UC Irvine
ICS Technical Reports

Title
Recursive Functional Programming for Students in the Humanities and Social Sciences

Permalink
https://escholarship.org/uc/item/2rq3s601

Authors

Brown, John Seely
Rubenstein, Richard

Publication Date
1973

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/2rq3s601
https://escholarship.org
http://www.cdlib.org/

RECURSIVE FUNCTIONAL PROGRAMMING FOR
STUDENTS IN THE HUMANITIES AND
SOCIAL SCIENCES
by

John Seely Brown
Richard Rubinstein

TECHNICAL REPORT #27 - January,1973

TABLE OF CONTENTS

ACKNOW1edgementS «uveeneeeoreecorsssscanosasncacessosocesocs

IntroQUCEION coneveecsoossoooneoonceaosensssacoscnoansencssess

An Approach ..eeevecconnvcncanas

D 60 @8 8600006600000 0NeRTs N

EnVirOnment +.eeeeveossceansoessnsssansosssecscacsanscsnnoncss
A Sequence Of ProblemMsS cveveeeesccacecscossanonsscsnncaneas

Projects ciieiiiiiiiiiiiit it iiccnesacanann

L R N]

COmMPULET ATL ttiiivnueeesssescocaanocancoscocanancscscsneas

BASIC it eeentiveneeeacececoasoessoacssonsansacacnecssonanas

A Complication +iievnieeeneecescasonoscanascscosossansonanes
ConcluSIiOons seovececeancesoaetossssansecssnsasosasionsnsans

Footnotas

Appendix
Appendix
Appendix
Appendix
Appendix

Figure
Figure
Figure
Figure
Figure

[S B PV L

“e as se s o

.

Ut B W N

e se se s 0e

© % 3 483000 CO NSO 0 AP OO000 S0 ESEO00CTEALD 0O ECSOLLNT O OGO O

A Brief Sketch o0f LOGD ..veeevesesnccaconsnnss
. The ORDER PTOZTEM «ceveveaseocossanosssansanoe
The PARSE PrOSTam +eveeveacenascacaseacassncan
The Dictionary PrOgTram ..seeseececcssssssccnas
Student EvVAludGliOnS ceeeeecosesaccscnsocscecsas

LIST OF FIGURES

A MEMBERP Brother .ivieeecceccsasossiccancaconns
A Chain of MEMBERP Brothers cesecoesensese
Resulting Design of Computer Art Description ...
The Binary TTEE eeeececesesscccccansanssascnnnss
The Finite-State Transition NetwoTrK «veeeecovees

£

BN N

25

31
33
33

35

36
42
45
49
51

10
30
42
45

Acknowledgments

We would Tike to thank Robert Bobrow, Wally Feurzig, and Seymour Papert
for various discussions about the pedagogical uses of LOGO. We are
also indebted to the students who have taken SS-15 for providing us with

numercus insights into the vices and virtues of this approach to

programming.

This paper is based on a talk by the first author at the National ACM-72

Conference in Boston, August 14-17, 1972.

NOTE

This paper is also being reproduced as a Social Science Working Paper.

- i -

Introduction

A computer can be a great device for capturing the
imagination of students, yet for various ©reasons few
students in the Arts, Humanities, or Social Sciences seem to
be amused by these giant wizards. Being somewhat
idealistic, the authors--at the University of California at
Irvine--made another stab at the well-honored problem of
introducing these students to computing.

We knew that we could construct all kinds of "games"
ranging from an enhanced Eliza [1] (a simulated Rogerian
therapist) to sophisticated <chess programs [2] and that
students could be easily persuaded to play these games,
Such ploys can often help students to overcome certain
anxieties about computers, but this was not our primary

interest. Nor were we especially concerned with teaching

-

students how to 'program" per se. Instead we wished to
present the computer as a medium in which students can
formulate ideas and engage in abstract reasoning.

There are numerous students in the Arts and Social
Sciences who are interested in and talented at logical and
analytical reasoning. Often these students have rejected
the physical sciences and mathematics because they dislike

the rigidity of mathematical structures. We suggest that

the computer can accomodate a host of interesting
meta-languages which appear less restrictive and formidable
to these students +than the language of mathematics. By
introducing these languages as a convenient medium for
exXpressing formal theories or mcdels of a logical but
non—mathematical nature, we hoped to provide a context in
which these students could generate complete and unambiguous
descriptions of their ideas.

In addition, some of these meta-languages c¢an in
themselves be sources of powerful theoretical ideas.
Hastering them permits the student to experience the "Ahal!
phenomenon in a formal, non-mathematical domain.

Because of the orientation of these students, we could
not count on their being willing +to tolerate inconviences
inherent in most computing systems. ‘Hot wanting to

prematurely turn them off, we were adamant about satisfying

the following:

Maxim:. The computer language (system) must he
friendly,

If this seems too obvious, we should note that what
constitutes a "friendly" system is just now becoming a
subject of'study'in computer science. For our purposes, we

felt that a "friendly" language (system) would be truly

interactive [3], have excellent debugging and editing
facilities, render meaningful error statements, and possess
a uniform syntax with few idiosyncratic restrictions (e.g.
limits on the lengths of variable names). Since few of our
students had any interest in numeric probléms, we also felt
that "friendliness" would imply a langﬁage which excelled in
symbolic processing.

Fortunately a language exists which embracés many of
these requirements. It is no surprise to discover that this
language was invented for use by children. How natural! Of
course a ten year old child is not going to folerate all the
petty restrictions found in most current systems.: The
language we chose was LOGO [4], Any reader who is not
familiar with this elegant little language is referred to
Appendix 1 for a brief introduction. .

In the next section we will discuss our course and somne
of the techniques we used. We will proceed by example,
describing some of the problems we assigned and discussing
the motivation behind each. We will consider how some
theoretical ideas about compﬁtation can be explained
intﬁitively and how, by choosing some metaphors that afe
particulary meaningful to‘.the non;science student, these
abstract concepts éan be presented effectively. 1In the last

section we will describe some of the limitations and

hinderances we encountered and offer some suggestions for

circumventing them in the future.

An Approach

Although our primary goal was not to teach programming
per se, we did require our students to write and debug
programs. Each week's assignment reguired about five hours
of work. The homework problems were designed to build on
each other and often involved extending the language by
adding new functions and predicates. Ideally, by the end of
the course, eachAétudent would have created his own version
of LOGO. Since LOGO is a functional language, these
extensions are syntactically indistinguishable from the
original set of primitives. Thié helped foster a notion of
custom tailoring the language.

| In order to encourage a certain style of analyzing
problems, we deleted two constructs from LOGO (which were to
be reinstated later in the course). Fifst, we eliminated
the GOTO statement. This méant that the only way a process
could be repeated was through rebursion. The second
deletion, consistent with the firsé, ‘was the assignment

statement (i.e. MAKL "X" "A B C"). Our purpose in this was

not to be pedantic. Pather, we felt that students coculd
grasp subtle, non-triviai aspects of recursion better if
they were forced early to write recursive programs.
(Students who already know FORTRAN-like languages often take
months to gain the same familizrity with recursion that a
neophite acguires in a few weeks.)

We do mnot wish to argue the virtue of recursive versus
iterative procedures frem & programming point of view.
Nevertheless, throggh recufsive programming we guickly

immersed the students in:

A) some interesting +theoretical problems which are
more logical than mathematical, and

B) some of the deeper problems of how names
(variables) take orn meanings (values).

