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Abstract
A group of isometries of a hyperbolic n-space is called a reflection group if it is 
generated by reflections in hyperbolic hyperplanes. Vinberg gave a semi-algorithm 
for finding a maximal reflection sublattice in a given arithmetic subgroup of O (n, 1) 
of the simplest type. We provide an effective termination condition for Vinberg’s 
semi-algorithm with which it becomes an algorithm for finding maximal reflection 
sublattices. The main new ingredient of the proof is an upper bound for the number 
of faces of an arithmetic hyperbolic Coxeter polyhedron in terms of its volume.

1  Introduction

The main goal of this paper is to supplement Vinberg’s semi-algorithm with an 
effective termination bound. Together with this new bound it becomes an algo-
rithm that determines if a given arithmetic hyperbolic lattice contains a maximal 
arithmetic reflection subgroup. At the same time, our main technical result (The-
orem  3.1) is non-algorithmic, it provides a linear upper bound on the number of 
Coxeter generators (denoted rankC (Γ) ) of a given arithmetic reflection lattice 
Γ < PO (n, 1) , in terms of the covolume of Γ and the field of definition k of the lat-
tice Γ . More precisely, for each n, we obtain an explicit constant C(n, deg(k)) such 
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that if P is a convex polyhedron in ℍn of finite volume V, whose angles are submul-
tiples of � , and the group Γ generated by reflections in the facets of P is arithmetic, 
defined over a number field k of degree deg(k) , then the number of facets of P is 
≤ C(n, deg(k))Vol (P).

In the previous works the proof of non-reflectivity of some lattices was deduced 
from an existence of an infinite order symmetry of the fundamental polyhedron of 
the reflection subgroup (see e.g. [5]). Making Vinberg’s algorithm to run sufficiently 
long allows one to detect enough vertices of the Coxeter diagram that are automor-
phism-equivalent and thus to prove that the polyhedron has infinite group of sym-
metries and is therefore of infinite volume. This method often works well in practice 
but there is no upper bound for the number of iterations required to detect the infi-
nite symmetry.

A similar result to our Theorem 3.1 was proved by Gelander [14], who obtained 
a uniform linear upper bound CGv on the minimal number of generators for lattices 
Γ in a semisimple Lie group G in terms of the covolume v of Γ . However, his proof 
applied to a hyperbolic reflection group would not necessarily produce generators 
that are reflections. Note that the minimal number of generators of a Coxeter group 
Γ (denoted rank(Γ) ) can be much smaller than rankC (Γ) . The basic example is given 
by the symmetric groups Sn , for which we have rank(Γ) = 2 < n − 1 = rankC (Γ) if 
n > 3.

Note also that our bound depends on arithmetic invariants of reflective lattices. 
It can be made uniform (but nonlinear) as in Remark  3.4, but even assuming the 
Lehmer conjecture would not suffice for our method to give a uniform linear upper 
bound. On the other hand, our Theorem 3.5 shows that we always have a uniform 
linear lower bound for rankC (Γ) of a hyperbolic reflection lattice Γ in terms of its 
covolume. There is no such bound for rank(Γ) as there are examples of lattices in ℍn 
for 3 ≤ n ≤ 8 with a fixed number of generators and arbitrarily large covolume: In 
dimension 3 this is a consequence of existence of hyperbolic manifolds fibering over 
the circle, while in dimensions up to 8, this is a consequence of existence of hyper-
bolic manifolds of finite volume that fiber algebraically, see the recent paper [19].

2 � Preliminaries

In this section we briefly review the definitions and some properties of arithmetic 
groups of hyperbolic isometries and arithmetic hyperbolic reflection groups. We 
refer to a survey [3] for more details and references.

Let � n,1 be an (n + 1)-dimensional vector space with the inner product defined by 
a quadratic form f of signature (n, 1). We have

where ℭ is an open convex cone. In the vector model, the hyperbolic space ℍn is 
identified with the set of rays through the origin in ℭ , or ℭ∕ℝ+ , so that the group of 
isometries Isom(ℍn) is given by the orthogonal transformations of � n,1 preserving ℭ.

