave to the 5/2, 7/2 and 9/2 levels of 229Th. Channel

coupling effects are most significant for the case of a relatively’
weak wave, such as the hithy hindered g wave, poupled to a strong
wave such as the s wave. Therefore we have extended the work
_éf'Chasman and Rasmussen by considering the branching of the

s, d and g waves in the favored alpha decays of both ?53Es and

255Fm. Favored alpha decays are those decays in whiéh the quantum
numbers of the odd nucleon are the same for both the pafent and
daughter;
. 253 255, . . Sy -

The nuclei Es and Fm, both spin 7/2 nuclei, are ideal
cases for applying an exact numerical treatment because alpha
transitions to the favored bands of the daughters'have been
well studied,2 and angular distribution data from low température

nuclear alignment experiments are available.'3

If we include
the brénching,of the £ = 0, 2, and 4 pértial wavés, then nine
coupled'éeéond—order différential equations must be solved for
favored decays to the five lowest levels (7/2, 9/2, 11/2, 13/2,
19/2) of the daughter rotational band. The % = 6 contributions
have been taken into account in an approximate way (appendix I).
The results of the numerical integration test two commonly
used assumptions. The first is:that near the huclear surface
the favored'alpha waves have zero projection of orbital angular
momentum along ﬁhe cylindrical symmetry 3-axis of the daughter

nucleus. Subject to this M, = 0 constraint, we wish to determine

if the coupled channel treatment can reproduée both the angular



diétribution data and the experimental relative;intenSities"to
the spin 7/2, 9/2,‘11/2, 13/2, and.15/2 states of the daughter.
The éecond aSsumptiQn to be tested is.that the relative intensities
of a given f-wave are given by the square of é Clebsch-Gordan
coefficient times the calculated spherical barrier penetrability
for the aipha'group (formula of_Bohr,Fréman and'Mottelson;(BFM)).4
Experimenta;.data show deviations from the BFM expression for
favored decay.. It is of great interest to determine whether a
careful coupled chénnel treatment of the barrier penetration
explains_the_deviations while retaining the. first assumption

above.

IT. Mathematical Formalism and Numerical Results

The formalism for alpha decay in the pfesence of ‘a non~central
ﬁield ;s;given:by Perlman and Rasmussen.5 A mﬁltipdle expansion
is made for the Coulombic potential energy outside the nuclear
surface. The zero-order term is the central Coulombic térm._

The E2 interaction contributes the first important coupling
term. For nuclei with large hexadecapole deformations, E4 coupling

6,7 249 251

may aléo be important; however, both Bk and Cf have

small hexadecapole deformation. Therefore the coupled differential

equations in the radial separation“yariable can be written a58
oo (ézez Lrresn o) L
Igtow2 \r o owe? o g ) et ()
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'ttt 4 d d

dl



Where Id,_z are the total angular momentum of the daughter and
of the alpha particle in a give decay channel, M is the reduced

. mass; 7z is the charge of the daughter nucleus, Qi is the effective
: , d
Q value for the alpha particle with electron screening and daughter T

2

1
IdQI dl

of the quadrupole coupling operator which is proportional to

recoil energy corrections, and the K ' are matrix elements
the product of the intrinsic nuclear quadrupole moment Q5 of
the daughter times P2(cos 9) divided by r3, where r is the radial

separation variable. For 249Bk the value for'QO was taken

to be the same ‘as that for the parent, 253Es; namely, 13,1b9.

For 251Cf and 255

Fm we usedvapproximately thévsame value;
namely, 13.0b.

Explicit expressions for the quadrupole coupling matrix
element were given for alpha decay in ref. 5 and ref. 8 and for
optical model scattering applications and decay, see refs. (10, 11).

The general éolutions of the uncoupled differential equations
can be written as UL(n,p) = GL(n,p) + iFL(n,p) where GL and FL
are the irregular and regular Coulomb functions9 respectively.

Solutions of the coupled differential equations approach the»
.Coulomb functions asymptotically at large radius.
In general the phase of éﬁ oscillating coupled-channel

solution in the far region will differ from the phase of the - ‘ s

corresponding Coulomb function. This phase difference is

¢I g’

referred to‘as the quadrupole phase shift,
: d

Although phase



shifts do,no;.aﬁfect intensity calculations, they do affect apgular
distfibutions through the interference terms.between alpha wave
components of differing % going to the same final state Id‘;
For notational convenience we sometimes -use the single index J
or k in place 6f the pair (Id,z), where j = 1 through 9 denote
\respectiﬁely, (Id, L)y = (7/2, 0)( (7/2, 2), (1/2, 4), (9/2, 2), (9/2, 4)
(11/2, 2), (11/2, 4), (13/2, 4) and (15/2, 4).

