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Higher-Order Gravitational Lensing Reconstruction using Feynman Diagrams

Elizabeth E. Jenkins,1 Aneesh V. Manohar,1 Wouter J. Waalewijn,2, 3 and Amit P. S. Yadav1, ∗
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2Nikhef, Theory Group, Science Park 105, 1098 XG, Amsterdam, The Netherlands

3ITFA, University of Amsterdam, Science Park 904, 1018 XE, Amsterdam, The Netherlands

(Dated: March 20, 2014)

We develop a method for calculating the correlation structure of the Cosmic Microwave Back-
ground (CMB) using Feynman diagrams, when the CMB has been modified by gravitational lensing,
Faraday rotation, patchy reionization, or other distorting effects. This method is used to calculate
the bias of the Hu-Okamoto quadratic estimator in reconstructing the lensing power spectrum up
to O(φ4) in the lensing potential φ. We consider both the diagonal noise TTTT, EBEB, etc. and,
for the first time, the off-diagonal noise TTTE, TBEB, etc. The previously noted large O(φ4) term
in the second order noise is identified to come from a particular class of diagrams. It can be signifi-
cantly reduced by a reorganization of the φ expansion. These improved estimators have almost no
bias for the off-diagonal case involving only one B component of the CMB, such as EEEB.

I. INTRODUCTION

Primary anisotropies in the Cosmic Microwave Back-
ground (CMB) were generated around 375, 000 years af-
ter the “big-bang”, when the perturbations were still in
the linear regime. The CMB is characterized by its tem-
perature and polarization. The temperature map T (n̂)
describes the temperature fluctuation in the direction
n̂. The polarization of the CMB radiation is conven-
tionally decomposed in terms of the polarization modes
E and B, which have even and odd parity, respectively.
Primordial scalar perturbations create only E-modes of
the CMB, while primordial tensor perturbations generate
both parity-even E-modes and parity-odd B-modes [1–
3]. The amplitude of primordial B-modes of the CMB
is proportional to the energy scale at which inflation oc-
curs; hence constraints on B-modes will provide valuable
information about the early universe [4].

Many ground-based and balloon experiments are look-
ing for primordial B-modes of the CMB. The primor-
dial B-mode gravitational wave signal has just been de-
tected, constraining the ratio of tensor to scalar per-
turbations [5]. Even in the absence of primordial B-
modes, subsequent gravitational lensing by the Large
Scale Structure (LSS) of the Universe converts E-mode
polarization to B-mode polarization [6]. Gravitational
lensing of the CMB was first detected by cross-correlating
the CMB with LSS data [7, 8]. It has since been detected
using CMB data alone [9–13].

CMB lensing is a clean and powerful probe of several
cosmological parameters [14–19], see e.g. the reviews in
Refs. [20, 21]. Lensing depends on the integrated (time-
dependent) gravitational potential along the path of the
CMB photons, and provides the deepest possible mea-
surement of the two dimensional mass distribution of the
universe. It can be used to break degeneracies between

∗Corresponding author. ayadav@physics.ucsd.edu

cosmological parameters and to constrain the neutrino
mass, independently of other probes like Lyman-α and
galaxy clustering. It also probes the late time evolu-
tion of structure in the universe, and hence provides con-
straints on dark energy and the integrated Sachs-Wolfe
effect. Finally, if the lensing map is well measured, then
one can de-lens the observed CMB (i.e. effectively sub-
tract off lensing induced B-modes) to increase sensitivity
to inflationary B-modes and the energy scale of inflation.
Initial studies focused on the effect of lensing on the

power spectra of the CMB modes [22–24]. Later, the
emphasis switched to constraining the LSS from mea-
surements of the CMB, by using e.g. the fact that lens-
ing introduces non-Gaussian fluctuations [25] which are
not present in the primordial CMB. A particularly fruit-
ful approach has been the use of quadratic estimators,
built out of the convolution of two CMB modes to deter-
mine the lensing from the statistical breaking of isotropy.
A quadratic estimator based on CMB modes in posi-
tion space was introduced in Ref. [26]. We focus on
the Hu-Okamoto quadratic estimator [27, 28], which is
uniquely determined by the requirements that it is unbi-
ased and has minimal variance. A likelihood-based ap-
proach shows that for the temperature mode this method
is close to optimal, though improvement is possible for
polarization modes [29, 30]. The quadratic estimator has
been used by Planck to detect lensing at > 25 σ using
only temperature information [10]. Recently the detec-
tion of lensing using CMB polarization data has been
reported in Refs. [11–13].
The quadratic estimators provide an unbiased means

for extracting the lensing potential φ. However, an es-
timate of the lensing power spectrum depends on the
two-point function of quadratic estimators. This two-
point function will have a bias due to inherent noise
from random fluctuations. This noise bias needs to be
subtracted to get a reliable measurement of the lensing
power spectrum. The calculation of noise is carried out
in a small lensing expansion (unlike the simpler case of
the lensed power spectra where such an expansion is un-
necessary [31]). The first order correction for all estima-
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tors, and the second order correction for the estimator
TT were determined in Refs. [32–35]. Simulations of the
second order corrections for all channels were studied in
Ref. [36]. The second-order corrections turned out to
be unexpectedly large at small L (large scales), casting
doubt on the convergence of the small lensing expansion.

In this paper, we develop the method for calculating
the lensing of the CMB using Feynman diagrams pre-
sented in Ref. [35], which simplifies its calculation and en-
ables us to readily identify the origin of this large second-
order correction. Feynman diagrams have been used in
other cosmological applications, see e.g. [37], and were
employed in Ref. [38] to study the effect of a single grav-
itational lens. The computation of CMB correlations is
very similar to the computation of correlation functions
in statistical physics or quantum field theory, so the stan-
dard Feynman diagram approach is a very convenient and
efficient way to organize the calculation. The lensing po-
tential can be extracted using the xy quadratic estimator,
where x, y ∈ {T,E,B}, and the lensing power spectrum
can be extracted by looking at the xy − x′y′ two-point
function. Our formalism can be applied to study the
noise not only for the TTTT correlator, but for all of
the xy − x′y′ correlators.

In addition to gravitational lensing, the observed CMB
can be distorted by other effects, and our diagrammatic
treatment can be trivially extended to these cases. We
will discuss two cases in Sec. IV, focussing on distortions
due to patchy reionization, and rotations of the CMB
polarization due to parity-violating Chern-Simons terms
from axion fields, which exist in many theories.

The outline of this paper is as follows. In Sec. II, we
review the basics of gravitational lensing of the CMB,
which we formulate in the language of Feynman diagrams
in Sec. III. We derive the Feynman rules for patchy reion-
ization and rotation of the CMB polarization in Sec. IV.
The quadratic estimator for gravitational lensing and its
noise terms up to order φ4 are calculated in Sec. V.
We show numerical results in Sec. VI and conclude in
Sec. VII.

II. GRAVITATIONAL LENSING OF THE CMB

In this section, we review the basic lensing calculation
for both temperature and polarization fields. More de-
tails of CMB lensing can be found in the excellent reviews
of Refs. [20, 21].

Gravitational lensing deflects the path of CMB pho-
tons from the last scattering surface at z ∼ 1090 to us,
resulting in a remapping of the CMB temperature and
polarization pattern on the sky. We will use a tilde to
denote the observed (lensed) fields, which at a certain
position n̂ on the sky are related to the (unlensed) pri-

mordial CMB fields by

T̃ (n̂) = T
(
n̂+ d(n̂)

)
,

Q̃(n̂) = Q
(
n̂+ d(n̂)

)
,

Ũ(n̂) = U
(
n̂+ d(n̂)

)
. (1)

Here T is the temperature fluctuation, Q and U are the
Stokes parameters encoding the polarization, and d(n̂) is
the deflection. The average deflection angle, 〈d ·d〉1/2, is
of the order of a few arc-minutes. However, the deflection
is coherent over much larger scales, with power peaking at
the scale of a few degrees. The lensing remapping process
conserves the surface brightness distribution of the CMB,
and thus does not change the one-point statistics.
The deflection angle is related to the lensing gravita-

tional potential φ(n̂) by

d(n̂) = ∇φ(n̂) , (2)

where the gradient ∇ is with respect to n̂. In the small
lensing approximation, the lensing potential φ(n̂) is given
by an integral of the zero-shear gravitational potential Φ
along the line of sight,