{
v ∈ �

n,1|(v, v)0
}
= ℭ ∪ (−ℭ),
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Cofinite discrete subgroups of Isom(ℍn) can be constructed using number the-
ory. Let k be a totally real number field with the ring of integers �k . Consider a 
quadratic form f of signature (n, 1) defined over k such that for every non-identity 
embedding � ∶ k → ℝ the form f � is positive definite. Let Γ = O 0(f , �k) be the 
subgroup of the integral automorphisms of f in H = O 0(n, 1) , which is the full 
group of isometries of the hyperbolic n-space ℍn (the group O 0(n, 1) is the sub-
group of the orthogonal group O (n, 1) that preserves the cone ℭ ). By a classical 
theorem of Borel and Harish–Chandra, the group Γ is a lattice in H, i.e. it is dis-
crete and has finite covolume. Lattices obtained in this way and subgroups of H 
which are commensurable with them are called arithmetic lattices of the simplest 
type. The field k is called the field of definition of Γ (and subgroups commensura-
ble with it). The same terminology applies to the quotient orbifolds ℍn∕Γ.

There are compact and finite volume non-compact arithmetic orbifolds. By 
the Godement’s compactness criterion, an arithmetic group Γ is non-cocom-
pact if and only if k = ℚ and the associated quadratic form f is isotropic. The 
Hasse–Minkowski theorem implies that for k = ℚ and n ≥ 4 the latter condition 
holds automatically. Therefore, for n ≥ 4 the quotient ℍn∕Γ is non-compact if and 
only if the arithmetic group Γ of the simplest type is defined over the rationals. 
For n = 2 and 3 the non-cocompact subgroups are defined over ℚ but there also 
exist cocompact arithmetic subgroups with the same field of definition.

We will mainly be interested in hyperbolic reflection groups. These are the lat-
tices in Isom(ℍn) generated by finite sets of hyperbolic reflections in hyperplanes. 
Vinberg proved that arithmetic hyperbolic reflection groups are always of the 
simplest type [20]. A convex polyhedron P ⊂ ℍn which is a fundamental domain 
of a reflection group generated by reflections in facets of P , is called a Coxeter 
polyhedron; such polyhedra are described by Coxeter diagrams. These diagrams 
are the graphs with vertices corresponding to the facets of P , and two different 
vertices ei , ej are connected by a thin edge of integer weight mij ≥ 3 or by mij − 2 
edges if the corresponding faces intersect with the dihedral angle �

mij

 , by a thick 
edge if they intersect at infinity (dihedral angle zero), and by a dashed edge if 
they are divergent. In particular, two vertices are not joined by an edge if and only 
if the corresponding faces of P are orthogonal.

A discrete subgroup Γ0 of a Lie group H is called maximal if it is not properly 
contained in any other discrete subgroup Γ1 < H . It is well known that in a semi-
simple Lie group any lattice is contained in some maximal lattice. A hyperbolic 
reflection lattice Γ < H = Isom(ℍn) is called a maximal hyperbolic reflection 
group if Γ is not properly contained in any other lattice in H generated by reflec-
tions. Vinberg proved that the normalizer in Isom(ℍn) of a maximal hyperbolic 
reflection group is a maximal lattice [20]. This fact is used in [1] together with 
the other results to give an upper bound for the covolume of the maximal arith-
metic reflection groups:

Theorem  2.1  For each dimension n ≥ 2 , there exists a computable constant C(n) 
depending only on n such that if Γ is a maximal arithmetic reflection subgroup of 
Isom(ℍn) , then Vol (ℍn∕Γ) ≤ C(n).
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The proof of this theorem follows from [1, Section  6]. In fact, a better bound 
C1 = C1(n, k) can be obtained from the same argument as a function of the dimen-
sion n and the degree of the field of definition k. It is then shown in [1] that the 
degree of the field of definition is uniformly bounded in terms of n. Volumes of 
arithmetic hyperbolic orbifolds are discrete by the results Wang and Borel, hence 
Theorem 2.1 implies finiteness of maximal arithmetic reflection groups in dimen-
sion n.