The set of nine second4ordericoupled differential equatioﬁs
can be transformed ihto a sét of eighteen first-order coupled
differentials equations having éighteen lineafly indepehdent-
solutions or, equivalently, nine complex solutions. Because
the physically meaningful solutions- decrease exponehﬁially going
outward ‘through the barrier, it 'is not possible to obtain stable
solutions by outward numerical integration. xInstéad we use
Coulomb. functions as starting conditions at 150 fm, a radius
sufficiently large that the coupling forces are small, and
integrate inward. The solutions of interest then increase in

the direction of integration and remain stable. For the kt-h

linearly independent set of solutions, we initialized the kth
function ana its derivative with the value of the complex

Coulomb function corresponding to.that channel and~thé»remaining
channels -are initialized to zero. We label the resulting linearly
independent set of complex solutions as ujk(f) = gik(;)~+‘if5k(r),b

h

representing the jt channel of the kth linearly independent:

solution.



Any general solution of the coupled differential equations-
may be expressed as a linear combination of the solutions just
described; that is, the general solution for the.jth channel

may be written as

. - 9 : .
Yy (r) = 2 ckujk(r) (2)
’ k=1
where the coefficients Cp T Ay + ibk are complex numbers. - Because

an alpha particle is assumed to exist in a quasi-stationary sfate
prior to emission, the imagihary part of each wave function Wj
must essentially vanish near the nuclear surface. Using nuclear
model constraints, which will be discussed in the next section,
values for the real parts of the wave funétions-at the nuclear
surface can be obtained. Then the set of nine complex simultaneous
equatiohs, Wj(r), can.be solved for the cOefﬁiéients Cre
The system of simultaneous equations is conveniently represented

in the matrix equation
uc=Y 3

where the matrix elements ujk of the 9x9 complex matrix U are
the amplitudes of the linearly independent solutions on or near
the nuclear surface. The elements of the column vector C are

the unknown complex coefficients Ck' and the elements of the
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column vector ¥ are the purely real nuclear model surface ampiitudes.

The problem is sblved“b&linvertfhg the U matrix
c=Uu o R €

The intensity‘of a given partial wave is the product of the
squafe'ef the wave function amplitﬁde and the'veloeity which
gbes alei/z. From theAck values therehy obtained, and'in‘view
of the startihg conditions'of the pure Cdulomb functions,'the
relativetalﬁhampartial wave intensities&k are

N P R A CHI S i

(5)
where Q is the alpha decay energy in that channel. The quadrupole

phase shifts ¢k

¢ = arg ¢, = tan_l(bk/ak) \ .(6)

v

The most general way to present the results ofbthe numerical
integration is as the complex matrix g—l (the invefse of the
complex“9x9 matrix g). The matrix elements of U are the amplitudes
of the'linearly independent solutions on a spherical surface
near the hueleus. These matrices reduce to ﬁnit matrices for
_ vanishing nuclear quadrupole moment. Operation with eithef
matrix on a'veetor representing'boundary conditions on a sphere”
near the nuclear surface w1ll yleld partlal wave amplltudes and

quadrupole phase ShlftS at large distances. If boundary conditions
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are fixed on the spheroidal nuclear surface, then a Froman matrix
can be used to transform them to boundary conditions on a sphere
at 10 fm. The real and imaginary components of the 9x9 matrix U

have been given in refs. 12 and 13.

III. Numerical Results
| In the similar work of Rasmussen‘and Hanseh1% on even-even
242Cm favored alpha decay, the boundary conditions for the real
part of the,sqlutions could be imposed by demanding agreement
with experimental relative transition intensities to the rotational

levels in 238P

u. Because of partial-wave branching in odd-mass
nuclei, however, the relative intensity data. are inadequate. In our
present formulation, there are nine real soiutions, so after
normalization eight boundary conditions muét be spegified. The
experimeﬁtal data provide.only four relative élpha intensities
going to the five daughter levels, and there are no-direct‘
experimental measurements of the partial wave amplitudes or
relative phases contributing to each alpha transitions.A The
lowjtemperatﬁre angular distribution data provide two experimental
numbers, the coefficients of the Pz(cos 6) and P4(cos 8) terms
in the angular distribution function,‘but they do nbt.uniquely
determine.relativé partial wave amplitudes'and phases.12
Becausevtheré are insufficient experimental data to completely

fix the boundary conditions, nuclear model constrainté ~are used

as well. We use the fundamental assumption underlying the "leading
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order intensity relationships" of the strong coupling modelg'15

that near the huclear surface the projection of any partial wé@é‘s'
" angular mOheﬁﬁUm along the.cylindriCaliy;symmetric 3-axis of
the’dauéhtér'nucléds, mg has a value'of'Ka + KP whére’Ka and Kp
are thevptdjections of the daughter and parent totalfnuclear‘
angular momentum on the 3-axis. For'(Kd + Kp) > 2 oniy'oné”value
of m, is ‘allowed; for favored alpha decay m, = 0 and K. = K_ = K.

