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ABSTRACT OF THE THESIS

Capturing hidden covariates with linear factor models and other statistical methods in

differential gene expression and expression quantitative trait locus studies

by

Heather J. Zhou

Master of Science in Statistics

University of California, Los Angeles, 2022

Professor Jingyi Li, Chair

This works aims to provide value to three types of readers. First, for students in statis-

tics, psychology, and the social sciences, I provide a summary and review of three classical

statistical methods: factor analysis, principal component analysis (PCA), and probabilistic

PCA (PPCA), all of which fall under the category of linear factor models. These methods

are widely used in many fields, including psychology, education, and computational biology,

and are the cornerstones of many new, more complicated methods. However, most available

materials about them are either decades old (and very long and use old-style notations) or

cursory. This work provides current coverage of them that is in-depth yet concise.

Second, for new computational biologists who are unfamiliar with differential gene expres-

sion (DE) analysis and quantitative trait locus (QTL) analysis — in particular, expression

quantitative trait locus (eQTL) analysis — I provide an introduction to DE analysis and

eQTL analysis from a statistical perspective, with an emphasis on DE and eQTL analysis

with hidden covariates. I avoid unnecessary jargon and aim for this material to be accessible

to those without much background in biology.
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Third, for computational biologists and geneticists who need to work with newly devel-

oped computational methods such as surrogate variable analysis (SVA), probabilistic estima-

tion of expression residuals (PEER), and hidden covariates with prior (HCP), I document

these methods in a unified framework and explore their connections to classical methods

such as factor analysis and PCA. To the best of our knowledge, such precise and in-depth

review of SVA, PEER, and HCP is currently not available elsewhere in the literature.

In short, this work aspires to be a useful reference manual for students and researchers

working with linear factor models or newly developed methods for capturing hidden covari-

ates in DE or eQTL analysis.
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CHAPTER 1

Introduction

High-throughput technologies such as microarrays [1] and next-generation RNA-sequencing

(RNA-seq) [2] have enabled biologists to probe the expression of thousands of genes simul-

taneously at a relatively low cost, making possible a wide variety of genomic research. Two

classic examples are differential gene expression (DE) analysis and expression quantitative

trait locus (eQTL) analysis. In DE analysis, researchers look for signals where expression

levels of a gene differ between conditions. In eQTL analysis, researchers look for associa-

tions between genetic variants and gene expression levels. A background in these two types

of analysis from a statistical perspective is given in Section 3.1.

In both DE and eQTL analyses, several biological and technical factors, including sex,

age, and batches, are known to be potential confounding factors. In addition, many new

statistical methods have been developed to infer unknown confounders, the most popular ones

(listed in chronological order) being surrogate variable analysis (SVA) [3, 4], probabilistic

estimation of expression residuals (PEER) [5, 6], and hidden covariates with prior (HCP)

[7]. It is standard practice today to use these methods to capture and correct for hidden

confounders in DE and eQTL analyses [e.g., 8, 9].

Despite their popularity, the documentation of the methodology behind SVA, PEER,

and HCP is surprisingly inadequate. In Sections 3.2 to 3.4, I fill this gap in the literature

by documenting these methods in a precise and in-depth way. Further, I show that these

methods are closely related among themselves as well as to classical statistical methods such

as factor analysis, principal component analysis (PCA), and probabilistic PCA (PPCA),
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shedding light on the theoretical interpretation of SVA, PEER, and HCP.

SVA is purely an algorithm that is not defined based on a statistical model or loss

function, though the algorithm itself is heavily based on PCA. To the best of our knowledge,

the inner workings of SVA are not precisely documented anywhere — one would need to

look at the source code of the R package SVA to know the exact steps of the algorithm. This

is an alarming issue especially given SVA’s popularity and the fact that SVA is purely an

algorithm, so the steps of the algorithm define the method.

PEER is based on a Bayesian probabilistic model and can be considered a Bayesian

version of factor analysis. Besides notational issues, the PEER method as described in

the original paper, Stegle et al. [5], is not aligned with the current implementation of the

R package peer. For example, Stegle et al. [5] claims that PEER can take into account

genotype data when estimating the hidden variables, but the R package does not allow the

user to input any genotype data.

HCP is defined by minimizing a loss function and is closely related to PCA. The docu-

mentation of HCP is far from satisfactory in both the original paper [7] and the R package

documentation. For example, as I detail in Section 3.4, the loss function is incorrectly

specified in both places in a nontrivial way.

Given that SVA and HCP are closely related to PCA, and PEER is closely related to

factor analysis, I further show that PCA and factor analysis are closely related statistical

methods (Chapter 2), hence unifying SVA, PEER, and HCP. To do that, I provide a detailed

yet concise review of the essentials of factor analysis and PCA and show that although factor

analysis is based on a probabilistic model and PCA is traditionally derived by optimizing

some objective functions (either maximum variance or minimum reconstruction error), PCA

can also be derived as a limit of the PPCA model, which in turn is a special case of the factor

analysis model. The reason Chapter 2 is necessary is because during my research, I found

that most available materials about factor analysis, PCA, and PPCA are either decades old

(and very long and use old-style notations) or cursory. This work provides current coverage
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of them that is in-depth yet concise, which can be referred to by students in statistics,

psychology, and the social sciences independently of the other chapters.

In sum, this work provides unparalleled documentation of three classical statistical meth-

ods: factor analysis, PCA, PPCA, and three new methods developed for capturing hidden

covariates in DE and eQTL studies: SVA, PEER, and HCP. All six methods are closely

related. Among these six methods, factor analysis, PCA, PPCA, and PEER fall under the

category of linear factor models, while HCP is defined by minimizing a loss function and does

not have a probabilistic interpretation, and SVA is purely an algorithm that is not defined

based on a statistical model or loss function.
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CHAPTER 2

Classical methods

2.1 Factor analysis

Factor analysis is based on a generative probabilistic model [10, 11]. We start by introducing

two viewpoints of the underlying statistical model (Section 2.1.1 and Section 2.1.2). The

two viewpoints describe the exact same model, but the first has the advantage of helping

us see the overall idea better, while the second is more convenient for deriving the relevant

distributions.

After setting up the model, we will introduce three basic steps of inference: maximum

likelihood estimation (Section 2.1.4), rotation (Section 2.1.5), and hidden factor prediction

(Section 2.1.6).

2.1.1 Matrix viewpoint

Let X denote the n×p observed data matrix that is observation by variable (i.e., feature).

Specifically, in gene expression studies, X would be sample by gene. Let Z denote the n×K

hidden factor matrix, also known as the score matrix. That is, we assume that there are

K hidden factors, and K is often chosen to be smaller than p. Let W> denote the K × p

weight matrix, also known as the effect size matrix or loading matrix; we use transpose

here so that the notation in the second viewpoint will be consistent with standard factor

analysis notation. Finally, let ε denote the error matrix. We use boldface for W> but not

for X, Z, and ε because W> is a fixed matrix whereas X, Z, and ε are random matrices
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X

(n×p)

= Z

(n×K)

W>

(K×p)
+ ε

(n×p)

Figure 2.1: Illustration of the factor analysis model.

(see below).

