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Abstract

Filtered symplectic homology of prequantization bundles and the contact conley

conjecture

by

Jeongmin Shon

In this thesis, we study Reeb dynamics on prequantization circle bundles and

the filtered (equivariant) symplectic homology of prequantization line bundles, aka

negative line bundles, with symplectically aspherical base. We define (equivariant)

symplectic capacities, obtain an upper bound on their growth, prove uniform

instability of the filtered symplectic homology and touch upon the question of

stable displacement. We also introduce a new algebraic structure on the positive

(equivariant) symplectic homology capturing the free homotopy class of a closed

Reeb orbit – the linking number filtration – and use it to give a new proof of

the non-degenerate case of the contact Conley conjecture (i.e., the existence of

infinitely many simple closed Reeb orbits), not relying on contact homology.
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Chapter 1

Introduction

The main topic of this thesis is Reeb dynamics on prequantization S1-

bundles and the filtered (equivariant) symplectic homology of the associated pre-

quantization line bundles E, aka negative line bundles, over symplectically as-

pherical manifolds. The new features in this case, as compared to the symplectic

homology of exact fillings, come from the difference between the Hamiltonian

action, giving rise to the action filtration of the homology, and the contact ac-

tion. We define equivariant symplectic capacities, obtain an upper bound on their

growth, prove uniform instability of the filtered symplectic homology, and touch

upon the question of stable displacement in E. We also introduce a new algebraic

structure on the positive (equivariant) symplectic homology capturing the free

homotopy class of a closed Reeb orbit – the linking number filtration. We then

use this filtraion to give a new proof of the non-degenerate case of the contact

Conley conjecture, not relying on contact homology.

Prequantization S1-bundles M form an interesting class of examples to

study the Reeb dynamics, and, in particular, the question of multiplicity of closed

Reeb orbits with applications, for instance, to closed magnetic geodesics and

geodesics on CROSS’s; see, e.g., [27]. The range of possible dynamics behavior in
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this case is similar to that for Hamiltonian diffeomorphisms and more limited than

for all contact structures where it should more adequately be compared with the

class of symplectomorphisms; see [24]. Furthermore, in many instances, various

flavors of Floer-type homology groups associated toM can be calculated explicitly

providing convenient basic tools to study the multiplicity questions.

Most of the Floer theoretic constructions counting closed Reeb orbits re-

quire a strong symplectic filling W of M and, in general, the properties of the

resulting groups depend on the choice of W unless W is exact and c1(TW ) = 0.

(The exceptions are the cylindrical contact homology and the contact homology

linearized by an augmentation, but here we are only concerned with symplectic

homology.) The most natural filling W of a prequantization S1-bundle M is that

by the disk bundle or, to be more precise, by the region bounded by (M,α), where

α is the contact form, in E.

However, the filling W is also quite awkward to work with. The main

reason is that W is never exact, although it is aspherical when the base B is

aspherical. As a consequence, the Hamiltonian and contact actions of closed Reeb

orbits differ and the Hamiltonian action, giving rise to the action filtration on

the homology, is not necessarily non-negative; see Proposition 4.2.3. The second

difficulty comes from that the natural map π1(M) → π1(W ) fails, in general, to

be one-to-one. This is the case, for instance, when B is symplectically aspherical:

the fiber, which is not contractible inM , becomes contractible inW . This fact has

important conceptual consequences. For instance, the proof of the contact Conley

conjecture for prequantization bundles with aspherical base (i.e., the existence

of infinitely many simple closed Reeb orbits) from [26, 27], which relies on the

free homotopy class grading of the cylindrical contact homology, fails to directly

translate to the symplectic homology framework.
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One of the goals of this thesis is to systematically study the filtered symplec-

tic homology of W , equivariant and ordinary. Global Floer theoretic “invariants”

such as the equivariant and/or positive symplectic homology of E has been cal-

culated explicitly; see [27, 44, 50]. Moreover, in many cases the global symplectic

homology of E vanishes and this fact alone is sufficient for many applications.

The thesis is organized as follows. In Chapter 2 and 3, we set our conven-

tions and notation and recall the constructions of various flavors of symplectic

homology. The only non-standard point here is the definition of the negative

symplectic homology. Namely, since the filling is not required to be exact, this

homology cannot be defined as the subcomplex generated by the orbits with nega-

tive action. Instead, following [10], it is defined essentially as the homology of the

subcomplex generated by the constant one-periodic orbits of an admissible Hamil-

tonian. In Chapters 4-6 we turn to new result. In Section 4.1, we investigate the

consequences of vanishing of the global symplectic homology. We introduce a class

of (equivariant) symplectic capacities, prove upper bounds on their growth, show

that vanishing is equivalent to a seemingly stronger condition of uniform insta-

bility, and revisit the relation between vanishing of the symplectic homology and

displacement. In Section 4.2, we specialize these results to prequantization line

bundles with symplectically aspherical base and also briefly touch upon the ques-

tion of stable displacement in prequantization bundles. A new algebraic structure

on the positive (equivariant) symplectic homology of such bundles – the linking

number filtration – is inroduced in Chapter 5, where we also calculate the asso-

ciated graded homology groups. This filtration is essentially given by the linking

number of a closed Reeb orbit with the base B. It is then used in Chapter 6 to

reprove the non-degenerate case of the contact Conley conjecture circumventing

the foundational difficulties inherent in the construction of the contact homology.
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Chapter 2

Contact geometry

2.1 Contact structures

In this section we recall the definition of contact structures and provide

examples of contact manifolds.

2.1.1 Contact structures

Definition 2.1.1. LetM be a smooth manifold with dimension 2n+1. A contact

structure on M is a smooth field ξ of tangent hyperplanes such that ξ is locally

defined as ξ = kerα for a 1-form α which satisfying α∧(dα)n 6= 0. The pair (M, ξ)

is called a contact manifold and α is called a local contact form.

If a contact form α is globally defined, α ∧ (dα)n is a volume form on M

and thus M is orientable.

Remark 2.1.2. A locally defining 1-form α is not unique becuase kerα = ker(fα)

for a non-vanishing smooth function f : M → R.