L L d p

The condition of only ml'=’0‘components on a sphere of radius

RO near the THucleus prb&ides six boundary conditions,‘tying together
the>componeﬁt§ of a given %-wave in proportion to Clebsch-Gordan
coefficients. Bohr, Frdman, and Mottelson® and Asarong gl;l6 have,
in 'some applications, constrainéd the rélative s, d and g wave |
intensities to the average of nearest neighbor eVen—eveh'ﬁﬁéléi;

but such a constraint is not as fundamental as the m£510%60ﬁstraint.
The remaining two boundary conditions are left as free parameters
and are deﬁbted by az,‘the rétio.of total d fo S wavé amplitude

and a |

at R the ratio of total g to s wave amplitude at R

0’ 4’ 0°
Therefore the nine elements of theée column vecth wave function

of eq. 4 at RO are given as follows:

‘Pj(RO) = a2<21p0K[IdK> , (7)

wiﬁh the.triviél nbrmalization,condi#ion do = 1. The reai part
of the waveﬁfunction decreases exponehtiaily going-outward through
the-barrie;\region andvosciilates in the faf rééion.* |

Having chosen these boundary conditions, the nﬁméricai

integration of the coupled differential equations permits us

to test two assumptions of the strong coupling model as usually
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applied. The first is that near the nuclear surface onlygmz =0

alpha partial waves occur. Subject to this m, = 0 constraint,

we wish to determine if the coupled channel treatment can reproduce
both the experimental relative inﬁensities td.theAfive lowest
rotational levels of the daughter nucleus and the angular
distribution data. This m, = 0 condition i;»eqqivalent to Bohr
and Mottelson's ?ieading—order intensity relations”. . The'second
assumption is the usual appfoximate treatment of anisotropic |
barrier penetrability, in which ﬁhg relative intensity of an’
2—wavevto;a given level is calculated as a Clebsch-Gordan
coefficient squared times a spherical barrier pepetrability factor
for the alpha group. This approximation,originally due to BFM, is

exact either when m, = 0 or in the limits of infinite

L
moment-of-inertia or vanishing nuclear quadrupole moment.

It is interesting to compare the BFM predictions with
intensity data fbr;favored decay in several odd—maés deformed
nuclei. In Fig. 1 we have plotted the ratios of hindrance factors
of second to first excited states. The hindrance factors are
from the compilation of Ellis and Schmorak]Z7 If these alpha groups
were purely £ = 2, the ratio would,Aby the BFM intensity relatiohs,
equal the indicated ratio of squared Clebsch-~Gordan coefficients.
Actualiy the ratio points are lowér limits for the desired 2 = 2

intensity ratio, since the small correction for % = 4 components

would'raise them.
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r: N ‘- I . . - ! : ; ' . . V-} |
Let us now consider for 253Es and 255Fm the determination
4 2

of the two free parameters 0, and o,. The value for a, is
largely determined by the requirement that the alpha intensity

to the 9/2+ daughter level be reproduced, because this level
receivéﬁ thé iargést d-wave componént. in ééneral there are
twou§éluesanf Aoy one positive and one négative; that give
satisfaétof§ agreement with 'experiment. The sign of the ahisotropy

in the alpha particle angular distributions for both 253

255

Es and'

Fm requires thét the s and 4 waves be in phase; that is; that
they interfefe constructively near the nuclear poies. Therefore
only positive values for a, are acceptable.

In like Manner the alpha intensity to the l3/2¥ 1é§el laréely
determines theﬁvalue for Oye The phase'of thé g wave is-lesé
well detéimihed by the angular distribution data, bﬁt the 253Es -

Ty

angular distribution data and alpha decay systematics suggest
that the g wave is out of phase. Therefore only negative values

for a, are acceptable.