3 � Bounds for the number of coxeter generators

Given a Coxeter group Γ , we denote by rankC (Γ) the minimal number of its Coxeter 
generators, i.e. generators in a Coxeter system defining Γ (such a Coxeter system 
need not be unique). In the case of interest, our group Γ will be a reflection subgroup 
of Isom(ℍn) . The number of Coxeter generators, rankC (Γ) , is equal to the number of 
facets of a Coxeter polyhedron P ⊂ ℍn of Γ.

Theorem 3.1  Let Γ be an arithmetic hyperbolic reflection group defined over a field 
k. Then we have

where the constant C = C(n, k) > 0 is computable and depends only on the dimen-
sion and the degree of the field of definition.

Proof  Let u, v ∈ ℍn ∪ 𝕊n−1 be two distinct vertices of a Coxeter polyhedron P of Γ . 
Consider the subgroup of Γ generated by their stabilizers

There are two possible cases: 

(1)	 The group Δ is not virtually abelian. Then by the Margulis lemma we have 

 where �n is the Margulis constant for ℍn.
(2)	 The group Δ is virtually abelian, i.e. is virtually infinite cyclic. In this case every 

facet of P passing though u or v is either orthogonal to uv or contains uv. It fol-
lows that there is exactly one facet Fu (resp. Fv ) of P passing though u (resp. v) 
and orthogonal to uv. The group Δ then splits as a direct product of the infinite 
dihedral group generated by reflections in Fu,Fv and the finite reflection group 
consisting of the elements of Γ that pointwise fix uv. The product of reflections 
in Fu and Fv is a transvection (i.e. a hyperbolic element of Γ ) along uv with the 
displacement 2 dist (u, v).

	   There is a well known relation between the displacements of hyperbolic ele-
ments in arithmetic hyperbolic lattices and the Mahler measures of Salem num-
bers. We refer to a recent paper [13] for the details. In our case, the lattice Γ is of 

rankC (Γ) ≤ CVol (ℍn∕Γ),

Δ = ⟨Stab Γ(u), Stab Γ(v)⟩ < Γ.

dist (u, v) ≥ �n,
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the simplest type (by [20]), hence [13, Theorem 5.2] together with Dobrowolski’s 
lower bound for the Mahler measure of Salem numbers [12] imply that 

 where the constant ck > 0 depends only on the degree of the field k. It is con-
jectured that in fact the constant does not depend on k. This is known as a spe-
cial case of Lehmer’s problem and Margulis’ conjecture.

Therefore, in both cases we obtain

where d = d(n, k) is a positive constant which depends only on the dimension n and 
the degree of the field of definition k.

For a proper vertex u of P (i.e. a vertex which is in ℍn ) we consider its neigh-
borhood Bu which is the intersection of P with the open ball B(u, d∕2) ⊂ ℍn . 
These neighborhoods are pairwise disjoint. The volume of Bu is bounded below by 
vn(d∕2)∕f  , where vn(r) is the volume of a ball of radius r in ℍn and f is an upper 
bound for the orders of finite subgroups of Γ . By [1, Corollary 5.5], the orders of 
finite subgroups are bounded above by fn,k = mndeg(k)

n(n+1) . Therefore, the number 
V1 of the proper vertices of P satisfies the upper bound

For each ideal vertex u of P we consider a canonical cusp neighborhood Cu ⊂ P 
introduced by Hersonsky in [18]. In our setting, it is defined as follows. For each 
horosphere H ⊂ ℍn centered at u, its stabilizer Stab Γ(u) in Γ acts on H as a lattice; 
let Au < Stab Γ(u) denote the (unique) maximal free abelian subgroup of rank n − 1 . 
We equip H with the flat Riemannian metric induced from ℍn . There exists a unique 
horosphere Hu as above such that the shortest nontrivial geodesic in Hu∕Au has unit 
length. This horosphere Hu bounds a horoball Bu ⊂ ℍn . The intersection Bu ∩ P is 
the canonical cusp neighborhood Cu of u in P . By [18, Theorem 2.3], the canonical 
cusp neighborhoods are pairwise disjoint.

