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The Household Activity Pattern Problem:

General Formulation and Solution
W.W. RECKER

Department of Civil Engineering and Institute of Transportation Studies, University of California, Irvine, CA  92717, U.S.A.

The household activity pattern problem of analyzing/predicting the optimal path
of household members through time and space as they complete a prescribed
agenda of out-of-home activities is posed as a variant of the pickup and delivery
problem with time windows.  The most general case of the model includes
provision for vehicle transfer, selective activity participation, and ridesharing
options.  A series of examples are solved using generic algorithms.  The model is
purported to remove existing barriers to the operationalization of activity-based
approaches in travel behavior analysis.

INTRODUCTION

There is general consensus that the demand for travel is derived from a need or desire to

participate in activities that are spatially distributed over the geographical landscape.

Recognition that conventional travel demand approaches that examine each trip in isolation at

best provide only limited information regarding the particular trip (since they generally ignore

both the history that precedes the trip as well as the future that follows) and virtually no

information on the impact of decisions regarding the particular trip on other travel decisions

(both prior and subsequent), has led to a roughly decade-long quest among a cadre of

transportation researchers to develop and operationalize "activity-based" travel demand analyses.

A history of these developments, together with critical assessment of their limitations and

potential, is provided in a special issue of Transportation (1988).  In particular, Kitamura (1988)

provides an extensive evaluation of the field, covering approximately 120 studies.

Goodwin (1983) capsulates the activity-based approach in simple terms as

"the consideration of revealed travel patterns in the context of a structure of
activities, of the individual or household, with a framework emphasizing the
importance of time and space coordinates."
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It is derived principally from the early work of Hagerstrand (1970) in time-space geography, in

which travel and activity participation are recorded as passage through time and space, with the

individual's location at any time represented by a continuous path in the spatial and temporal

dimensions.

As noted by Stopher et al. (1993), however, "despite its conceptual appeal and clarity, the

time-space geography structure has proved quite difficult to implement operationally."

Commenting on challenges facing further development of activity-based approaches, Kitamura

(1988) noted that, conceptually, Lancaster's utility formulation (1966) neatly applies to the

problem, but that

". . . if a utility function can be identified at all, an array of mathematical
programming methods are available.  However, the problem at hand is, at the
simplest, a discrete choice-continuous allocation problem with correlated multiple
alternatives, combined with the traveling salesman problem, problem of collective
decision-making, and household coupling constraints which is in part a logistic
problem.  This is an overwhelming problem.  In fact no model has been
constructed that determines activity patterns on the sole basis of the utility
maximization principle."

In his review, Kitamura further notes that existing models are largely restricted to

addressing questions of activity participation and time allocation at the level of total daily time

expenditure, with a wide gap existing between these models and those modeling daily activity

and travel patterns.  Both Kitamura (1988) and Stopher (1993) point to the STARCHILD

MODEL (Recker et al., 1986a,1986b) as the only known operationalized model that predicts a

set of activity patterns from household decision-making information.  Although based loosely on

mathematical programming principles, the STARCHILD model is severely limited in that it: (1)

provides no mechanism for household interaction, modeling the activity/travel patterns of each

household member separately, (2) relies on a heuristic solution procedure based on exhaustive

enumeration and evaluation of feasible solutions, (3) discretizes the temporal dimension and

relies on pattern recognition algorithms to distinguish simple temporal displacements of similar
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solutions, and (4) has no provision for addressing either activity or vehicle allocation decisions or

for consideration of complex modal choice decisions, such as carpooling.

According to Koppleman (1988), in activity-based approaches "the research need is to

develop a theoretical framework within which to relate the multiple themes of human/social

behavior to the generation of the need or desire to participate in activities and the derived

demand for travel."  This paper attempts to provide one such framework that is believed to offer

potential in the operationalization of activity-based travel demand methodologies.

Specifically, the household activity pattern problem (HAPP) is posed as a variant of the

pick up and delivery problem with time windows (PDPTW).  In the most general case

considered, the model addresses the optimization (relative to the household's utility function) of

the interrelated paths through the time/space continuum of a series of household members with a

prescribed activity agenda and a stable of vehicles and ridesharing options available.

In the development of the model, a deliberate attempt has been made to maintain, to the

extent possible, both the notation and structure of the well-known PDPTW in the hope that this

would provide a conducive environment for future development and improvement.  In addition,

little attention has been paid to issues of model efficiency or to the efficiency of solution

algorithms; rather, reliance has been placed mainly on readily available "canned" software in an

effort to demonstrate the practicality of the approach.

MODEL FORMULATION

In order to take advantage of previous work involving the PDPTW, the formulation of the

general HAPP involving complex elements such as ridesharing and vehicle-switching options is

developed from a progression of cases in which initial restrictions that result in an equivalence to

the PDPTW are gradually removed.