As illustrated in Figure 2.1, the underlying statistical model of factor analysis is

X = Z W>+ε, (2.1.1)

where we assume that each entry of Z is independently drawn from a standard normal

distribution:

zik
iid∼N (0, 1) , i = 1, · · · , n; k = 1, · · · , K, (2.1.2)

and independent from Z, each entry in each column of ε is independently drawn from a

normal distribution with gene-specific variance. That is, for j = 1 · · · , p, we have

εij
iid∼N (0, ψj) , i = 1, · · · , n, (2.1.3)

where ψj is the gene-specific error variance, often called specific variance, unique variance,

or uniqueness. Notice the resemblance of this model to the classic linear regression model,

where the response variable is modeled as a linear combination of several predictor variables

(plus some noise). The only difference is that in factor analysis, we have p response variables

instead of just one, and the predictor variables are unobserved instead of observed. Hence

we see that factor analysis is indeed a linear factor model.
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The factor analysis model as specified by (2.1.1), (2.1.2), and (2.1.3) is a frequentist

(rather than Bayesian) model because the parameters, W>, ψ1, · · · , ψp, are considered as

fixed (albeit unknown). It can be regarded as a hierarchical model where we first draw zik

based on (2.1.2) and then draw X based on (2.1.1) and (2.1.3). The components of the

model are:

• W>, ψ1, · · · , ψp are the fixed but unknown parameters,

• Z is the missing data or latent variables, and

• X is the observed data.

Without loss of generality, and in accordance with common practice, we have assumed

that before factor analysis is applied to any X, each column of X is centered to have mean

zero. This assumption allows us to simplify the notation and mathematical derivations by

omitting the nuisance mean parameter in (2.1.1).

2.1.2 Per-observation viewpoint

Focusing our attention on the ith observation in (2.1.1), we have

x>i = z>i W>+ε>i , i = 1, · · · , n, (2.1.4)

where x>i , z>i , and ε>i denote the ith row of X, Z, and ε respectively.

Transposing (2.1.4), we have

xi
p×1

= W
p×K

zi
K×1

+ εi
p×1

, i = 1, · · · , n. (2.1.5)

Further, our assumption in (2.1.2) becomes

6



zi
iid∼N (0, IK) , i = 1, · · · , n, (2.1.6)

and our assumption in (2.1.3) becomes

εi
iid∼N

0,Ψ := diag (ψ1, · · · , ψp) =


ψ1

. . .

ψp


 , i = 1, · · · , n, (2.1.7)

where εi and zi are independent.

2.1.3 Interpretations of W and W>

There are at least three interpretations of W and W>:

• Matrix factorization. From (2.1.1), we see that X can be approximately factorized as

Z W>.

• Weight matrix, also known as effect size matrix or loading matrix. From (2.1.1), we

see that each column (variable) of X is a linear combination of the hidden factors (plus

some error), where the weights are the corresponding entries of W>.

• Basis vectors. From (2.1.5), we see that each xi is a linear combination of the columns

of W (plus some error), where the coefficients are the entries of zi.

2.1.4 Maximum likelihood estimation

Historically, many methods have been developed for estimating the parameters (W and

Ψ) in factor analysis. In particular, when normality is not assumed in (2.1.6) and (2.1.7),

methods such as the principal component method and the principal factor method may be

used [10, 11]. However, it is standard practice nowadays to indeed assume normality and
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estimate the parameters by maximizing the likelihood. Such maximum likelihood estimation

involves an iterative procedure and a fair amount of algebra, which we will not repeat here

[see 12–14] . We will focus on the overall idea instead.

Let’s begin by finding the joint distribution of zi and xi, which will be useful later for

deriving the conditional distribution of zi given xi (Section 2.1.6). The marginal distribution

of zi is given by (2.1.6). Thus, by (2.1.5) and (2.1.7), the marginal distribution of xi is

xi
iid∼N

(
0,W W>+ Ψ

)
, i = 1, · · · , n. (2.1.8)

Therefore, the joint distribution of zi and xi is

zi
xi

 iid∼N

0,

IK W>

W W W>+ Ψ

 , i = 1, · · · , n. (2.1.9)

This is because

Cov [zi, xi] = E
[
(zi − E [zi]) (xi − E [xi])

>
]

by definition (2.1.10)

= E
[
zix
>
i

]
(2.1.11)

= E
[
zi (W zi + εi)

>
]

plugging in (2.1.5) (2.1.12)

= E
[
ziz
>
i W>]+ E

[
ziε
>
i

]
(2.1.13)

= E
[
ziz
>
i W>] since εi ⊥ zi (2.1.14)

= E
[
ziz
>
i

]
W> (2.1.15)

= var [zi] W
> (2.1.16)

= IK W> (2.1.17)

= W> . (2.1.18)
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Using (2.1.8), we can write down the observed data likelihood of the parameters as

L (W,Ψ) =
n∏
i=1

f (xi; W,Ψ) (2.1.19)

=
n∏
i=1

1

(2π)
p
2 |W W>+ Ψ | 12

exp

{
−1

2
x>i
(
W W>+ Ψ

)−1
xi

}
. (2.1.20)

Therefore, the overall idea of maximum likelihood estimation is to maximize (2.1.20) with

respect to the parameters. Of note, Rubin and Thayer [14] use the EM algorithm to solve

this maximization problem, treating Z as the missing data (Section 2.1.1).

2.1.5 Rotation

Suppose we have found Ŵ1 and Ψ̂ to be our MLE estimates of W and Ψ. Looking at

(2.1.20), we see that

L
(
Ŵ1, Ψ̂

)
= L

(
Ŵ2, Ψ̂

)
, (2.1.21)

where

Ŵ2 := Ŵ1G (2.1.22)

and G is any K ×K orthogonal matrix. This is because

Ŵ2Ŵ
>
2 + Ψ̂ = (Ŵ1G)(G>Ŵ

>
1 ) + Ψ̂ plugging in (2.1.22) (2.1.23)

= Ŵ1Ŵ
>
1 + Ψ̂. (2.1.24)

Transposing (2.1.22), we see that

9



Ŵ
>
2 = G>Ŵ

>
1 , (2.1.25)

so that Ŵ
>
2 can be interpreted as a rotated version of Ŵ

>
1 (recall that orthogonal matrices

represent rotations. More precisely, they represent rotations, reflections, and compositions

thereof).

Therefore, the second step of inference, after obtaining the initial MLE estimates of

W and Ψ, is to choose the “best” W estimate according to some predetermined criterion.

There are several possible criteria [see 15, 16, for two non-exhaustive lists], but all of them

are designed to make the structure of the W estimate as simple as possible, with most

entries either close to zero or far from zero and few entries taking intermediate values. The

most popular criterion among these is varimax [17], which is implemented in most software

packages for factor analysis.

2.1.6 Hidden factor prediction

Suppose that through maximum likelihood estimation and rotation, we have decided on Ŵ

and Ψ̂ as our parameter estimates. Then, the third (optional) step of inference in factor

analysis is hidden factor prediction. From (2.1.9), we know that

zi | xi,W,Ψ ∼ N
(

W> (W W>+ Ψ
)−1

xi,

IK −W> (W W>+ Ψ
)−1

W

)
. (2.1.26)

Therefore, plugging in our parameter estimates, we may predict zi to be

ẑi = E
[
zi | xi,Ŵ, Ψ̂

]
(2.1.27)

= Ŵ
> (

ŴŴ
>

+ Ψ̂
)−1

xi, (2.1.28)

10



which is known as Thomson’s factor scores [18]. Alternatively, Barlett’s factor scores [19]

may be used, which are derived from weighted least squares and are less congruent with the

underlying model of factor analysis. It is for this reason that we omit the details of Barlett’s

factor scores here.

2.1.7 Discussion (factor analysis)

Factor analysis was originally developed by psychologists as part of an attempt to understand

“intelligence” in the early 1900s. The method gained more recognition in the early 1940s

when attention was brought to one particular form of factor analysis, namely that based on

maximum likelihood estimation [20]. To date, most applications of factor analysis have been

in psychology and the social sciences.