φ(n̂) = −2

∫ r0

0

dr
dA(r0 − r)

dA(r)dA(r0)
Φ(−r, rn̂) . (3)

Here r(z) is the comoving distance at redshift z

r(z) =

∫ z

0

dz′

H(z′)
, (4)

r0 is the position of the last scattering surface, and dA is
the comoving angular diameter distance,

dA(r) = H−1
0 Ω

−1/2
K sinh(H0Ω

1/2
K r) , (5)

in units where the speed of light c = 1. In the limit ΩK →
0 that the curvature vanishes, dA(r) → r. Beyond lowest
order in the lensing, there are corrections to the lensing
potential in Eq. (3) [39, 40] and additional curl-type (or
shear) contributions to the deflection in Eq. (2) [30, 41,
42]. We note that the lensing potential φ can be related
to the convergence κ of the light rays by

κ(n̂) = −1

2
∇2φ(n̂) , (6)

which is typically used in studies involving the galaxy
shear.
We formulate CMB lensing using the flat-sky approx-

imation. The flat-sky approach simplifies the derivation
by replacing summations over Wigner symbols of spher-
ical harmonics by integrals involving mode coupling an-
gles [43]. The basic difference arises from integrals

∫
dΩ Yl1m1

(Ω)Yl2m2
(Ω)Yl3m3

(Ω)

=

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

×
(

l1 l2 l3
m1 m2 m3

)(
l1 l2 l3
0 0 0

)
(7)
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for the full-sky, which simplify, in the flat-sky approxi-
mation to

∫
d2x ei(ℓ1+ℓ2+ℓ3)·x = (2π)2δ(2)(ℓ1 + ℓ2 + ℓ3) . (8)

Here x is the point in a plane that corresponds to n̂ by a
stereographic projection. In the flat sky approximation,
the power spectrum in the momentum k conjugate to x

is equal to that of the spherical harmonic with multipole
moment L = |k|. Eq. (7) is the quantum mechanical
form for the conservation of angular-momentum, which
reduces in the flat-sky approximation to Eq. (8), which
is analogous to the conservation of linear momentum,
with angular momentum ℓ assuming the role of linear
momentum. One can derive expressions similar to Eq. (7)
for the integral of more than three spherical harmonics
in terms of Wigner nj symbols.
An important advantage of Feynman diagrams is the

simplification of combinatorics in evaluating correlation
functions. The combinatorics of the diagrammatic ex-
pansion is the same for the flat-sky approximation and for
the full-sky calculation, so the graphical representation

is unchanged. The only difference between the flat-sky
and full-sky computations is the use of Eq. (7) instead of
Eq. (8) for angular momentum conservation at the ver-
tices of diagrams.
It is convenient to work in Fourier (i.e. angular momen-

tum) space. In the flat-sky approximation, the Fourier
modes become plane waves, and

Tℓ =

∫
dxT (x) e−iℓ·x

Eℓ ± iBℓ =

∫
dx [Q(x)± iU(x)] e∓2iϕℓe−iℓ·x ,

φℓ =

∫
dxφ(x) e−iℓ·x . (9)

Here, ℓ denotes the Fourier mode and ϕℓ = cos−1(x̂ ·
ℓ). In the second equation, we have related the Fourier
transform of the polarization modes Eℓ and Bℓ to the
Stokes parameters Q and U in position space. The factor
e∓2iϕℓ enters in the Fourier transform definition since
[Q± iU ] is a spin-2 field.
Taylor expanding Eq. (1) yields

T̃ℓ = Tℓ +

∫
d2ℓ′

(2π)2
Tℓ′

{
− φℓ−ℓ′ [(ℓ− ℓ

′) · ℓ′] + 1

2

∫
d2ℓ′′

(2π)2
φℓ′′φℓ−ℓ′−ℓ′′(ℓ

′′ · ℓ′) [(ℓ − ℓ
′ − ℓ

′′) · ℓ′] + . . .

}
,

[Ẽℓ ± iB̃ℓ] = [Eℓ ± iBℓ] +

∫
d2ℓ′

(2π)2
[Eℓ′ ± iBℓ′ ]

{
− e±2i(ϕ

ℓ′
−ϕℓ)φℓ−ℓ′ [(ℓ− ℓ

′) · ℓ′]

+
1

2

∫
d2ℓ′′

(2π)2
e±2i(ϕ

ℓ′
−ϕℓ)φℓ′′φℓ−ℓ′−ℓ′′(ℓ

′′ · ℓ′) [(ℓ− ℓ
′ − ℓ

′′) · ℓ′] + . . .

}
. (10)

The remapping of CMB fields induced by the gradient
of the lensing potential leads to a convolution in Fourier
space which couples different harmonic modes. The term
with one φ field reproduces the familiar result of Ref. [27].
We now discuss the effect of gravitational lensing (and

other distortions) on n-point functions. The power spec-
trum, bispectrum, trispectrum and so on of the CMB
fields and the lensing potential are defined in the usual
manner by

〈
xℓ1yℓ2

〉
≡ (2π)2δ(ℓ1 + ℓ2)C

xy
ℓ1

,
〈
xℓ1yℓ2zℓ3

〉
c
≡ (2π)2δ(ℓ1 + ℓ2 + ℓ3)B

xyz
ℓ1,ℓ2,ℓ3

,
〈
xℓ1yℓ2zℓ3wℓ4

〉
c
≡ (2π)2δ(ℓ1 + ℓ2 + ℓ3 + ℓ4)T

xyzw
ℓ1,ℓ2,ℓ3,ℓ4

,

. . . (11)

where the angle brackets represent averages over realiza-
tions of any stochastic field under consideration — pri-
mordial CMB, the LSS, or the experimental noise. We
will use a subscript on the angle brackets if we want
to make the averaging field explicit, e.g. 〈 〉CMB, 〈 〉LSS,
〈 〉CMB,LSS are averages over realizations of the CMB,

LSS, and both CMB and LSS, respectively. The sub-
script c denotes the connected part of the n-point func-
tion, and will often be dropped in the following discus-
sion. The fields xℓ, yℓ, zℓ, wℓ in Eq. (11) can be any of

φℓ, Tℓ, Eℓ, Bℓ, T̃ℓ, Ẽℓ, B̃ℓ.
The primordial CMB is statistically isotropic and

Gaussian, so all of the information is contained in the
power spectrum Cxy

ℓ
, which only depends on ℓ = |ℓ|. The

temperature and polarization components of the CMB,
x, y ∈ {T,E,B} can be combined conveniently into a col-
umn vector X such that Cxy

ℓ
are components of a sym-

metric 3× 3 CMB power spectrum matrix Cℓ,

〈Xℓ X
T
k 〉CMB = 〈



Tℓ

Eℓ

Bℓ


(

Tk Ek Bk

)
〉CMB

= Cℓ(2π)
2δ2(ℓ+ k) . (12)

Note that the off-diagonal CTE element of the matrix
does not vanish, since there can be primordial TE corre-
lations. For a Gaussian primordial field, the bispectrum
and higher order odd-correlations vanish, and the higher
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order even correlations can be written in terms of sums
of products of the power spectrum.
The presence of lensing or other distortions, such as

patchy reionization and Faraday rotation, will convert
the primordial Gaussian value X into the components of

X̃ [44–49], which is not Gaussian and which has a non-
vanishing bispectrum, trispectrum, etc. The CMB bis-
pectrum [50–52] is generated because the gravitational
potential correlates with other secondary effects such
as the integrated Sachs-Wolfe effect [53] or the thermal
Sunyaev-Zel’dovich effect [54]. Otherwise, it would van-
ish. The trispectrum, on the other hand, is generated by
the non-linear nature of lensing itself [25]. The effect of
distortion fields on Fourier modes of the CMB may be
written generically as

X̃ℓ =

∫
d2m

(2π)2
D(ℓ,m)Xm , (13)

where the 3×3 distortion matrix D can have off-diagonal
terms which mix components of the CMB. For example,
DBE turns primordial E modes into B modes. For grav-
itational lensing, the deviation of D from the identity
matrix can be identified with the terms inside the curly
brackets in Eq. (10). The precise form of D depends on
the nature of the distorting field. The expression for D
due to gravitational lensing is given in Sec. III. In Sec. IV,
we give D when the distortions are due to patchy reion-
ization or Faraday rotation.
In this paper, we will assume that the distorting field

D is Gaussian and statistically isotropic such that it can
be completely characterized by its power spectrum CDD

ℓ
.