CASE 1: Each member of the household has exclusive, unrestricted use of a personal
vehicle and any activity can be completed by any member of the household.
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In its most basic form, in which each member of the household has exclusive unrestricted

use of a personal vehicle and any activity can be completed by any member of the household, the

household activity pattern problem (HAPP) can be formulated as a variation of the well-known

pickup and delivery problem with time windows (PDPTW) within the class of vehicle routing

problems with time windows (VRPTW).

Following Soloman and Desrosiers  (1988) we adopt the following notation

A = {1, 2,…, i,…, n} the set of out-of-home activities scheduled to be completed by
travelers in the household.

V = {1, 2,…, υ,..., |V|} the set of vehicles used by travelers in the household to
complete their scheduled activities.

P+ = {1, 2,…, i…, n) the set designating location at which each activity is performed.

P- = {n+1, n+2,…, n+i,…, 2n} the set designating the ultimate destination of the "return to
home" trip for each activity.  (It is noted that the physical
location of each element of P- is "home".)

[ai, bi] the time window of available start times for activity  i.
(Note:  bi  must precede the closing of the availability of
activity  i  by an amount equal to or greater than the
duration of the activity.)

[an+i, bn+i] the time windows for the "return home" arrival from
activity  i.

[a0, b0] the departure window for the beginning of the travel day.

[a2n+i, b2n+i] the arrival window by which time all members of the
household must complete their travel.

si the duration of activity  i.

tuw the travel time from the location of activity  u  to the
location of activity  w.

cuw
υ travel cost from location of activity  u  to the location of

activity  w  by vehicle  υ.
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Bc the household travel cost budget.

Bt
υ the travel time budget for the household member using

vehicle  υ.

P = P+�P- the set of nodes comprising completion of the household's
scheduled activities.

N = {0, P, 2n+1} the set of all nodes, including those associated with the
initial departure and final return to home.

As implied above, different elements of P+ may correspond to the same physical

location; all elements of  P-  correspond to the same physical location (home) and consequently

tn+u,n+w = cn+u,n+w ≡ 0, ∀ u,w ∈P+.

In the analogy to the PDPTW, activities are viewed as being "picked up" by a particular

household member (who, in this basic case, is uniquely associated with a particular vehicle) at

the location where performed and, once completed (requiring a service time si) are "logged in" or

"delivered" on the return trip home.  Multiple "pickups" are synonymous with multiple sojourns

on any given tour.  The scheduling and routing protocol relative to some household objective

produces the "time-space diagram" commonly referred to in travel/activity analysis.

In the PDPTW, demand functions (di) and a vehicle capacity (D) are introduced to

ensure that the schedule of pickups and deliveries does not violate the capacity constraint of any

particular vehicle.  This notion is extended to the HAPP by defining as constraints

D
D
or
D

s

T
=
�

�
�

�
�

     
=  maximum number of sojourns in any tour

=  maximum time spent away from home on any tour

with the corresponding demand
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Decision variables directly analogous to those of the PDPTW are defined as:

X u w N V u wuw
υ υ    , , , ,∈ ∈ ≠ binary decision variable equal to unity if vehicle  υ  travels

from activity  u  to activity  w, and zero otherwise.

Tu   ,   u∈P the time at which participation in activity  u  begins.

T T Vo n
υ υ υ, ,2 1+ ∈   the times at which vehicle  υ  first departs from home and

last returns to home, respectively.

Yu   ,   u∈P the total accumulation of either sojourns or time (depending
on the selection of  D  and  du)  on a particular tour
immediately following completion of activity  u.

With these definitions, the basic HAPP can be represented as:

Minimize Z = Household Travel Disutility (1)

subject to:

Xuw
V

υ

υ w N 

+   ,    u P
∈∈
�� = ∈1 (2)

X Xuw wu
υ υ υ

w N w N
   u P,  V

∈ ∈
� �− = ∈ ∈0 (3)

X w0 1υ υ
w P

   ,    V
∈ +
� = ∈ (4)

Xu n,2 1 1+
∈ −
� = ∈υ υ

u P
   ,    V (5)
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X Xwu w n u
υ υ υ

w N w N

+   u P ,  V
∈

+
∈

� �− = ∈ ∈, 0 (6)

T Tu u u n u n u+ + ≤ ∈+ +s t ,    u P+ (7)

X T s t Tuw u u uw w
υ υ= � + + ≤ ∈ ∈1   ,    u,w P,  V   (8)

X T t Tw w w0 0 01υ υ υ= � + ≤ ∈ ∈  ,    w P ,  V   + (9)

X T s t Tu n u u u n n, ,2 1 2 1 2 11+ + += � + + ≤ ∈ ∈υ υ υ  ,   u P ,  V   - (10)

a T bu u u≤ ≤ ∈   ,    u P (11)

a T b0 0 0≤ ≤ ∈υ υ   ,    V (12)

a T bn n n2 1 2 1 2 1+ + +≤ ≤ ∈υ υ ,   V   (13)