Throughout its history, factor analysis has provoked rather turbulent controversy. Besides

the large number of assumptions made (Section 2.1.1 and Section 2.1.2), there are several

statistical concerns. For example, it is difficult to determine K, the number of hidden factors,

and the results may vary significantly depending on the value of K. Further, for a given K,

different methods of rotation can produce results that look quite different. This leads to the

danger that practitioners may try different values of K and different methods of rotation in

order to obtain results that conform to their preconceived ideas [21].

Despite the controversy, the generative model in factor analysis has been extended to form

the basis of many other modern methods including generative adversarial network (GAN)

and variational autoencoder (VAE). In the next sections, we will discuss other linear factor

models and compare them with factor analysis.

2.2 Principal component analysis (PCA)

Principal component analysis (PCA) [11, 22] is a well-established dimension reduction method

that has many applications. The method differs from factor analysis in that it does not re-

11



quire a probabilistic model. In this section, we give a brief summary of the PCA algorithm

and its derivation and interpretation. In the next section, we will discuss probabilistic PCA,

which offers a probabilistic interpretation of PCA and establishes an explicit connection

between PCA and factor analysis.

2.2.1 PCA algorithm

Let X denote the n×p observed data matrix that is observation by variable (i.e., feature).

We assume that each column of X has been standardized, i.e., centered to have mean zero

and scaled to have variance one. That is, X satisfies

1

n

n∑
i=1

xij = 0, j = 1, · · · , p (2.2.1)

and

1

n

n∑
i=1

x2ij = 1, j = 1, · · · , p, (2.2.2)

where xij denotes the ijth entry of X.

The PCA algorithm consists of two steps. In the first step, we calculate the sample

covariance matrix Σ̂ and perform eigendecomposition on it:

Σ̂ =
1

n
X>X definition of sample covariance matrix (2.2.3)

:= QΛQ>, eigendecomposition (2.2.4)

where

12



Q
p×p

=


| |

q1 · · · qp

| |

 (2.2.5)

is an orthogonal matrix whose columns are eigenvectors of Σ̂, and

Λ
p×p

=


λ1

. . .

λp

 , λ1 ≥ · · · ≥ λp ≥ 0, (2.2.6)

is a diagonal matrix whose diagonal entries are the corresponding eigenvalues of Σ̂. We

know that Σ̂ is orthogonally diagonalizable because it is a symmetric matrix (recall the

spectral theorem [23]: a matrix is orthogonally diagonalizable if and only if it is symmetric).

The eigenvalues are all non-negative because Σ̂ is positive semidefinite.

In the second step, we calculate Z as the following:

Z = XQ, (2.2.7)

where the columns of Z are called the principal components (PCs) or scores, and Q

is called the loading matrix or rotation matrix. It is worth noting that some authors may

refer to q1, · · · , qp as the PCs. This usage is confusing and should be avoided [24].

A technical complication is that although Λ is unique, Q is not unique. In general, we

may multiply an arbitrary subset of the eigenvectors by −1 and the eigendecomposition

would still hold. In addition, if λj = · · · = λj′ for any j, j′ ∈ {1, · · · , p}, j < j′, then

we may replace qj, · · · , qj′ with any other set of orthonormal vectors that span the same

subspace. Fortunately, the non-uniqueness of Q has minimal real consequences on Z beyond

the signs of the PCs. The reason for this is twofold. First, if λj = · · · = λj′ = 0, then the

corresponding PCs are all zero and thus all dropped (Section 2.2.3). Second, in real data
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sets, non-zero eigenvalues are rarely, if ever, repeated.

The above two steps conclude the PCA algorithm. In practice, however, singular value

decomposition (SVD) of the data matrix (as opposed to eigendecomposition of the sample

covariance matrix) provides a more computationally efficient way of finding the loading

matrix and the PCs. Suppose a singular value decomposition of X is

X
n×p

= U
n×n

Σ
n×p

V >
p×p

, (2.2.8)

where U is an orthogonal matrix whose columns are left singular vectors of X, V is an

orthogonal matrix whose columns are right singular vectors of X, and Σ is a rectangular

diagonal matrix whose diagonal entries are singular values of X (all chosen to be non-

negative) arranged in descending order. Then, we have

Σ̂ =
1

n
X>X =

1

n

(
UΣV >

)> (
UΣV >

)
plugging in (2.2.8) (2.2.9)

=
1

n
V Σ>U>UΣV > (2.2.10)

= V

(
1

n
Σ>Σ

)
V >, (2.2.11)

which constitutes an eigendecomposition of Σ̂ where the eigenvalues are arranged in

descending order.

Therefore, the loading matrix is given by V , and the PCs are given by

Z = XV plugging in (2.2.7) (2.2.12)

=
(
UΣV >

)
V plugging in (2.2.8) (2.2.13)

= UΣ, (2.2.14)

from which it is evident that the non-zero PCs are unnormalized versions of left singular

vectors of X, or equivalently, right singular vectors of X>.
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2.2.2 Derivation

The most common derivation of PCA is based on maximum variance [25]. Define α∗1, · · · , α∗p ∈

Rp sequentially as

α∗1 = arg max
α1∈Rp

Var (Xα1) subject to ‖α1‖2 = 1, (2.2.15)

α∗2 = arg max
α2∈Rp

Var (Xα2) subject to ‖α2‖2 = 1, α>2 α
∗
1 = 0, (2.2.16)

...

α∗p = arg max
αp∈Rp

Var (Xαp) subject to ‖αp‖2 = 1, α>p α
∗
j = 0 ∀j < p. (2.2.17)

The principal components of X are defined as Xα∗1, · · · , Xα∗p. That is, they are defined

sequentially as the linear combinations of the columns of X with maximum variance, subject

to certain constraints. It can then be shown that α∗1, · · · , α∗p are given by q1, · · · , qp respec-

tively, where q1, · · · , qp are eigenvectors of Σ̂ as defined in (2.2.5). The key to the proof lies

in the fact that for a constant vector α ∈ Rp, Xα is an n-dimensional vector with zero mean,

which means that

Var (Xα) =
1

n
(Xα)>Xα definition of sample variance (2.2.18)

= α>
(

1

n
X>X

)
α. (2.2.19)

A complementary property of PCA, which is closely related to the original discussion of

Pearson [26], is the minimum reconstruction error property. Given K < p, define QK as the

matrix that contains the first K columns of Q. That is,

QK
p×K

:=


| |

q1 · · · qK

| |

 . (2.2.20)
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The minimum reconstruction error property of PCA states that QK is a global minimizer

of the loss function

J
(
Q̃K

)
:=
∣∣∣∣∣∣∣∣∣X −XQ̃KQ̃

>
K

∣∣∣∣∣∣∣∣∣2
F

=
n∑
i=1

∥∥∥x>i − x>i Q̃KQ̃
>
K

∥∥∥2
2

=
n∑
i=1

∥∥∥xi − Q̃KQ̃
>
Kxi

∥∥∥2
2
, (2.2.21)

where Q̃K denotes an arbitrary p × K matrix whose columns are orthonormal, |||·|||F
denotes the Frobenius norm of a matrix, and x>i denotes the ith row of X. Since Q̃KQ̃

>
Kxi

represents the (orthogonal) projection of xi onto the subspace spanned by the columns of

Q̃K , (2.2.21) measures the total error when approximating each xi with its projection onto

the subspace spanned by the columns of Q̃K .

2.2.3 Interpretation

Multiplying both sides of (2.2.7) by Q>, we have

X = ZQ>, (2.2.22)

which is reminiscent of (2.1.1) in factor analysis.