For lensing, the distorting field is d, or equivalently, the

lensing potential φ, so CDD
ℓ

is Cdd
ℓ

= ℓ
2Cφφ

ℓ
, where Cφφ

ℓ

is the power spectrum of the gravitational potential,

〈φℓ φk〉LSS = Cφφ
ℓ

(2π)2δ2(ℓ+ k) . (14)

We consider only Gaussian distorting fields because they
are the most important case of experimental interest.
However, the formalism developed in this paper is not
limited to this case, and it can be extended easily to
non-Gaussian distorting fields by including higher order
D vertices in the diagrams. For example, non-linearities
in the lensing potential can be treated by including φ4,
etc. interaction vertices.

III. FEYNMAN DIAGRAMS FOR LENSING

In this section, we focus on how to calculate the effect
of gravitational lensing on the observed CMB using Feyn-
man diagrams. We will comment on other distortions in
Sec. IV.

A. Feynman Rules

The starting point is Eqs. (1) and (2), treating φ as

a Gaussian field with power spectrum Cφφ
ℓ

, and working

in the flat-sky approximation. The distortion matrix for
gravitational lensing is

DLensing
(ℓ,m) = R(−ℓ,m) (2π)

2δ2(ℓ−m− P)

× exp
[
−
∫

d2k

(2π)2
(k·m)φk

]
, (15)

which generalizes Eq. (10) to include mixing of the po-
larization fields. The exponential contains terms with
n = 0, 1, 2, . . . φ fields,

exp
[
−
∫

d2k

(2π)2
(k·m)φk

]

=
∑

n

1

n!

n∏

i=1

[
−
∫

d2ki

(2π)2
(ki ·m)φki

]
. (16)

In Eq. (15), P =
∑n

i=1 ki gives the total momentum of
all the φ fields for each term in the expansion of the
exponential. The mixing of E and B polarizations is
described by the rotation matrix

R(ℓ,m) =



1 0 0
0 cos 2ϕ(ℓ,m) sin 2ϕ(ℓ,m)
0 − sin 2ϕ(ℓ,m) cos 2ϕ(ℓ,m)


 , (17)

where ϕ(ℓ,m) = ϕℓ − ϕm is the angle between ℓ and
m. There is no mixing in the lowest order n = 0 term
in Eq. (15), which contains no power of the lensing field
φ, and reduces to (2π)2δ2(ℓ − m) since R(−ℓ,ℓ) = 1 is
the identity matrix. For calculations, it is convenient to
write

cos 2ϕ(ℓ,m) = 2
(ℓ·m)2

ℓ2m2
− 1 ,

sin 2ϕ(ℓ,m) = 2
(ℓ·m)(ℓ ∗m)

ℓ2m2
, (18)

with ℓ∗m = ǫijℓimj , where our convention for the anti-
symmetric tensor ǫ is ǫ12 = 1. Note that sin 2ϕ(ℓ,m) =
− sin 2ϕ(m, ℓ), so that sin 2ϕ(ℓ,m) depends on the ori-
entation of the angle between ℓ and m. However, neither
the sine nor cosine depends on the sign of either ℓ or m,
since switching the sign shifts ϕ by 2π, so

R(ℓ,m) = R(−ℓ,m) = R(ℓ,−m) = R(−ℓ,−m) . (19)

Expanding Eq. (15) toO(φ2) and using the delta function
to perform the integral in Eq. (13) reproduces Eq. (10).
Although Eq. (15) may seem complicated, it can be

described by a simple Feynman rule. For an introduc-
tion to Feynman diagrams in quantum field theory, see
e.g. Ref. [55, 56]. When calculating the average of several
CMB modes 〈x̃ℓỹk . . . 〉 over CMB or LSS realizations,
each lensed field x̃ℓ is expanded as the sum of vertices
with one solid line (the unlensed field) and n = 0, 1, 2, · · ·
wiggly lines (the lensing field φ) connected to it, as shown
in Fig. 1. Each vertex in the expansion has momentum ℓ

flowing in, and the double line represents the lensed field.
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ℓ = ℓ +

k1

m
+

k2

k1

m
+ . . .

FIG. 1: Expansion of the lensed field (double line) in terms of the unlensed field (solid line) and powers of the lensing potential
φ (wiggly line).

x y

m
Cxy

m

k C
φφ

k

ℓ, x

m, y

k1

k2

kn

R
xy

(−ℓ,m)

∏
i
(−ki ·m)

FIG. 2: Feynman rules for calculating lensed CMB fields.
The labels x, y ∈ {T, E,B} denote the type of field. For

the last diagram, x ∈ {T̃ , Ẽ, B̃} is lensed and y is unlensed.
The outgoing momentum ℓ is equal to the total incoming
momentum, ℓ = m+

∑
i
ki.

The unlensed field and the φ fields each have momenta
flowing into the vertex, given by their label in Fig. 1. The
vertex with n wiggly lines arises from the nth-order term
in the expansion of Eq. (16), as shown in the third graph
in Fig. 2. The factor of (−ki · m) for each φ line is the
same factor as in Eq. (16). The 1/n! in Eq. (16) is can-
celled by the standard n! combinatorial factor in a vertex
with n identical fields from the n! possible permutations
of the φ fields. It is therefore absent from the Feynman
rule in Fig. 2. The superscript xy on Rxy

(−ℓ,m) denotes

the xy element of the matrix R(−ℓ,m), which is given by
Eq. (17).

We now discuss how to determine 〈X̃1 . . . X̃n〉. Ev-

ery lensed field X̃i has an expansion as described in the
above paragraph, and shown diagrammatically in Fig. 1.
Taking the CMB average involves computing the corre-
lation 〈X1 . . . Xn〉 of the unlensed fields (solid lines) aris-
ing from the expansion of the lensed fields using Eq. (15).
Since the primordial CMB fluctuations are Gaussian, the
n-point correlator is given by Wick’s theorem, which cor-
responds to joining pairs of primordial fields together to
form internal solid lines in all possible ways. The solid
line is the first graph in Fig. 2. It corresponds to the
matrix propagator Eq. (12) of the CMB spectrum, and

the indices xy are the CMB components T,E,B which
are contracted together.
The average over LSS realizations is carried out using

Eq. (14). Again, this is accomplished diagrammatically
by joining pairs of lensing φ fields (wiggly lines in Fig. 2)

in all possible ways. The lensing spectrum Cφφ
k

is used for
each wiggly line propagator with momentum k flowing
through it.
All lines in a diagram have a momentum associated

with them, and the total momentum is conserved at each
vertex. This is where using the flat-sky approxmation
simplifies the formulae, because in this approximation,
angular momentum behaves like linear momentum with
the conservation law in Eq. (8), rather with the original
angular momentum conservation law in Eq. (7). The mo-
mentum k of an internal line is unconstrained and inte-
grated over with d2k/(2π)2. Many of these integrals are
done with the help of the momentum-conserving delta-
functions at each vertex, so that the only remaining in-
tegrals are over closed loops, as is well-known from the
usual treatment of Feynman graphs.
Non-gaussianities in the primordial CMB fluctuations,

or in LSS can be included as additional higher order ver-
tices, i.e. involving more than two X and φ fields. These
additional vertices result in additional graphs, but the
Feynman diagram method can still be used. We restrict
our attention to the Gaussian case for the rest of this
paper.
In summary, the n-point lensed correlation function

〈X̃1 . . . X̃n〉 is given by the sum of all diagrams using
the Feynman rules in Fig. 2. There are no external (un-
paired) solid lines if the average is taken over CMB re-
alizations, and no external φ lines if the average is taken
over LSS realizations. One important point to note is
that the Feynman graphs will often have symmetry fac-
tors, which are the same as the usual ones in quantum
field theory.

B. Lensing Filters

In the presence of lensing, the average of CMB modes
x and y over CMB realizations takes the following form

〈x̃ℓỹL−ℓ〉CMB = (2π)2δ2(L)
[
Cxy

L
+ . . .

]
(20)

+
[
f
(φ,0)xy
(ℓ,L−ℓ) + f

(φ,1)xy
(ℓ,L−ℓ) + . . .