X Y d Yuw u w w
υ υ= � + = ∈ ∈ ∈1     u P,   w P  V   + (14)

X Y d Yuw u w n w
υ υ= � − = ∈ ∈ ∈−1     u P,   w P  V   - (15)

X Y d Yw w w0 01υ υ= � + = ∈ ∈    ,    w P ,  V   + (16)

Y0 0= ≤ ≤ ∈  ,    0 Y D  ,   u P   u
+ (17)

Xuw
υ υ=

�
�
�

∈ ∈ 
1

    ;   u, w N   ,    V 
0

(18)
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c X Buw uw
w Nu NV

c
υ υ

υ ∈∈∈
��� ≤ (19)

t X Buw
w Nu N

uw t
∈∈
�� ≤ ∈υ υ υ   ,    V (20)

X w
w P

0 0,
υ υ

∈ −
� = ∈   ,    V (21)

Xu
u N

,0 0υ υ
∈
� = ∈   ,    V (22)

Xu n
u P

,2 1 0+
∈ +
� = ∈υ υ   ,    V (23)

X n w
w P

2 1 0+
∈ −
� = ∈,

υ υ   ,    V (24)

Note that Equations (8), (9), and (10) may be rewritten:

T s t T X Mu u uw w uw+ + − ≤ − ∈ ∈( )1 υ υ,    u, w P,  V   (8′)

T t T Xw w w0 0 01υ υ υ+ − ≤ − ∈ ∈( )M,    w P ,  V   + (9′)

T s t T Xu u u n n u n+ + − ≤ − ∈ ∈+ + +, ,( )2 1 2 1 2 11υ υ υM,   u P ,  V- (10′)

where  M  is a large positive number.

Equations (2) through (20) are virtually identical to those specified by Solomon and

Desrosiers (op. cit.) for the PDPTW, with the addition of the budget constraints (i.e., Equations
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(19) and (20)) and subject to the redefinition of terms, and have an analogous interpretation in the

HAPP.  Equations (21) through (24) explicitly state conditions implicit in the PDPTW.

Examples of potential components of the disutility function of the household that may be

easily specified in the objective function of Equation (1) include:

c
w Nu NV

uw uw   X  υ

υ

υ

∈∈∈
��� total household travel cost. (1a)

t Xuw
w Nu N

uw
V ∈∈∈

���
υ

υ
    total travel time. (1b)

( )T bu u
u P

−
∈ +
� a measure of the risk of the inability to complete activities

because of stochastic variations in travel times and/or

activity durations. (1c)

( )T bu u
u P

−
∈ −
� a measure of the risk of not returning home in time due

to stochastic variations in travel time or activity

participation. (1d)

( )T Tu n u
u P

+
∈

−
+

� a measure of the delay in returning home incurred by trip

chaining. (1e)

( )   ,    VT Tn
u

2 1 0+ − ∈υ υ the extent of the travel day for each household member. (1f)

Although the assumptions used in formulating the base case model described by

Equations (1) - (24) (e.g., interchangeable activity participation among household members, a

priori identification of the subset of travelers in the household, exclusive and unrestricted use of

personal automobile) are too restrictive for practical application in travel activity analysis, the
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model nonetheless provides both a bridge to existing operations research formulations as well as

a point of departure in the development of more general models.

As an example of the application of this basic HAPP formulation, we consider the case of

a two-person household with three scheduled activities with durations

S = [s1, s2, s3] = [8, 1, 2]

and time availability windows

[a ]
, .
,
,

,i ib =
�

�

�
�
�

�

�

�
�
�

8 8 5
10 20
12
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   ,

corresponding return-home windows

[a ]
,
,
,

,n i n ib+ + =
�

�

�
�
�

�

�

�
�
�

17 19
10 21
12

 
 
 21

   ,

and initial departure and end-of-travel day windows

[a ] [ ]
[a ] [ ]

,

,

0 0

2 1 2 1

b
bn n

=
=+ +

6, 20
6, 21    .

We additionally assume the following travel time and cost matrices (assumed constant for all

vehicles) associated with the locations of the three activities:
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tuw

TO 0 1 2 3

FROM

0 0.00 1.00 0.25 0.50

1 1.00 0.00 1.00 0.50

2 0.25 1.00 0.00 0.50

3 0.50 0.50 0.50 0.00

cuw

TO 0 1 2 3

FROM

0 0.00 2.00 1.00 1.00

1 2.00 0.00 1.00 1.00

2 1.00 1.00 0.00 0.50

3 1.00 1.00 0.50 0.00

and budget and tour constraints

B

B B
D

c

t t

s

=

= =
=

8 00

3 50
4

1 2

.