This latter pfoblem is most apparent in a recursive context
where the student is aften baffled by what appear to be
paradoxés (i.e. variables take on different values without
specific reassignment). Once these "paradoxes'" are
encountered, a full treatment of how names take on'meanings
is then.more‘interesting and informative.

In conjunction with the removal of the assignmentvand

"GOTO" statements, we imposed three Cardinal Rules:

1. No function (procedure) can be more than seven
lines long (42 for psychologists),

This, our most important rule, encouraged the student to
decompose his problems hierarchicallv and then solve them by
stepwise refinement. He hooed that bv making this
restriction we would get the students +to use a top-down

apoproach to problem solvine, (See ¥irth 731 for an

excellent technical discussion of this anoroach.)

2. The name of everv function should be semanticallvy
meaningful, (Remember that in LOGO names can be
of arbitrary length.)

This rule not only helped us in assisting a student to debug
his program, it also 4aelped him to clearly delineate the
purpose of each of his functions. In addition, it helped to

keep functions short, thus reinforecing Rule 1,

3. Access to data must be done throuch function
calls, :

This rule was not introduced until fairlyv late in the course
since Maccessine a niece of data" thad hardlv anv meaning to
2 Dbeginning student. (The reasons for this rule are

discussed later on in this paper.)

Environment

Before launching into a description of some typical
problem sets, we would like to comment on some environmental
factors that proved to be extremely important.

The first year we taught +this course, we had four
terminals placed on a large square table. These terminals
Wwere more or less dedicated to the LOGO students and the
brecedent was established that ths students could help each
other as much as they wanted.r We placed no time limits on
the use of the ﬁachine. This was possible only because LOGO
is so 1inexpensive to use.[6] 1In addition, as we had fey
available manuals; we encouraged students to try out a
command or procedure to see what 1t did instead of
consulting a manual. As a result, the students were always
busily showing each other newly discovered "secrets" of
LOGO. The side effect of this was that thev were learning

preliminary skills in debugging -- i.e. given a procedure,

discover what it really does.

A Segquence of Problems

Since LOGO contains only a few primitive proceaures (we

use the tern

1t

"procedure®

Wwas ©reasonable to ask students

for their first assignment:

interchangeakbly

to create

with "function'),

Some new ones

Write a predicate to be called HEUBERP which is to have
two arguments and vwhich checks +to see 1If its first
argument 1s contained in its second. If it is, then
MOHMBZRP should output "TRUE™, Otherwise it should
output "FALSE", ;

The purpose of this assignmernt was twocfold. First, it

exposed the student to the sinplest form of recursion.
Second, it «called to their attention the possibil itg of
adding new predicates, as well as operators, to +the
language. We also established the naming convention that
aﬁy procedure which is to behave as a pfedicate (i,e.

outputs "TRUE" or "FALSE") should have a "P" as the last
letter in its name. This helpeq the students . to remember

which functions could follow a TEST command.

A solution to this problem might be:

-

K - LHECKS FOR Tf@w@ﬂmuc ca/von,fzog,gu;;axfe
TO MENBERP /ELEMLCNT/ /SET/ /
10 TEST EMPTYP /SHT/ ' QUECKS IF THE CURRENT E\RST E\emenT
20 IF TPUL OQUTPUT "FALSLY ., OF /3ssr/ FQuALs THE DeSireDd
30 TEST IS /ELENLNT/ TIRST OF /°£'r/_/ Ectmenr
40 IF TRUE OUTPUT "TRUL"
50 OUTPUT MIMBERP OF /ELEMINT/ AMD BUTFIPST OF /SET/—7
END

RECUZSES Wittt THE Currenvt /set/
MINUS ITS f18ST ELEMENT

In order to illustrate and explain the underlving
structure of recursive functions like the above, a
diagrammine convention was introduced alone with some
heloful terminoloev ,777 We consider the "MEMBERP" predicate
to be the name of a "little brother"” who has numerous
identical twin brothers -- all <called bv the same name,
MEMBERP, This family of MEMBERP brothers works as follows:

suppose we make a request of a MEMBERP brother, i.e.

Figure 1 -- A MEMBERP Brother

(reraeren)
MEFBERP

The first MEMBERP brother. executes. his definition by
first testing if /SET/ has any elements. It is not empty,
so he tests if /ELEMENT/ (i.e. ™MA") is first of "XYAZ",
Since "A"™ is not equal to "X", mwIgn outputs "FALSE" to

"TEST" (line 30) causing line 40 to fail. We are now at

line 50. But in order for this first little brother to
complete line 5C, he must call fo; assisténce from one of
his twins. He requests that his brother tell him the answer
to a slightly simpler problem; he asks him to compute:

MEMBERP "A"™ "YAZ". This process continues with each brother
calling on another brother to do a slightly simpler task
until finally &a brother is <called who can complete his
simpler task (possibly +the null task). This last brother
then sends his answer back t§ the Dbrother that «called him
enabling that brother in turn to finish, (i.e. complete his

line 50), and so on:

Figure 2 -— A Chain of MEMBERP Brothers

JELEMENT/="4"
/SET/="AZ"

The explanation omits one very iﬁportant construct
which we dub "conceptual clouds." A conceptual cloud is used
to determine the "world-view" of a particular brother. That
is, it defines what he knows or what meanings he ascribes to
the names in his particular world. Each VEMBEPP brother has
& conceptual cloud that looks like those above the men in
Figure 2. So as far as the first brother is concerned, the

meaning of /SET/ (what /SET/ denotes, i.e. the Tt

=

ING OF
"SET") is the string "XYAZ". His next brother in line has sz
different world-view: in his conceptual cloud /SET/ has the
meaning "YAZY,

Surely by now the reader must think this description is

trivial. We ask indulgence, for without such detailing the
next problem would probably stump many of us. Its solution

is non-trivial without considering the world-views of each

little brother. .Pushing toward a deeper understanding of

recursion, we formulated the next task:

Write a procedure (say MAKEPRETTY) which prints a given
string and then prints it again chopping off +the last
letter and so on until there is one letter left. At
that point it then starts backing up by printing two
letters, then three, and so on. For example:

*MAXEPRLTTY "ABRC"
AEC

AR

A

AB

LBC

Writing a procedure to achleve the first part is

simple:

TO HAXEPRITTY /¥/ o~ er tnE
10 TEST LIPTYP OF /X/ —— CUECkS FORZ TEipminATING ONDITIE g Cus 10
20 IF TRUL STOP

30 PRINT /X/ ,

40 MHAXZPRITTY EUTLAST COF /X/ RECUZSES ON TRUNCATED STrZiNVG
END) OF L eTTELS

Such a procedure given "AEC" as an input would print out:

ABC

AB

A
The catch is now to ‘unfold this process by somehow
recapturing what /X/ wused to be. A particularly elegant

solution is to add Jjust one 1line to the above procedure,

namely:

TO MAKEPRETTY /X/

10 TEST CHPTYP OF /¥/
20 IF TRUE STOF

30 PRIIT /X/

40 MAKEPRETTY EUTLAST OF /}:/‘l RETURNS FROU RECLRSION

AND THEpS PEOCEEDS TO
FEINT /x/

n
i
\"

50 PRINT /X/
END ‘

The reason this modified procedure works is that as each
HAKEPRETTY brother returns to his calling brother, that
brother still retains in his conceptual cloud exactly the
desired information to conplete his task. Build the little
brother diagram with +the appropriate conceptual clouds and
see how well it fits into place. Hote that the MEMBERP
procedure uses a form of recursion so trivial that
converting it to an iterative brocedure. 1s quite easy. The
HAKEPRETTY procedure presents quite a different situation.
Converting +this procedure into an iteration would require
introducing temporary storage locations, indicies, and so
on.