Focusing our attention on the ith observation, we have

x>i = z>i Q
>, i = 1, · · · , n, (2.2.23)

where x>i and z>i denote the ith row of X and Z respectively.

Transposing (2.2.23), we have

xi = Qzi, i = 1, · · · , n, (2.2.24)

16



which is reminiscent of (2.1.5) in factor analysis. (2.2.24) means that zi is xi in the

coordinate system of Q.

A central idea of PCA is that when the data is viewed in the new coordinate system, the

total variance in the original data is preserved, but variance is now concentrated on the first

PCs. Further, the PCs are uncorrelated with each other. Therefore, we can capture a large

portion of the variance in the original data by keeping only the first K PCs, K < p, thus

achieving dimension reduction. Specifically, we claim that

p∑
j=1

Var (Xj) =

p∑
j=1

Var (Zj) , (2.2.25)

Var (Zj) = λj, j = 1, · · · , p, (2.2.26)

and

Cov (Zj, Zj′) = 0, j, j′ = 1, · · · , p, j 6= j′, (2.2.27)

where Xj denotes the jth column of X (the jth original variable) and Zj denotes the jth

column of Z (the jth PC).

We prove (2.2.26) and (2.2.27) by calculating Σ̂Z , the sample covariance matrix of Z:

Σ̂Z =
1

n
Z>Z definition of sample covariance matrix (2.2.28)

=
1

n
(XQ)>XQ plugging in (2.2.7) (2.2.29)

= Q>
(

1

n
X>X

)
Q (2.2.30)

= Q>
(
QΛQ>

)
Q plugging in (2.2.4) (2.2.31)

= Λ. (2.2.32)
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(2.2.25) can be proven by the following:

p∑
j=1

Var (Xj) = Tr
(

Σ̂
)

by definition (2.2.33)

= Tr
(
QΛQ>

)
plugging in (2.2.4) (2.2.34)

= Tr
(
ΛQ>Q

)
cyclic property of trace (2.2.35)

= Tr (Λ) (2.2.36)

=

p∑
j=1

Var (Zj) . by (2.2.26) (2.2.37)

Because of (2.2.25) and (2.2.26), we may define and calculate the proportion of variance

in the original data explained by the jth PC as

λj∑p
j′=1 Var (Xj′)

=
λj∑p

j′=1 Var (Zj′)
=

λj∑p
j′=1 λj′

(2.2.38)

and the cumulative proportion of variance explained by the first K PCs as

∑K
j=1 λj∑p
j′=1 λj′

. (2.2.39)

(2.2.38) and (2.2.39) provide a basis for deciding the number of PCs to keep.
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2.2.4 Similarity to factor analysis

When we dimension reduce X to the first K columns of Z, we are approximating X = ZQ>

(Equation 2.2.22) with

X ≈ ZKQ
>
K (2.2.40)

:=


| |

Z1 · · · ZK

| |




— q>1 —
...

— q>K —

 (2.2.41)

=


| |

1√
λ1
Z1 · · · 1√

λK
ZK

| |




—
√
λ1q

>
1 —

...

—
√
λKq

>
K —

 , (2.2.42)

where we have defined ZK and QK to be the matrices that contain the first K columns of

Z and Q respectively (see also (2.2.20)). We use an underscore in ZK to avoid ambiguity with

the notation for the PCs. The approximation in (2.2.40) is “best” in the sense of minimum

reconstruction error (Section 2.2.2). The only difference between (2.2.41) and (2.2.42) is

that in (2.2.42), we have normalized the PCs to have unit variance and scaled q>1 , · · · , q>K
accordingly.

Comparing (2.2.40) to (2.1.1), we see that ZK in PCA is analogous to the hidden factor

matrix in factor analysis, and QK in PCA is analogous to W in factor analysis. Thus,

QK and Q>K in PCA can be interpreted in the same ways as W and W> in factor analysis:

matrix factorization, weight matrix, and basis vectors (Section 2.1.3). An explicit connection

between PCA and factor analysis will be explored in Section 2.3.
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2.3 Probabilistic PCA (PPCA)

Probabilistic PCA (PPCA) [27] is based on a generative statistical model that is very similar

to the factor analysis model. It offers a probabilistic interpretation of PCA and establishes

an explicit connection between PCA and factor analysis.

In this section, we will use mostly the same notations as we did in Section 2.1, but for

clarity, we will redefine the notations here. Let X denote the n× p observed data matrix

that is observation by variable (i.e., feature); let Z denote the n×K hidden factor matrix;

let W> denote the K × p weight matrix; finally, let ε denote the error matrix.

2.3.1 PPCA model

Recall the factor analysis model as specified by (2.1.5), (2.1.6), and (2.1.7). PPCA simplifies

the model by assuming ψ1 = · · · = ψp. Hence the PPCA model assumes

xi
p×1

= W
p×K

zi
K×1

+ εi
p×1

, i = 1, · · · , n, (2.3.1)

where x>i , z>i , and ε>i denote the ith row of X, Z, and ε respectively,

zi
iid∼N (0, IK) , i = 1, · · · , n, (2.3.2)

and

εi
iid∼N

(
0, σ2Ip

)
, i = 1, · · · , n, (2.3.3)

where εi and zi are independent. Therefore, the parameters in the PPCA model are W

and σ2.

Applying (2.1.9), we know that the joint distribution of zi and xi is
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zi
xi

 iid∼N

0,

IK W>

W W W>+σ2Ip

 , i = 1, · · · , n. (2.3.4)

Applying (2.1.26), we have

zi | xi,W, σ2 ∼ N
(

W> (W W>+σ2Ip
)−1

xi,

IK −W> (W W>+σ2Ip
)−1

W

)
, (2.3.5)

which can be simplified as

zi | xi,W, σ2 ∼ N
((

W>W +σ2IK
)−1

W> xi,

σ2
(
W>W +σ2IK

)−1)
. (2.3.6)

We can show that the two expressions for the conditional mean are equal, i.e.,

W> (W W>+σ2Ip
)−1

=
(
W>W +σ2IK

)−1
W>, (2.3.7)

by moving the matrix inverses to the opposite sides of the equation, and we can show that

the two expressions for the conditional variance are equal by using the Woodbury matrix

identity. Alternatively, (2.3.6) may be derived directly by using Bayes’ rule.

2.3.2 Maximum likelihood estimation

From (2.3.4), we know that the marginal distribution of xi is

xi
iid∼N

(
0,W W>+σ2Ip

)
, i = 1, · · · , n. (2.3.8)
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Therefore, we can write down the observed data likelihood of the parameters as

L
(
W, σ2

)
=

n∏
i=1

f
(
xi; W, σ2

)
(2.3.9)

=
n∏
i=1

1

(2π)
p
2 |W W>+σ2Ip|

1
2

exp

{
−1

2
x>i
(
W W>+σ2Ip

)−1
xi

}
. (2.3.10)

In contrast to factor analysis (Section 2.1.4), in PPCA, the maximum likelihood estimates

of W and σ2 can be obtained analytically. Before giving the MLE solutions, define

Σ̂ :=
1

n
X>X sample covariance matrix (2.3.11)

:= QΛQ>, eigendecomposition (2.3.12)

where Q is an orthogonal matrix whose columns are eigenvectors of Σ̂, and

Λ
p×p

=


λ1

. . .