.
   .

The household's objective function is assumed to be comprised of terms (1a), (1e) and (1f), i.e.,

( ) ( )Min c T T T Tuw
w N

u n u
u P

n
V

Ζ =     X    .
u NV

uw
∈∈∈

+
∈

+
∈

��� � �+ − + −
+υ

υ υ υ

υ
2 1 0
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The HAPP mixed-integer model specified by the above parameters and Equations (1) -

(24) was solved using the ZOOM algorithm (Singhal, et al., 1987) in the GAMS software

package developed by the World Bank.  The resulting solution for this base case (denoted as

CASE 1) is summarized in Figure 1, which displays the optimal time/space paths taken by the

individual household members and vehicles (in this case, synonymous) in the completion of the

household's scheduled activities.

CASE 2: Each member of the household has a personal vehicle; a subset of activities can
be performed by any member of the household, the remainder must be performed
by certain members (HAPPAA: The household activity pattern problem with
assigned activities).

As already emphasized, the Case 1 model has only very limited practical application

owing to its restrictive assumptions.  However, much more realistic models of the HAPP are

obtained from the base case with only slight modification.  For example, the restriction that

activity participation is interchangeable among household members is easily addressed by the

addition of a single set of constraints:

Xuw
u Pw v

υ

υ
υ

∈∈
�� = ∈

Ω
0   ,    V (25)

where  Ωv Aυ ∈   is the subset of activities that cannot be performed by vehicle/person  υ.  Figure

2 presents results for this case (labeled Case 2) in which:

{ }
{ }

Ω

Ω
v

v

1

2

1

2

=

=    ,

(i.e., either person in the household can perform activity 3, but person 1 must perform activity 2

and person 2 must perform activity 1) and all other parameters are as in the previous case.

CASE 3: Each member of the household has a personal vehicle; a subset of activities can
be performed by any member of the household, the remainder must be performed
by certain members.  Some members may not perform any activities (i.e., stay at
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home); there is some "cost" to performing out-of-home activities (or, conversely,
some benefit to staying home).

The restriction of a priori knowledge of the subset of household members who are

travelers on any given day is removed by redefining the set  A  to include all household members

with unrestricted exclusive access to a personal vehicle, revising Equations (4) and (5) as:

X w0 1υ υ
w P

   ,    V
∈ +
� ≤ ∈ (4′)

Xu n,2 1 1+
∈ −
� ≤ ∈υ υ

u P
   ,    V (5′)

and adding a term to the objective function to reflect the base disutility of performing any

discretionary activities outside the home on a given day, say

K X
w PV

w
∈∈ +
��

υ

υ
0    ,    (1g)

where  K  = "cost" of performing out-of-home activities.  These revisions, together with those of

CASE 2, then represent the optimal solution to the HAPP in which each member of the

household has exclusive use of a personal vehicle; a subset of activities can be performed by any

member of the household, the remainder must be performed by certain members; some members

may not perform any activities (i.e., stay at home); there is some "cost" to performing out-of-

home activities (or, conversely, some benefit to staying home).

The solution to this version of the HAPP (labeled CASE 3) for an arbitrarily selected

value of  K = 100, and where  Ω2 = {null}  and where the windows of availability for the

activities have been adjusted to:

[a ]
, .
,
,

,i ib =
�

�

�
�
�

�

�

�
�
�

8 8 5
6 20
12

   
   
 22

   ,
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to illustrate a solution in which one household member does not travel, is shown in Figure 3.

CASE 4: Members of the household share a stable of vehicles; a subset of vehicles may be
available for use by any member of the household, the remainder may be reserved
for use by certain members.  A subset of activities can be performed by any
member of the household, the remainder must be performed by certain members.
Some members may perform no activities; some vehicles may not be used.

The decoupling of vehicles and household members can be accomplished simply by

posing "companion" vehicle and person PDPTW's (with appropriate redefinitions and coupling

constraints).  Specifically, we introduce the new decision variables associated with the set of

household members  η η= { , , , }1 2 � :

H u w N u wuw
α η, , , ,   ∈ ≠ binary decision variable equal to unity if household

member  α  travels from activity  u  to activity  w, and zero
otherwise.

T T    0 2n+1
α α α η, , ∈ the times at which household member  α  first departs from

home and last returns to home, respectively.

Associated with these new decision variables we add the parameters:

a0
α the earliest possible departure time for household member  

α.

b n2 1+
α the latest return home time for household member  α.