At this point in the course, rather than develop any
further the structure of conceptual clouds and their
relationship to names, we gave a fairly heavy dose of

programming assignments. Examples of these assignments are:

A) Using the MEMBERP predicate write a VOWELP predicate
which determines iIf a given letter is a vowel., For
example:

TO VOWELP /L/
10 OUTPUT MLMBERP /L/ "AEIOUY
END

B) Write a set of procedures which remove all vowels from
each word 1in a sentence. Use these procedures to
explore how well one can recognize the words of a
sentence without vowels printed as contrasted with

devoweled words in isclation:

TO SCAY /S/

10 TEST LHPTYP /S8/

20 IF TRUE OUTPUT /ENPTY/

30 OUTPUT SLUTENCE OF (RENOVE-VOWLL FIRST OF /S/)
AND (SCAXN OF BUTFIRST OF /S/)

END

TO REINOVE-VOWEL /W/
10 TEST EMPTYP /W/
20 IF¥ TRUE OUTPUT /EMPTY/
30 TEST VOWELP FIRST OF /W/
40 IF TRUE OUTPUT REMOVE-VOWEL BUTFIRST OF //
50 OUTPUT WORD OF (FTIRST CF /%/)
AND (REMOVE-VOWEL BUTFIPRST OF /W/)
END

We have included some typical solutions to these
problems in order to impart some feeling for the simplicity
of LOGO. In fact, most solutions are so simple and the
amount of typing so minimal that often a student will
explore different strategies for solving the same problemnm.

This in turn often provokes discussions of what makes one

solution "better" ‘than ancther.

The next problem invclves a short excursion into number
theory. Our purpose was to show the student how one might
write some quick and dirty procedures in order to test a
hypothesis. Although we were intially hesitant to introduce
any numeric or algebraic problems, this problem was well
liked and helped tie together many of the points developed

during the first few weeks of the course.

Problem: Explore the following conjecture:

Any nunber can be made into a synmetrical nurber Ly the

following operations: First test to see whether the
number is already svmnetric. if so -- wyou're done.

Otherwise, add to this number its own reverse and
repeat., TFor example, suppose we choose the number 124.
Since 124 # 421, it is not already symmetric. So, add
421 to 124 which gives 3545, Is 545 symmetric? --
YES! For another example, try 79. 79 # 97, So add
87 to 79 which gives 176. But 176 is not synmetric, so
add to it 671 which gives 847. Will this process end
by reaching a symmetric number? '

Just prior to this assignment the students had written a
procedure (called M"REVERSE") which forms the reverse ~of a

word:

*PRINT REVERSE CF "ARcC™

CBA

This procedure was typically written:

TO REVERESL /W/ PULL OFF THE (AST (ETTEZ oF
10 TEST EHPTYP OF /v/ THE CURRENT Wol2D AnD PLACE

20 IF TRUE OUTPUT /ENPTY/ ”/’,,,,/f”" " FirsT
30 OUTPUT WOPD OF (LAST OF /3i/)

© AND (REVERSE OF BUTLAST OF /W/) — rtcurse on THE REMAINDER
. OF THg wOE€D,

END

Students quickly realized +that they <could use the

REVERSE procedure to test a number for symmetry:

TO SYMP /HUMBER/
10 OUTPUT IS /NUNBER/ REVERSE OF /NUMBER/ ——— gv pesiviTion
END :

Hence, to see whether a wparticular number can . be made

symmetrical, we can perform the following procedure:

TO CHECKSYHP /N/
10 TEST SYiiP OF /l/
20 IF TRUE OUTPUT "TRUE"

30 OUTPUT CHECKSY!IP OF SUM OF /N/ AND REVEﬁSE OF /N/
END

We hoped that by this time most of our students could write
such a program in less than half an hour, thus leaving them

free to expand the assignment in various directions. For

example, most of the stucdents wrote a procedure to generate
the integers and applied CHECKSYHP on each successive
integer. lHany went farther and computed distributions on
the depth of the recursion for each number and +then lookeg
for vpatterns cn this distribution, At some point, each
student inevitably stumbled on the number "196" which leads
to a recursion so deep that LOGO runs out of memory. This
lead <o eﬁdless discussions of whether such conjecturgs can
be settled definitely with a computer, and if so, how. It
also showed the students how easv it can be to synthesize
procedures to probe a conjecture, thereby lessening
dependence on "canned" progranms.

Before turnihg the students loose on major projects
(which occupied the last several weeks of the course), we
introduced some preliminary ideas on representation of
informaticn, data structures, and how names take on meaning.
For the student of cognitive psychology this was probaﬁly
the most important aspect of the course, but nearly a;l the
students found that this material contributed greatly toward
their undérstanding of how representaticns of knowledge can
be modeled.

Toward this wend, we ~gave the students the task of

creating the simplest form of a Quillian-like semantic net

[8] and a fixed format question answerer which would ‘use the

- 17 -

net. The behavior of +the «question ansverer

is

characterized by example. Assertions are of the forn:

Felix is a cat

e

Cat is an aninal

and questions are of the form:

Is Felix a cat?

Is Felix an animal?

At this Jjuncture we had to allow the use

assignment statement (i.e, HAKE "xn ngwy, Th

e

best

first

apparent way to model the above assertions is to use the

"MAKE" statement as:

HMAKE "CAT"™ "ANIMAL"

MAKE "FELIX"™ "CeT™

which results in

/JFELIX/ IS "CAT"

/CAT/ IS MAHIIAL"M

\

“That is to say that the THEING {(or wvalue) of "FELIX" is "CAT"
and the THING of "CAT" is MANIIAL", (In this same manner
n-ary trecs can Le built, since the thing of a name can also
be a sentence consisting ¢f the daughters of the name.) This
approach for linking information has some subtle problems

that can challenge even the Dbest student. For example,

suppose we have the following data:

/A/ I8 "Rm"
/B/ IS men @"} '9@—;@
/C/ IS Up"
/X/’ IS "Y"

/Y/ IS nzn @——}@—e’@

in which the last node 1is being located by +the recursive

© procedure:

TO FIND-LAST-NOIDE /Y/
10 TEST EHPTYP THING OF /Y/

20 IF TRUE OUTPUT /Y/ :
30 OUTPUT FIND-LAST-NODE OF THING OF /Y/
END 1

TUE NEXT gLeMenT

Executing this procedure with the input "A" one gets back
"D" as the answer. However, asking for FI!ID-LAST-NODE of
"¥" causes. a baffling problem -- the procedure enters an

infinite loop because the sccond FIVD-LAST-NODE brother asks

for the THINA OF-"Y", Rut we hannened to use the svmbol "YM
as the name of the innut, (i.,e. function arcument) and this
meanine of the variable takes oprecedence over any meaning
assigned external *to the function call. Hence when the
THING OF /Y/ becomes "Y" we get into an infinite recursion.
Most students stumbled across this avparent "bug" in one way
or another and were totally at a loss to explain what could
be happening.

With their su;picions and curiosity aroused, we were in
a position to develop th2 next powerful idea: how functional
arguments and local variables are handled with push-down
stacks. Once this idea was understood, +the students were
more willing to consider alternative techniques for linking
information to names. We therefore introduced the notion of

a oproverty list as a means of storing information which

i
7]

not local to the e¢iven oprocedure, Althoush LOGO has no
direct mechanism for ovproverty lists, it is +trivial for
students to "provide" LOGO with such capabilities.