Remark 2.1.3. The form dα|ξ on ξ is nondegenerate (i.e., symplectic). Indeed,

let {x1, · · · , xn, y1, · · · , yn, z} be a local trivialization of TM such that kerα =
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span{x1, · · · , xn, y1, · · · , yn}. Then

α ∧ (dα)n(x1, · · · , xn, y1, · · · , yn, z) = α(z)(dα)n(x1, · · · , xn, y1, · · · , yn).

Since α(z) is not zero, dα is not zero on ξ.

Definition 2.1.4. For two contact manifolds (M1, ξ1) and (M2, ξ2), a diffeomor-

phism φ : M1 →M2 is called a contactomorphism if

φ∗(ξ1) = ξ2.

Remark 2.1.5. A contactomophism does not usually preserve contact forms. It is

possible to happen that φ∗(α2) = fα1 for a non-vanishing function f : M → R.

Theorem 2.1.6. (Darboux) Let (M, ξ) be a contact manifold. For a point

p ∈ M there exists a coordinate chart (U , x1, · · · , xn, y1, · · · , yn, z) centered at p

such that on U the 1-form

α =
n∑
i=1

xidyi + dz

is a contact form for ξ.

Theorem 2.1.7. (Gray) Let M be a closed contact manifold. Assume that αt is

a smooth family of global contact forms on M for t ∈ [0, 1]. Let ξt be the contact

structure defined by αt. Then there exists an isotopy ρ : M × [0, 1]→M such that

ξt = (ρt)∗ξ0 for all t ∈ [0, 1].

2.1.2 Examples

Example 2.1.8. (Spheres)

S2n−1 =
{

(x1, y1, · · · , xn, yn) ∈ R2n
∣∣∣∣∣

n∑
i=1

x2
i + y2

i = 1
}
,
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for n ≥ 1. Consider the 1-form λ = 1
2

n∑
i=1

(xidyi − yidxi) on R2n and the inclusion

i : S2n−1 ↪→ R2n. The pull-back, α := i∗λ is a contact form on S2n−1. To show

that α is a contact form on S2n−1, first consider the 1-form ν = d

(
n∑
i=1

x2
i + y2

i

)
on R2n. Then ker ν = TS2n−1. Let {v1, · · · , v2n−1} be a basis of TpS2n−1. Extend

the basis to a basis R2n, {u, v1, · · · , v2n−1}. Then

ν ∧ α ∧ (dα)n−1(u, v1, · · · , v2n−1) = ν(u) (α ∧ (dα)n−1(v1, · · · , v2n−1)) .

Hence, if ν ∧ α ∧ (dα)n−1 is not zero at every point of S2n−1 then α ∧ (dα)n−1 is

not zero on S2n−1. By computation, one can see that

ν ∧ α ∧ (dα)n−1 = (∑n
i=1 x

2
i + y2

i ) (x1 ∧ y1 ∧ · · · ∧ xn ∧ yn).

Thus, S2n−1 is a contact manifold. The distribution kerα is called the standard

contact structure on S2n−1.

Example 2.1.9. (Cotangent Sphere Bundle) Let M be a manifold with di-

mension n and T ∗M the cotangent bundle of M. The cotangent sphere bundle is

defined by

S(T ∗M) := (T ∗M \ 0) / ∼,

where (p, λ) ∼ (p, λ′) if λ = tλ′ for some t > 0. Set [λ] = {λ′ ∈ T ∗M | λ =

tλ′ for some t > 0}. Fix a local section σ : S(T ∗M) → T ∗M \ 0 such that

σ(p, [λ]) = (p, λ). Then (dπ(p,[λ]))∗(σ(p, [λ])) is a contact form at (p, [λ]) in S(T ∗M),

where π : S(T ∗M)→M be the natural projection. Next, let (x0, · · · , xn−1, λ0, · · · , λn−1)

be local coordinates on T ∗M. Then σ(p, [λ]) can be regarded as λ0dx0 + · · · +

λn−1dxn−1 over a point p ∈ M. Consider a neighborhood of (p, [λ]) on which

λ0 6= 0. Then on the neighborhood, ker dπ∗σ = ker
(
dx0 +∑n−1

i=1 λidxi
)
.

Example 2.1.10. (Triple torus) Consider the torus T3 as R3/Z3. Then the 1-form

α = sin(2πkz)dx + cos(2πkz)dy is a contact form on T3 for a nonzero integer k.
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One can see that S(T ∗T2) is identified with T3, where T2 is the double torus.

When k = 1 this is the same as S(T ∗T2).

2.2 Contact dynamics

In this section we recall the definition of Reeb vector fields and briefly

explore Reeb dynamics on prequantization line bundles.

2.2.1 Reeb vector fields

Definition 2.2.1. Let (M, ξ) be a contact manifold with a global contact form

α. There exists a unique vector field R satisfying

ιRdα = 0. and α(R) = 1.

The vector field R is called the Reeb vector field determined by α.

Every vector field X on M can be uniquely written as X = fR + Y for

Y ∈ ξ and f : M → R.

Remark 2.2.2. The flow of the Reeb vector field preserves the contact form α. Let

φt be the flow.

d

dt
φ∗t (α) = φ∗t (LRα) = φ∗t (dιRα + ιRdα) = 0.

Hence, φ∗t (α) = φ∗0(α) = α for all t ∈ R.

Definition 2.2.3. A Reeb orbit is a closed orbit of the Reeb vector field R deter-

mined by a contact form α. In other words, a Reeb orbit is a map γ : S1 → M

such that γ′(t) = R(γ(t)).
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Example 2.2.4. (Spheres) Consider S2n−1 and the contact form α as it is in

Example 2.1.8. The vector field R = 2
n∑
i=1

(xi∂yi
− yi∂xi

) is the Reeb vector field

determined by α. There are n simple Reeb orbits which are circles. For the sphere

all orbits are closed.

Example 2.2.5. (Triple torus) Consider T3 and the contact form α as it is in

Example 2.1.10. The Reeb vector field is R = sin(2πkz)∂x + cos(2πkz)∂y.

Consider an action functional Aα on C∞(S1,M) defined by

Aα(γ) =
∫
γ
α.

Then γ is a critical point of Aα if and only if γ is a Reeb orbit of R with the

period Aα(γ) [4]. The action Aα(γ) is called the contact action of γ. Denote by

S(α) the set {Aα(γ) | γ is a Reeb orbit of R} .