]
φL

+

∫
d2m

(2π)2
f
(φφ,0)xy
(ℓ,L−ℓ,m)φL−mφm + . . . .
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x, ℓ y, ℓ′

ℓ+ ℓ
′

= +

FIG. 3: Diagrams contributing to f
(φ,0)xy
(ℓ,ℓ′) .

= + +

FIG. 4: Diagrams contributing to f (φφ,0).

Treating x and y as components of the vector X =(
T E B

)
, Eq. (20) can be viewed as a matrix equation

and the coefficients f , known as filters, as 3 × 3 matri-
ces. The first index i on f (i,j) denotes the number of
external φ fields in the average, so that i = φ is one ex-
ternal φ field, i = φφ is two external φ lines, etc. The
second index j is the order in the lensing power spectrum
Cφφ of the term. In Feynman diagram language, this is
the expansion of the xy vertex in powers of an external
background φ field.
We now calculate the filters f (φ,0), f (φ,1) and f (φφ,0),

which are the ingredients necessary to determine the
noise up to O(φ4). The filter f (φ,0) receives contribu-

tions from the diagrams shown on the r.h.s. in Fig. 3,
where the lensing field φ attaches to either vertex. The
fields x and y have outgoing momentum ℓ and ℓ

′, so by
momentum conservation the incoming momentum along
the wiggly line is ℓ + ℓ

′. Using the rules in Fig. 2, the
sum of these diagrams is

f
(φ,0)
(ℓ,ℓ′) = R(−ℓ,−ℓ′)Cℓ′(ℓ+ ℓ

′) · ℓ′

+ CℓR
T
(−ℓ′,−ℓ)(ℓ+ ℓ

′) · ℓ . (21)

The graphical representation of the xyφ vertex f (φ,0) is
the shaded blob on the l.h.s. of Fig. 3. The slashes on the
external solid lines representing the unlensed fields x and
y is a reminder that the rule for the graph does not in-
clude propagators (spectra) for the external lines. There
is only one propagator in f (φ,0), as can seen explicitly
from the r.h.s. of Fig. 3 and in Eq. (21).
The diagrams contributing to f (φφ,0), shown in Fig. 4,

involve two external wiggly lines corresponding to the two
φ fields. One of the momenta of the φ fields is arbitrary,
and we will take it to be m. The other is fixed to be
ℓ + ℓ

′ − m by momentum conservation. The first and
third diagram on the r.h.s. in Fig. 4 have a symmetry
factor of 1/2. We symmetrize the middle graph under
m ↔ ℓ+ℓ

′−m, such that in the graphical representation
of the f (φφ,0) vertex on the l.h.s., the two wiggly lines are
identical. Adding up these contributions gives

f
(φφ,0)
(ℓ,ℓ′,m) =

1

2

{
R(−ℓ,−ℓ′)Cℓ′(m·ℓ′)[(ℓ + ℓ

′ −m)·ℓ′]−R(−ℓ,ℓ−m)Cℓ−mRT
(−ℓ′,m−ℓ)[m·(ℓ−m)][(ℓ+ ℓ

′ −m)·(ℓ−m)]

+ CℓR
T
(−ℓ′,−ℓ)(m·ℓ)[(ℓ+ ℓ

′ −m)·ℓ]−R(−ℓ,m−ℓ′)Cm−ℓ′R
T
(−ℓ′,ℓ′−m)[m·(ℓ′ −m)][(ℓ + ℓ

′ −m)·(ℓ′ −m)]
}
.

(22)

We now consider f (φ,1), which is the O(φ2) correction to f (φ,0). The diagrams, shown in Fig. 5, involve an additional
internal wiggly line whose loop momentum m is unconstrained and gets integrated over, yielding

f
(φ,1)
(ℓ,ℓ′) =

∫
d2m

(2π)2

{
R(−ℓ,m−ℓ′)Cm−ℓ′R

T
(−ℓ′,ℓ′−m) [m·(ℓ′−m)]

2
[(ℓ′−m)·(ℓ+ℓ

′)]Cφφ
m −R(−ℓ,−ℓ′)Cℓ′ (m·ℓ′)2 [ℓ′ ·(ℓ+ℓ

′)]Cφφ
m

+R(−ℓ,ℓ−m)Cℓ−mRT
(−ℓ′,m−ℓ) [m·(ℓ−m)]

2
[(ℓ−m)·(ℓ+ℓ

′)]Cφφ
m

−CℓR
T
(−ℓ′,−ℓ) (m·ℓ)2 [ℓ·(ℓ+ℓ

′)]Cφφ
m

}
. (23)

f (φ,1) is denoted by a shaded blob with a small black
square, as depicted in Fig. 5. The black square distin-
guishes the f (φ,1) vertex from the f (φ,0) vertex. It is
O(φ2) suppressed and contains an internal integral over
loop momentum.

C. Organizing the Expansion using Lensed Spectra

In Eq. (20), we can replace the unlensed power spectra

Cxy by lensed ones C̃xy on the first line and in the fil-

ters f (φ,0) and f (φφ,0). We will denote the corresponding

filters by f̃ (φ,0) and f̃ (φφ,0), such that

〈x̃ℓỹL−ℓ〉CMB = (2π)2δ2(L)C̃xy
L

(24)

+
[
f̃
(φ,0)xy
(ℓ,L−ℓ) + f̃

(φ,1)xy
(ℓ,L−ℓ) + . . .

]
φL

+

∫
d2m

(2π)2
f̃
(φφ,0)xy
(ℓ,L−ℓ,m)φL−mφm + . . . ,

where f̃ (φ,1) is defined so that Eq. (24) is in agreement
with Eq. (20). This change amounts to absorbing some
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(a) (b) (c)

FIG. 5: Diagrams contributing to f (φ,1). Mirror graphs where
the external φ line comes out of the second vertex have not
been shown.

terms that are formally higher order in φ into the lensed
filters, and thus reorganizes the lensing expansion. In
particular, the lensed spectrum captures all of the higher-
order contributions to the first line. The lensed propa-

gator C̃xy is depicted by a double line, and is given to
order O(φ2) by the sum of diagrams in Fig. 6. The lensed

filter f̃ (φ,0) is given by Eq. (21) with Cℓ → C̃ℓ, i.e. by the

graphs shown in Fig. 7. Similarly, the lensed filter f̃ (φφ,0)

is given by Eq. (22) with Cℓ → C̃ℓ, since it is the lowest
order contribution with two external φ’s. The definition

of the lensed filter f̃ (φ,1) is more involved.

Using Fig. 6 for the lensed correlator in Fig. 7, one sees
that parts of the unlensed filter f (φ,1) are now already in-

cluded in the lower order lensed filter f̃ (φ,0). The graphs
in Fig. 5(a) and (b) are completely included. Fig. 5(c) is
not the same as the graph obtained by using Fig. 6(c) for
the lensing propagator in the graphs of Fig. 7, because
the momentum labels on the internal lines are different
in the two graphs. The difference between these two ex-

pressions is the lensed filter f̃ (φ,1),

f̃
(φ,1)
(ℓ,ℓ′) =

∫
d2m

(2π)2
{
R(−ℓ,m−ℓ′)C̃m−ℓ′R

T
(−ℓ′,ℓ′−m)[m·(ℓ′−m)]2

+R(−ℓ,ℓ−m)C̃ℓ−mRT
(−ℓ′,m−ℓ)[m·(ℓ−m)]2

}

× Cφφ
m

[−m·(ℓ+ ℓ
′)] . (25)

In deriving Eq. (25), one finds two contributions: a piece
from changes in the propagator and a piece from changes
in the angles in the rotation R(ℓ,m). The latter yields

[
R(−ℓ,m−ℓ′) −R(−ℓ,−ℓ′)R(ℓ′,m−ℓ′)

]
Cm−ℓ′

×RT
(−ℓ′,ℓ′−m) [m·(ℓ′ −m)]

2
[ℓ′ ·(ℓ+ ℓ

′)]Cφφ
m

+R(−ℓ,ℓ−m)Cℓ−m

[
RT

(−ℓ′,m−ℓ)−RT
(ℓ,m−ℓ)

×RT
(−ℓ′,−ℓ)

]
[m·(ℓ−m)]2 [ℓ·(ℓ+ ℓ

′)]Cφφ
m

, (26)

and vanishes due to the identity

R(c,−a)R(a,b) = R(2ϕc − 2ϕa)R(2ϕa − 2ϕb)

= R(2ϕc − 2ϕb) = R(c,b) , (27)

which follows from Eq. (19) and the additive property of
rotations.