The key 1idea centers around LOGO names (or n#mbers)
being arbitrarily long strings of letters. This allows us
to synthesize é unique name from the given name of the
property and the name of the wvariable +to which the
information is to be attached. For.example, to represent.

the above data chain, 1l2t us invent the Droperty-"NEXT" and

define it by the function "RET-NEXTY., i.e.
5

TO GET-NEXT /X/
10 OUTPUT THEING OF (WORD OF "SNEXTS"™ AND /X/)
END I

SYNTHESIZ e PLMAROPRIATE EW S¥rmgoL

The above <chain would have the same modeling structure,

i.e.,

FELIX = CAT = ANIMAL

but its implementation would look like:

/SNEXTSFELIX/ I] "CATY
/SNEXTSCAT/ IS MANIMAL"M

(The "$" 'svmbols are used simplv to reduce the chance that
such a name could croop up in another context.)

To store such information one might write another one line

procedure called PUT-NEXT:

TO PUT-NEXT /NAME/ /VALUE/

10 MAKE (WORD NF "SNEXTS"™ AND /NAME/) /VALUE/
END : ‘ ‘

[N
rt
rf
(]
:1

With these proceuures TINL-LALST-1CLL could Le rewr

TO0 FIND-LAST-UCLL /Y/
10 TEST EIPTYP CF GLT-NLYT /Y/
20 IF TRUL OUTPLT /Y/
30 OUTPUT FIND-LAST-UODL OF GLT-NLINT /Y/
EMD
From this example one can gusss that efficiency is rot
our main concern. Instead we are trying to convey a style

of problem solving in vhic
(i.e. How do we implement GET-NEXT?) and global solutions
sketched out without concern for snmaller details. Cardinzl
Rule 3, mentioned <earlier, encouragea writing programs in
this fashion. This problem solving method has +the added
advantage of allowing one to experiment with different
representations of information simply by modifying a few
functions.

Before +turning the students loose on their final
projects, we tried to unify some of the above ideas by
giving them the «classical task of ordering a 1list of
distinct words. The approach we asked the students to
consider was that of growing a tree representation of the
list of words and then fecursively searching the tree and
outputing the ordered list. The tree is constructed so that

all nodes in the left sub-tree of a node are

lexicographically less than that node, and all nodes in its
right sub-tree are freater, Once this is achieved, the
student next must discover <the simple but elegant way to
search the tree, building up a scntence of the words in
alphabetical order. Recursively stated, the key concept is
to create a list (sentence) of all the nodes in the left
subtree, then adjoin to the end of that 1list the current
node and finally adjoin +to the end of that 1list all the
nodes in the right subtree. The left and right subtrees are
smaller than the original tree and hence by recursing on the
subtree we eventually encounter +the trivial three-node

subtree:

. - where A or C are
%.G e possibly null

which, on applying the above steps,‘ férms an ordered list
(A B C).

The close correspondence between the way the tree is
structured and the way it is searched is not accidental. Ve
hoped that this example would illustrate how careful
consideration of the data representation problem can
contribute to the efficiency and case of the total solution.

Postponing any decisions on how. the tree is actually

stored, we can write a top level ORDEP vrocedure which walks
over the tree gathering nodes in their alphabetical order.
Note that there is no output until the walk is completed, at
which time a sentence is returned which consists of the

ordered words.

TO ORDER /NODE/

19 TEST TERMINAL-NODEP /IQDE/

20 IF¥ TRUE QUTPUT /EMPTY/

30 GUTPUT SENTENCES NOF (2PDER GET-LEFT /YODE/)
AND (RET-VALUE oF /NODE/)
A¥D (ORDER AET-RIAHT /NODE/)

END

Of course, before ORDER could be executed we would have
to specify the four data accessine functions TERMINAL-NODEP,
GET-LEFT, GET-VALUE, and GET-RIMHT. (Aopendix 2 shows one
possible implementation of these functions and a tree on

which ORDER could be applied.)

One of the more interesting aspects of this problem 1is

that the shape qf the tree depends upon the order of the
initial 1list of words. Once students discovered how to
write a tree-growing orocedure, we posed such puzzles as
finding the orderines of the the initial 1list of words that
caused the most lonjsided or well tralanced trees to be
cenerated. Bv using the TRACE %eature, the students auickly

discovered a relationshin hetween the shane of the trese and

- 2L w

the depth of the recursion.

Hy

By the time we inished our discussion about sorting

and trees, most of the students were ready to proceed oﬁ
their own projects, bLut some were discouraged. Fer the
latter students, we provided a two-week excursion into
computer art. For the former, we ©posed a choice of
projects. Some of these are summarized in the next

paragrapns.

Projects

One of the simplest projects involved the generatiocn of
political slogans o;er a basic sentence structure which has
"slots" that are to be filled in. Each kind of slot has an
associated 1list of sub-expressions and the ©program simply

selects at random an element from each list and places the

expression in the appropriate slot. As a programming
exercise this project is undemanding. Constructing good

lists of sub-expressions, however, introduces the student to
the problems of semantic anomalies. The immediate result of
this project was to impress the student with the tight
structure and slight ccontent of .siogaﬁs. Cur primary

purpose, however, was to show how easily a computer can be

caused to generate something which, superfic

b
ol
PJ
—

L
[J]
+
[

2ast,

resembles an act of intelligence.

A more complex project was

r+

o C

H
[}

ate a prceccedure which
could randomly generate sentences with a non-deterministic,
finite-state grammar. If the student completed this task
satisfactorily, we suggested that he invert the process and
write a procedure which could decide whether or not a
sentence was in the given language. Thé non-deterministic
nature of the grammar leads the student to the discovery and
comparision of depth-first and breadth-first strategies,
What is striking about this project is that while the logic
involved is non-trivial, the process is inherently recursive
and can be executed with a simple procedure. (See Appendix

3 for a typical solution.)

.Another project originated in Rubinstein's experimental
LOGO course for the Elind. The student is given a
dictionary and is asked to write a program which will print
out the definition of a word, then expand each non-primitive
word in that definition into its definition, and so on. The
solution to this problem 1is, of course, inherently
recursive. For the 1initial dictionary, ve chose a
non-circular but wunusual subset of the !leriam Webster New

Collegiate Dictionary:

/Sdhow/ is Man Arab lateen-rirged vessel with a long
overhang forward, a high pcop, and an open ua

/$poop/ is "deck above the upper deck abaft the mi

/Smizzen/ 1s "mizzenmast" ’

/Smizzenmast/ is "aftermost mast of a two-masted vessel”

/$abaft/ is "to the rcar"

/$lateen/ is "trizngular sail, extended by a long yard,
slung to the mast"

/$yard/ is "long spar”

/$spar/ is "mast™

/Swaist/ is "that part of a vessal's deck between the
quarter-deck and the forecastle"
/$forecastle/ is "forward part of vessel"

(See Appendix 4 for solution.)

Other less formal projects involved nodifying the

e

question answerer previously discussed to work with semantic

“

nets containing cycles, and to answer questions like: "Tell
me all you know about 'Y'."

The above is only a small subset of the projects that
have been attempted, All of the advanced profects involved
symbol manipulaticn as contrasted with numeric computation.
A11 of them shared the Ercperty that once a cleaﬁ attack on
the problem had been achieved, only a small amount of code

was necessary to effect a solution.