2.2.2 Symplectization

Proposition 2.2.6. Let (M, ξ) be a contact manifold with a contact form α, and

let M̃ = M × R. Then the 2-form d (etπ∗α) is a symplectic form on M̃, where

π : M̃ →M is the natural projection and t is a coordinate of R.

The symplectic manifold (M̃, d (etπ∗α)) is called the symplectization of M.

This symplectic manifold is independent of the choice of contact forms.

Example 2.2.7. Consider S2n−1 as it is in Example 2.1.8. The symplectization

of S2n−1 is symplectomorphic to (R2n \ {0},∑ dxi ∧ dyi) . Define a smooth map

ψ : R2n \ {0} → S2n−1 × R by

ψ(p) =
(
p

|p|
, ln |p|2

)
.

8



The map ψ is a diffeomorphism which has the inverse φ : S2n−1×R→ R2n−1 \{0}

defined by φ(p, t) = et/2 · p. Next, show ψ preserves symplectic structures. By

identifying S2n−1×R with R2n−1\{0}, the natural projection π : S2n−1×R→ S2n−1

can be regarded as

π : R2n−1 \ {0} → S2n−1 defined by π(p) = e−t/2 · p.

Let (x1, y1, · · · , xn, yn) be the standard coordinates on R2n−1 \ {0}. Then π∗α =
1

2et
n∑
i=1

(xidyi − yidxi). Hence,

d
(
etπ∗α

)
= d

(
1
2

n∑
i=1

(xidyi − yidxi)
)

=
n∑
i=1

dxi ∧ dyi.

2.2.3 Hypersurfaces of contact type

Definition 2.2.8. Let (W,ω) be a symplectic manifold. A Liouville vector field

X is a vector field on W satisfying LXω = ω.

Definition 2.2.9. A hypersuface M of a symplectic manifold (W,ω) is called a

hypersurface of contact type if there exists a Liouville vector field X defined in a

neighborhood of M and transverse to M.

Remark 2.2.10. If M is a hypersurface of contact type in a symplectic manifold

(W,ω), the 1-form ιXω is a contact form on M. The 1-form is called the Liouville

form.

Definition 2.2.11. Let (W,ω) be a compact symplectic manifold andM a contact

type boundary with a Liouville vector field X. If X points outward along M, the

manifold W is said to have a convex boundary. If X points inward, W is said to

have a concave boundary.

9



Example 2.2.12. Consider the symplectic manifold
(
R2n, ω =

n∑
i=1

dxi ∧ dyi
)
. The

vector field X = 1
2

n∑
i=1

(xi∂xi
+ yi∂yi

) is a Liouville vector field pointing outward.

One can see that

ιXω = 1
2

n∑
i=1

(xidyi − yidxi)

LXω = dιXω =
n∑
i=1

dxi ∧ dyi = ω.

By restricting ιXω to the sphere S2n−1, we obtain the contact form on S2n−1 which

we’ve seen in Example 2.1.8. Hence, S2n−1 is of contact type.

2.2.4 Strong symplectic filling

Definition 2.2.13. A Liouville domain is an exact symplectic manifold (W,ω)

with a convex boundary. In other words, ω = dλ for some 1-form λ and the

Liouville vector field X satisfying ιXω = λ points outward along the boundary.

Example 2.2.14. (Balls) The n−ball defined by

Bn =
{

(x1, y1, · · · , xn, yn) ∈ R2n
∣∣∣∣∣

n∑
i=1

x2
i + y2

i ≤ 1
}

is a Liouville domain with the boundary S2n−1.

Definition 2.2.15. A strong symplectic filling of a contact manifold (M, ξ) is a

symplectic manifold (W,ω) satisfying the following conditions:

(i) M is the convex boundary of W ;

(ii) ξ = ker(ιXω),

where X is the Liouville vector field.

10



As the Liouville vector field points outwards along M, the orientation of M

agrees with the orientation α ∧ (dα)n−1 when dimW = 2n.

Let (W,ω) be a compact symplectic manifold with a contact type boundary

(M,α). Let X be a Liouville vector field defined on a neighborhood U of M, and

φ the flow of X. Here, choose X such that the map g : M × [−ε, 0] → U defined

by (p, t) 7→ φt(p) satisfies g∗(ιXω) = etα and g∗∂t = X. Then g∗ω = d(etα) and

d(etα) is a symplectic form on M × [0,∞) [47, 5].

Definition 2.2.16. The symplectic completion Ŵ of W is the union

Ŵ := W ∪g M × [0,∞)

endowed with the symplectic form

ω̂ :=


ω on W ;

d(etα) on M × [0,∞).

For the rest of the thesis, we set et = r and thus r is regarded as a coordinate on

[1,∞). We use the expression W ∪M M × [1,∞) for W ∪g M × [0,∞).

2.3 Prequantization line bundles

Throughout this section let (B, σ) be a symplectic manifold.

Definition 2.3.1. A symplectic form σ is called aspherical if for any smooth map

f : S2 → B, ∫
S2
f ∗σ = 0.

The above condition can be written as σ|π2(B) = 0.

11



Definition 2.3.2. A closed form λ is called integral if for any finite singular

cocycle C with integer coefficient,

∫
C
λ ∈ πZ.

If a symplectic form σ is integral, we say the symplectic manifold (B, σ) is integral.

The set of all elements ofH2(B,R) which contain integral closed forms is the

image of the homomorphism ψ : H2(B, πZ) → H2(B,R) induced by the natural

homomorphism πZ → R. Thus, σ is integral if and only if the cohomology class

[σ] is in the image of ψ. We refer to [38] for more details.

Definition 2.3.3. Let (B, σ) be an integral symplectic manifold. A prequantiza-

tion S1-bundle M is a principal S1−bundle π : M → B with a connection form

α0 such that the curvature form of α0 is dα = π∗σ when S1 is regarded as R/Z.

Remark 2.3.4. In consequence of (iii) and the definition of the connection form,

α0 is a contact form of M, and the Reeb vector field of α0 is a generator of the

S1 action on M. Also, the first Chern class of the circle bundle c1(M) is −[σ]/π

with suitable conventions; see [21].

