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Abstract

Previous work suggests that humans find it difficult to learn the
structure of causal systems given observational data alone. We
show that structure learning is successful when the causal sys-
tems in question are consistent with people’s expectations that
causal relationships are deterministic and that each pattern of
observations has a single underlying cause. Our data are well
explained by a Bayesian model that incorporates a preference
for symmetric structures and a preference for structures that
make the observed data not only possible but likely.

Keywords: structure learning, causal learning, Bayesian mod-
eling

Causal networks have been widely used as models of the

mental representations that support causal reasoning. For ex-

ample, an engineer’s knowledge of the local electricity sys-

tem may take the form of a network where the nodes rep-

resent power stations and the links in the network represent

connections between stations. Causal networks of this kind

may be learned in several ways. For example, an intervention

at station A that also affects station B provides evidence for a

directed link between A and B. Networks can also be learned

via instruction: for example, a senior colleague might tell the

engineer that A sends power to B. Here, however, we focus

on whether and how causal networks can be learned from ob-

servational data. For example, the engineer might infer that

A sends power to B after observing that A and B are both in-

active during some blackouts, that B alone is inactive during

others, but that A is never the only inactive station.

A consensus has emerged that causal structure learning

is difficult or impossible given observational data alone.

For example, Fernbach and Sloman (2009) cite the results

of Steyvers, Tenenbaum, Wagenmakers, and Blum (2003),

Lagnado and Sloman (2004), and White (2006) to support

their claim that “observation of covariation is insufficient for

most participants to recover causal structure” (p 680). Here

we join Mayrhofer and Waldmann (2011) in challenging this

consensus. We show that people succeed in a structure learn-

ing task when the causal systems under consideration are

aligned with intuitive expectations about causality. Previous

studies suggest that people expect causal relationships to be

deterministic (Schulz & Sommerville, 2006; Lu, Yuille, Lilje-

holm, Cheng, & Holyoak, 2008), and expect that any pattern

of observations tends to be a consequence of a single underly-

ing cause (Lombrozo, 2007). We ask people to reason about

systems that are consistent with both expectations, and find

that structure learning is reliably achieved under these condi-

tions.

A previous study by White (2006) asked participants to

learn the structure of deterministic causal systems from obser-

vational data alone. The structures involved were five-node

networks where the nodes represented population levels of

five different species. White’s task proved to be difficult, and

performance was poor even when White gave his participants

explicit instructions about how to infer causal structure from

observational data. Here, however, we demonstrate that both

structures considered by White can be reliably learned in the

context of the experimental paradigm that we develop.

Given that humans perform well on the structure learning

tasks that we consider, it is natural to ask how this perfor-

mance is achieved. Mayrhofer and Waldmann (2011) pro-

pose that learners rely on a “broken link” heuristic and iden-

tify the structure that minimizes the number of cases where

a cause is present but an effect is absent. They contrast their

heuristic-based approach with Bayesian accounts of structure

learning that rely on patterns of conditional independence be-

tween variables. We propose a Bayesian account that falls in

between these two alternatives. Like Mayrhofer and Wald-

mann, we believe that models which track patterns of con-

ditional independence are often too powerful to capture the

inferences made by resource-bounded human learners. Un-

like Mayrhofer and Waldmann, we argue that a Bayesian ap-

proach is nevertheless useful for explaining why humans suc-

ceed in the tasks that we consider. In particular, we show that

human inferences are influenced by two factors that are natu-

rally captured by the prior and the likelihood of a Bayesian

model—a preference for symmetric structures, and a pref-

erence for structures that explain the observed data without

needing to invoke coincidences. We demonstrate that incor-

porating these factors allows a Bayesian model to account for

our data better than an approach that relies on the broken-link

heuristic alone.

Bayesian Structure Learning

The causal systems that we consider are simple activation net-

works. Each network can be represented as a graph G which

may include cycles. Figure 1a shows one such graph and a

data set D generated over the graph. Each row di in the data

set D represents an observed pattern of activation—for exam-

ple, the first row represents a case where nodes A, C and D are

observed to be active and node B is observed to be inactive.

We will assume that each row di is generated by activating a

randomly chosen node then allowing activation to propagate

through the network. For example, Figure 1b shows that if A

is the randomly activated node, the final pattern of activation

will match the first row of matrix D in Figure 1a.

The activation networks that we consider have three im-

portant properties. First, all causal links are generative, and

these generative links combine according to an OR function.