Remark 3.2  While Hersonsky in [18] proves the disjointness only for discrete orien-
tation-preserving groups of isometries of ℍn , passing to index 2 orientation-preserv-
ing subgroups yields the general result, since this passage does not alter the maximal 
free abelian subgroups Au.

By [18, Proposition 3.4] (adapted to our setting of reflection groups), the 
volumes of Cu ’s are bounded from below by �n−1∕((n − 1)In−1) , where �n−1 and 
In−1 depend only on n. Here, In−1 is the least upper bound on the index of Au 
in Stab Γ(u) , which equals the maximal order of a finite Coxeter group of rank 
k = n − 1 , of crystallographic type.

dist (u, v) ≥ ck,

dist (u, v) ≥ d,

(1)V1 ≤
Vol (ℍn∕Γ)

vn(d∕2)∕fn,k
.
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Remark 3.3  For k ∉ {2, 4, 6, 7, 8} , the maximal order is 2kk! , the order of the finite 
irreducible Coxeter group Bk . For the remaining ranks k, the maximal order is given 
by the order of the unique exceptional irreducible Coxeter group of rank k of crystal-
lographic type (i.e. G2,F4,E6,E7 and E8 respectively).

The constant �n−1 is the largest lower bound on the volume of the flat torus 
Hu∕Au , where the volume is computed with respect to the flat metric on Hu 
induced from ℍn . A crude lower bound for �k is the volume of the unit ball in the 
Euclidean space ℝk , i.e.

Therefore, the number V2 of the ideal vertices of P satisfies

From (1) and (2) we conclude that the total number of vertices of P satisfies

where the constant cn,k depends only on the dimension n and the degree of the field 
of definition k.

Each finite vertex of an n-dimensional Coxeter polyhedron P of finite volume 
is incident to n facets. For ideal vertices of a Coxeter polyhedron the situation 
is a bit more complex. The link of this vertex in P is the product of k simplices 
of dimensions ni, i = 1, ..., k , n1 + ... + nk ≤ n − 1 . The number of facets in such a 
product is at most

with maximum realized by links which are (n − 1)-dimensional cubes. Since each 
facet of P contains at least n vertices, we have the following bound on the number of 
facets of P:

	�  ◻

Remark 3.4  More refined results about the relationship between the field of defini-
tion and covolume of an arithmetic lattice allow one to prove uniform bounds of the 
form

2�k∕2

Γ(
k

2
+ 1)

.

(2)V2 ≤
Vol (ℍn∕Γ)

�n−1∕((n − 1)In−1)
.

V ≤
Vol (ℍn∕Γ)

cn,k
,

k∑

i=1

(ni + 1) = k +

k∑

i=1

ni ≤ 2(n − 1),

(3)F = rankC (Γ) ≤
2(n − 1)

n
V .
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for any positive � , where the constant C = Cn,� depends only on the dimension and � . 
To this end one can combine the preceding argument with the bound for displace-
ment and volume of balls in terms of covolume (see [4, Lemmas  3.1, 3.2]). The 
proofs of these bounds are nontrivial as they require some deep results from arith-
metic groups theory and number theory. With the bounds at hand the remaining 
details are straightforward.

In contrast with the minimal number of generators of a lattice, for Coxeter groups 
we have as well a lower bound for the rank in terms of volume. Although this bound is 
not required for the termination condition of Vinberg’s algorithm, it may have an inde-
pendent interest.

Theorem 3.5  Let Γ be a hyperbolic reflection lattice. Then we have

where the constant c > 0 depends only on the dimension of the hyperbolic space.