Assume that (B2m, σ) be a symplectically aspherical manifold, i.e., σ|π2(W ) =

0 = c1(TB)|π2(W ), such that σ is integral. Also, assume that [σ] ∈ H2(B, πZ),

where π is the number 3.14 · · · . Let π : M → B be a prequantization S1-bundle

and W := M ×S1 D2 → B be the disk bundle. The associated line bundle

π : E → B is a symplectic manifold with symplectic form

ω = 1
2
(
π∗σ + d(r2α0)

)
,

where r : E → [0,∞) is the fiberwise distance to the zero section. We call (E,ω)

12



a prequantization line bundle. Note that away from the zero section we have

ω = 1
2d
(
(1 + r2)α0

)
.

Let α = fα0 be a contact form on M supporting kerα0. Without loss

of generality, we may assume that f > 1/2. Then the fiberwise star-shaped

hypersurface given by the condition (1 + r2)/2 = f is of contact type. Denote

by Mf the hypersurface. The restriction of the primitive (1 + r2)α0/2 to Mf is

exactly α. Denote by Wf the domain bounded by Mf in E. The domain Wf is a

strong symplectic filling of Mf diffeomorphic to the associated disk bundle. We

can identify E with the symplectic completion Ŵ of W.

Denote by π̃1(M) the collection of free homotopy classes of loops in M or

equivalently the set of conjugacy classes in π1(M). Furthermore, let f be the free

homotopy class of the fiber in M or in E \B and fZ = {fk | k ∈ Z}.

When σ is aspherical, the homotopy long exact sequence of the circle bundle

M → B splits and we have

1→ π1(S1)→ π1(M)→ π1(B)→ 1.

It is not hard to see that fZ is the image of Z ∼= π1(S1) in π̃1(M) = π̃1(E \ B);

[26, Lemma 4.1]. Furthermore, this is exactly the set of free homotopy classes

of loops x with contractible projections to B, i.e., of loops contractile in E. The

one-to-one correspondence fZ → Z is given by the linking number LB(x) of x with

B. This is simply the intersection index of a generic disk bounded by x with B.
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Chapter 3

Symplectic homology

3.1 Symplectic homology

In this section we briefly recall the definition of symplectic homology and

define negative and positive symplectic homology. We refer to other sources for

a more detailed discussion; see, e.g., [5, 6, 9, 10, 14, 25, 56, 61]. Throughout the

thesis all homology groups are taken with rational coefficients unless specifically

stated otherwise. This choice of the coefficient field is essential, although sup-

pressed in the notation, and some of the results are simply not true when, say,

the coefficient filed has finite characteristic.

3.1.1 Mean index and the Conley-Zehnder index of a path

in Sp(2n;R)

Throughout this subsection, we focus on paths Φ : [0, 1] → Sp(2n;R) such

that Φ(0) = I, where I is the identity matrix.

To define the mean index and the Conley-Zehnder index of a path in Sp(2n :

R), we recall the following theorem and propositions.
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Theorem 3.1.1. There exists a continuous map ρ : Sp(2n;R) → S1 satisfying

the following conditions:

(i) Naturality: For A and T in Sp(2n;R),

ρ(TAT−1) = ρ(A).

(ii) Product: If A ∈ Sp(2m;R) and B ∈ Sp(2n;R),

ρ


A 0

0 B


 = ρ(A)ρ(B).

(iii) Determinant: If A ∈ Sp(2n;R) ∩O(2n) = U(n),

ρ(A) = detC(X + iY ), where A =

X −Y

Y X

 .

(iv) Normalization: If A has no eigenvalues on the unit circle,

ρ(A) = ±1.

It follows from the property (iii) that ρ induces an isomorphism between π1(Sp(2n;R))

and Z.

The explicit construction of the continuous map ρ is described in [53].

Proposition 3.1.2. The set of all symplectic matrices with distinct eigenvalues

is dense in Sp(2n;R).

Proposition 3.1.3. The symplectic group Sp(2n;R) is connected.
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From Proposition 3.1.2 and 3.1.3, we see that every matrix A ∈ Sp(2n;R)

can be connected to a matrix B ∈ Sp(2n;R) with distinct eigenvalues.

Proposition 3.1.4. A matrix A ∈ Sp(2n;R) with distinct eigenvalues can be

written as the direct sum of matrices Aj ∈ Sp(2;R) and matrices with complex

eigenvalues not on the unit circle.

Proposition 3.1.5. Let A ∈ Sp(2n;R). There are 3 types of eigenvalues of A :

(i) If an eigenvalue λ is not on the unit circle nor a real number, then the

quadruple λ, λ̄, λ−1, λ̄−1 occurs.

(ii) If an eigenvalue λ is on the unit circle, then the pair λ, λ̄ occurs. Espe-

cially, if λ = ±1 then λ has even multiplicity.

(iii) If an eigenvalue λ is a real number, then the pair λ, λ−1 occurs.

Define a symplectic form ω0 on C2n by

ω0(X, Y ) = (J0X)TY,

where J0 =

0 −I

I 0

 .
Definition 3.1.6. Let A be a matrix in Sp(2n;R) and λ be an eigenvalue of A.

The eigenvalue λ is called an eigenvalue of first kind if either of the followings is

satisfied:

(i) λ is on the unit circle, i.e., λ = exp(iθ) and Im ω0(ξ, ξ̄) > 0, where ξ is

the eigenvector corresponding to λ;

(ii) λ is not on the unit circle and |λ| < 1.
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By following the construction of ρ in [53], one can see the map ρ defined by

ρ(A) =
∏

λ of first kind

λ

|λ|
.

By the definition of ρ, if A is a matrix in Sp(2;R),

ρ(A) =


exp(iθ) if A has an eigenvalue of first kind λ = exp(iθ);

1 if A has positive eigenvalues;

−1 if A has negative eigenvalues.

If A is a matrix in Sp(4;R) and has complex eigenvalues not on the unit circle,

ρ(A) = 1.

If A is a matrix in Sp(2n;R) with distinct eigenvalues, then by Proposition 3.1.4

and Theorem 3.1.1 (ii) and (iv), ρ(A) =
∏
j

ρ(Aj), where Aj ∈ Sp(2;R). Consider-

ing all of the above, for a path Φ in Sp(2n;R), we can find a continuous function

θ(t) such that

ρ(Φ(t)) = exp(iθ(t)).

Definition 3.1.7. The mean index of a path Φ : [0, 1]→ Sp(2n;R) is defined by

µ̂(Φ) = θ(1)− θ(0)
π

.