IV. OTHER DISTORTING FIELDS

The formalism presented in Sec. III for lensing can
also be used to study other cosmological effects such as
patchy reionization [45, 57], and cosmological rotation
of the plane of polarization of the CMB either due to
primordial magnetic fields [49, 58, 59] or due to a parity-
violating Chern-Simons type coupling [46–48]. In gen-
eral, the quadratic estimator can be used to study any
distortion which depends on the line of sight [44], and
most of them provide a handle on instrumental system-
atics [60]. Below, we discuss cosmological rotation and
patchy reionization, and derive the corresponding Feyn-
man rules. Current studies of rotation and patchy reion-
ization using the quadratic estimator are restricted to

the leading order estimator noise N
(0)
L . Using the for-

malism of this paper, it is straightforward to investigate
the higher order noise.

A. Cosmological Rotation

CP is violated by weak interactions, and it must be
violated in the early universe in order to give rise to the
baryon asymmetry. This provides a motivation to investi-
gate the existence of CP -violating interactions involving
cosmologically evolving pseudoscalar fields. For example,

a Chern-Simons coupling of the form aFµν F̃
µν [61, 62]

violates CP . It has been shown that such a term can
rotate the polarization vector of linearly polarized light
by an angle of rotation dα = 2dτ ȧ during a conformal
time dτ . The fluctuations in the scalar field a will then
be imprinted in the rotation angle α of the polarization.
The shift symmetry of the Lagrangian implies that the
field a is classically massless and that the quantum fluc-
tuations frozen in the field during inflation will result in
Gaussian perturbations for the rotation α with a nearly
scale invariant spectrum.

We will continue using the notation introduced for
lensing, denoting the observed (rotated) Stokes parame-

ters with a tilde Q̃, Ũ . The rotated Stokes parameters
are related to the primordial Stokes parameters by

[Q̃(n)± iŨ(n)] = e±2iα(n)[Q(n)± iU(n)] . (28)

Using Eq. (9) to convert this result to Fourier space, we
find

X̃ℓ =

∫
d2m

(2π)2
DRotation

(ℓ,m) Xm

DRotation
(ℓ,m) = (2π)2δ2(ℓ−m− P)R(−ℓ,m)

× exp
[
2λ

∫
d2k

(2π)2
αk

]
. (29)

Here λ is the generator of the rotation between E and B
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(a) (b) (c)

FIG. 6: The two point function C̃ℓ using the lensed correlator is depicted by a double line. Its expression in terms of the
unlensed correlator Cℓ is given to order O(φ2) by the sum of the unlensed propagator Cℓ and diagrams (a), (b), (c).

+

FIG. 7: Graphs contributing to the lensed filter f̃ (φ,0).

modes,

λ =



0 0 0
0 0 1
0 −1 0


 . (30)

Note that although the rotation does not affect tempera-
ture, it will affect correlations such as 〈TE〉 and 〈TB〉. It
is straightforward to derive the Feynman rule for the ro-
tated CMB fields from Eq. (29), which is shown in Fig. 8.
Here the power spectrum of rotations Cαα is represented
by a wiggly line, in analogy to Cφφ for the gravitational
lensing case. One simplification compared to lensing is
that there is no dependence on the momentum of the
rotation field.
It has been shown in Ref. [46, 47] that lensing and

rotation have orthogonal filters f (φ,0) and f (α,0), and
hence both can be reconstructed using the quadratic es-
timator formalism without biasing each other’s estimate.
However, in contrast to lensing, rotation breaks parity

and hence generates C̃EB
ℓ and C̃TB

ℓ . One consequence of

this is that the Gaussian noise term N
xx′,yy′(0)
L for the

estimator involving an odd number of observed B fields
(for example, xx′yy′ = EEEB and xx′yy′ = TTEB) no
longer vanishes, because parity is broken.

ℓ, x

m, y

k1

k2

kn

R
xy

(−ℓ,m)
(2λ)n

FIG. 8: Feynman rule for calculating the effect of rotation
on the CMB. The primordial CMB component is labelled y

and the rotated field x. The Feynman rule for the vertex only
depends on the number n of rotation fields α (wiggly lines)
and not on their momenta ki.

B. Patchy Reionization

Reionization marks the birth of the first luminous ob-
jects after decoupling. At this stage, the vast majority
of Hydrogen becomes ionized due to gravitational non-
linearities. When and how this process occurred is at
present not well constrained. Observational constraints
from Lyman-α forest absorption spectra of quasars sug-
gest that reionization ended by redshift z ≈ 6 [63]. Con-
straints from the large scale “reionization bump” im-
printed in the CMB polarization EE and TE spectra pro-
vide a mean redshift of reionization z = 10.5 ± 1.1 [64].
In addition to constraining the epoch of reionization,
the reionization history provides information about the
formation of early galaxies. The reionization process is
likely to have occurred in a patchy manner, with some re-
gions ionizing early on and other regions remaining neu-
tral until the end of reionization.

Patchy reionization produces several secondary
anisotropies in the CMB. Specifically, the patchy na-
ture of reionization results in a direction-dependent
Thomson scattering optical depth, τ(n). Such optical
depth fluctuations modulate CMB fields by suppressing
the primordial anisotropies with a factor of e−τ(n),
correlating different spherical harmonics. Using tildes
to denote the observed CMB components, the effect of
patchy reionization is described by

X̃ℓ =

∫
d2m

(2π)2
DReionization

(ℓ,m) Xm

DReionization
(ℓ,m) = (2π)2δ2(ℓ−m− P)R(−ℓ,m)

× exp
[
−
∫

d2k

(2π)2
τk

]
. (31)

The corresponding Feynman rule is shown in Fig. 8.

The filters for patchy reionization and lensing have a
strong overlap [60] , and therefore one can not indepen-
dently reconstruct τ and the lensing field φ from the
CMB. Since the patchy reionization signal is expected
to be a few orders of magnitude smaller than the lens-
ing signal, the estimate of lensing is hardly affected by
patchy reionization. However, to extract patchy reion-
ization, one will have to modify the quadratic estimator
to avoid the effect of lensing bias.
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ℓ, x

m, y

k1

k2

kn

R
xy

(−ℓ,m)(−1)n

FIG. 9: Feynman rule for calculating the effect of patchy
reionization on the CMB, described by the induced optical
depth τ (wiggly lines). Here n is the number of wiggly lines
of the vertex.

V. QUADRATIC ESTIMATOR FOR LENSING

A. Quadratic Estimator and Noise

Lensing breaks the statistical isotropy of the CMB,
correlating the CMB modes as described by Eq. (20).
This isotropy breaking can be exploited to reconstruct
the lensing field from the CMB. A quadratic estimator
for the gravitational lensing of the CMB can be written
generically as

φ̂xy
L

=
Axy

L

L2

∫
d2ℓ

(2π)2
F xy
(ℓ,L−ℓ)xℓyL−ℓ , (32)

where xℓ and y
ℓ
are the observed CMB modes, including

lensing and experimental noise. The CMB modes x and
y can be either T , E or B, and the estimators will be
referred to as TT, TE, etc. for x = T , y = T,E etc.
The filter F xy in Eq. (32) is chosen to provide the “best”
estimate for φ.
The Hu-Okamoto estimator [27] is the quadratic esti-

mator that is unbiased and has minimal variance. Re-
quiring φ̂ to be an unbiased estimator,

〈φ̂xy
L
〉CMB = φL , (33)

fixes the normalization

Axy
L

= L2
[ ∫ d2ℓ

(2π)2
F xy
(ℓ,L−ℓ)f

(φ,0)xy
(ℓ,L−ℓ)

]−1

. (34)

Eq. (34) follows directly from using Eq. (20) to evaluate
〈x̃ℓỹL−ℓ〉 at lowest order in φ (ignoring the pathological
L = 0 contribution). Note that the experimental noise
does not enter here, as it does not bias the estimate (see
Sec. VC).

The variance of this estimator is given by

〈
〈φ̂xy

L
φ̂xy
L′ 〉CMB − 〈φ̂xy

L
〉CMB〈φ̂xy

L′ 〉CMB

〉
LSS

(35)

= (2π)2δ2(L+L
′)
[
N

xy(0)
L

+N
xy(1)
L

+N
xy(2,c)
L

+O(φ6)
]
.