Proof  Let P be the Coxeter polyhedron of Γ with F = rankC (Γ) facets and V ver-
tices. By using the Klein model of the hyperbolic n-space we can realize P as a 
convex polyhedron in ℝn (this applies both to the compact polyhedra and to the ones 
with ideal vertices). Assume that P ↪ ℝn is in general position so that all the verti-
ces have different n-th coordinate and slice it by the hyperplanes xn = c . Following 
the slicing down from the top vertex, by convexity and the bound for the number of 
faces of a Coxeter polyhedron that are incident to a vertex (see the proof of Theo-
rem 3.1), we deduce that the number f(j) of the j-dimensional faces of P satisfies

In particular, the total number of faces of P is bounded linearly in terms of F. Hence 
the barycentric subdivision of P consists of at most cnF simplices where the con-
stant cn depends only on n. Convexity of a Coxeter polyhedron in ℍn implies that the 
barycentric subdivision is a triangulation with geodesic simplices. The volume of a 
hyperbolic simplex is bounded above by a constant �n depending only on the dimen-
sion of the space. Therefore, we have

This gives the lower bound for the Coxeter rank with c = 1

�ncn
 . 	�  ◻

(4)rankC (Γ) ≤ CVol (ℍn∕Γ)1+�

rankC (Γ) ≥ cVol (ℍn∕Γ),

f (j) ≤ cn,jV ≤ c�
n,j
F.

Vol (ℍn∕Γ) = Vol (P) ≤ �ncnF.
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4 � A termination condition for Vinberg’s algorithm

Let f be an admissible quadratic form over a field k with the ring of integers �k , and let 
Γ = O 0(f , �k) be the associated arithmetic subgroup. We would like to know when 
Γ contains a maximal arithmetic hyperbolic reflection subgroup and, in particular, the 
form f is maximal reflective, as well as identifying such a subgroup. The main practi-
cal tool for verifying reflectivity is Vinberg’s algorithm [21, Section 3] which we shall 
briefly review now. We refer to [3] for the references regarding implementations and 
applications of the algorithm. More recent references are [6–8] (a theoretical descrip-
tion of the algorithm, its Python implementation, and some applications), [16, §6.2.1], 
[17] (a general algorithm and its C++ implementation in special cases), [10, 11] 
(another general description of the algorithm and its Julia implementation for number 
fields whose rings of integers are PIDs, principal ideal domains), and [2] (an alternative 
to Vinberg’s algorithm).

In the vector model of ℍn , a hyperplane is given by the set of rays in the cone ℭ 
which are orthogonal to a vector e ∈ � n,1 with (e, e) > 0 . A hyperplane Πe defines two 
halfspaces, Π+

e
 and Π−

e
 , where “±” is the sign of (e, x) for x in the corresponding halfs-

pace, and a reflection

where the Lorentzian inner product is given by (u, v) = 1

2
(f (u + v) − f (u) − f (v)).

We now describe briefly the algorithm, for details we refer to the references given 
above. For simplicity of the discussion, we shall assume that �k is a PID: this assump-
tion ensures that the group Γ is contained in the automorphism group of a free �k-mod-
ule of rank n + 1 , which simplifies the description. The vector e corresponding to the 
reflection Re is defined up to scaling, so if e has k-rational coordinates we can normal-
ize it so that the coordinates are coprime integers in �k . With this normalization we 
can assign to Re a parameter s = (e, e) ∈ �k . The reflection Re belongs to the group 
O 0(f , �k) if 

2

s
(e, vi) ∈ �k, for the standard basis vectors vi , i = 0,… , n . This is called 

the crystallographic condition.
The algorithm starts with picking up a control vector u0 ∈ ℭ with integral coordi-

nates which corresponds to a point x0 ∈ ℍn . Consider the reflection stabilizer subgroup 
Γ0 in Γ of the vector u0 . It is a (finite) group generated by m ≤ n reflections in Γ whose 
mirrors pass through x0 (m may be equal to 0).

Let

be a fundamental chamber of Γ0 . All the halfspaces Π−
ei
 are essential (i.e. not con-

taining the intersection of the other halfspaces). The corresponding vectors ei satisfy 
(ei, ei) > 0 , (ei, u0) = 0 for all i, and the reflections Rei

 generate Γ0 . There is a unique 
fundamental polyhedron P of the maximal reflection subgroup of Γ which sits inside 
P0 and contains x0.