Definition 3.1.8. A path Φ in Sp(2n;R) is said to be nondegenerate if the matrix

Φ(1) does not have the eigenvalue 1, i.e., det(I − Φ(1)) 6= 0.

Let us define the Conley-Zehnder index of a nondegenerate path Φ ∈ Sp(2n;R).
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Set

Sp∗(2n;R) = {A ∈ Sp(2n;R)| det(I − A) 6= 0} .

Then Sp∗(2n;R) has two connected components:

Sp+(2n;R) = {A ∈ Sp(2n;R)| det(I − A) > 0}

and

Sp−(2n;R) = {A ∈ Sp(2n;R)| det(I − A) < 0} .

Definition 3.1.9. The Conley-Zehnder index of a nondegenerate path Φ ∈ Sp(2n;R)

is defined as follows:

Case 1. If Φ(1) ∈ Sp+(2n;R) then µCZ(Φ) = µ̂(Ψ+ · Φ), where Ψ+ is a

path connecting Φ(1) to −I in its connected component. and Ψ+ · Φ is the

concatenation of two paths.

Case 2. If Φ(1) ∈ Sp−(2n;R) then µCZ(Φ) = µ̂(Ψ− · Φ), where Ψ− is a

path connecting Φ(1) to


2 0

0 1
2

0

0 −I

 in its connected component. and

Ψ− · Φ is the concatenation of two paths.

The Conley-Zehnder index has the following properties.

Proposition 3.1.10. Let µ be the Conley-Zehnder index

(i) The mean index and the Conley-Zehnder index are invariant under ho-

motopies.

(i) Let Φ be a nondegenerate path in Sp(2n;R). For any path Ψ in Sp(2n;R),

µ(ΨΦΨ−1) = µ(Φ).
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We briefly introduce the definition of the Robbin-Salamon index by follow-

ing [52].

Definition 3.1.11. Let Φ be a smooth path in Sp(2n;R).Write Φ̇(t) = J0S(t)Φ(t),

where S : [0, 1]→ {A ∈M2n(R) | AT = A} is a path and J0 is an almost complex

structure compatible with the standard symplectic form ω0 = ∑
dxi ∧ yi. A num-

ber t ∈ [0, 1] is called a crossing if det(Φ(t) − I) = 0. The crossing form Γ(Φ, t)

is defined as the quadratic form of S(t) to ker(Φ(t) − I). A crossing t0 is called

regular if the crossing form Γ(Φ, t0) is nondegenerate.

Definition 3.1.12. The Robbin-Salamon index of a path Φ in Sp(2n;R) is defined

by

µRS(Φ) = 1
2 sign Γ(Φ, 0) +

∑
t crossing
t∈[0,1]

sign Γ(Φ, t) + 1
2 sign Γ(Φ, 1),

where sign Γ(Φ, t) is the signature of the crossing form.

Remark 3.1.13. In contrast to the Conley-Zehnder index, the Robbin-Salamon

index is defined for degenerate paths in Sp(2n;R). Also, the Robbin-Salamon

index is invariant under homotopies with fixed end points.

3.1.2 Hamiltonian action functional and the Conley-Zehnder

index

Before defining symplectic homology, Let us briefly recall the definitions of

the Hamiltonian action functional and the Conley-Zehnder index of a nondegen-

erate orbit. For the rest of this thesis, we regard S1 as R/Z.

Let (W,ω) be an aspherical symplectic manifold and H : S1 × W → R

be a Hamiltonian. The vector field XH satisfying ιXH
ω = −dH is called the

Hamiltonian vector field. The flow of XH is called the Hamiltonian flow. Denote

by P(H) the collection of its closed orbits which are contractible in W.
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Let Λ be the subspace of all contractible loops in C∞(S1,W ). Define an

action functional on Λ by

AH(x) =
∫
x̄
ω −

∫
S1
H(t, x(t)) dt,

where x̄ : D2 → W such that x = x̄|∂D2 . We call this action functional the

Hamiltonian action functional and the map x̄ a capping of x. Denote by Aω(x)

the symplectic area bounded by the orbits, i.e.,
∫
x̄
ω, and call it the symplectic area

of x. By the assumption that ω is aspherical, this action functional is well-defined.

The differential of AH at x is

(dAH)x(Y ) =
∫
S1
ω(Y (t), ẋ(t)−XH(x(t))) dt.

The critical points of AH are elements in P(H).

Definition 3.1.14. Let φtH be the Hamiltonian flow and x be a closed orbit of

φtH . If det(I − dx(0)φ
1
H) 6= 0 then x is said to be nondegenerate.

Let x be a nondegenerate closed orbit which is contractible in W, and x̄ be

a capping of x. Then we choose a symplectic trivialization for x̄∗(TW ). Restrict

the trivialization to S1×R2n, and denote the restriction by Φ, i.e., Φ : S1×R2n →

x∗(TW ). Define a path Ψ : [0, 1]→ Sp(2n,R) by

Ψ(t) = Φ−1(x(t)) ◦ dx(0)φ
t
H ◦ Φ(x(0)).

Then Ψ(0) = I and det(I − Ψ(1)) 6= 0 by the nondegeneracy of x. Hence, the

Conley-Zehnder index of the path Ψ is defined.

Definition 3.1.15. Assume that c1(TW )|π2(W ) = 0. Let x be a nondegenerate

closed orbit which is contractible in W. The Conley-Zehnder index of x is defined
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by

µ(x) = µCZ(Ψ).

By the property (ii) in Proposition 3.1.10, the Conley-Zehnder index is indepen-

dent of the choice of a trivialization only for a fixed capping of x. Provided that

c1(TW )|π2(W ) = 0, the Conley-Zehnder index is independent of the choice of the

capping; see [53, Section 5].

Remark 3.1.16. When H is a C2-small autonomous Hamiltonian on W 2n, for a

nondegenerate critical point x,

µ(x) = n− µM(x),

where µM(x) is the Morse index of x.

3.1.3 Symplectic homology

Let (W,ω) be a strong symplectic filling of a contact manifold (M, ξ) such

that ξ = kerα for some 1-form α. Assume that c1(TW )|π2(W ) = 0. Consider the

symplectic completion Ŵ := W ∪M M × [1,∞) with the symplectic form

ω̂ :=


ω on W ;

d(rα) on M × [1,∞),

where r is a coordinate for [1,∞).