Computer Art

Our motivation for introcducing 'computer art" was
two~fold. First, those students who have trouble catching

en to LOGO seldom have any feeling for what we call the

structure of a process. For them, a function or a procedure
is a2 black box whose components remain a mysterv. Computer

drawings often can clarify +these issues since they enable

“

the student to "see" 1inside the procedure Ly viewing on the

plotter the result (or execution) of each step. In a sense,

the plotter can act as a very deta

[

led and wuseful trace

feature.

The second reason for introducing computer art applies
equally to all of our students., Inevitably, they realize
how dumb and mundane the operations of a computer really
are. How, then, can a computer generate sometﬁing new? Hew
can it reveal properties of a theory heretofore unknown?
In other words, how can a computer synthesize anything
surprising (besides bugs)? Computer art provides a
beautiful vehicle for the exploration of such questions. In
the picture Lelow, for example, one cannot help Dbut be
impressed by .the totally unexpected Gestalt effecct of a
simple operation repcated a large numbér of times.‘ First we.
askéd our students to visualize the effect of this simple

problem.

1. Consider a co-ordinate system with its origin at
the center of the paper. Imagine a square in the first
quadrant with side of 1 or 1 1/4 inches.

t

!

- - - - -—% axig

|

!

l ®

I? a X%
2, Draw the scuare on the paner and then rotate and
shrink it a2 - little. Reneat this operation several
times (e.g. six).

3. Copy the resulting figure into the other quadrants
as follows: Reflect the f re In the Y axis, forming a
figure with squares in the first and second quadrants.
Now reflect this whole picture in the X axis, creating
a figure with squarss in each quadrant.,

i
[
!
i
}
f

—_ e o b

u, Yove the resultine fisure so that it is Sust in
the first aquadrant, restine on the axes, as the
oriesinal snuare was,

5, Repeat sten 3.

Figure 3 -- Resulting Design of Computer Art Description

- 30 -

We then permitted them to compute the effect and our point

was made!

Computer drawings provide an interesting metaphor for

linguistic proce

n

ses. Throughout the course we stressed how

“

a process could Le used to describe a static situatiocn.

Consider the problem of descriling the above figure down to

the details of all its surface var

[
o
+
e
O
o]
]
4]
jol
(o
0
o]
g
"o

-
4]
ES
e
et
e
®
n
.

b

Then let us note how simple it is to represent the structure

of this surface pattern by the structure of the process. It

is not too far fetched tc think of the ©procedure generating

the figure as the deep structure of this surface pattern.

]
¥
4]

While this 1is just a metaphor, we feel there is some virtue

=
}.—J
(&N

in it. Visual figures that appear w ly complex often have

s when consicdered fronm t

¥

simple, insightful descripti

o
o]

o
=

-

S

point of view of their generating bprocedures. A detailed

<3

—~

account of the pedagogical uses of conmputer art is

forthcoming in a doctoral dissertation by Richard

Rubinstein.

o
=
w
H
(@]

Although we nad talked wvery = little about other

languages, our students expressed the wish to 1learn

something about DBASIC and how it di

Fh

q
b}

s from LOGD.

h

Consequently we devcoctec the last wesck of class meetings to a

survey of BASIC. We discovered that most of the students
had little difficulty irn understanding and using BASIC. The
one concept foreign +tc¢ theanm was the "FOR ... NEXT"
structure, but they were able tc see this as a trivial
recursion. There was also some confusion caused by arrays.

In some cases thls was caused by their lack of understanding
of matrix algebra. To ocur chagrin, however, even those with
knowledge of matrix algebra were not able to see how to
trivially introduce matrices into LOGO.

From our limited experience we have found that the

transition from LOGO to BASIC is fairly easy for most

students whereas the transition from BASIC to LOGO is ofte

o]

i

incredibly difficult. The problem in the latter case is
that 1f a student initially experiences iteration, his
understanding of recursion is often limited to the simplest
form where the last statement of a function 1is a call to
itself. Even within this context he ©becomes baffled if
extra arguments must be introduced to keep track of the

depth of recursion (simple indexing).

j—
")
[9]
fu
ot
[
0O
3

A Comp

We did encounter one difficulty with using LOGO that
was completely unexpected. fne impressive aspect of the
language is that interesting, logically complex problems can

£

be coded in surprisingly few lirnes. Th

q

(£

3 was one of our

o

>

reasons for choosing LOGO,

t

ut it was also a characteristic

t
H

that caused several problems. In particular we discove

[a¥)

e

3

}e

s

that most functions had only one or two Key 'schema.®

meant that if a student cculdn't figure out how to write a

function, we could not slowly lead him down the path of
discovéry. Host hints we could give him would be either too
obscure and therefore worthless or else divulge too much
and leéd immediately +to the solution. It also created a
problem when students helped =ach other, since any help at
all often meant the two solutions would be iéomorphic. To
some extent the problem is not inherent in LOGO itself, but

is inherent in the level of problems we thought reasonable

for the course.

Conclusions

An important aim of the course was to help our students

develep a sensitivity to precise problenm specification and

foae

then to expose them to some problem solving étrategies. The
processes of decomposing a pfoblem into subproblems,
enhanced through the paradigm of functional programming and
bottom-up debugging are clearly arts, requiring attention,
effort, and experience to develop., OF course, the wvalue of
learning such methods rests heavily on their transferability
to othér areas of concern to the student. By stressing
problems Involving symbol manipulation instead of numeric
computation we hope to increase the <chance of such
transferability, The notions that computers can be made to
respond sensibly to in?ut (such as English) and that Precise
specification can be nade of how "information"™ is
represented opens the door to thinking about the Problems of
loﬁg term memory, the representation of knowledge, and of
course, the nebulous domain of natural language
comprehension,

Any evaluation as tc how well we met these stated aims
or goals 1s incredibly difficult, Appendix 3 gives a
summary of the students' responses to standard course
evaluation forms provided by the 1ICS Department. Although
these student reponses were surprisinglyv favorable we cannot

be sure of the lasting effect of the cdurse.

Footnotes

Joseph Weizenbaum, "Eliza —— A Computer Prograﬁ for the Study of
Natural Language Communication Between Man and Machine”, Communi-
cations of the ACM, Vol. 9, Wo. 1, Jan., 1966.

R. Greenblatt, D. Eastlake, & S. Crocker, "The Greemblatt Chess
Program’, Proceedings of the Fall Joint Computer Conference, 1967.

Although most languages can be made to be interactive, few have been
designed for promoting or facilitating meaningful interaction.

There are several centers developing LOGO and each has various
documents describing their version of LOGO and, of course, their
research. The following three reports provide a flavor of two
of these centers:

a. Wallace Feurzeig et.al., Prograrmine-Languasces zs a Conceptual
Framework for Teaching Mathematics, Report No. 2165, Vol. 1
Bolt Beranek and Newman Inc., June 30, 1971.

b

b. Seymour Papert and Cynthia Solomon, "Twenty Things to Do With
a Computer", Artificial Intelligence Memo No. 248, LOGO .Memo

No. 3, Mass. Institute of Technology, A. I. Laboratory, June,
1971.

¢. Seymour Papert, "Teaching Children To Be Mathematicians vs.
Teaching About Mathematics", Aritificial Intelligence Memo
No. 249, 1LOGO Memo No. 4, Mass. Institute of Technology, A.I.
Laboratory, July 1971.