N
xy(0)
L

is referred to as Gaussian noise. The higher or-

der noise terms N
xy(n)
L

involve the connected part of the
CMB trispectrum and are of O(φ2n).
These same noise terms Nxy(n) enter as bias in the

reconstruction of the lensing power spectrum,

〈φ̂xy
L
φ̂xy
L′ 〉CMB,LSS = (2π)2δ2(L+L

′)
(
Cφφ

L
+N

xy(0)
L

+N
xy(1)
L

+N
xy(2,c)
L

+N
xy(2,d)
L

+O(φ6)
)
. (36)

A key point is that at second order and beyond there are
disconnected pieces Nxy(2,d), Nxy(3,d), etc. that enter the
bias of the lensing power spectrum in Eq. (36), but not
the variance in Eq. (35).

The filter F xy in Eq. (32) is chosen to minimize the

lowest order Gaussian variance N
xy(0)
L

,

δ

δF xy
N

xy(0)
L

= 0 . (37)

The Gaussian noise, given in Eq. (41), involves the ob-

served spectra C
xy

ℓ , which include lensing effects and in-
strumental noise. Eq. (37) leads to

2

∫
d2ℓ δF xy

(ℓ,L−ℓ)f
(φ,0)xy
(ℓ,L−ℓ)∫

d2ℓF xy
(ℓ,L−ℓ)f

(φ,0)xy
(ℓ,L−ℓ)

=

∫
d2ℓ δF xy

(ℓ,L−ℓ)

[
2F xy

(ℓ,L−ℓ)C
xx

ℓ C
yy

L−ℓ+F yx
(ℓ,L−ℓ)C

xy

ℓ C
xy

L−ℓ

]
+δF yx

(ℓ,L−ℓ)F
xy
(ℓ,L−ℓ)C

xy

ℓ C
xy

L−ℓ

∫
d2ℓF xy

(ℓ,L−ℓ)

[
F xy
(ℓ,L−ℓ)C

xx

ℓ C
yy

L−ℓ + F yx
(ℓ,L−ℓ)C

xy

ℓ C
xy

L−ℓ

] , (38)

by using F xy
(L−ℓ,ℓ) = F yx

(ℓ,L−ℓ), as well as F xy
(−ℓ,ℓ−L) =

F xy
(ℓ,L−ℓ) (which holds because the lensing potential φ is

parity even). For x = y, this implies,

F xx
(ℓ,L−ℓ) =

f
(φ,0)xx
(ℓ,L−ℓ)

2C
xx

ℓ C
xx

L−ℓ

, (39)

and for x 6= y,

F xy
(ℓ,L−ℓ) =

C
yy

ℓ
C

xx

L−ℓ
f
(φ,0)xy
(ℓ,L−ℓ) − C

xy

ℓ
C

xy

L−ℓ
f
(φ,0)xy
(L−ℓ,ℓ)

C
xx

ℓ
C

xx

L−ℓ
C

yy

ℓ
C

yy

L−ℓ
− (C

xy

ℓ
C

xy

L−ℓ
)2

. (40)

Note that the overall normalization of F xy is arbitrary
since it cancels against the normalization of Axy and
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(a) (b)

FIG. 10: Diagrams describing the lowest-order noise N
xy(0)
L

.
The shaded box represents the filter F xy in the quadratic
estimator Eq. (32).

drops out of the estimator.

B. Calculating Noise Terms

We will now compute the correlator of two estimators

〈φ̂xy φ̂x′y′〉 up to orderO(φ4), which gives the noise terms

N
xy,x′y′(0)
L

, N
xy,x′y′(1)
L

, N
xy,x′y′(2,c)
L

and N
xy,x′y′(2,d)
L

.
For x = x′ and y = y′, this is the noise of the esti-

mator φ̂xy in Eqs. (35) and (36), but when x 6= x′ or
y 6= y′, it describes the correlation between different es-
timators. In fact, we will find in Sec. VI that combining
different estimators can help reduce the bias in the de-
termination of Cφφ. Using the diagrammatic approach
presented here, one can immediately write down expres-
sions for these noise terms and track down the origin of
the large contribution to N (2).
The lowest order graphs are shown in Fig. 10, where

each shaded box is one insertion of the estimator φ̂. The
shaded box represents the filter F xy, the normalization
constant Axy, and the loop integral in Eq. (32). The two
fields x and y in the estimator are the lines emerging from
the two ⊗ symbols at the edge of the shaded box. Adding
up the contributions from the diagrams in Fig. 10, leads
to

N
xy,x′y′(0)
L

=
Axy

L
Ax′y′

L

L4

∫
d2ℓ

(2π)2
F xy
(ℓ,L−ℓ)

[
F x′y′

(−ℓ,ℓ−L)

× C
xx′

ℓ C
yy′

L−ℓ + F x′y′

(ℓ−L,−ℓ)C
xy′

ℓ C
x′y

L−ℓ

]
, (41)

in agreement with Ref. [27] for x = x′ and y = y′. The
power spectrum C contains experimental noise (discussed
in the next section) and lensing effects. The inclusion of
lensing effects is not mandatory, although it is the default
for the lowest order noise. It is not the default for higher-
order noise terms, though we find that using the lensed
power spectrum, as discussed in Sec. III C, improves the
convergence of the noise terms.

C. Experimental Noise

The observed power spectra enter in N (0) in Eq. (41),
and thus in the filter F xy in Eqs. (39) and (40), be-
cause the quadratic estimator is based on observed CMB

(a) (b)

FIG. 11: Diagrams contributing to 〈〈φ̂〉CMB〈φ̂〉CMB〉LSS at
O(φ2). Diagram (a) and its crossed graph (analogous to

Fig. 10(b)) give N (1). Diagram (b) is disconnected, produces

Cφφ and does not contribute to the noise N (1).

modes. The observed power spectra

C
xy

ℓ
= C̃xy

ℓ
+∆2

xy e
ℓ(ℓ+1)σ2/8 ln 2 (42)

include lensing and instrumental noise, where σ is the
full-width-half-maximum of the experimental beam and
∆xy is experimental noise [65]. We will assume fully po-

larized detectors for which ∆EE = ∆BB =
√
2∆TT , and

∆xy = 0 for x 6= y.
Experimental noise does not enter in the higher-order

noise terms (except through the filter F xy), as we now
argue. The observed quantity xi = x̃i + ni, where x̃i

is the lensed quantity, and ni is the experimental noise.
The subscript i is shorthand for the CMB mode (T , E,
B) as well as the momentum label. Calculations of noise
involve the trispectrum (4-point function),

〈x1x2x3x4〉 = 〈(x̃1 + n1)(x̃2 + n2)(x̃3 + n3)(x̃4 + n4)〉
= 〈x̃1x̃2x̃3x̃4〉+ (〈x̃1x̃2〉〈n3n4〉
+ permutations) + 〈n1n2n3n4〉 . (43)

Here we used the fact that the signal x̃i and the ex-
perimental noise ni are uncorrelated, so that averages
such as 〈x̃1x̃2n3n4〉 factor into products 〈x̃1x̃2〉〈n3n4〉,
and that averages over odd powers of the experimental
noise vanish. Only the first term 〈x̃1x̃2x̃3x̃4〉 in Eq. (43)
has corrections beyondN (0), since the experimental noise
is Gaussian. The other contributions are pure two-point
functions and are therefore fully contained in Eq. (41).
For correlation functions involving N ≥ 5 fields, this

statement is no longer true, since one can have contri-
butions such as 〈x̃1x̃2x̃3x̃4〉〈n5n6〉, where the first factor
has a non-vanishing connected four-point contribution.
In this case, there are contributions where the effects of
lensing and experimental noise are multiplied rather than
simply added. However, we only need terms up to N = 4
to compute the bias to second order.