We denote by P(α) the set of Reeb orbits of α contractible inW, and denote

by Sω̂(W ) the set of the symplectic areas of orbits in P(α), i.e.,

Sω̂(W ) =
{∫

x̄
ω̂

∣∣∣∣ x ∈ P(α)
}
.
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When ω̂ is exact, the symplectic area Aω̂(x) is the same as the contact action

Aα(x).

Consider a Hamiltonian H : S1 × Ŵ → R. Denote by P(H) the set of

one-periodic orbits of H contractible in Ŵ . Define the action spectrum as

S(H) := {AH(x) | x ∈ P(H)} .

Definition 3.1.17. A Hamiltonian H : S1× Ŵ → R is said to be admissible if it

satisfies the following conditions:

(i) H is negative and C2-small on W ;

(ii) H = h(r) and h′′(r) ≥ 0 on the cylindrical part M × [1,∞);

(iii) there exists r0 ≥ 1 such that h(r) = kr + c for r ≥ r0, where c < 0 and

k /∈ Sω̂(W ).

If a Hamiltonian satisfies only the condition (iii) then the Hamiltonian is said to

be admissible at infinity.

Definition 3.1.18. A map J : S1 → End(Ŵ ) is called an admissible almost

complex structure if it satisfies the following conditions: for all t ∈ S1

(i) J2
t = −I, where Jt := J(t);

(i) Jt is compatible with ω̂, i.e., ω̂(·, ·) = ω̂(Jt·, Jt·) and ω̂(·, Jt·) is a Rie-

mannian metric;

(iii) Jt|ξ = J0 and Jt(r∂r) = Rα,

where Rα is the Reeb vector field of α and J0 is a compatible complex structure on

the symplectic bundle (ξ, dα). Denote by J the set of admissible almost complex

structures.
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Remark 3.1.19. Let XH be the Hamiltonian vector field. By the definition of XH ,

we have (rdα+dr∧α)(XH , ∂r) = −h′(r) onM× [1,∞). By computation, we have

XH = h′(r)Rα. Thus, the Hamiltonian flow of H onM× [1,∞) corresponds to the

Reeb flow on M. By the condition (i) in 3.1.17, a closed orbit of the Hamiltonian

flow in W is a critical point of H. We refer to [3, Section6.1] for more details. If

x is a Hamiltonian orbit in W, there exists a sufficiently small ε > 0 such that for

all of the constant orbits, the action

AH(x) < ε.

Let us define the symplectic homology of W. Consider the set of admissible

Hamiltonians with a partial order ” 6 ” defined by

H 6 K if H ≤ K as functions on Ŵ .

Denote by H a cofinal subset of the partially ordered set. There exists a well-

defined continuation map between the Floer homology groups for H and K with

H ≤ K;

Φ : HF(H)→ HF(K),

We can take the direct limit of the groups over H. Define the symplectic homology

of W by

SH(W ) := lim−→
H∈H

HF(H).

Remark 3.1.20. When we take the direct limit over a cofinal subset H, we see that

r0 → 1 and k → ∞ for r0 and k in Definition 3.1.17 as well as H|W → 0. Thus
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for an orbit x ∈ P(H) in M × [1, r0), the Hamiltonian action

AH(x) =
∫
x̄
ω̂ −

∫
S1
H(t, x(t)) dt =

∫
x̄
ω̂ − h(rx),

where x̄ is a capping of x and the orbit x appears on the level r = rx. As r0 → 1,

the orbit x approaches a Reeb orbit γ ∈ P(α); e.g., see Remark 3.1.19 and

AH(x) →
∫
γ̄
ω̂,

where γ̄ is a capping of γ.

Similarly, we define the filtered symplectic homology. Let I = [a, b] ∈ R be

an interval with the end points outside Sω̂(W ). The number a or b can be infinity.

Let HFI(H) be the Floer homology filtered by the Hamiltonian action AH . Then

the filtered symplectic homology is defined by

SHI(W ) := lim−→
H∈H

HFI(H),

where H is the cofinal subset of admissible Hamiltonians. When I = (−∞,∞),

SHI(W ) = SH(W ).

3.1.4 Negative and positive symplectic homology

Assume that α on M is nondegenerate. Let H be a non-positive C2-small

Morse function on W and a monotone increasing, convex function h of r on

M × [1,∞) such that h′′ > 0 in the region containing one-periodic orbits of H.

Clearly, H is a Morse-Bott nondegenerate Hamiltonian and such H form a cofinal

family. Let CF−(H) be the subspace of the Morse-Bott Floer complex CF(H)

of H generated by the critical points of H; see, e.g., [5]. Actually, CF−(H) is a
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Figure 3.1: There is no Floer trajectory from orbits on M × [1,∞) to critical
points of H.

subcomplex of CF(H); see [10, Remark 2]. The reason is that, as shown on [6, p.

654] (see also [14, Lemma 2.3]), a Floer trajectory asymptotic at +∞ to a closed

orbit on a level r = r0 can not stay entirely in the union W ∪M M × [1, r0]. Thus

by the standard maximum principle, such a trajectory cannot be asymptotic to a

critical point of H in W at −∞. See Figure 3.1. Hence, CF−(H) is closed under

the Floer differential. Now we can think of

CF+(H) = CF(H)/CF−(H),

as a Morse–Bott type Floer complex generated by the non-trivial one-periodic

orbits of H. The resulting homology groups form a long exact sequence. By

passing to the limit over H, we obtain the negative/positive symplectic homology

groups SH±(W ) which fit into the long exact sequence

· · · → SH−(W )→ SH(W )→ SH+(W )→ · · · . (3.1.1)

When α is degenerate, we approximate it by nondegenerate forms α′, which

25



results in a small perturbationW ′ ofW in Ŵ , and pass to the the limit as α′ → α.

It is easy to see that the resulting negative/positive homology is well defined and

we still have the long exact sequence (3.1.1).

The homology SH±(H) inherits the action filtration in the obvious way and

thus we have the groups SH±,I(H), where the end points of I are required to be

outside Sω̂(H). As a consequence, we obtain the action filtration on SH±(W ) with

the end points of I outside Sω̂(H) ∪ {0}. Occasionally, we will use the notation

SH±,(−∞, 0](W ) (respectively, SH(−∞, 0](W )) for the inverse limit of the groups

SH±,(−∞, ε](W ) (respectively, SH(−∞, ε](W )) as ε↘ 0.