From microscopic theory using Nilsson functions the values of

both o, and a, can be estimated. Poggenburgl8'19 calcuiated partial

2 4

~wave amplitudés on a Nilsson coordinate surface to be 1.035,

0.309 and -0.376 respectively for the 2 = 0,2 and 4 waves of 253g

255

and 1.008, 0.361l, and -0.387 for Fm. Applying a Froman matrix
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of argument B = 1.36, which is approximately correct* for the
"transformation from the Nilsson surface to a sphere near the

nuclear radius, we obtain aoza2:a4 = 1:0.81:-0.10 for 253Es_and

1:0.85:-0.09 for 2°°Fm

Using'the 9—1 matrix and egs. (5) and (7) fo;-the relative
intensities, we applied a least-sdquares fitting procedure allowing
"the surface amplitude ratios of d to s (a2) and g to s (a4)
waves to Vafy.

The values of o, and o, were obtained by minimizihg the
weighted root-meah-square légarithmic differences between the
theoretical and experimental intensities. The weighting reflected
the uncertainties in the expefiﬁental iﬁténsities. The best.
fits to the experimental intensities are obtained with

253

L, = 1:0.8580:—0.0977 for Es and aoza2:a4 = 1:0.7918:-0.1794

for Fm. The agreement of these amplitude ratios with those

above calculated from microscopic theory is reasonable.

*In the work of Poggenburg et gl.lg it was determined that a Froman
matrix argument of B = 0.9 was optimum for propagating the Legendre
expanded wave function on a Nilsson stretched coordinate surface
out to a sphefical surface outside the barrier. 1In coupled channel
14 on 242Cm it &as determined that the

Froman argument of B = -0.455 was appropriate for propagation from

work of Rasmussen and Hansen

a sphere near the nucleus but just beyond the range of the nuclear
poténtial out to a sphere at large distance. Since Froman arguments
are additive, we thus take the argument for propagation across the
nuclear surface to be the difference 0.9-(-.455) = 1.36. We‘

approximated the Frdman matrix by interpolation from Frdman's tables.
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These fits are plotted 1n the left—hand bars of Figs. 2
and 3._ The right—hand bars refer to calculations with the‘m‘ - 0
constraint removed and they w1ll be discussed in Sec; IV. The
nuclear orientation results do not explicitly enter the
least-squares fitting, but because of them only the region of
p051t1ve az ‘was searched | ‘ ‘ o

The logarlthmic hlstogram display is chosen to show the
predicted f%-mix Wlthln various alpha groups, but one should
not be misled by the apparent large % = 4 crosshatched area
which results from using a logarithmic and not a linear'scale.

The partial wave intensities, Coulomb phase shifts, and

quadrupole phase shifts corresponding to the least-squares solutions
253, 255

are summarized 1n Tables I and II for Es and 7~ Fm, respectively.
¥ < ' L. S
The pure Coulomb phase shifts are given by9
o, = arg ' (2 + 1.+ 1in) (8)
We shall discuss primarily the 253Es results; however, the general
comments are applicable also to the 255Fm results.

Examination of the best fits to the intensities for both
253 255 . . ’ .
Es and Fm reveals a systematic discrepancy. The experimental
intensity ratio between the second and the first excited states
in the rotational band of the daughter is Significantly 1arger
than predicted for both nuclei. These states are populated primarily

AL

by d waves, and no combination of initial £ = 0, 2, 4 ratios
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reproduces the experiméntal intensity ratio if the mi = 0‘con§traint
in the nuclear framé is maintained. This same systematic deviation
from BFM theory has been noted for favored bands of hany aipha
emitters as was shown.in Fig. 1, but it is only noQ clear £ha£ the
coupled channel treatment does not remove the discrepancy.

As a result, we conclude that some. d-wave component'withlmi#'o

must be included near the nucleus.

Table III compares L = 4 branching prediction of our
coupléd—channelvtheory with the BFM formula10 as appled by
Poggenbufg18 and by Asaro et 55.16 Asaro ég al. used a
square-well model to calculate alphé éenetrabilities, while -
Poggenburg used an optiéal model nuclé;r potential. it can be seen
fhét our‘coupled channel resﬁlts are vefy close to the eaflier BFM
approximation, thus confirming the theoretical validity of
approximating alpha branching at infihity by the product of the (
barrier penétrability times thé square of the appropriate Clebsch-Gordan
coefficient. However, there is a regime of higher & = 4 wave
hindranCé where channel coupling‘results in deviations from the
BFM branching approximation. In Fig. 4, 2 = 4 branching ratios-