D. Higher-Order Noise

Diagrams contributing to 〈φ̂ φ̂〉 at order O(φ2) are
shown in Fig. 11. The shaded blobs in Fig. 11 are the
filter f (φ,0) given in Eq. (21). Diagram Fig. 11(a) is a con-
nected graph, i.e. it cannot be disconnected by cutting
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(a) (b)

(c) (d)

FIG. 12: Diagrams contributing to N (2,c). The shaded blob is
the filter f (φφ,0). The crossed graphs (analogous to Fig. 10(b))
are not shown.

only φ lines, and contributes to the noise N (1). There is
also a crossed graph analogous to Fig. 10(b) which has
not been shown. The graph in Fig. 11(b) is a discon-
nected diagram, i.e. it splits into pieces on cutting a φ
line. It does not contribute to the variance in Eq. (35),
or to the noise N (1). It does contribute to Eq. (36) where
it produces the Cφφ term, since

Cφφ
L

(
Axy

L

L2

)2∫
d2ℓ

(2π)2
F xy
(ℓ,L−ℓ)f

(φ,0)xy
(ℓ,L−ℓ)

×
∫

d2k

(2π)2
F xy
(k,L−k)f

(φ,0)xy
(k,L−k) = Cφφ

L , (44)

which follows trivially from Eq. (34). Note that this is
true whether the vertex is the unlensed vertex f (φ,0)xy or

lensed vertex f̃ (φ,0)xy.

Using the Feynman rules in Fig. 2, it is straightforward
to obtain the noise N (1) from Fig. 11(a) and the crossed
graph,

N
xy,x′y′(1)
L

=
Axy

L
Ax′y′

L

L4

∫
d2ℓ

(2π)2
d2k

(2π)2
Cφφ

k
F xy
(ℓ,L−ℓ) (45)

×
[
F x′y′

(k−ℓ,ℓ−L−k)f
(φ,0)xx′

(ℓ,k−ℓ) f
(φ,0)yy′

(L−ℓ,ℓ−L−k)

+ F x′y′

(ℓ−L−k,k−ℓ)f
(φ,0)xy′

(ℓ,k−ℓ) f
(φ,0)yx′

(L−ℓ,ℓ−L−k)

]
.

This noise contribution was first calculated by Kesden
et al. [32, 33] for xy = x′y′. Their expressions differ
from ours for x 6= y because they symmetrized their filter
F xy
ℓ,L−ℓ

= F yx
L−ℓ,ℓ.

Diagrams contributing to the second order noise N (2)

are shown in Figs. 12 and 13. Again, the crossed
graphs for Fig. 12 have not been shown. The graphs
in Fig. 12(a), (b) and Fig. 13(a), (b) have one f (φ,0)

“blob” and one higher order f (φ,1) “blob” marked with a
black square. The shaded blobs in the graphs shown in
Fig. 12(c), (d) and Fig. 13(c), (d) involve the filter f (φφ,0)

in Eq. (22), which has two φ lines. The connected piece
N (2,c), given in Fig. 12, contributes to both the vari-
ance and the bias. The disconnected one N (2,d) given in
Fig. 13 only contributes to the bias in Eq. (36), but not
to the variance in Eq. (35). The resulting expressions for
N (2,c) and N (2,d) are

N
xy,x′y′(2,c)
L

=
Axy

L
Ax′y′

L

L4

∫
d2ℓ

(2π)2
d2k

(2π)2
Cφφ

k
F xy
(ℓ,L−ℓ)

{
F x′y′

(k−ℓ,ℓ−L−k)

[
f
(φ,0)xx′

(ℓ,k−ℓ) f
(φ,1)yy′

(L−ℓ,ℓ−L−k) + f
(φ,1)xx′

(ℓ,k−ℓ) f
(φ,0)yy′

(L−ℓ,ℓ−L−k)

]

+ F x′y′

(ℓ−L−k,k−ℓ)

[
f
(φ,0)xy′

(ℓ,k−ℓ) f
(φ,1)yx′

(L−ℓ,ℓ−L−k) + f
(φ,1)xy′

(ℓ,k−ℓ) f
(φ,0)yx′

(L−ℓ,ℓ−L−k)

]
+ 2

∫
d2m

(2π)2
Cφφ

m

[
F x′y′

(k−ℓ+m,ℓ−L−k−m)

× f
(φφ,0)xx′

(ℓ,k−ℓ+m,m)f
(φφ,0)yy′

(L−ℓ,ℓ−L−k−m,−m) + F x′y′

(ℓ−L−k−m,k−ℓ+m)f
(φφ,0)xy′

(ℓ,k−ℓ+m,m)f
(φφ,0)yx′

(L−ℓ,ℓ−L−k−m,−m)

]}
,

N
xy,x′y′(2,d)
L

=
Axy

L

L2
Cφφ

L

∫
d2ℓ

(2π)2
F xy
(ℓ,L−ℓ)f

(φ,1)xy
(ℓ,L−ℓ) +

Ax′y′

L

L2
Cφφ

L

∫
d2ℓ

(2π)2
F x′y′

(ℓ,L−ℓ)f
(φ,1)x′y′

(ℓ,L−ℓ)

+ 2
Axy

L
Ax′y′

L

L4

∫
d2ℓ

(2π)2
d2k

(2π)2
d2m

(2π)2
Cφφ

m
Cφφ

L−m
F xy
(ℓ,L−ℓ)F

x′y′

(−k,k−L)f
(φφ,0)xy
(ℓ,L−ℓ,m)f

(φφ,0)x′y′

(−k,k−L,−m)

}
. (46)

E. Large N (2) Contribution

We can now address the large N (2) contribution to
the bias in Eq. (36), that was previously observed in
Refs. [34, 36]. For the lensing estimator method to
work, it is crucial that the φ power series expansion is
well-behaved such that higher-order noise terms converge

N (0) ≫ N (1) ≫ N (2) ≫ . . . . The large size of N (2) is
a problem because it indicates that higher-order correc-
tions may not be under control. We will show that this
is not the case: the expansion is well-behaved, and the
second order noise can be reliably calculated.

A first clue to the solution is provided by the fact
that the large contribution arises from the disconnected
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(a) (b)

(c) (d)

FIG. 13: Diagrams contributing to N (2,d). In graphs (a) and

(b), one of the blobs is f (φ,0) and the other (with the black

square) is f (φ,1).

contribution N (2,d), whereas the connected contribution
N (2,c) is as small as one might expect. It is insightful to
first compare the connected and disconnected contribu-
tion atO(φ2), which are shown in Fig. 11. The connected
graph in Fig. 11(a) gives the noise N (1), and the discon-
nected graph in Fig. 11(b) gives the lensing power spec-

trum Cφφ
L

. Both terms are formally order O(φ2), but one
can see from Fig. 14, where these quantities are plotted
numerically, that the power spectrum is larger than the
noise N (1). As is clear from Eq. (45), the calculation of
N (1) involves two loop integrals over unconstrained inter-

nal momenta. By contrast, Fig. 11(b) gives exactly Cφφ
L

and has no such integrals. It is well known in quantum
field theory that loop integrals are suppressed. Here we
have two-dimensional loop integrals which, in field the-
ory, would bring an extra 1/(4π) loop suppression factor.
The loop suppression factor is well understood in field
theory, but there the calculations are much simpler be-
cause they involve propagators of the form 1/(ℓ2 +M2).
In the lensing problem, the propagators are the spectra
and have a more complicated form, but the same loop
suppression is at work.

At order O(φ4), the bias N (2) gets contributions from
the connected graphs in Fig. 12 and the disconnected
graphs in Fig. 13. The graphs in Fig. 13(a) and (b) are
theO(φ4) analog of Fig. 11(b). They involve one less loop
integral than the graphs in Fig. 12 and Fig. 13(c) and (d),
as can be seen from comparing the first line for N (2,d)

in Eq. (46) with the other terms. Indeed, numerically,
Fig. 13(a) and (b) are responsible for the large value of
N (2). We thus have two series of terms that contribute
to the bias, which are schematically of the form a0 +
a2φ

2+a4φ
4+ . . . and b0+b2φ

2+b4φ
4+ . . .. The ai series

has less loop integrals than the corresponding terms in
the bi series, so that ai ≫ bi. The φ expansion is well-
behaved for each series, and one expects the a6φ

6 term
to be smaller than the a4φ

4 term, and the b6φ
6 term to

be smaller than the b4φ
4 term. The reason there appears

to be a lack of convergence is because the a series first
starts at O(φ4) from the graphs in Fig. 13(a) and (b), as
there are no O(φ0) or O(φ2) contributions. (The O(φ2)
graph in Fig. 11(b) yields Cφφ, and does not contribute
to the a2 term in the noise.)