Re ∶ x → x − 2
(e, x)

(e, e)
e,

P0 =

m⋂

i=1

Π−
ei
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The algorithm for finding P proceeds inductively, by constructing a sequence of 
convex hyperbolic polyhedra Pi , i > 0 . The polyhedron Pi is obtained by intersecting 
Pi−1 with a halfspace Π−

em+i
 . The vector em+i is chosen as follows:

This is a normalized vector satisfying the crystallographic condition such that

for all j < m + i , i.e.

Moreover, we require that the distance between x0 and Πem+i
 is the smallest possible, 

i.e. minimizing the value

subject to the rest of the conditions listed above.
The minimality condition implies that all the hyperplanes Πej

, j = 1, ...,m + i are 
essential, meaning that the intersection of any proper collection of half-spaces Π−

ej
 is 

strictly larger than Pi.
Note that if k ≠ ℚ , its integers do not form a discrete subset of ℝ . Nevertheless, in 

view of discreteness of the arithmetic group Γ (as a subgroup of GL (n + 1,ℝ) ), the 
distances d(u0,Π) (where Π is the reflection hyperplane of a reflection in Γ ) form a 
discrete subset D ⊂ ℝ (cf. [5]). Under some additional assumptions, such as �k being 
a PID, it is easy to find an explicit discrete subset of ℝ containing D . Now the algo-
rithm runs through the discrete set of distances in an increasing order and for each 
of them finds all normalized vectors satisfying the crystallographic condition and 
inequalities (5). Discreteness of Γ implies that for each distance the number of such 
vectors is finite, moreover, formula (6) translates to a system of Diophantine equa-
tions that can be effectively solved (cf. [6, Section 3.5]).

It may occur that the group Γ does not contain any reflections. An example of 
such an arithmetic lattice defined over k = ℚ can be found in [9, Section 4.2]. In 
this case the group Γ0 is trivial and the set D is empty. Thus, the algorithm would 
not be able to start. In [15], Grunewald and Segal gave a decision procedure to find 
integer solutions for quadrics Q(x1, ...., xn+1) = 0 (with integer coefficients), subject 
to finitely many specified congruences and linear inequalities. It can be applied to 
give an algorithmic description of the set D which, in particular, tells, after a finite 
number of steps, if this set is empty or not. We expect that the method from [15] will 
generalize to solution of the systems of quadratic equations in algebraic integers but 
the details of this need to be carefully checked.

When the group Γ contains a reflection it has infinitely many of them. The algo-
rithm terminates if it yields a polyhedron P =

⋂
i Π

−
ei
 of finite volume, in which case 

the form f is reflective. Moreover, the subgroup ΓR generated by reflections in the 
faces of P is a maximal reflection subgroup of Γ by [21, Propositions 4 and 5].

(5)(em+i, em+i) > 0, (em+i, u0) < 0, (em+i, ej) ≤ 0

Pi ⊆

m+i⋂

j=1

Π−
ej
.

(6)sinh2
(
dist(x0,Πem+i

)
)
= −

(em+i, u0)
2

(em+i, em+i)(u0, u0)
,
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The finiteness of volume of P can be checked as follows. Each hyperbolic half-
space Π−

ei
 defining P is the intersection of the linear half-space �Π−

ei
⊂ �n,1 with the 

upper sheet of the hyperboloid {v ∶ (v, v) < 0} ∩ ℭ . Thus, one computes the extreme 
rays of the convex polyhedral cone

Then P has finite volume if and only if each extreme ray is contained in the closure 
of ℭ , i.e. its generating vector vi satisfies the inequality (vi, vi) ≤ 0.

Now note that each iteration of the algorithm adds a new facet to Pi−1 . Hence The-
orems 2.1 and 3.1 give an upper bound on the number of iterations which depends 
only on the dimension n and the degree of k. Moreover, in view of Remark 3.4, there 
exists an upper bound which depends only on n. If more facets are produced, then 
Γ = O 0(f , �k) does not contain a maximal arithmetic hyperbolic reflection group.
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