For example, node C in Figure 1a will be active if node A is
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Figure 1: (a) A simple activation network and a data set D generated over the network. Each row of matrix D is an observation

which indicates that some of the nodes in the network are active. (b) The first observation in (a) is generated when node A

spontaneously activates and activation propagates through the network.

active or if node B is active. Second, all causal links are de-

terministic. Third, spontaneous activations are rare: at most

one node in the network can spontaneously activate at any

time, which means that each observed pattern of activation

can be traced back to a single root cause. For example, the

spontaneous activation of node A is the root cause of the ac-

tivation pattern in the first row of matrix D in Figure 1a. Our

assumptions that causes are rare and have deterministic ef-

fects are conceptually related to the work of Lu et al. (2008)

on “sparse and strong” priors for causal learning. Note, how-

ever, that our notion of rarity is different from their notion of

sparsity. Their notion captures the expectation that each node

in a causal graph is expected to have at most one strong cause,

but ours captures the idea that each pattern of observations di

is expected to have a single underlying cause. For example,

the activation network in Figure 1a is inconsistent with their

notion of sparsity, since A and B are both strong causes of C.

This network, however, is consistent with our notion of rarity

as long as the base rates of A and B are both very low, which

means that at most one of these nodes will spontaneously ac-

tivate at any time.

Because the networks we consider may include cycles,

they are different from standard Bayesian networks. If de-

sired, however, our activation networks can be represented as

dynamic Bayesian networks where the cycles are unrolled in

time (Rehder & Martin, 2011). For our purposes, however, it

will be simplest to work with graphs that may include cycles.

Given a data set D generated from an unknown network G,

a probability distribution over the possible networks can be

computed using Bayes’ rule:

P(G|D) ∝ P(D|G)P(G) =
[

∏
i

P(di|G)
]

P(G), (1)

where we have assumed that the rows di in the matrix D are

independently generated over the graph. We will consider

two versions of the prior P(G) and two versions of the likeli-

hood term P(di|G).
The first version of the likelihood term assumes that obser-

vation di resulted from the spontaneous activation of a single

node in the graph. We sum over all nodes n that may have

activated spontaneously:

P(di|G) = ∑
n

P(di|G,n)P(n). (2)

P(di|G,n) is either 1 or 0 depending on whether di is the ob-

servation pattern produced by activating node n then allowing

activation to propagate through the graph. The prior distribu-

tion P(n) is uniform, which captures the assumption that all

nodes are equally likely to activate spontaneously. We refer

to Equation 2 as the probabilistic likelihood.

The second version of the likelihood term depends only on

whether observation di is consistent with G, and will be called

the logical likelihood:

P(di|G) =

{

1 if di is consistent with G

0 otherwise.
(3)

Observation di is consistent with G if di can be produced by

activating some node in G and allowing activation to propa-

gate through the graph.

The first version of the prior P(G) in Equation 1 corre-

sponds to a uniform distribution over the full space of graphs.

The second version captures a preference for graphs that are

symmetric. Perceptual research has documented a preference

for symmetric stimuli, and this preference can be viewed as

an instance of a more general preference for stimuli that dis-

play “good form.” We hypothesized that a graph shows “good

form” if many of its nodes play similar roles. For example,

nodes A in B in Figure 1a play similar roles, and exchang-

ing the labels on these nodes leaves the structure of the graph

unchanged. The symmetry score of a graph can be formally

defined as the number of graph automorphisms, or the num-

ber of node permutations that leave the structure of the graph

unchanged. For a given number of nodes, the graph with no

edges and the fully connected graph will share the highest

possible symmetry score, because all possible node permuta-

tions leave the structure of these graphs unchanged. We used

these symmetry scores to define a prior P(G) ∝ s(G), where

s(G) is the symmetry score of graph G.

Combining the two likelihoods and the two priors produces

a total of four different models. The “logical uniform” (LU)

model produces a posterior distribution P(G|D) that assigns

equal probability to all graphs G that are consistent with the

data. The LU model is consistent with the broken link heuris-

tic described by Mayrhofer and Waldmann (2011), which as-

sesses how well graph G accounts for data D by counting

the number of times that a parent node is active and a child

node is inactive. In our setting, a graph is deemed consistent

with data D if and only if the graph has a broken link count

of zero. When applied to our experimental stimuli, the LU
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model therefore makes identical predictions to a model which

assumes that people choose a graph that minimizes the bro-

ken link count, and that people are indifferent among graphs

that satisfy this criterion.

Like the LU model, the “probabilistic uniform” (PU)

model assigns nonzero probability only to graphs that are

consistent with the data. The PU model, however, allows

for cases where a data set D is consistent with two graphs

but better explained by one graph than the other. Consider

a three-node problem where D includes 6 observations and

where each observation indicates that nodes A, B and C are

all active. The data are consistent with a causal chain where

A sends an arrow to B and B sends an arrow to C. The data,

however, are not typical of a chain, since the chain hypothe-

sis requires the assumption that A spontaneously activated 6

times in succession, which seems like a big coincidence. The

data are also consistent with a fully connected graph, and now

no coincidence must be invoked, since all nodes end up ac-

tive regardless of which node activates first. As this example

suggests, comparing the logical models with the probabilistic

models will allow us to evaluate whether people’s inferences

depend on probabilistic factors like “degree of coincidence”

that go beyond consistency with the data.