The constraints on the household member decision variables are merely a subset of the

equivalent relationships on the vehicle flows:

H    ,    u Puw
w N

+α

α η ∈∈
�� = ∈1 (26)
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H H    u P   ,    uw
w N

wu
w N

α α α η
∈ ∈
� �− = ∈ ∈0, (27)

H     0w
w P

α α η
∈ +
� ≤ ∈1, (28)

H     u,2n+1
u P-

α α η
∈
� ≤ ∈1, (29)

H H     u P    ,    wu
w N

w,n+u
w N

+α α α η
∈ ∈
� �− = ∈ ∈0, (30)

T s t T H Mu u uw w uw+ + − ≤ − ∈ ∈( ) ,1 α α η    u, w P   ,    (31)

T t T H Mw w w0 0 01α α α η+ − ≤ − ∈ ∈( ) ,     w P    ,    + (32)

T s t T H Mu u u n n u n+ + − ≤ − ∈ ∈+ + +, ,( ) ,2 1 2 1 2 11α α α η     u P    ,    - (33)

T a0 0
α α α η≥ ∈,     (34)

T bn n2 1 2 1+ +≤ ∈α α α η   (35)

H 0      0,w
w P

α α η
∈
� = ∈ (36)

H 0      u,0
u

α α η
∈
� = ∈

N
(37)

H 0      u,2n+1
u

α α η
∈ +
� = ∈

P
(38)

H 0   ,    uw
u Pw

α

α
α η

∈∈
�� = ∈

ΩH

(39)
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where  ΩH
α   is the set of activities that cannot be performed by household member  α.

To these we add the coupling constraints:

H    ,    u P ,uw
+α

α η

υ

υ∈ ∈
� �= ∈ ∈X w Puw

V
(40a)

H    ,    0w
α

α η

υ

υ∈ ∈
� �= ∈X w Pw

V
0 (40b)

that ensure that only one household member may be assigned to travel between nodes  u  and  w

by vehicle  υ.

Equations (1) - (40) constitute the HAPP formulation for the general case in which the

only practical restriction is that of solo driving (i.e., excludes the potential to carpool).  The

optimal solution to this problem for

{ }
{ }
{ }
{ }

Ω

Ω

Ω

Ω

1

2

1

2

0
1

0
2

2 1
1

2 1
2

1

2

1

2

6

22

v

v

H

H

n n

a a

b b

=

=

=

=

= =

= =+ + ,

and all other parameter values as specified in CASE 3 (the previous example), is displayed in

Figure 4 (and labeled CASE 4A).  When the exclusionary sets  Ω  are revised to

Ω

Ω

Ω

Ω

1

2

1

2

1 3
2
1
2 3

v

v

H

H

=

=

=

=

{ , }
{ }
{ }
{ , }
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the solution shown in Figure 5 (and labeled CASE 4B) is obtained.  It is noted that in this latter

example, the optimal solution involves household member 1 using vehicle 1 to complete activity

2, and then using vehicle 2 to complete activity 3 after household member 2's return to home in

vehicle 2.

CASE 5: Same as Case 4, but with the addition of ridesharing option, representing the
general HAPP with some assigned activities and vehicles and with ridesharing
and non-traveler options.

The inclusion of a ridesharing option significantly alters the basic formulation of the

previous cases.  While maintaining a similar structure to previous cases, the set of nodes is

expanded to include "drop-off passenger" and "pick-up passenger" activities at the locations of

the prescribed household activities; the former being discretionary, however, while the latter

remain compulsory.  The elements of the set defining the vehicles available to the household is

also expanded by designating "driver seat" and "passenger seat(s)" for each vehicle in the stable.

Defining these new sets as:

PDO
+ set of serve passenger "drop off" activity locations.

PPU
+ set of serve passenger "pick-up" activity locations.

P+      P P PDO PU
+ + ++ +

P P PDO PU
− − −, , respective eventual home trips to "unload".

�V passenger "seats".

V V + V,�

with the corresponding elements:

A = {1, 2,…, i,…, n}
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V = {1, 2,…, |V|}

�V = {|V|+1, |V|+2,…, 2|V|}

V = {1,…, |V|, |V|+1,…, 2|V|}

P+  = {1, 2,…, i,…, n}

PDO
+  = {n+1, n+2,…, n+i,…, 2n}

PPU
+  = {2n+1, 2n+2,…, 2n+i,…, n}, n  = 3n

P−  = {n+1, n+2,…, n+i,…, n+n}

PDO
−  = {n+n+1, n+n+2,…, n+n+i,…,n+2n}

PPU
−  = {n+2n+1, n+2n+2,…, n+2n+i,…,2n}

P P P PDO PU
+ + + += � �  = {1, 2,…, n}

P P P PDO PU
− − − −= � �  = {n+1, n+2,…, 2n}

P P P= + −
�  = {1, 2,…, 2n}

N = {0 2 1, ,P n + }   ,

the constraints defining the HAPP with ridesharing options can be grouped into six broad

categories:  (1) temporal constraints on the vehicles, (2) temporal constraints on the household

members performing the activities, (3) spatial connectivity constraints on the vehicles, (4) spatial

connectivity constraints on the household members, (5) capacity, budget and participation

constraints, and (6) vehicle and household member coupling constraints.  These constraints are

presented in detail below:

(1) Vehicle Temporal Constraints:

T s t T X Mu u u n u n u uw
Vw P

+ + − ≤ −�

�
�

�

�
� ∈ ∈+ +

∈∈
��, 1 υ

υ

υ,    u P ,  V   + (41)

T s t T X Mu u uw w uw+ + − ≤ − ∈ ∈( )1 υ υ,    u, w P ,  V + (42)
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T t T X Mw w w0 0 01υ υ υ+ − ≤ − ∈ ∈( ) ,    w P ,  V   + (43)

T s T T X Mu u u n n u n+ + − ≤ − ∈ ∈+ + +, ,( ) ,2 1 2 1 2 11υ υ υ,    u P   V- (44)

T T s X M Pu n u u n w u n+ + +− − ≤ − ∈ ∈ ∈( ) , ,,1 υ υ,    u P   w 0   ,   V + (45)

T s T X M Pu u u n w u n+ − ≤ − ∈ ∈ ∈+ +2 21( ) , ,,
υ υ,    u P   w 0   ,   V + (46)

T b X M u u wu
Vw P

− ≤ −�

�
�

�

�
� ≥ − ∈

∈∈
��1 υ

υ

T + a ,   u P  u u (47)

a T b0 0 0≤ ≤ ∈υ υ  ,   V (48)

a T bn n n2 1 2 1 2 1+ + +≤ ≤ ∈υ υ  ,   V (49)

T T V
0 0
υ υ υ− ∈+ = 0 ,   V (50)

T Tn n
V

2 1 2 1+ +
+− ∈υ υ υ= 0,   V (51)

The constraints embodied in Equations (41) - (47) are roughly equivalent to the

corresponding constraints for Case 4 of the HAPP and the associated PDPTW, the principal

exceptions being the expansion of the activity and vehicle sets, and the introduction of

discretionary "serve passenger" activities.  For example, Equation (41) ensures that the constraint

that the "return home" be subsequent to activity participation is enforced on only those "serve

passenger" trips that are actually made; for  u∈P+  the right side of Equation (41) is identically

zero.  Similarly for Equation (45), which ensures that activities take place within their allotted
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time windows.  Equations (42)- (44) ensure that travel between any two activity locations can

occur if and only if there is sufficient time to reach the destination prior to commencing the

associated activity.  Equations (45) and (46) constrain activities that are accessed as a passenger

to occur after the passenger is dropped off at the destination and be completed prior to being

picked up for the return home.  Equations (47) and (48) ensure that the initial vehicle departure

times and final return home times fall within the allotted time windows.  Equations (49) and (50)

require that these times be identical for the vehicle and its passenger seat.

(2) Household Member Temporal Constraints:

T s t T H M wu u uw w uw+ + − ≤ − ∈ ∈( ) , ,1 α α η,    u P   (52)

T t T H Mw w w0 0 01α α α η+ − ≤ − ∈ ∈( ) ,,    w P    + (53)

− − ≤ − ≤ − ∈ ∈+ + +( ) ( ) ,, ,1 12 1 2 1 2 1H M T T H Mu n u n u n
α α α α η,    u P    - (54)

a T b0 0 0
α α α α η≤ ≤ ∈    , (55)

a T bn n n2 1 2 1 2 1+ + +≤ ≤ ∈α α α α η    , (56)

With the exception of the expansion of the activity and vehicle sets, Equations (52) - (56)

are equivalent to Equations (31) - (35).

(3) Spatial Connectivity Constraints on the Vehicles:

Xuw
V

υ

υ w N 

+   ,    u P
∈∈
�� = ∈1 (57)
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Xuw
V

υ

υ w N 
DO
+

PU
+   ,    u P P

∈∈
�� ≤ ∈1 � (58)

X X Vuw
V

w P
u jn w

w P

υ υ υ+

∈
+

∈
� �≤ ∈ ∈

  

+   ,    u P     j = 1,2, , , (59)

X X X Vu
V

u n w u n
w P

0 0
υ υ υ υ+

+ +
∈

≤ + ∈ ∈
−

�, , ,
 

+   ,    u P   (60)

Xuw
υ υ= ∈ ∈ ∈0   ,   u N  w P P     VDO

+
PU
+, , �� (61)

X X Vuw wu
w Nw N

υ υ υ− ∈ ∈
∈∈
��

  
 = 0 ,    u P   , (62)

X Vw
w P

0 1υ υ≤ ∈
∈ +
�

 
     , (63)

X X Vuw r
r P

υ υ υ≤ ∈ ∈
∈ +
� 0

 
       ,   u,w P, (64)

X Vu n
u P

, ,2 1 1+
∈

≤ ∈
−

�
υ υ

 
     (65)