are plotted as a function of ay with o, = 0.89. The values at

2

04 = -0.101 are given in Table I. In the vicinity of o, = 0.2

4
the hindrance factors are highest, and the deviations from the

BFM branching approximation are substantial. 'But'channél-coupling
does not affect the accuracy of the simple Clebsch-Gordan branching

expressions for £ = 4 until higher % = 4 hindrance factors are
253Es or 255Fm

encountered than those in
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Iv. Iegigsien.ofbmz # 0 Favored Alpha Decay Compeqents‘
Welhaye_éhqwn that a careful cqupled—chehnel_barrier treatment.
does net correct the BFM formula deviations visible in Fig. i,
under'the,ponstraint,that the surface alpha wave function eontains.
only m2'= Qv¢omponents. The systematic deviation of hind:ance.

factor;ratios!from Clebsch-Gordan coefficient ratios must be

explained in terms of‘mz # 0 admixtures. -

- A

Gammayvib;ational phonon (£ = 2, m, = 2) admixtures into

L
actinide element nuclear wave functions have been calculated

21,22 but these .admixtures seem too .

by Soloviev and co-workers,
small to ehange the d-wave bfanching‘to-the degree required to
fi£ intensity patterns and nuclear orientatidh data.

There: are insufficient data to completely determine*all,mg-# 0
amplitudes. In general, four experimental intensity ratiosfareer

known, and when m, = 0, two adjustable parameters a5 and o, are

4.
derived by a least-square fit. ' There are'then only two remaining
degrees of freedomﬁ If_we introdgce m, # Q amplitudes in a‘formulation_
that has two or more adjustable parameters, the problem becomes__
completely determined or overdetermined, and a least-squares
fitting procedﬁre cannot be used to derive parameter Values.é We
have therefore attempted to introduce m, # 0 amplitudes‘in a .
formulation with only one new adjustable parameter.

We propose a one-parameter constraint for int;oduction.of
m, % 0 components ffqm copside;ation.that the mqsg_ofhthe alpha
" particle is not negligible compared to that of £he daughter

nucleus. While the alpha particle is within the nucleus, it is

part of the system of spheroidal symmetry with symmetric top
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inertial properties. When the alpha particlé leaveé the surface
suddenly, the principal axes of the core Will be suddénly shifted by
.a tilt angle 6. We représent the nuclear core inertial system
classicélly by mass distributed along the body-fixed symmetry

z' axis, or é diatomic molecule model suCh.that the momeht—df—inertia
has the experimental value J. We then consider the removal of

alpha particle mass at the nuclear radius at a pattiéular angle

X in the body’fixed-y-z‘plane. (Equivalently we may add alpha

particle mass at -X.) The new principal inertial axes are rotated

from the old by angle ejgiven by

m R
sin 20 = F sin 2(X-9) , , (9)
MaRZ '
Since the mass 250 region —— % 0.11 <<1, we can make a small
8 approximation of the above tilt equation to give
, M R% | M_R2 1 :
6 = sin 2X (1 + J cos 2X) (10)

J

We think that the appropriate éVerage alpha emission angle
X (in the nuclear frame) should refer to the alpha Qave outside the
barrier. Thus, we may roughly estimate <X> directly from hindrance
factors of even-even neighbors. For nuclei
with the maximum 2 = 4 hindrance factors (A ~ 244) we believe <X>
to have the value of the first zero of Pé (cos X), namely ~ 30°.
The trend of hindrance factorsris‘sﬁch that <x> is a monotonically
increasing function of mass numbér throughouf the actinide region,
and at the highest masses for which alpha fine structure has been
measured the rising 2 = 2 hindrance has not yet gone through a

maximum. Hence, <X> < 55°, the zero of P2 (cos X). If we take
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for <X> an approximate value for 253Es'and 255Fm‘ of » 45°, we can
solve eq. (9) to get

tan 260 z..0.11 « ..
or
e ~ 0.05
Thus, .we.would take the favored alpha wave amplitude of m, = 0-at

L
the surface and rotate the coordinate system, generating_ma-¢ 0

components in the new frame. 1In-this .scheme the m,. = 0 amplitudes,
Ao are transformed by the rotatibn matrices with Eulerian angles

(0, 6,.0).. .Thus, the new amplitudes are given as

R I T A S
Alm ——-DOm (0, 6, O)AQO

o,

In oY’ numericdal studies we have in this way introduced amplitudes -
A;, and Ai?“With”dne»new'adjuStable parameterfeu'*.

fWith our'numerical solutions of thé cdupled-c¢hannel equations
we have made .a weighted least—squares determination of the best
Values'éf"a},.a4, and 8 to fit the'exﬁerimentél intensities. The
original £Wo4parameter leastJSquareé fits (i.e., with the constraint

8 = 0) for mg'ﬁ 0, were presented ‘in Sec. III, and Figs. 2 and 3

there ‘also show the fits with 0 unconstrained.