λp

 , λ1 ≥ · · · ≥ λp ≥ 0, (2.3.13)

is a diagonal matrix whose diagonal entries are the corresponding eigenvalues of Σ̂. These

are the same steps that we took in PCA (Section 2.2.1). The MLE estimates of W and σ2

are then given by

σ̂2
MLE =

1

p−K

p∑
j=K+1

λj (2.3.14)

and

ŴMLE
p×K

= QK
p×K

(
ΛK
K×K

− σ̂2
MLE IK

) 1
2

G
K×K

, (2.3.15)
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where QK denotes the matrix that contains the first K columns of Q, ΛK denotes the

K ×K diagonal matrix that is on the top-left corner of Λ, and G is any K ×K orthogonal

matrix [27].

Thus, using (2.3.6), we may predict zi to be

ẑi = E
[
zi | xi,ŴMLE, σ̂

2
MLE

]
(2.3.16)

=
(
Ŵ
>
MLE ŴMLE + σ̂2

MLE IK

)−1
Ŵ
>
MLE xi. (2.3.17)

2.3.3 Connection to PCA

To recover PCA from PPCA, assume σ2 is known and let σ2 → 0. When σ2 is known, the

only unknown parameter in the model is W, so (2.3.15) becomes

ŴMLE
p×K

= QK
p×K

(
ΛK
K×K

− σ2IK

) 1
2

G
K×K

, (2.3.18)

and (2.3.17) becomes

ẑi =
(
Ŵ
>
MLE ŴMLE +σ2IK

)−1
Ŵ
>
MLE xi. (2.3.19)

Therefore, as σ2 → 0, we have

ŴMLE → QKΛ
1
2
KG, (2.3.20)
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and thus

ẑi →
((

QKΛ
1
2
KG
)>

QKΛ
1
2
KG

)−1 (
QKΛ

1
2
KG
)>

xi (2.3.21)

=
(
G>Λ

1
2
KQ

>
KQKΛ

1
2
KG
)−1

G>Λ
1
2
KQ

>
Kxi (2.3.22)

= G>Λ−1K GG>Λ
1
2
KQ

>
Kxi (2.3.23)

= G>Λ
− 1

2
K Q>Kxi. (2.3.24)

In other words, we have

ẑ>i → x>i QKΛ
− 1

2
K G, (2.3.25)

Ẑ → XQKΛ
− 1

2
K G, (2.3.26)

and

Ŵ
>
MLE → G>Λ

1
2
KQ

>
K . (2.3.27)

(2.3.26) and (2.3.27) recover the two matrices in (2.2.42) in PCA when we take G = IK .

In summary, if we assume that the error variances are equal and known in factor analysis,

we can recover PCA from factor analysis as the error variance approaches zero.
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CHAPTER 3

New methods

3.1 Background

In this section, I will introduce the relevant biological background regarding differential gene

expression (DE) analysis and expression quantitative trait locus (eQTL) analysis with hidden

covariates. Afterwards, I will introduce surrogate variable analysis (SVA) [3, 4], probabilistic

estimation of expression residuals (PEER) [5, 6], and hidden covariates with prior (HCP)

[7], which are widely-used modern methods designed for capturing hidden covariates in DE

analysis (SVA) or eQTL analysis (PEER and HCP).

As much as I try to keep the notations consistent, the notations in Chapter 3 will be

slightly different from those in Chapter 2 because the conventions in the literature are dif-

ferent. A summary of the main notations used in Chapter 3 is given in Table 3.1.

DE eQTL

Gene expression matrix (responses) Y , n× p, sample by gene

Variable(s) of interest X0, n×K0, K0 small S, n× q, q large

Known covariates X1, n×K1

Hidden covariates X2, n×K
Hidden covariate inference method(s) SVA (SVA), PEER, HCP

Table 3.1: Summary of main notations used in Chapter 3. SVA was designed for capturing
hidden covariates in DE analysis but is sometimes used for capturing hidden covariates in
eQTL analysis as well.

25



3.1.1 Differential gene expression (DE) analysis with hidden covariates

Let Y denote the n × p gene expression matrix that is sample by gene (observation by

feature); the ijth entry represents the expression level of gene j in the ith biological sample.

Let X0 denote the n × K0 matrix of variable(s) of interest. Let X1 denote the n × K1

known covariate matrix. Lastly, let X2 denote the n ×K hidden covariate matrix. In

both DE studies and eQTL studies, X2 represents unknown batch effects, technical con-

founders, and/or biological confounders that affect the measured gene expression levels. It

is broadly recognized in the field that failure to account for hidden covariates can lead to

loss of power and/or precision in detecting biological signals — assuming that the hidden

covariates indeed exist and confound the relationship between the gene expression levels and

the variables of interest, that is (a similar idea is explored in the field of causal inference [see

28, for example]).

In DE analysis, the research question is whether theK0 variables of interest are collectively

associated with the expression level of each gene, controlling for the effect of the known and

hidden covariates. For example, suppose K0 = 1 and X0 is a binary variable representing

disease status. For each gene, we would like to conduct a multiple linear regression with the

gene expression vector as the response variable and X0, X1, and X2 as the predictors — and

test the null hypothesis that the coefficient corresponding to X0 is zero (given X1 and X2).

Since X2 is unknown, a two-step approach is usually used: first, infer X2 using SVA or other

methods; second, use the inferred X2 in the subsequent linear regression analysis.

In general, K0 may be greater than 1 (though it is usually small). Suppose K0 = 2 and

X0 consists of two binary variables that together represent a categorical variable with three

levels, e.g., a disease status variable with three levels. In this case, for each gene, we would

like to conduct a multiple linear regression with X0, X1, and X2 as the predictors and test

the null hypothesis that the coefficients corresponding to the columns of X0 are all zero

(given X1 and X2).
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3.1.2 Expression quantitative trait locus (eQTL) analysis with hidden covari-

ates

Define Y , X1, and X2 in the same way as in Section 3.1.1 (see Table 3.1 for a summary). In

addition, let S denote the n × q single nucleotide polymorphism (SNP) genotype matrix

that is sample by SNP. SNPs are the most common type of genetic variation among people.

The i`th entry of S is 0, 1, or 2 and encodes the number of minor allele copies that the ith

individual has at the `th SNP in the genome.

To simplify the matter, we may think of S as a large matrix that stores measurements

of each person’s genetic profile, each column (SNP) being a measurement. The goal of an

eQTL study is to test the significance of the association between each gene’s expression level

and each SNP, controlling for the effect of the known and hidden covariates — to see whether

the SNP may have a role in regulating the gene’s expression level. As in DE analysis, since

X2 is unknown, a two-step approach is usually used: first, infer X2 using PEER or other

methods; second, use the inferred X2 in the subsequent linear regression analysis.

What I have described in the above paragraph, if done, would encompass both cis-eQTL

analysis and trans-eQTL analysis and would typically be very computationally expensive in

real data. This is because in real data, the total number of SNPs in the genome, q, can be

as large as tens of millions. In practice, most studies focus on cis-eQTL analysis and only

test the significance of the association between the expression level of each gene and each of

its local SNPs, i.e., SNPs that are on the same chromosome as the gene and located close to

the gene (e.g., within one megabase from the transcription start site of the gene).

3.2 Surrogate variable analysis (SVA)

Surrogate variable analysis (SVA) [3, 4] is a popular method for estimating hidden covariates

in DE analysis and to a lesser extent, in eQTL analysis. Historically, there have been two

versions of the SVA method: two-step SVA [3] and iteratively reweighted SVA (IRW-SVA)
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[4]. Currently, the main SVA method available in the R package SVA [29] is IRW-SVA;

the package documentation states that two-step SVA is included in the package primarily

for backward-compatibility purposes. Therefore, in this work, I will focus on IRW-SVA

exclusively.