X X Vwu w n u
w Nw N

υ υ υ− ∈ ∈+
∈∈
�� , ,

  

+ = 0 ,    u P   (66)

X Vw
w P

0 0, ,υ υ= ∈
∈ −
�

 
     (67)

X Vu
u N

0 0υ υ= ∈
∈
�

 
     , (68)

X Vu n
u P

, ,2 1 0+
∈

= ∈
+

�
υ υ

 
     (69)
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X Vn w
w P

2 1 0+
∈

= ∈� , ,υ υ
 

     (70)

Equation (57) requires that all compulsory activities must be accessed either by a vehicle

driver or as a carpool passenger; Equation (58) is the stipulation that "serve passenger" activities,

if performed, must be by one and only one vehicle driver.  Equations (59) and (60) ensure that

activities accesses as a passenger are coupled to a corresponding "serve passenger" trip.

Equation (61) precludes passengers from "serve passenger" activities.  Equation (62) ensures that

there is a connected path for each vehicle and no activity location is revisited.  Equations (63) -

(65) state that not all vehicles may be used in completing the household activity agenda, but if

one is, its initial tour must begin at home.  Equation (66) requires the "eventual return to home"

from an activity be assigned to the vehicle that was used to accessed the activity.  Equations (67)

- (70) prohibit linkages among illogical activities, regardless of the specification of the objective

function.

(4) Spatial Connectivity Constraints on the Household Members:

Huw
α

α η w N 

+   ,    u P
∈∈
�� = ∈1 (71)

H Huw wu
α α α η

w N w N
   ,    u P  ,   

∈ ∈
� �− = ∈ ∈0 (72)

H w0 1α α η
w P

   ,    
∈ +
� ≤ ∈ (73)

Hu n,2 1 1+
∈ −
� ≤ ∈α α η

u P
   ,    (74)
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H Hwu w n u
α α α η

w N w N

+   ,    u P   ,   
∈

+
∈

� �− = ∈ ∈, 0 (75)

H w0 0α α η
w P

   ,    
∈ −
� = ∈ (76)

Hu0 0α α η
u N

   ,    
∈
� = ∈ (77)

Hu n,2 1 0+
∈ +
� = ∈α α η

u P
   ,    (78)

Equations (71) and (72) require that all compulsory activities must be completed by a

member of the household, and that the household members have a connected path, respectively.

Equations (73) and (74) state that some members of the household may not travel.  Equations

(75) - (77) are similar in interpretation to Equations (67) - (70).

(5) Capacity Budget and Participation Constraints:

− − ≤ + − ≤ − ∈ ∈ ∈( ) ( )1 1X M Y d Y Xuw u w w uw
υ υ υM,   u P,  w P ,  V   + (79)

− − ≤ + − ≤ − ∈ ∈ ∈−( ) ( )1 1X M Y d Y Xuw u w n w uw
υ υ υM,   u P,  w P ,  V- (80)

− − ≤ + − ≤ − ∈ ∈( ) ( )1 10 0 0X M Y d Y Xw w w w
υ υ υM,   w P ,  V+ (81)

Y D0 0= ≤ ≤ ∈   ,    0 Y    ,    u Pu
+ (82)
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c Xuw uw
υ υ

υ w Nu NV
cB

∈∈∈
��� ≤ (83)

t H Buw
w Nu N

uw t
∈∈
�� ≤ ∈α α α η   ,    (84)

X 0   ,    uw
u Nw

υ

υ

υ
∈∈
�� = ∈

Ω
V (85)

H 0   ,    uw
u Nw

α

α
α η

∈∈
�� = ∈

ΩH

(86)

Equations (79) - (81) specify the demand continuity relationships at each stop, while

Equation (82) is the corresponding capacity constraint.  Equation (83) is the household travel cost

budget constraint; Equations (84) are the household member's travel time constraints.  Equations

(85) and (86) represent the vehicle and member activity participation exclusions.

(6) Vehicle and Household Member Coupling Constraints:

H X w Puw uw
V

α

α η

υ

υ∈ ∈
� �− = ∈ ∈0   ,    u P  + , (87)

H H w Pw uw
u P u PV

0
α

α η

α

α η

υ

υ

υ

υ∈ ∈∈ ∈ ∈∈
� �� � ��+ − − ∈

− −

X  X  = 0  ,   0w
V

uw (88)

( )− − − − ≤ − ≤ − + −

∈ ∈ ∈ ∈

( ) ( ) ( )1 1 1 10 0 0H M X M T T H M Xw uw u w uw
α υ α α υ

υ α η

M,

                                                             w P ,  u N ,  V ,    +
(89)
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Equation (87) ensures that only one household member is assigned to travel between any

activity location and any other location by any particular vehicle "seat".  Equation (88) allows for

transference of connectivity between vehicles and household members at the home location.