”‘Thé optimum'az, aé, and 6 values afe"for'253ES 0.891, -0.117,
and .306_:adians;‘respectivelyf 'The'corresp0nding values for
255gm are 0.828, -0.250, and 0.0633.  Our one additional parameter
0 can be seen from Figs. 2.and 3 to have improved the”ll/2:9/2
branchihg ratio (2.= 2), and the least-squares 6 values are in

satisfactory agreement with the estimate of tilt of principal axes

during alpha decay.
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The 15/2:13/2 branching ratio (2 4) is not in very good -

agreement with theory, but the wéak L 4 groups may be affected
by our truncation of the coupled-channel equations to eXclude
L 2 6. | |

In summary we conclude that the deviation of & = 2 favored
alpha hindrance factor ratios from the leading-order Clebsch-Gordan
intensity relations is.due to a kind of recoil term in the core
rdtational'inertial systém. The effect 'is to introduce m, # 0
components into the favored alpha wave function at the nuclear
surface. Although we solved the nine éoupledbchannel equations
only for parent spin 7/2, we can reasonably infer a similar béhavior
for the several Ii = 5/2 cases plotted in Fig.‘l. As the mass
number increases the mean alpha emission angle <X> in the nuclear
frame shifts from small values toward 45 or 50° for the mass
250 region, the deviations should monotonically increase, as they
do for the spin 5/2 cases.

We have with the cbupled channel equations calculated the
quadrﬁpole phase shifts, which_affectAthe‘intérference terms in -
angular distribution experiments involving favored alpha decay.
It would interesting to have experimental a-y angu;ar correlétion
studies to test our predicted angulaf momentum mixtures and phase
shifts for decay to excited rotaﬁional band members. The
low-temperature nuclear orientation experiments could not resolve
indiﬁidual alpha groups and were thus mainly sensitive to the

composition of the alpha group to the band head.
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Appendix I

Exclusiqn of ¢ = 6 Partial Waves

From Coupled Differential Eqﬁations

In order to limit the number of coupled differential equations
to be solved, the % = 6 and higher angular momentum waves were
excludedAfrom our anélysis; The ‘hindrance factor’ for thell = 6
Qave of the nearest neighbor Cf isotope is approximately 1000,
whereas the hindrance féctor for the & = 4vwave‘is17 approximately '
30. - Therefore the % = 6 wave cannot noticeably affect the

2 .= 4 branching. Because the % = 6 wave was excluded from the

theoretical analysis, an approximate i-wave component was subtracted

from the experimental intensities before making the comparison with

23

theory. < This was done as follows. - Ahmad” has measured the

alpha intensities to the 17/2+ and 19/2+ levels of 253

Es (see
Tabié IV ). These levels are populated by £ = 6 and higher
angular momentum waves only, and we assumed that the higher 2

waves are much weaker than the i-wave. The £ = 6 bénetrability

factor for alpha decay to the 17/2+ level, which was obtained by

vextrapolating Poggenburg'sl8 penetrabilities, was multiplied by

the appropriate squared Clebsch-Gordan coefficient in order to
obtain a relative theoretical inteﬁsity which was normalized to
Ahmad's experimental intensity. The process was then reversed

to obtain the i-wave component to the lower spin states of the
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favored'rdtational band. The results are given in Table IV.

| For 255Fm élpha decay the experimental intensity to the
17/2+ level is unknown; therefore we assumed that‘Poggenburg's
calculations correctly predict the relative i-wave component.
We believe this approximation is permissible because the
cqrrection ;s, in any case, small, and the correction has ‘a
signific%nt_effect only on the 13/2+ and 15/2+ intensities, which
already'have_small weighting factors in the fitting routine. .
While it i; true that any error in this extrapolation from |
Poggepburg will to.some degree be reflected in our fit of
O4r OUr major fitting difficulty is iﬁ,reproduciﬁg‘the.ratio
between the 9/2+_and 11/2+ intensities, which-is not strongly.
affected by either.u. or the correction. Our.corrections to the

4
255

Fm experimental intensities are also given in Table 1IV.