Although more than a dozen papers have been published on variations and extensions of

SVA [see 29, for an incomplete list], to the best of our knowledge, the inner workings of IRW-

SVA are not precisely documented anywhere — one would need to look at the source code

of the package to know the exact steps of the algorithm. Given that IRW-SVA (the same

is true for two-step SVA) is purely an algorithm that is not defined based on a statistical

model or loss function, the steps of the algorithm are the heart of the algorithm. Therefore,

in Section 3.2.2, I will fill this gap in the literature by documenting the IRW-SVA algorithm.

In Section 4.1, I will attempt to reproduce and build upon the simulation study in Leek and

Storey [4], which, among other things, will give readers a better idea of how SVA is used in

practice.

3.2.1 Prerequisite: local false discovery rate (lfdr)

Before discussing the SVA algorithm, I will give a brief review of local false discovery rate

(lfdr) [30], an empirical Bayes idea that is an integral part of the SVA algorithm.

Consider a simple example of a two-group model. Let the random variable X ∈ {0, 1}

denote the gender of a person and let the random variable Y denote the height of the person.

The first layer of the model is


P (X = 0) = ρ,

P (X = 1) = 1− ρ.
(3.2.1)

The second layer of the model is
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
[
Y | X = 0

]
∼ f0 (y) ,[

Y | X = 1
]
∼ f1 (y) .

(3.2.2)

Then, the marginal distribution of Y is

f (y) = ρf0 (y) + (1− ρ) f1 (y) , (3.2.3)

a mixture distribution.

Therefore, by Bayes’ rule, we have

P (X = 1 | y) =
P (X = 1) f (y | X = 1)

f (y)
(3.2.4)

=
P (X = 1) f (y | X = 1)

ρf0 (y) + (1− ρ) f1 (y)
. plugging in (3.2.3) (3.2.5)

Now, in large-scale hypothesis testing, where we wish to conduct hundreds, thousands,

or even more hypothesis tests simultaneously, assume that each hypothesis test satisfies the

following independently:


P (H0 is true) = π0,

P (H0 is false) = 1− π0,
(3.2.6)

and


[
Z | H0 is true

]
∼ f0 (z) ,[

Z | H0 is false
]
∼ f1 (z) ,

(3.2.7)

where Z denotes the test statistic of the hypothesis test. f1 (z) can be thought of as

a mixture distribution. For example, given that H0 : µ = 0 is false, suppose µ = 1 with
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probability 0.3, in which case the test statistic follows density g1, and µ = 2 with probability

0.7, in which case the test statistic follows density g2. Then f1 would be 0.3× g1 + 0.7× g2.

From (3.2.6) and (3.2.7), we know that the marginal distribution of Z is

f (z) = π0f0 (z) + (1− π0) f1 (z) , (3.2.8)

a mixture distribution.

The local false discovery rate (lfdr) is defined as

lfdr (z) := P (H0 is true | z) (3.2.9)

=
P (H0 is true) f (z | H0 is true)

f (z)
Bayes’ rule (3.2.10)

=
π0f0 (z)

f (z)
, definition of π0 and f0 (z) (3.2.11)

which we estimate as

l̂fdr (z) =
π̂0f0 (z)

f̂ (z)
, (3.2.12)

where π̂0 may be obtained as described in Storey and Tibshirani [31] or simply set equal

to 1 for a conservative lfdr estimate, and f̂ (z) may be obtained by fitting a smooth curve to

the histogram of the z values from all the hypothesis tests.

3.2.2 SVA algorithm

Recall the notations from Section 3.1.1 (see Table 3.1 for a summary). The goal of SVA is to

infer X2 so that the inferred X2 (“surrogate variables”) can be used in the downstream DE

analysis (Section 3.1.1). In a nutshell, SVA iteratively reweights the columns of Y and then

performs PCA on the reweighted Y, and the weights are based on the estimated probabilities

30



that the genes’ expression levels are associated with the variables of interest and the hidden

covariates, respectively: the more likely that a gene’s expression level is associated with any

of the variables of interest, the less weight the gene gets; on the other hand, the more likely

that a gene’s expression level is associated with any of the hidden covariates, the more weight

the gene gets. I describe the details of the SVA algorithm in Algorithm 1 and Algorithm 2,

where I refer to basic R functions such as cbind(), dnorm(), and qnorm().

3.2.3 Choice of K

The SVA package provides two ways of automatically choosing K (the number of hidden

covariates to infer): BE, a permutation-based approach that can be traced back to Buja and

Eyuboglu [32], and Leek, an approach based on Leek [33]. The default approach in the SVA

package is BE, which I summarize in Algorithm 3.

3.2.4 Thoughts on the SVA algorithm

I think there are three aspects of the SVA algorithm (Algorithm 1 and Algorithm 2) that are

currently not justified in the SVA papers or documentation and need further justification.

First, by definition (Section 3.2.1), the local false discovery rates (Lines 11 and 15 of

Algorithm 1) should be calculated based on the F -statistics from the partial F -tests. Alter-

natively, the p-values from the partial F -tests may be treated as test statistics whose null

distributions are Unif (0, 1). The probit transformation followed by a density calculation of

the standard normal distribution (Line 5 of Algorithm 2) lacks theoretical justification.

Second, in Line 9 of Algorithm 1, the reduced model should be set as an intercept term

plus the first K PCs so that in Line 10, the null hypothesis becomes that the variables of

interest and the known covariates all have coefficient = 0 given the first K PCs — not only

should we give a gene less weight in PCA if its expression level is likely to be associated

with a variable of interest, we should also give it less weight if its expression level is likely
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Algorithm 1: iteratively reweighted surrogate variable analysis (IRW-SVA)

Input:
• Y , n× p gene expression matrix that is sample by gene.
• mod = cbind (1, X0, X1), design matrix that contains both the variables of

interest and the known covariates. X1 may be NULL, but X0 can not be NULL.
• mod0 = cbind (1, X1), design matrix that contains only the known covariates.

If X1 is NULL, then mod0 is just a column of ones.
• K, number of hidden covariates to infer, i.e., number of surrogate variables to

obtain.
• B, number of iterations; default is 5.

Output: inferred X2 (n×K matrix of surrogate variables).
1 R← Y ; // Initialize the residual matrix as Y .

2 for j ← 1 to p do
3 Regress the jth column of Y against mod;
4 Replace the jth column of R with the residuals from the linear regression above;

// Note that residuals from a linear regression always have zero mean.

5 end
6 Get the initial PCs by performing PCA on R without scaling the columns;
7 for b← 1 to B do
8 Set the full model to be mod plus the first K PCs (normalized); // Whether the

PCs are normalized or not does not affect the result.

9 Set the reduced model to be mod0 plus the first K PCs (normalized); // The

difference between the full and reduced models is the variables of interest.

10 For each gene (i.e., for each column of Y ), get the p-value for H0: the variables
of interest all have coefficient = 0 given the reduced model, via a partial F -test
for linear models;

11 Convert the p-values to lfdr’s (Alg. 2). Denote these lfdr’s as lfdr1; // Each lfdr

represents P (the variables of interest all have coefficient = 0 | F-statistic).
12 Set the full model to be mod0 plus the first K PCs (normalized);
13 Set the reduced model to be mod0; // The difference is the PCs.

14 For each gene (i.e., for each column of Y ), get the p-value for H0: the PCs all
have coefficient = 0 given the reduced model, via a partial F -test for linear
models;

15 Convert the p-values to lfdr’s (Alg. 2). Denote these lfdr’s as lfdr2; // Each

lfdr represents P (the PCs all have coefficient = 0 | F-statistic).
16 Weight the columns of Y by lfdr1 (1− lfdr2);
17 Perform PCA on the weighted Y after centering each column (without scaling

the columns);
18 end
19 return the first K PCs (normalized) from the last PCA performed;
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Algorithm 2: lfdr calculation in IRW-SVA (main steps only)

Input: pV als, p-values, vector of length p.