The “logical symmetry” (LS) and “probabilistic symme-

try” (PS) models are directly comparable to the LU and PU

models, except that they incorporate a preference for symmet-

ric graphs. Comparing the symmetry models and the uniform

models will allow us to evaluate whether people bring a pri-

ori expectations about the underlying structure to the task of

structure learning.

Structure learning experiment

We designed an experiment to explore whether humans are

capable of learning the structure of an activation network

given observational data alone, and to evaluate the four mod-

els just presented.

Participants. 36 members of the CMU community partici-

pated in exchange for pay or course credit.

Design. The experiment included 34 blocks, each of which

included one or more observations generated over an unob-

served network. 32 of the blocks involved networks with

three nodes, and the final two blocks involved networks with

five nodes. The characteristic data set for a network is a

set of observations that result from spontaneous activations

of each node in the network. Given any network with three

nodes, there are 64 possible graphs, but the characteristic data

sets for these graphs include only 9 qualitatively different

types. Representatives of each type are shown in Figures 2a

through 2i. Among the blocks of three-node networks, these

nine types were each presented twice, making 18 blocks with

three observations each. An additional nine blocks with six

observations each were created by including two copies of a

characteristic data set per block. Five additional blocks each

had two or fewer observations, and are shown in Figures 2j

through 2n. These 32 blocks were presented in random or-

der, followed by two final blocks for the five-node networks

(Figure 5). These five-node networks are identical to causal

structures previously studied by White (2006). The observa-

tions within all blocks were shown in random order.

Materials and Procedure. The nodes in each network ap-

peared as rectangles on screen, and active and inactive nodes

had different colors. Participants were told that these rectan-

gles were detectors that “detect a rare type of particle called

the mu particle.” Participants were told that the detectors

were connected by directed satellite links, and that an “active

detector always activates all detectors that it points to.” To re-

inforce this information, participants were given an example

like Figure 1 where they observed a single detector activating

and activation subsequently propagating over the network.

Participants then worked through the 34 blocks. Within

each block the observations were presented one at a time.

After seeing all observations for a given block, participants

drew a graph on screen to indicate their best guess about the

structure of the underlying network and rated their confidence

in their guess on a seven point scale. To minimize mem-

ory demands, all observations within a block were retained

on screen after being presented, which means that all ob-

servations were visible when participants reached the graph-

drawing stage. Each previous observation appeared as a panel

with detectors, and every edge that participants added during

the graph drawing stage was simultaneously added to each of

these panels. This design choice was intended to make it as

easy as possible for participants to see whether the graph that

they had drawn was consistent with all observations for that

block.

Results. We focus first on results for the three-node networks.

The first nine panels in Figure 2 show the most popular graphs

for the nine characteristic data sets, and the remaining panels

show results for the blocks with two or fewer observations.

In each case the most common response is consistent with

the data set, indicating that participants understood the task

and were successfully able to discover causal structure given

observational data alone. In particular, note that all 36 par-

ticipants discovered the common effect structure in Figure 2d

and the common cause structure in Figure 2f. Steyvers et al.

(2003) found that these structures are difficult for learners to

distinguish in a probabilistic setting, but our data suggest that

they are easy to learn in our deterministic setting.

Figure 2 also includes predictions of the PS model, and

correlations between the model and the data are shown. Re-

sults for all four models across the first 32 blocks of the ex-

periment are shown in Figure 3. The first correlation in each

panel shows the performance of a model across the entire set

of blocks, and the correlation in parentheses shows the av-

erage single-block correlation. The PS model performs best

overall, suggesting that the probabilistic likelihood and the

symmetry prior are both required in order to capture human

judgments. A bootstrap analysis indicates that the overall and

average single-block correlations achieved by the PS model

are reliably higher than the correlations achieved by the PU
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Figure 2: Participant responses and predictions of the PS model for 14 patterns of observations. The observed data are shown

above the left plot in each panel, and the correlation between model predictions and human responses is shown above the right

plot. The four structures in each plot always include the top two structures chosen by humans and the two most probable

structures according to the model.
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Figure 3: Comparison of the complete set of responses for

the first 32 experiment blocks with the predictions of four

models. The first correlation in each panel shows correlations

based on the complete set of responses, and the correlation

in parentheses shows the average correlation across the 32

individual experiment blocks.

and LS models (p < 0.01 in all cases).

The main shortcoming of the logical likelihood is that it

leads to predictions that are too diffuse. The structure pre-

ferred by participants is typically one of the most probable

structures according to the LU model, but the model often as-

signs the same probability to many other structures. For ex-

ample, after observing “ABC” three times in succession, the

LU model assigns the same probability to all 51 structures

that can generate the observation “ABC,” including causal

chains over these variables. In contrast, the PU model assigns

highest probability to the 18 structures that can only generate

the observation “ABC.”