The reliability of our i-wave correction:fdr ?55

253E

Fm decay'

is indicated by applying the same method to s. The subtracted -
components. would then be 0;0001,,0.0016, 0.0031, 0.0060 and
0.0033 for the 7/2+ through 15/2+ levels.. The differences between
these values and the ones given in Table IV suggest that the

i-wave, like the d wave, may be more skewed toward the lower levels

of the rotationa1 band than the BFM branching relation:predicts.
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Appendix 11

Accuracy of Computations

Severai numerical tests on the computer programs weré performed.
The .regular'ana irregular Coulomb functions were integrated inward
from 150 f@ﬁto 10 f£m with couplihéﬂturned of £, i;e., with Q0i= 0.
The irreguiaiﬂéblufioné'agreed wiéh puré Coulomb functions to
within a few tenths ofyé pércenti“ Thé uncoupled reéulér solutions,
which shoﬁld4be éiponeﬂtiélly decré&éiné goihg into thefbarrier,
wefe not stable inside the barrier, but they were sﬁéliér than
the irfegular solutions by’a.factor of approximately lOS;thich
is,mdre than sufficientif accurate for this problem. The radial
integration inter?al was varied by an order. of magnitude'to insure
that accuracy was not limited by choice of mesh size.

In order to check the COmpleteneSS’and accuracy of the
quadrupole‘coﬁpling matrix elements, the rotationai énergy and;the
‘centrifugél energy of each gréup Were set equal to zero. The
regular Coulomb function Fo(n,p) with n and p appropriate for the
Id = 7/2 channel was integrated inward from 150 fm with
Qq = 13.l‘b.. The d and the g waves Were found to branch in the
ratio of Clebscthordan'coefficients as they should.

A relative penetrability can be approximatéd by the ratio
of the uncouéled regular function at 10 fm to the uncoupled

fegular function at 150 fm squared. Each squared ratio was
»divided by the corresponding penetrability given by Poggenburg}l
who used a Froman matrix to calculate penétrabilities. The

resulting quotients should be, and were, approximately equal.
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Figure Legends

Ratio of'the hindrance factor of the second excited
level to thaf of the first excited level in the favored

alpha decay band of odd-mass nuclei.l7

Favoredrbéné alpharbranching calculations‘fék 253Eé
Cdmpared with experiment (arrows). The left-hand
bars rebfeéént coupled-channel, logarithmic léaét
squares,fits with the constraint m, = 0. The

right—hand bars are fits with an additional, parameter,

o
4

the tilt angle 6, varied, (see text).

Same as Fig. 2 except for 255Fm.

Logarithm of the calculated ratios of £ = 4 partial

fixed at 0.89. The
253

waves as a function of Ay with a,

coupled channel calculations are for Es with

m, = 0 constraint. The BFM ratios (Clebsch-Gordan

L

coefficients squared) are shown at the left.
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Table 1I. 253Es partial wave intensities, quadrupole phase shifts,
and Coulomb phase shifts obtained by numerical integration (ao =1,

Oy = 0.8580, a4 = -0.0977).
Id | L Partial Experimental intensity Quadrupole ‘Coulomb
‘ ‘ wave’ with i-wave subtracted phase shift phase shift
intensity ‘ (radians) (radians)
(%) ' (%) '
7/2 0 81.7983 S ~0.021 50.802
2 8.9034 -0.130 53.816
4 0.1355 ) _ : 0.127 56.659
90.8372 - 90 ’
9/2 2 5.2180 4 ' -0.159 54.047
4. 0.3383 ‘ : 0.138 . 56.891
: 5.5564 6.6 . :
11/2 2 0.7788 ' -0.193 54.338
4 0.2723 . '0.151 ~57.183
1.0511 : 0.846 : :
13/2 4 0.0848 0.0810 0.167 57.537

15/2 4 0.0085 0 0.011 0.184" 57.963
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Table II. 255Fm.partial wave intensities, quadrﬁpole phase shifts
and Coulomb phase shifts obtained by numerical integration (ao =1,
a2 = 0.7918, Oy = -0.1794).
Id - % Partial Experimental intensity Quadrupole Coulomb
. wave with i-wave subtracted phase shift phase shift
intensity
' (%) {radians) (radians)
7/2 0 _86.1522 - -0.007 49.495
2 7.5837 | -0.136 52.505
4 0.2035 | 0.110 55.343
93.9393 . 93.4 .
'9/2 2 .3.9054 ; ~0.179 52.807
4 0.4433 ' 0.122 55.646
" 4.34487 5.05 T
1172 2 - “0.5004 o . -0.226 53.180
4 ~0.3013 s - 0.134 : 56.021
0.8017 0.62
2 13/2 4 0.0787 0.097 . 0.146 56.471

15/2 4 0.0066 : 0.008 . 0.158 56.994
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Table III. Comparison among theories of calculated branching ratios
for the & = 4 groups from 253Es.