Output: lfdrs, local false discovery rates, vector of length p.

1 λ← 0.8;

2 π̂0 ← sum (pV als > λ) /p (1− λ); // Estimate the prior proportion of true nulls

following Storey and Tibshirani [31].

3 ε← 10−8;

4 Floor each element of pV als at ε and cap each element of pV als at 1− ε;
5 f̂0 ← dnorm (qnorm (pV als)); // qnorm() returns the quantile of the standard

normal distribution (equivalent to probit). dnorm() returns the density.

6 f̂ is obtained by fitting a smooth curve to the histogram of pV als via kernel density

estimation (density()) followed by cubic smoothing spline (smooth.spline());

7 lfdrs← π̂0f̂0/f̂ ; // Compare to Equation (3.2.12).

8 return lfdrs;

Algorithm 3: the BE algorithm for choosing K in SVA

Input:
• Y , n× p gene expression matrix that is sample by gene.
• mod = cbind (1, X0, X1), design matrix that contains both the variables of

interest and the known covariates.
Output: K, number of hidden covariates to infer.

1 Residualize Y against mod to obtain R; // See Lines 1 to 5 of Algorithm 1.

2 Perform PCA on R without scaling the columns. Denote the proportion of variance

explained (PVE) by the kth PC by PV Ek, k = 1, · · · ,min (n, p);

3 B ← 20;

4 for b← 1 to B do

5 Permute each column of R to obtain Rb;

6 Residualize Rb against mod to obtain R′b; // See Lines 1 to 5 of Algorithm 1.

7 Perform PCA on R′b without scaling the columns;

8 end

9 The p-value for the kth PC is calculated as the proportion of permutations where

the PVE of the kth PC is greater than or equal to PV Ek;

10 Enforce that the p-values increase (i.e., are non-decreasing) as k increases;

11 α← 0.1;

12 return the number of PCs with a p-value smaller than or equal to α;
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to be associated with a known covariate. Similarly, in Lines 12 and 13 of Algorithm 1, the

full model should be set as mod plus the first K PCs, and the reduced model should be set

as mod, so that we control for the effect of both the variables of interest and the known

covariates when determining whether a gene’s expression level is associated with at least one

of the PCs — instead of only controlling for the effect of the known covariates.

Third, in general, it is good practice to scale each variable (i.e., feature) to have unit

variance before performing PCA (Section 2.2). Therefore, it is probably a good idea to scale

the variables in Line 6 of Algorithm 1 (for the initial run of PCA) and immediately before

Line 16 of Algorithm 1 (before weighting the variables based on the estimated probabilities),

as well as in Lines 2 and 7 of Algorithm 3 (when choosing K).

3.3 Probabilistic estimation of expression residuals (PEER)

Probabilistic estimation of expression residuals (PEER) [5, 6] is arguably the most commonly

used method for inferring hidden covariates in eQTL analysis. It is based on a Bayesian

probabilistic model, which I summarize in Section 3.3.1.

3.3.1 PEER model

The PEER model is a Bayesian version of the factor analysis model (Equations 2.1.1 to

2.1.3) that explicitly models the known covariates. Recall the notations from Section 3.1.2

(see Table 3.1 for a summary). The overall equation of the PEER model is

Y
n×p

= X
n×(K1+K)

W
(K1+K)×p

+ E
n×p

, (3.3.1)

where Y is the n × p gene expression matrix that is sample by gene, X is the column

concatenation of X1 and X2 — the known covariates and the hidden covariates, W is the

weight matrix, and E is the error matrix.
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The model assumptions are

xik
iid∼N (0, 1) , i = 1, · · · , n; k = K1 + 1, · · · , K1 +K, (3.3.2)

wkj
ind.∼ N

(
0,

1

βk

)
, k = 1, · · · , K1 +K; j = 1, · · · , p, (3.3.3)

where the covariate-specific weight precision βk satisfies

βk
iid∼Γ (a1, b1) , k = 1, · · · , K1 +K, (3.3.4)

and

eij
ind.∼ N

(
0,

1

τj

)
, i = 1, · · · , n; j = 1, · · · , p, (3.3.5)

where the gene-specific error precision τj satisfies

τj
iid∼Γ (a2, b2) , j = 1, · · · , p. (3.3.6)

In the PEER model, a1, b1, a2, b2 are the hyperparameters. Once they are specified (the

default is a1 = 0.001, b1 = 0.1, a2 = 0.1, and b2 = 10), inference is performed using

variational Bayes and the posterior means are reported. In particular, the posterior means

of X2 are reported as the PEER factors and the posterior means of E are reported as the

residuals [5].

After the PEER factors and the residuals are obtained, Stegle et al. [6] recommends either

including the PEER factors as covariates or using the residuals as the response variables in

the downstream analysis. The performance of these two approaches will be compared in a

future study.
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3.4 Hidden covariates with prior (HCP)

Hidden covariates with prior (HCP) [7] is another popular method for inferring hidden co-

variates in eQTL analysis. It is defined by minimizing a loss function, which I summarize

in Section 3.4.1. Neither Mostafavi et al. [7] nor the HCP R package documents the HCP

method well. For example, the squares in the loss function (3.4.1) are missing in both

Mostafavi et al. [7] and the R package documentation, but one can deduce that the squares

are there by inspecting the coordinate descent steps in the source code of the R package.

This work aims to provide a better, more accurate documentation of the HCP method.

3.4.1 HCP loss function

Recall the notations from Section 3.1.2 (see Table 3.1 for a summary). Given Y , the n × p

gene expression matrix that is sample by gene, and X1, the n×K1 known covariate matrix,

the HCP method looks for

arg min
X2, W1, W2

∣∣∣∣∣∣∣∣∣∣∣∣ Y
n×p

− X2
n×K

W2
K×p

∣∣∣∣∣∣∣∣∣∣∣∣2
2

+ λ1

∣∣∣∣∣∣∣∣∣∣∣∣X2
n×K

− X1
n×K1

W1
K1×K

∣∣∣∣∣∣∣∣∣∣∣∣2
2

+ λ2|||W1|||22 + λ3|||W2|||22, (3.4.1)

where X2 is the hidden covariate matrix, W1 and W2 are weight matrices of the appro-

priate dimensions, and λ1, λ2, λ3 > 0 are the tuning parameters. The name of the method,

“hidden covariates with prior”, comes from the second term in (3.4.1), where we inform the

hidden covariates with the known covariates. The optimization is done through coordinate

descent with one deterministic initialization. The obtained X2 is reported as the inferred

hidden covariates (“HCPs”).

We have seen that both SVA and PEER are closely related to PCA. The HCP method

is closely related to PCA as well — the first term in (3.4.1) is very similar to (2.2.21), the

only difference being the rows of W2 in (3.4.1) are not required to be orthonormal and X2 is
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not required to be the projection of Y onto the subspace spanned by the rows of W2.
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CHAPTER 4

Results

4.1 Simulation study shows that SVA can capture non-global hid-

den covariates in DE analysis

In this section, I attempt to reproduce and build upon the simulation study in Leek and

Storey [4]. My analysis illustrates how SVA is used in practice and demonstrates that SVA

can be useful in capturing non-global hidden covariates in certain simulated DE data sets.