Niklaus Wirth, "Program Development by Stepwise Refinement",
Communications of the ACM, Vol. 14, No. 4, April 1971.

The LOGO interpreter consumes 5K of shareable core on the PDP-10
and each student requires around 2K additional core for his.
programs and work space.

‘Wallace Feurzeig,Seymour Papert, et.al., Programming-Languages as

a_Conceptual Framework for Teaching Mathenatics. Report No. 1889,
Bolt Beranek and Newman Inc., Nov. 30, 1969.

- 35 -

LOGO has two

A word consists

numbers, or other
arbltrary sequence

Examples
a)

B)

Since LOGO sp

contains a numbe

APPENDIN 1
£ Brief Sketeh of LCGO
basic data types =-- words and sentences.
of an arbltrary scqguence of letters,
symbols, and a sentence consists of an
cf words.
"ONE™, "S5", and "ABCDEFCHIM are all words

where the quotes mean take the included
Sequence as a literal.

"THIS IS A SENTENCEY
sentences,

and "5 32 ABCDEF" are

ecializes in non-nuneric it

computations,

of

T procecures for tearing apart and
concatenating data items. There are four basic functions
for tearing data items apart: FIRST, BUTFIRST, LAST and
BUTLAST. These act in the following manner:

FIRST OF "ABCD"M™ --> man

FIRST OF "HI OUT THLREY --> "HIV

BUTFIRST OF "ABCD" --> "BCDW

BUTFIRST OF "HI OUT THLRE"™ --> "QUT THLRE"

LAST OF "ABCD" --> m"pt

LAST OF "HI OUT THLRI" --> "THLRE™"

BUTLAST OF MABCL" --~> ™a3zgn

BUTLAST OF "HI CUT THEREL"™ --> "HI OUT"
(Note: the words "OF" and '"AND" are noise words which are
iecnored by LOMO but increase tle readatility of the code.)

36

Each of these functions expects exactly one input and

outputs the resultin

Concatenation of objects’ 1is achieved in LOGO through

two functions-- WORD and SENTENCE:
WORD QF MAB™ AMD M(CrDM -2 "ABCDM
SENTENCE "AE" AMD "(Chn -——> "AR CDU

Both the WORD and SIHTINCE functions require exactly two
inputs. Two closely related functions, "WORDS"™ and
"SENTEIICES"Y, take an—arbitrary number of inputs.

Inputs to a function need not be literal strings tut
may be the outputé of other functions. An example of such a

composition of functions is:
PRINT BUTFIRST CF WORD OF "ABM™ AMND YCD"

where WORD outputs "ABCL"™ which is the inpﬁt to BUTFIRST
which outputs "BCD" which is the input to PRINT. A more
profound example of functional composition is found in the
extension of LOGO's random number generator (which outputs
one digit numbers) into a procedure which produces two digit

randem numbers. Since numbers are treated as strings of

characters,

WORD OF TAIDCHN AID RANDOI

the outputs of the two invocations of PRAYDOY. Talanced

ae)
ot
O
(@)
t4
o
(@
P
£
w

In order to add the above construct to the language we
need to define a omne line procedure (called, perhaps,
BIGRANDOH). This is accomplished by the "TO" statement:

TC BICTANDON

10 OUTPUT VOIRD OF RANDOI AMT PAMNDOM
END

"OUTPUT™ expects one input (WORD OT RANDC 712 PAMNDOM) and
when executed terminates that level of that procadure,
returning its input as the output of the prccedure. If the
procedure title contains variable names, these names becone
local to the procedure and allow referencing of inpufs.

Additional local variables may be declared with a LOCAL

statement.
HAMES

In the case of LOGO, one speaks of names and the things

that names name rather than of variables ‘and their values,

Assigning things 'to names (i.,e., values to variables) is

performed with a [FAKL statement. For example, the

expression:
MAKE "SE¥™ "MALE"

assigns to the name "SEX" the wvalue "IALLY,

There are two wavs of accessing the thing (value) of a

name, 1f we want to print the thing of SEX, we could do
either:

PRINT THING OQOF "spyn®
or:

PRINT /SEX/ '

That is to say that to fetch the value of X we can ask fop
either THIN OF "X" or simply /X/. Since the thing of a

name can be a name, we can have the following situation:

MAKE "ANIMALM™ "DOGY
MAKE "DOG"™ "FIDC" ,
MAKE "FIDO"™ "MAN'S BEST FRIEND",

The function THING can be composed with itself an arbitrary

number of times, e.g.:

PRIHT MANIMALY --> ANIMAL

PRINT /ANIMAL/ --> DOG

PRINT THING OF /ANIMAL/ --> TIDO

PRINT THING OF TEING OF /ANIMAL/ -->
MAN'S BEST FRIEND

.

In using variables, one must alwavs specify whether it
is the name (variable) or +the thing (valus) that vou are

talking atout. This

e
1-te

s - in contradistinction +to Tmost

languaces where an expression such as:

t
1
=
2
It
-

means that the variable ¥ is to be assigned the value of VY.

Requiring students to always make +this distinction is

pedagogically nice when dealin with a complex symbolic

9

structure in which the name of one cobject may be the value

of another.

TESTS

LOGO also has a collectipn of predefined predicates
which can be used to test for certain oproperties. Each
predicate outputs either "TRUE" of "FALSE" and is usuallv
used 1in coniunction with a TFEST statement., Some basic

predicates are:
ZERNP MUMRBEPP EMPTYP MINUGP WQRD® SFYTEWNEP IS

All of these predicates expect one innut excent "IS" which

requires two since it is checking for identity:
#PRINT IS 'yt mpmw
FALSE
or:
#PRINT IS FIRST OF “HI OUT THERE"™ WORD OF MH" AND "IV
TRUE
The TEST statement rcrececdes a precdicate (i.e. UYTESTY
has either "TRUE or "FALSE" as its input) nd sets a truth
flag which can later be read by the "IF TRUE" or "IF TALSEY
statements. For example, suppose we want a procedurs to
form the absolute value of a number. This can be done as
follows:
TO ABSOLUTE /MN/
10 TEST IS FIRST OF /u/ "-mu
20 IF TRUL OUTPUT BUTFPIZST OF /i/
30 QUTPUT /u/
END
In other words if /N/ is a negative number (i.es. =-543)
s &
then line 10 sets the truth flag to TRUL causing line 20 to
chop off the first character and then output its result
(i.e. 5u3), Otherwise line 30 is cxecuted which sinmoly
3 & P

n/s.

outputs the nunber

b1

APPENDIX 2

The ORDER Program

The purpose of the CRDER program is to walk a binary tree as
structured below and return a2 list (sentence) of the nodes in alpha-
betical order. For this example, the following tree is used:

Figure 4 -- The Binary Tree

- 42 -

*LIST ALL

TO ORDER /IIOGDL/

10 TCDSY TIRHINAL-NODEP /LCLL/

20 IF TRUL OUTPUT /IZlPTY

30 OUTPUT SZUYENCES (OiLDEI GLT-LIFT /N0DL/) &40 (GET-VALUL OF
- /NODE/) AUD (OLDIX CoT-RICLT /uCDE/)

ZUD

TO TERMINAL-NQDEP /NOLL/
10 UTPUT IS /uCDL/ msn
ElD

T0 GET-LEFT /NODE/
10 OUTPUT FIRST OF THING CF /MNODE/
END

TC GET-VALUL /MNODE-NAME
10 OUTPUT BUTTT“Qm /oD
END

ar 4 I
-NAMD /

TO GET-RIGHT /NODE/
10 OUTPUT LAST OF THING OF /¥ODE/
END

/S$CAT/ IS "S$CAR SLUMPM
/SCAR/ IS "SAPPLE =t
/SLUILIP/ IS "$DOG SPEAM
/$PLA/ IS "& SzoTM
/$Z0T/ IS "&oan

/SAPPLE/ IS "$ANT qBFPh”
/SANT/ IS m% an

/SBARK/ IS "% an

/$D0G/ IS "% wn

#*TRACE ORDER
#*PRINT ORDER OF "S$CAT™
ORDLR OF "gCAT™
ORDER OF "SCARM
ORDER OF "GAPPLE™
ORDER QF M"SANTH
sORDER OF M"&nw
ORDEP. OUTPUTS "7
ORDER QF W#n
ORDER oUTPLTS "V
ORDLT. QUTPUTS m"ANTY
ORDEPR OF "aRATKY

- 43 -

ORDER QF n&r
ORDER OUTPUTS "0
ORDER QF man
ORDER OQUTPUTS "
ORDER OUTPUTS "R/ RKV
OPDLR QUTPUTS "ANT APPLE BARKM
CRDER OF m&n
ORDER QUTPUTS "M
ORDER QUTPUTS "ANT APPLE EBARK CARM
ORDER NF ®&Lurpn
ORDER OF "dneow
OPDEF OF usro
ORDER QUTPUTS mw
ORDER OF m&w
CPDER QUTPUTS "n"
ORCLE OQUTPUTS "DoOGM
ORDEER OF "SPTAM
ORDER OF mn=n |
ORDER OQUTPUTS ™
ORDER OF "szZoTw
ORLER OF m&w
ORDER OUTPUTS ™0
ORDER QF M=
ORDER OUTPUTS "v
ORDER OUTPUTS "ZOQT™"
ORDER OQUTPUTS "PELA ZOT"
ORDER OUTPUTS "DOG LUNP PLA ZOTM
ORDER OUTPUTS "ANT APPLT EARK CAR CA
ANT APPLE BARK CAP CAT DOC LUMP PEA

- UL -

PEA

APPENDIX 3

The PAPSE Proocram

The nopurpose of +the PARSE oproecram 1is to determine
whether a given sentence is in the grammar determined by a
finite-state transition network.

Figure 5 -~ The Finite-State Transition Network

- 45 -

TO PARSEP /STr/
10 OUTPUT WALXP GET-0UTS
END
TO WALKP /QUTLIST/ /STr/
10 TEDST BOTHE (TLPUINALP
20 IF TPUL OUTPUT "TRULM
30 TEST EITFER (ZpTVYD
40 IF TRPUE OUTPUT YFALSEH
50 TEST IS (FIRST /OUTL
€0 IF TRUE TEST WALKP (

(BUTFIRST OF /STPR/)
70 IF TRUE QOUTPUT "TRUE"
80 OUTPUT WALKP BUTF
END

T A

TO GET-0UTS
10 OUTPUT
ELD

ME/

wy fial Dy

THIHG oI (WOR

TO TERHINALP /LIST/

10 OUTPUT IS /LIST/ w=avw
END

/$S1/ IS "THE §2"

/$S2/ IS "OLD S2 TOY S3
/$S3/ IS M"WAS Su WAS Sgn
/$SL/ IS "BROKEN % HIS #w
/$S5/ IS "THAT SV

/8S6/ IS "MAN san

/$S7/ IS "CAR §S3n

/$S8/ IS "SAID S5"

/$S9/ IS "HIS sio0".
/$810/ IS "sou's #n
“PPINT PARSLP OF "THE TOY
TRUE :
#“PRINT PARSEP Ol "THE OLD
FALSE

%“PRINIT PARSLP OF "/ B C"
FALSL ,

“PRINT PARSLP OF "THL OLD
TLUL

- -

@Oy A

D

"S1M AND /STR/

D ~

rtr w»n

3 -]

(@]
2
3

~3
[

[I

LI
IsT/ Yy a7 (

Yy (FIPST /STPR/
UTS OF FIRST OF

TCY 87 OLD sg™

BROKENT
SAIL TiHAT THIZ OLD
TCY LS BROKZuv

ST/) AYD (LMPTYP /STR/)

SAID THAT

TEDMINALP /2UTLIST/)

THE

)
BUTFIEST OF /OQUTLIST/)

ToY™"

“TRACL VALKP
*PRINT PLRSLP OF "THL 0L MAN SATD YRAT TET TOY CAP WAS HIS goxr'gn
VALKP OF "TIIE €2 AIID "THE OLD “IAY S2IT TLAT THE TOY CAR WAS IS gSeitgw
WALKP OF "OLD S2 TOY S3 TCY S7 CLD Sgv &40 U"COLD AN SAID THLT THD To%
CAR VAS IS gsco oy
WALKP OF "OLD S2 TCY S3 TCY 7 OLD S6" ALD WAL SAIL TILT THD TCY
CAR WAS HIS soltgh
WALKP OF "TOY 53 TCY §7 QLD S6™ ANL "iIill SAID THAT THD 70Y CLT. WAC
HIS Soitgy
WALKP QF "TOY &7 CLD S&™ il "ol SLIZ THLT THD TCY CaRn WAS IS
soirgn
WAaLKP GF "GLD gcen iD O VIHALN SAIL THAT THE 7 CAR WAS IS
soNHtgn
WALKP OF "™ AND "UILN SAID THAT THE TOY CAR WAS HIS sonrem
WALKP QUTPUTS "FALSL™
WALKP OUTPUTS VFALSL™
WALKP OUTPUTS "raLsgopt
WALXP OUTPUTS TTALSE"
WALKP OUTPUTS "FALSE™
WALKP OF "TOY S3 TOY S7 OLD S6" AND "QLD MAN SATID THAT THE TQOY CAR
WAS HIS soM'gw
VYALKP OF "TOY S7 OLL S6"™ AND "OLD MAN SAIC THAT THE 70Y CAR WAS
HIS SON'gY
WALKP OF "OLD S$8" AND "OLD MAY SAID THAT THEL TOY CAP WAS LIS
sonfgy
WALKP OF TMAMN $8"™ AND MIAM SAID TEAT THE TOY CAR WAS UIS
seutgn
WALKP OF "SAID SS5™ AND M"SAID THAT THI TOY CAR WAS KIS gorwigw
WALKP OF "THAT S1"™ AND "TIAT THE TOY CAR WAS IS Son'sw
WALKP CF "THE S2" AND "THE TOY CAR WAS HIS Soy'gn
WALKP OF "OLD S2 TOY S3 TOY S7 OLD S6™ AND "TOY CAP. WAS HIS soMNtgn®
WALKP OF "TOY S3 TCY S7 OLD S6"™ AND "TOY CAR %AS KIS SQNtgn
WALKP OF "WAS S4 WAS S9"™ AND "CAR WAS EIS SQON'S™
WALKP OF "WAS S9" AND "CAR W,LS HIS Sopn'gn
WALKP OF "" AND "CAR WAS KIS SoN's"™
WALKP OUTPUTS "FALsc™®
WALKP OUTPUTS "FALSE™
WALKP OQOUTPUTS "FALSE™)
WALKP OF "TOY S7 OLL S6"™ AID "TOY CAR WAS HIS sourse
WALKP OF "CAR S3"™ AND "CAR WAS HIS SQitsv
WALKP OF "WAS S84 HAS S8" AND "VAu HIS s0uHts"
WALKP OF M"BROKEN % HIS #" AND "HIS ScH's™
WALKP OF "HIS =% AND "HIS SOoN'sgH
WALKP OF "g#" AND "gsoM'gY®
WALKP OQUTPUTS "FALSD™Y
WALKP OF "" AND "HIS SONT'SY
WALKP QUTPUTS YFALSE™
VAETLKP OUTPUTS "Fz Lenn

u7

WALKP OF "H

WALKP OF "SONTS =Y AND

WALKP OF "g#®n gyp nn

WALKP OUTPUTS "TRULM
WALKP QUTPUTS "TRULVY

WALKP OUTPUTS "Tryz™”