I BFM-sharp BFM-sloping | Coupled—channél
barrier _barrier (this work)

- (Asaro et gl.)ls (Poggenburg)17

772 () | (1 ()

9/2 2.57 2.486 -~ 2.499
112 2.10 | | 1.994 2.010
1372 . 0.65 0.632 ' 0.626

15/2 0.065 0.063 0.063
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Table IV. Correction factors for the i partial wave.
253, 255y
I .7 Experimental L =6 Experimental £ =6
a’ - intensity38 component intensity38 component
(%) - (%) ' - (%) (%)
7/2+  90.0(5) | 0.0002 0 93.4(2) - 0.0003
9/2+ 6.6(2) 0.0014 5.05(7) 0.0022
1172+  0.85(3) . . 0.0037 0.62(1) ©  0.0040
13/2+ 0.085(3) ~ 0.0039 © 0.110(5) .. 0.0129
15/2+ 0.013(1) 0.0018 0.013(2)- - 0.0049
17/2+ - © 0.0004(1) (0.0004)

19/2+  0.00012(4)




32

Experimental hindrance factor ratios
5t | - (lower limits) —

K+1)

@ K=5/2 bands . O, Es
0O K= 7/2 bands » - 0

HF(If=K+2) / HF(If
W
] |
°®
“c
°
e
=
© w.
>
3
o ®
S
3
..
O'io'
3 0 |
\ o .
l\\\\jlx |
‘ ;},_

e S — 7 T A2 7N2
2 <2 2 ZC)IZ 2>
($230|2%Y \
- 2c2V]|2 2 (L2210 TRERS S
(323029
2 2 2 2
| | | | l 1 | e |
233 235 237 239 241 243 245 253 255

Mass number (A)
) XBL743-2688

Fig, 1:



33

LB O O B AR B _:___.4._. RALLE BERE «_:_____ ¥
o Fows | Hmmm
o 2R X=X 9 4—
3 -5 3
o E o SRR
- c P n ii._n uuuuuu
o= & © B
-— O @ (&) h
- c ] @ .
ag =2 _ e s
, L . . — _____ Hnnx PRERIRERERERE ®
wn : . SRR KR KRR PRSP REKER PR R
N ,_ =
. o e
N \ % X SRR
h
S R
e =
RRE N N T I T Lol o o T J
O - Q Q puct ') o
o o = © S S
S - | S
'SUOI}ISUDJ}  © P3JOADJ JO (%) >__:mc.m,,5.

9/2 /2 1372 15/2

7/2

 XBL743-2687

Fig. 2



Intensity

100.0

10.0

transitions

O.1

(%) of favored «a

o
©

'0.001

IIIIIIT[ 1 1 l]!l]]l I I Ill-Il.ll ¥ Fllllll

KEREKPRERD

/2

Al

255 | N

Fm partial wave
branching
o Total experimentgl -—

£=0

—_ R L=2

0

s j= 4
8=0 6=0.0633

Vs
[RAAAAENA)

RAAAAN
IAAASAEAE AL
DASASAAL

AN
AANAS
V¥,

AN
A XXX X
A AAANA

[X ) N
KAAXAN

AAAXA]
RAAXAXA

V.
KAAN)
wy.

A4
AN
X4

9/2

12

V.Y Vs
AAAAXANE

MAAASA
s A

1372 - 1572

Ll

34

|

L

L

XBL743 - 2686




0

Ratio of excited state to g:s. G-wave -intensity

10.0

O.l

35

¥ ' T

LML

1

| 1 I

1 1 | 1 L

bl

N__

[ 253Es favored decay
- ag= LO, O, = 0.89086
. 72)71(7/
L BFM 1(9/2)/71(7/2)
BFM
=
1(H/72)71(772)
L BFM

T(1372)71(7/72)

|

| L |

Loaaal

A

I 1 | I 1

-0.3 -0.2 -0.

O Ol 02 03 04
04
XBL7§3—2690-

Fig. 4



Wi g

This report was done with support from the United States Energy Re-
search and Development Administration. Any conclusions or opinions
expressed in this report represent solely those of the author(s) and not
necessarily those of The Regents of the University of California, the
Lawrence Berkeley Laboratory or the United States Energy Research and
Development Administration.




-
TECHNICAL INFORMATION DIVISION
LAWRENCE BERKELEY LABORATORY

UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720