4.1.1 Data simulation

Leek and Storey [4] designed 16 simulation scenarios [4, Table S1 and Table S2]. For sim-

plicity, I focus on the first eight simulation scenarios (i.e., experiments, with 10 replicates

each) and omit the last eight, which are extensions of the first eight simulation scenarios. A

summary of my experiments is given in Table 4.1.

Using notations consistent with those in Table 3.1, for each experiment and each replicate,

I simulate a data set under

Y
n×p

= X0
n×K0

W0
K0×p

+ X2
n×K

W2
K×p

+ E
n×p

, (4.1.1)

where Y is the gene expression matrix that is sample by gene, X0 is the variables of

interest, W0 is the corresponding effect size matrix, X2 is the hidden covariates, W2 is the

corresponding effect size matrix, and E is the noise matrix. The data dimensions are n = 20,
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Type of
X2

Correlation Overlap (X2)i1, i =
1, · · · , 10

(X2)i1, i =
11, · · · , 20

Nonzero
entries of W2

(1) (2) (3) (4) (5) (6) (7)

1 discrete low low Ber (0.5) Ber (0.5) 201 - 700

2 high 101 - 600

3 high low Ber (0.7) Ber (0.2) 201 - 700

4 high 101 - 600

5 continuous low low N (0, 1) N (0, 1) 201 - 700

6 high 101 - 600

7 high low N (0, 1) N (1, 1) 201 - 700

8 high 101 - 600

Table 4.1: Summary of eight experiments. The first column is the index of the experiment.
The third column refers to the correlation between the variable of interest and the hidden
covariate. The fourth column refers to the association overlap. Some cells are empty because
they repeat the cells directly above them. Each experiment is characterized by Columns (2)
to (4). Columns (2) and (3) determine Columns (5) and (6). Column (4) determines Column
(7).

p = 1000, K0 = 1, K = 1. That is, there are 20 individuals, 1000 genes, one variable of

interest, and one hidden covariate.

Specifically, for each data set, X0 is a column vector where the first 10 entries are one

and the last 10 entries are zero. W0 has its first 300 entries drawn independently from

N (0, 2.5) and its other entries equal to zero. X2 is simulated based on Columns (5) and (6)

of Table 4.1, which in turn are determined by Columns (2) and (3). The nonzero entries of

W2 are drawn independently from N (0, 2.5); which entries of W2 are nonzero is determined

by Column (7) of Table 4.1, which in turn is determined by Column (4). Lastly, the noise

matrix is simulated using

eij
ind.∼ N

(
0, σ2

j

)
, i = 1, · · · , n; j = 1, · · · , p, (4.1.2)

where the gene-specific noise standard deviation σj is drawn from
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σj
iid∼ InvGamma (10, 9) , j = 1, · · · , p. (4.1.3)

In total, 8× 10 = 80 data sets are simulated.

4.1.2 Methods

Recall differential gene expression (DE) analysis (Section 3.1.1). For each gene, we would like

to decide whether its expression level is associated with the variable of interest, controlling

for the effect of the hidden covariate. I compare the performance of four approaches on the

80 simulated data sets: Ideal, Unadjusted, PCA, and SVA.

For Ideal, we assume that X2 is known. Therefore, for each gene, I conduct a multiple

linear regression with the gene expression vector as the response variable and X0 and X2

as the predictors, and I store the p-value corresponding to the null hypothesis that the

coefficient corresponding to X0 is zero given X2.

For Unadjusted, we assume that the true model does not contain X2. Therefore, for each

gene, I conduct a simple linear regression with the gene expression vector as the response

variable and X0 as the predictor.

For PCA, first, I residualize Y against X0 (see Lines 1 to 5 of Algorithm 1). Second, I

perform PCA on the residualized gene expression matrix with centering and scaling. Third,

I choose the number of PCs using my own implementation of the BE algorithm, which is

analogous to Algorithm 3, with α = 0.05. Here, BE always chooses the true K (K = 1).

Lastly, for each gene, I conduct a multiple linear regression with the gene expression vector

as the response variable and X0 and the first PC as the predictors.

For SVA, first, I apply the SVA package to choose the number of SVs via BE (Algo-

rithm 3). Here, BE almost always chooses the true K (K = 1), except it chooses K = 2 in

one replicate of the fourth experiment. Then, I run the main SVA algorithm with the chosen

K (Algorithm 1). Lastly, for each gene, I conduct a multiple linear regression with the gene
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expression vector as the response variable and X0 and the obtained SVs as predictors.

4.1.3 Performance comparison

In this section, I evaluate the performance of SVA against Ideal, Unadjusted, and PCA

(when applicable) in three ways: speed, adjusted R2 in capturing the true hidden covariate,

and area under the precision-recall curve (AUPRC). I believe that these measures are more

practical and direct than those used in Leek and Storey [4].

My analysis shows that SVA is fast and can capture non-global hidden covariates reason-

ably well in the simulated data sets. In terms of computational efficiency, SVA is compara-

ble to PCA; both can run within a few seconds (Figure 4.1). In terms of adjusted R2 and

AUPRC, SVA improves upon Unadjusted and PCA; this is true in some of the experiments

more than others (Figure 4.2 and Figure 4.3).

Figure 4.1: Comparison in terms of computational efficiency. The height of the green bar is
the average runtime of PCA (including residualization; Section 4.1.2) across the 80 simulated
data sets. The height of the orange bar is the average runtime of SVA (including BE). The
error bars represent standard deviations.
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Figure 4.2: Comparison in terms of adjusted R2 in capturing the true hidden covariate. The
eight subplots correpsond to the eight experiments. The height of each orange bar is the
average adjusted R2 of the SV(s) in capturing the true hidden covariate across 10 replicates.
The error bars represent standard deviations.

Figure 4.3: Comparison in terms of AUPRC. The eight subplots correpsond to the eight
experiments. The height of each orange bar is the average AUPRC using the SVA approach
(Section 4.1.2) across 10 replicates. The error bars represent standard deviations.
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CHAPTER 5

Conclusion

In Chapter 2, I provide a summary and review of three classical statistical methods: factor

analysis, principal component analysis (PCA), and probabilistic PCA (PPCA), all of which

fall under the category of linear factor models. I show that although factor analysis is based

on a probabilistic model and PCA is traditionally derived by optimizing some objective

functions (either maximum variance or minimum reconstruction error), PCA can also be

derived as a limit of the PPCA model, which in turn is a special case of the factor analysis

model. This chapter can be a valuable resource for students in statistics and other disciplines

who need to learn about factor analysis, PCA, and PPCA.

In Chapter 3, I provide an overview of differential gene expression (DE) analysis and

expression quantitative trait locus (eQTL) analysis from a statistical perspective, with an

emphasis on DE and eQTL analysis with hidden covariates. For the first time in the scientific

literature, I accurately document surrogate variable analysis (SVA), probabilistic estimation

of expression residuals (PEER), and hidden covariates with prior (HCP) — the most popular

methods for inferring hidden covariates in DE and eQTL analysis today — and delineate

their connections to factor analysis and PCA. This chapter can be a valuable resource for

computational biologists who need a better understanding of the methodology behind SVA,

PEER, and HCP, as well as those who need an introduction to DE and eQTL analysis from

a statistical perspective.

Though not the emphasis of this work, in Chapter 4, I perform a simulation study

following the design in Leek and Storey [4] and show that SVA can capture non-global
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hidden covariates reasonably well in certain simulated DE data sets. This chapter may be

referenced as an example of clear and precise documentation of simulation studies.

Altogether, this work can be a useful reference manual for students and researchers work-

ing with linear factor models or newly developed methods for capturing hidden covariates in

DE or eQTL analysis.
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