Although the PU model performs better than the LU

model, its predictions are still more diffuse than the human

responses. As just mentioned, the PU model predicts that 18

different structures are equally likely after observing “ABC”

three times, but participants overwhelmingly prefer the top

three structures shown in Figure 2i. The symmetry prior al-

lows the PS model to capture this preference: note that the

fully connected graph is the most symmetric structure that

can only generate “ABC,” and the two cycles are the next

most symmetric structures that meet this criterion.

To further evaluate the difference between the probabilistic

and the logical likelihood, we examined the learning curves

that result when the same observation is presented multiple

times. The 34 blocks in the experiment include blocks where

observation “ABC” is presented once, twice, three times, and

six times. Figure 4b shows model predictions for these four

blocks, where each bar represents the probability mass as-

signed to structures that can only generate “ABC.” The learn-

ing curves for the LU and LS models are flat—these models
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Figure 4: Inferences after observation ABC is presented one,

two, three or six times. (a) Proportion of structures chosen by

humans that can only generate observation ABC (top); Aver-

age confidence ratings (bottom). (b) Probability assigned to

structures that can only generate ABC by four models.

are sensitive to whether or not a structure is consistent with

an observation, but the number of times that the observation

appears is irrelevant. In contrast, the PU and PS models be-

come increasingly confident that the underlying structure can

only generate the observation “ABC.” Figure 4a indicates that

participants show a similar learning curve, and become in-

creasingly confident in their responses as the number of ob-

servations increases. Bootstrap analyses indicate that the dif-

ferences between the first and the final bars are statistically

significant for both plots in Figure 4a (p < 0.001).

Figure 5 shows the most popular graphs chosen for the two

five-node blocks. Each set of observations is consistent with

only one structure, and participants were reliably able to dis-

cover these structures. Figure 6 compares our results to those

reported by White, who found that relatively few participants

were able to discover these five-node structures. There are at

least two reasons why these tasks may have produced differ-

ent results. First, our particle-detector scenario may be more

intuitive than White’s task which required inferences about

changes in the populations of species over time. Second,

we asked participants to reason about the five-node structures

following 32 inferences about three-node structures, which

means that practice and familiarity with the task may have

contributed to their performance. Future studies are needed

to isolate the critical differences between these paradigms,

but for now we can conclude that there are conditions under

which people reliably discover White’s five-node structures

from observational data alone.

Taken overall our results support two general conclusions.

First, humans succeed at structure learning when causes are

strong and when each observation has a single root cause. Be-

cause our cover story made these conditions quite clear, our

data suggest that people reason accurately about determinis-

tic systems where causes are rare, but not that people sponta-
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Figure 5: Data sets, human responses and model predictions

for the final two experiment blocks. All four models make

the same prediction, because in both cases only one structure

is consistent with the observations.

0

0.5

1

White (2006)

Current study

S1 S2

Figure 6: Comparison between our results and results re-

ported by White (2006). The bars show the proportion of

participants who successfully learned the five-node structures

S1 and S2.

neously bring these assumptions to causal learning problems.

Previous studies, however, suggest that both the determinism

assumption and the rarity assumption may both apply more

generally (Lu et al., 2008; Lombrozo, 2007)

The second general conclusion is that structure learning in

our task cannot be adequately characterized as a search for a

structure that is consistent with the observed data. At least

two additional factors play a role: humans are sensitive to

whether or not the observed data are typical of a given struc-

ture, and humans have a priori preferences for certain kinds

of structures including symmetric structures. The PS model

illustrates that these factors can be captured by the likelihood

and prior of a Bayesian model, and demonstrates the value of

the Bayesian approach to structure learning.

Conclusion

Previous studies have found that structure learning from ob-

servational data is difficult. In contrast, our data suggest

that humans find structure learning relatively easy in settings

where causes act deterministically and where each observa-

tion has a single root cause. Future studies can consider relax-

ations of these conditions and explore whether humans still

succeed at structure learning when causes are strong but not

fully deterministic, and when most but not all observations

have a single root cause.

Our data are consistent with the recent work of Mayrhofer

and Waldmann (2011), who also report positive results for

learning from observational data. Mayrhofer and Waldmann

(2011) argue that humans succeed at structure learning by

relying on simple heuristics, but we found that their “bro-

ken link” heuristic accounted less well for our data than a

Bayesian model that incorporates a probabilistic likelihood

term and a symmetry-based prior. There may be alternative

heuristics that can implement the computations required by

our Bayesian model, but we believe that any successful ac-

count of our data will need to incorporate an a priori prefer-

ence for symmetric structures, and a preference for structures

that make the observed data not only possible but likely.
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