We can take care of this larger a-series by reorganiz-
ing the perturbation expansion using lensed spectra, as
discussed in Sec. III C. This reorganization absorbs most
of the higher order terms from Fig. 13(a) and (b) into
the lower order Fig. 11(b). However, because we also
changed the filter F of the quadratic estimator accord-

ingly, Fig. 11(b) still exactly gives Cφφ
L .

VI. NUMERICAL RESULTS

In Figure 14 and 15 the lensing noise N
xy,x′y′(n)
L is

shown as a function of multipole moment L, which enters
as bias in the reconstruction of the lensing power spec-
trum in Eq. (36). We present results for various CMB
channels xy x′y′, going beyond previous studies by con-
sidering the cases x 6= x′ and/or y 6= y′. These noise
terms are shown for both the default unlensed count-
ing (dashed curves), as well as the lensed counting (solid
curves) that we introduce in Sec. III C. We have consid-
ered two experimental setups:

• Fig. 14: a Planck-like experiment with polariza-
tion instrumental noise ∆EE ≡ ∆EE = ∆BB =
56µK-arcmin and Gaussian beam full-width-half-
maximum (FWHM), σ = 7 arcmin.

• Fig. 15: An experiment representative of current
generation balloon and ground-based experiments
with instrumental noise ∆EE = 10µK-arcmin and
Gaussian beam FWHM, σ = 8 arcmin.

The unlensed counting shows the so called “N (2)-bias”,

i.e. on large scales (ℓ < few hundred), N
(2)
L becomes

larger than N
(0)
L and N

(1)
L . The N (2)-bias in the TTTT

channel was first discovered and discussed in Ref. [34]. In

Ref. [36], N
(2)
L for the polarization channels were studied

using simulations. This paper is the first time the exact

calculation of CMB polarization channel based N
(2)
L has

been performed. As can be seen from the red dashed
curves in Figs. 14 and 15, the N (2)-bias is largest for the
TTTT estimator and smallest for the EBEB estimator.
In general, estimators involving temperature maps tend
to have a largerN (2)-bias compared to the ones involving
polarization.

For our lensed-counting (solid curves), the N
(2)
L -bias is

absorbed in the lower order noise terms N
(0)
L and N

(1)
L .

Note that this method not only reshuffles contributions
between the noise terms, but also changes the quadratic
estimator by modifying the filter F . Therefore the sum
of the noise terms is not equal in the two cases. The
lensed counting preserves a desired expansion property

for all the estimators, Cdd
L ≫ N

(2)
L and Cdd

L ≫ N
(1)
L .

For the lensed-counting the N
xy,x′y′(0)
L noise is the

dominant noise term for the estimators with even num-
bers of B fields (e.g. TTTT and TBEB). However the

noise N
xx′yy′(0)
L for channels involving odd numbers of B
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FIG. 14: Lensing estimator noise N
xy,x′y′(n)
L as a function of L for a Planck-like experiment with ∆EE = 56µK-arcmin and

σ = 7 arcmin. Shown are the theoretical lensing deflection power spectrum Cdd
L = L2C

φφ

L (black curve), the Gaussian noise

N
(0)
L (blue curves), N

(1)
L (green curves) and N

(2)
L (red curves). Solid lines represent the noise calculated with our “lensed

counting”, and dashed-lines use the “unlensed counting”. The results for the various estimators xy, x′y′ are shown in separate

panels. The noise N
(2)
L is negative for the unlensed counting while it changes sign for the lensed-counting N

(2)
L . For clarity we

only show the magnitude here, but the sign is shown in Figs. 16 and 17.

fields (e.g. EEEB and TTEB) vanishes. This is because
the physics responsible for decoupling is parity conserv-
ing, and the correlation between parity-even field T or
E and parity-odd field B vanishes, CEB

ℓ = CTB
ℓ = 0.

Thus for estimators with an odd number of B fields, the

dominant noise comes from the higher order N
(n)
L (with

n > 0). Interestingly, for our lensed counting these higher
order noises are more than two orders of magnitude
smaller than the signal Cdd

L . As shown in Fig. 16 and dis-
cussed below, this is true for a wide range of experiments.
It is worth emphasizing that although N (2) > N (1) for a
range of L of EEEB and TTTB, this does not pose an
inconsistency. As we discussed in Sec. VE, there are two

types of diagrams that form two separately converging se-
ries. This only requires N (2,c) < N (1) and N (2,d) < Cdd,
which are both satisfied.

In Fig. 16, we show estimator noise N
(n)
L=40 at L = 40

for the lensed counting as a function of the instrumental

noise ∆EE . As may be expected from Sec. VC, N
(0)
L is

the most sensitive to experimental noise because it di-

rectly gets added to it. For N
(1)
L and N

(2)
L the experi-

mental noise only appears indirectly through the filter F
of the quadratic estimator. For the range of experimental
noise considered (∆EE = 1− 60 µK-arcmin), the estima-

tor with lensed-counting will not be biased by N
(1)
L or
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FIG. 15: Same as Figure 14 but for an experiment with ∆EE = 10µK-arcmin and σ = 8 arcmin.

N
(2)
L , as these higher order noises are at least an order of

magnitude smaller than the signal Cdd
L .

Figure 17 shows three pieces that contribute to

N
TTTT (2)
L , the connected piece N

(2,c)
L (dashed) and the

disconnected piece split up in the contribution from

the fourth line N
(2,d)
a (solid) and fifth line N

(2,d)
b (dot-

dashed) in Eq. (46). The largest contribution on scales

L <∼ 200 comes from N
(2,d)
a , because it has one fewer

loop integral than other pieces (see Sec. VE for more de-
tails). Note that there is never a large N (2) contribution
to the variance of the lensing, since only the connected
contributions enters in Eq. (35).

VII. SUMMARY AND DISCUSSION

We have calculated noise properties of Hu-Okamoto-
based quadratic estimators of CMB lensing, using a Feyn-
man diagram approach [35]. This method allowed us, for
the first time, to obtain analytical expressions for the
higher order noise (up to O(φ4)) of lensing estimators
based on any combination of CMB temperature and po-
larization channels. Previous analytical calculations were
limited to the temperature channel (TTTT) at this or-
der. We have also discussed how to extend this calcula-
tion to other distorting fields like patchy reionization and
cosmic rotation, deriving the relevant Feynman rules.
Using this approach, it was straightforward to identify

the origin of the (supposed) poor convergence of higher
order noise terms. The previously noted largeO(φ4) term

in the second order noiseN
(2)
L has been identified to come

from a particular class of diagrams. By reorganizing the
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FIG. 16: Estimator noise N
(n)
L=40 for the lensed counting as a function of instrumental noise ∆EE with beam FWHM σ = 8

arcmin. Shown are the lensing deflection power spectrum Cdd
L (black dashed), the Gaussian noise N

(0)
L (blue curve), N

(1)
L

(green curve) and N
(2)
L (magenta/red curve). The noise N (2) changes sign, so we use magenta for positive values and show the

magnitude of negative values in red.

φ expansion, we significantly reduced the effect of higher
order noise terms. We have shown results for the esti-
mator noise up to O(φ4) for 9 channels and for a wide
range of experimental setups. From this computation we
conclude that, using our re-arranged counting, the esti-
mator is well behaved for all the channels. We also note
that estimators with an odd number of B-fields have a
very small noise.

With more precision CMB polarization experiments on
the way, it is extremely important to understand and im-
prove the statistical techniques used to extract the lens-
ing information from the data. High precision lensing
maps open the door to constraining several fundamental
cosmological parameters, the sum of the neutrino masses
and the properties of dark energy. Perhaps most impor-

tantly, characterizing lensing opens up the possibility of
“delensing” which enhances sensitivity to measure infla-
tionary B-modes induced by tensor perturbations. This
is important for L >∼ 100 when the lensing contribution
is no longer small compared to primordial B-modes.
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FIG. 17: Contributions to the lensing estimator noise N
TT,TT (2)
L as a function of L for a Planck-like experiment. The left

panel uses the unlensed counting and the right one our lensed counting. Shown are the lensing power spectrum Cdd
L (solid

black), the connected contribution N (2,c) (red) and the disconnected contribution separated into N
(2,d)
a (green) and N

(2,d)
b

(blue), corresponding to the fourth and fifth line of Eq. (46). When the contributions to NTT,(2) are positive they are shown
as solid lines, and when they are negative, they are shown as dashed lines.
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