Equation (89) requires that the time of the initial departure from home by any household member

coincide with the departure time of the vehicle (initial or otherwise) that transports the individual

to the activity.

Equations (41) - (89), together with an objective function comprised of a linear

combination of activity/travel disutility components (e.g., drawn from Equations (1)), constitute

the general case of the HAPP model with the provision of ridesharing options.  An example of

this formulation applied to the data and parameters used in CASE 4B, with the exception that the

duration of Activity 2 is increased to seven hours to permit a viable ridesharing alternative, is

shown in Figure 6.  The optimal solution involves household member 2 driving household

member 1 to the location of Activity 2 using vehicle 2 (vehicle 1 is not used in this solution), and

then continuing on to Activity 1.  Upon completion of Activity 1, household member 2 picks up

household member 1 on the return to home.  Household member 1 then drives to the location of

Activity 3, while household member 2 remains home; upon completion of Activity 3, household

member 1 returns home.

Because of the size of the model for this case with ridesharing options, it was not feasible

to solve the model simply using the GAMS ZOOM module.  Rather, a decomposition procedure

was devised in which the ZOOM solver first was employed to obtain a solution to the non-

ridesharing version of the problem.  Then, using this as an initial feasible solution to the general

problem with ridesharing, Equations (41) - (89) were decomposed into their integer (largely

spatial) and non-integer (largely temporal) components.  A heuristic was used to generate

feasible ridesharing perturbations (branches) of the non-ridesharing solution while satisfying the

integer spatial constraints and the absolute temporal constraints embodied in the input data (e.g.,

travel time and cost matrices, activity durations, and various time windows); the temporal portion
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of each branch was optimized using the GAMS LP solver and the overall optimal solution

selected.  For the example discussed, the solution displayed in Figure 6 required approximately

3.5 minutes on a 50 Mhz 486 PC.

CONCLUDING REMARKS

Despite their conceptual clarity, theoretical consistency, and purported unmatched

potential for policy application, activity-based approaches to understanding and predicting travel

behavior have not progressed much beyond the initial forays into the field over a decade ago.

Principal among the contributing factors to this lack of progress has been the absence of an

analytical framework that unified the complex interactions among the resource allocation

decisions made by households in conducting their daily affairs outside the home, while

preserving the utility-maximizing principles presumed to guide such decisions.  It is believed that

the formulation presented in this paper provides a promising approach toward removing this

major obstacle to operationalizing activity-based behavioral travel analysis.

As indicated in the development of this particular framework, the focus has been on the

demonstration that some rather well-known network-based formulations in operations research

that have heretofore largely gone unnoticed in activity-based travel research offer a potentially

powerful technique for advancing the general development of this approach.  Reliance on generic

solvers for solution of a set of examples that in the realm of activity-based research have been

perceived to be at least practically intractable, demonstrates that such frameworks are not

prohibitively computationally intensive; and, undoubtedly, the application of algorithms

specifically tailored to the model formulation would be substantially more efficient than those

employed here.

In the PDPTW, as well as in the examples considered in this paper to demonstrate the

application of the mathematical framework, the specification of the objective function is known

to both the decision maker and the analyst.  The typical problem in demand modeling (of which

the HAPP is a subset) is focused on inferring the relative weights associated with potential
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components, such as those contained in Equations (1), that are determinants to a population's

revealed selection of the decision variables (in the model estimation phase) with subsequent

forecasts made using these weights in conventional application of the model.  In that sense, the

modeling framework developed offers the first real analytical option for estimating the relative

importances of factors associated with the spatial and temporal interrelationships among the out-

of-home activities that motivate a household's need or desire to travel.  Such estimation could

proceed in a manner similar to utility-maximizing estimation techniques used in conventional

demand analysis (e.g., regression, logit and probit analyses) in which the choice situation is

presumed to be unconstrained; the proposed framework provides both the necessary constraint

considerations on the household's decision alternatives within a utility-maximizing structure as

well as a convenient mechanism for generating the set of feasible alternatives that are likely to be

considered

Finally, it is cautioned that initial mathematical programming formulations of this

complexity notoriously are prone to contain redundancies as well as “hidden” inconsistencies that

may surface with their application to scenarios other than those tested in their development.  The

work presented here should be viewed as an initial attempt to provide direction to researchers

with much more talent in operations research than the manifestly limited skills of the author.
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Figure 1. Optimal Time-Space Path for CASE 1 Example
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Figure 2. Optimal Time-Space Path for CASE 2 Example
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Figure 3. Optimal Time-Space Path and Activity Allocation for CASE 3
Example
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Figure 4. Optimal Time-Space Path and Vehicle and Activity Allocation for
CASE 4A Example
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Figure 5. Optimal Time-Space Path and Vehicle and Activity Allocation for
CASE 4B Example
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