The long exact sequence (3.1.1) still holds for the filtered groups SH±,I(H)

and SHI(W ). Since the constant orbits ofH have non-positive action, SH−,I(W ) =

0 if I ⊂ (0, ∞) and there is a natural map

SH−(W )→ SH(−∞, 0](W ).

When the form ω̂ is exact, this map is an isomorphism.

3.2 S1-equivariant symplectic homology

Throughout this section, we assume that (W,ω) is a strong symplectic fill-

ing of a contact manifold (M, ξ) such that ξ = kerα for some 1-form α, and

c1(TW )|π2(W ) = 0. Let Ŵ be the symplectic completion of W.

Consider a parametrized Hamiltonian

H̃ : S1 × Ŵ × S2m+1 → R

which is invariant with respect to the diagonal S1-action, i.e., H̃(θ + t, w, θ · z) =
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H̃(t, w, z), where (t, w, z) is a triple of coordinates for S1×Ŵ ×S2m+1 and the dot

θ ·z is the Hopf action of S1 on S2m+1. Assume that H̃ is admissible at infinity, i.e.,

there exists r0 ≥ 1 such that H̃(t, w, z) = kr + c(z) for r ≥ r0, where k /∈ Sω̂(W )

and c(z) = c(θ · z).

Let Λ be the space of contractible loops. Define the parametrized action

functional on Λ× S2m+1 by

AH̃(x, z) =
∫
x̄
ω̂ −

∫
S1
H̃(t, x(t), z) dt,

where x̄ is a capping of x. The differential of AH̃ is

(dAH̃)(x,z)(Y, Z) =
∫
S1
ω̂(Y (t), ẋ(t)−XH̃z

(x(t)) dt+
∫
S1
∇zH̃z(t, x(t)) dt · Z

for Y ∈ TxΛ and Z ∈ TzS
2m+1, where H̃z(t, w) = H̃(t, w, z). Hence, (x, z) is a

critical point of AH̃ if and only if

x ∈ P(H̃z) and
∫
S1
∇zH̃z(t, x(t)) dt = 0.

Denote by P(H̃) the set of all critical points of AH̃ . The set P(H̃) is S1-invariant,

i.e., if (x, z) is a critical point then θ · (x(t), z) is also a critical point for θ ∈ S1,

where θ · (x(t), z) = (x(t − θ), θ · z). Denote by S(x,z) the S1-orbits of (x, z). The

orbit S(x,z) is called a critical orbit of H̃.

Definition 3.2.1. A critical orbit S(x,z) is said to be nondegenerate if the Hessian

d2AH̃ has a one-dimensional kernel at any point of S(x,z).

Denote by HS1 the set of parametrized nondegenerate Hamiltonians which

are admissible at infinity and all of whose critical orbits are nondegenerate.

Proposition 3.2.2. HS1 forms a Baire second category in the space of all parametrized
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Hamiltonians admissible at infinity. Moreover, if H̃ ∈ HS1 then every critical or-

bit of H̃ is isolated.

For the proof of this proposition, we refer to [7, Proposition 5.1]. By this

proposition, there are finitely many critical orbits of H̃ ∈ HS1
. From now on, we

only consider Hamiltonians in HS1
.

Consider a family J of (t, z)-dependent almost complex structures J tz, for

t ∈ S1 and z ∈ S2m+1, satisfying the following conditions:

(i) J t+θθ·z = J tz for all θ ∈ S1;

(ii) J tz is compatible with ω̂;

(iii) J tz|ξ = J0 and J tz∂r = Rα,

where Rα is the Reeb vector field of α and J0 is a compatible complex structure

on the symplectic bundle (ξ, dα). Let us call such an almost complex structure

an S1-invariant admissible almost complex structure. Given (x, z) ∈ Λ × S2m+1,

define the metric < ·, · >z on TxΛ× TxΛ by

< Y, Y ′ >z:=
∫
S1
ω̂(Y (t), Jzt Y ′(t)) dt

for Y, Y ′ ∈ TxΛ. Fix an S1-invariant metric on S2m+1. These two metrics give rise

to an S1-invariant metric g on Λ× S2m+1.

Let p := (x, z) and p′ := (x′, z′) be critical points of AH̃ . Given the pair

(J , g), denote by M̂(Sp, Sp′ ; H̃,J , g) the space consisting of pairs of functions

(u, λ) satisfying the equations:

∂su+ J tλ(s)∂tu−∇wH̃λ(s) = 0,

λ̇(s)−
∫
S1
∇zH̃λ(s)(t, u(s, t)) dt = 0,
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lim
s→−∞

(u(s, t), λ(s)) ∈ Sp and lim
s→+∞

(u(s, t), λ(s)) ∈ Sp′ , (3.2.1)

where u : R× S1 → Ŵ and λ : R→ S2m+1, and w and z stand for coordinates of

Ŵ and S2m+1, respectively. Denote the moduli space by

M(Sp, Sp′ ; H̃,J , g) := M̂(Sp, Sp′ ; H̃,J , g)/R. (3.2.2)

For a Hamiltonian H ∈ HS1
, we can choose an S1-invariant metric g on

Λ × S2m+1 and a family J of S1-invariant admissible almost complex structures

such that the moduli spaceM(Sp, Sp′ ; H̃,J , g) is a smooth manifold of dimension

µ(p)− µ(p′), where µ(p) is the parametrized Robbin-Salamon index of p. We refer

to [8, Section 1.3] for the definition of the parametrized Robbib-Salamon index.

This moduli space carries a free S1-action. Denote by Jreg(H̃) the set of pairs

(J, g) such that J ∈ J , g(·, ·) = ω̂(·, J ·) and the moduli spaceM(Sp, Sp′ ; H̃,J , g)

is a smooth manifold.

Denote the quotient by

MS1(Sp, Sp′ ; H̃,J , g) :=M(Sp, Sp′ ; H̃,J , g)/S1.

Then MS1(Sp, Sp′ ; H̃,J , g) is a smooth manifold of dimension µ(p) − µ(p′) − 1.

We refer to [10] for more details.