MmpriT

WALKP QUTPUTS "TPRU
WALKP OUTPUTS “TRUL"
WALKP QUTPUTS "TRpUL"
WALKP QUTPUTS "TRUE™
WALKP OUTPUTS "TRUE™
WALKP OQUTPUTS "TRUL™
WALKP OUTPUTS "TRUE™"

WALXP OUTPUTS
WALKP OUTPUTS "TRUE™
WALKX? CUTPUTS "TRUER™
WALKP QUTPUTS "TRULEM
WALKP OUTPUTS "TRUL™
WALKP QUTPUTS "TRUEL"
WALKP OUTPUTS "TRUZI™
WALKP OUTPUTS "TRUL™
TRUE

1t
t

"NTDrIT
LU D

APPENDIX 4

The Dictionarv Prosram

This oroorammine =xamnle demonstrates the use of
recursion to build a 'comnlatel nition based on
dictionarv entries, By comnrlete = an that every word in
a definition for which we have a dictionarv is defined when
it 1is used. 1lote that the nprocram does not check for loops
in the dictionarv.

*LIST ALL

TO DEFINE /S/
10 TEST EMPTYP /S/
20 IF TRUE oQUTPUT "
30 TEST WORDP /S/
%0 IF TRUE OUTPUT DEFTINE SENTENCE /S/ v
50 TEST EMPTYP GET-DEF OF FIRST OF /S/
60 IF TRUE OUTPUT SENTENCE FIRST /S/ AND DEFINE BUTFIRST /S/
70 OUTPUT SENTENCES FIRST /S/ AND "(" DEFINE
GET-DEF® FIRST /S/ ")" AND DELFINE OF BUTTIRST /S/
END

TO GET-DEF /NAMYE/
10 OUTPUT TEHINGZ OF WORD NF ©"EY AND /NAME/
END

TO YMAXE-DET /NAME/ /DEF/
10 MAKE WORD "$" /NAME/ /DEF/
END :

TO ADDWORD

10 TYPE "TYPE WORD (CR), DEF (CR): "
20 MAKE-DEF REQUEST REQUZST

END

/SDHEOW/ IS AN ADPAR [ATTTN_RIACED VESCLT, WITHE 4 LANC
OYERPANA TARWADN - A4 HTIAHW TANP_ ANT AM APEY WATST!

/$POQP/ TS YNFCY ARAVE TIFE USPTP DTCY ARATT TUYE MIZZENT

/SMIZZEN/ IS M"MIZZENYAQT™ o

JSMIZZENMAST/ IS MATTERUMOST ¥AST 0T A TWN-MASTED VESSIL™

/SABATT/ IS "TQ TED REARM

/SLATEEN/ IS "TRIANGULA® SAIL, EXTI¥DED EY 2 LONG YARD,
SLUNG TO THEE MASTM"

/SYARD/ IS "LONG SPAR™

/SSPAR/ IS "MAST™

/SWAIST/ IS "THAT PART OF A VESSEL'S DECK BETWEEN THE
QUARTER-DECK AND TEHE TORZCASTLZI™
/SFORECASTLE/ IS "FORWARD 2ART OF VESSEL™

PRINT DETINE OF "DHNW®

DHOW (AN ARAB LATEEN (TRIANAULA® SAIL , EXTENDED BV & LONA YARD (LM~
SPAR (YAST)) , SLUMG TN THF "AST) -RINATH VESSEL WITH A LONA
OQVEPHANA TNRWARD , & HEIRH PAND (NDECX ABNYE THE UPPER DECKX ABAFT (Tn
THE REAR) TEE MIZZEN (MIZ7DNMAST)) , AND AN NDEY WAIST (THAT PART
OF A VESSEL'S DRCX BETWEEN THE NUARTER-DECK AND THE FCRECASTLE (FTADYARTD
PART 0T VESSEL)))

1.

3.

APPENDIX 5

Student Evaluations

The course evaluation form consists of 25 questions with six
possible responses (1 - 5 and "mo reply') for each question. Om
the scale from 1 to 5, strongly no or strongly unfavorable corres-
ponds to 1 and strongly yes or strongly favorable corresponds to 5.
In our bar graph summary, O corresponds to "no reply".

In addition to these fixed reponse questions, there are six
other questions requiring free formed responses. We have chosen
the first of these questions and listed all the responses to it.

S+ |
¢ |
Is he willing to answer ER
questions in and out of Z -
class? Z .
}] Y H 1 4 L ' 3 3
A /g zg
£ -
i B
Is he helpful and useful 3
when you have difficulties? Z -
1-
g‘ v ¢ ¥] ¥ L§]) ’ }
[+ /0 20
Does he present the material
in a well-prepared and
organized fas. ‘on?
- 5] -
) b 3 ¥ l

20

Does he provide enough
examples and illustrations?

Is the course taught in an
interesting and stimulating
manner?

Did you feel you were
encouraged to think
independently?

Did you feel your instructor's
comments and criticisms of
you work were valid and
helpful?

How would you rate the
instructor, overall?

Would you like to take
another course from this
instructor? -

SIS

5

20

20

20

20

10.

11.

12.

13.

14.

15.

Are the objectives of the
course clear?

Do. you believe that the
material presented will
be useful to you?

Is the amount of work
required reasonable?

Does the textbook
contribute to the course?

Does the homework
contribute to the course?

Are the exams a fair test
of you knowledge of the course?

- 53 -

o

wd
e

16.

17.

18.

19.

20.

21.

Is much of the course
material completely new
to you?

Did you put a reasonable
amount of time (1/3 - 1/4
of a full-time student Toad)
into this course?

How would you rate this
course, overall?

Did you enjoy this- course?

How would you rate the
discussion Jeader?

Are the discussion sections
useful?

- 54

/o

.

26

=26

2

N

22.

23.

24.

How would you rate the
laboratory assistant?

Is the Tlaboratory a
valuable part of the course?

How adequate for this course
Was you computer science
preparation?

How adequate for this course
was your mathematics

‘preparation?

- 55 -

20

20

How does this course compare with other science and math
courses you have taken?

Much more imaginative than other classes.

More interesting, more time-consuming, more enjoyable.

It was the most stimulating course I have taken in both math and science.

Extremely interesting and seemingly relevent to my field of interest.
More interesting; invo?vfng than most. |

It's a fun course and if I had time I would like to pursue it.

I Tike it much better than any science course and just better than math.
More enjoyable but more time-consuming.

It was more fun using the computer than just texts.

A hell of a Tot better.

Far more interesting and stimulating.

Very good.

Better.

Not applicable, since this course is essentially non-numeric.

1 haven't taken any before.

More interesting.

Doesn't.

Favorably.

(two no-responses)

- 56 -