Remark 3.2.3. As we have seen from the equation (3.2.1), the asymptotes of the

moduli spaceM(Sp, Sp′ ; H̃,J , g) are not fixed. But the critical orbits Sp and Sp′

are fixed. Since the action functional AH̃ and the pair (J , g) are S1-invariant, the

asymptotes of the quotientMS1(Sp, Sp′ ; H̃,J , g) are fixed.

We useMS1(Sp, Sp′) as the abbreviation ofMS1(Sp, Sp′ ; H̃,J , g). Given a

pair (J, g) ∈ Jreg(H̃), define the S1-equivariant chain complex
(
CFS1,m(H̃, J, g), ∂S1,m

)
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as

CFS1,m
∗ (H̃, J, g) :=

⊕
Sp⊂P(H̃)

Z〈Sp〉,

where the grading is defined by µ(p) +m. The differential ∂S1,m is defined by

∂S
1,m(Sp) =

∑
Sp′⊂P(H̃)

µ(p)−µ(p′)=1

〈Sp, Sp′〉Sp′ , (3.2.3)

where 〈Sp, Sp′〉 is obtained by adding up all the signs of points in the moduli

spaceMS1(Sp, Sp′) and the sign of a point inMS1(Sp, Sp′) is determined by the

coherent orientation ofMS1(Sp, Sp′).We refer to [10, Proposition 2.2] for the proof

of ∂S1,m ◦ ∂S1,m = 0.

For a pair (J, g) ∈ Jreg(H̃), we define the S1-equivariant Floer homology of

H̃ as

HFS1,m
∗ (H̃, J, g) := H∗(CFS1,m(H̃, J, g), ∂S1,m).

Proposition 3.2.4. Given two pairs (J, g), (J ′, g′) ∈ Jreg(H̃), there exists a

canonical isomorphism

HFS1,m
∗ (H̃, J, g)→ HFS1,m

∗ (H̃, J ′, g′).

We refer to [9, Section 5.3] for the proof. Thus, we do not need to worry

about the choice of pairs (J, g) ∈ Jreg(H̃). Set HFS1,m
∗ (H̃) := HFS1,m

∗ (H̃, J, g) for

any (J, g) ∈ Jreg(H̃).

Let H̃, K̃ be Hamiltonians defined on Ŵ ×S2m+1 and admissible at infinity.

Assume that H ≤ K. Then there exists a canonical morphism

Φ : HFS1,m
∗ (H̃)→ HFS1,m

∗ (K̃).
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By considering a cofinal subset of Hamiltonians admissible at infinity, define the

homology

SHS1,m
∗ (W ) := lim−→

H̃

HFS1,m
∗ (H̃).

Then the S1-equivariant symplectic homology is defined by

SHS1

∗ (W ) := lim−→
m

SHS1,m
∗ (W ),

where the direct limit is taken with respect to the embedding S2m+1 ↪→ S2m+3

that induces the map SHS1,m
∗ (W )→ SHS1,m+1

∗ (W ).

Remark 3.2.5. (Filtered S1-equivariant Floer homology)

Let H : S1×Ŵ → R be a Hamiltonian admissible at infinity and I = [a, b] ∈ R be

an interval with end points outside S(H). One can consider H as a parametrized

Hamiltonians independent of t and z, where t and z are coordinates for S1 and

S2m+1, respectively. Define the filtered S1-equivariant Floer homology of H as

HFI,S1

∗ (H) = lim−→
m

lim−→
{H̃}

HFI,S1,m
∗ (H̃), (3.2.4)

where {H̃} is a cofinal sequence of parametrized Hamiltonians which are trans-

versely nondegenerate perturbations sufficiently close to H. Also, the sequence is

converging to H.

Remark 3.2.6. Similar to the definition of the subcomplex CF−(H) in Section

3.1.4, the groups

CF−,S1,m
∗ (H̃, J, g) :=

⊕
Sp⊂P(H̃)

x=constant

Z〈Sp〉
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build a subcomplex of
(
CFS1,m
∗ (H̃, J, g), ∂S1

)
. Denote

CF+,S1,m
∗ (H̃, J, g) := CFS1,m

∗ (H̃, J, g)/CF−,S1,m
∗ (H̃, J, g).

By taking the direct limit over a cofinal subset of Hamiltonians H̃ and m of the

homology groups induced by the above subcomplexes, we obtain, SH−,S1

∗ (W ) and

SH+,S1

∗ (W ).

Lemma 3.2.7. [10, Lemma 2.3] There exists a natural isomorphism

SH−,S1

∗ (W ) ∼= H∗+n(W,∂W )⊗ H∗(CP∞),

where dimW = 2n.

Theorem 3.2.8. [10, Theorem 1.3]

(i) The symplectic homology groups fit into an exact sequence of Gysin type:

SH?
∗(W ) SH?,G

∗ (W ) SH?,G
∗−2(W ) SH?

∗−1(W )D

where ? = ± or nothing.

(ii) There is a Leray-Serre type spectral sequence starting with

E?,2
p,q = SH?

p(W )⊗ Hq(CP∞)

converging to SH?,S1(W ), where ? = ± or nothing.

3.3 Lusternik-Schnirelmann theory

In this section we develop the Lusternik-Schnirelmann theory for the shift

operator in S1-equivariant symplectic homology.
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Figure 3.2: The differential ∂ decomposes as ∂ = ∂1 + ∂2.

3.3.1 The shift operator in S1-equivariant Floer homology

Under the same setting in Section 3.2 , we briefly define the shift operator

in S1-Floer homology by following [25, Section 2.2.3].

Let Sp be a critical orbit of H̃, where p is a critical point of the parametrized

action functional AH̃ . Fix a Morse function gp : Sp → R with one maximum Mp

and mp. Consider the vector space CF∗(H̃) generated by Mp and mp and graded

by setting µ(Mp) = µ(p) + 1 and µ(mp) = µ(p), where µ(p) is the parametrized

Robbin-Salamon index of p.

The differential ∂ : CF∗(H̃)→ CF∗−1(H̃) decomposes as ∂ = ∂1 +∂2, where

∂1 and ∂2 are defined below. Let p, q, and r be critical points of AH̃ .

When µ(q) = µ(p)− 1, the first term ∂1 is defined by

∂1(Mp) =
∑
q

〈Mp,Mq〉Mq and ∂1(mp) =
∑
q

〈mp,mq〉mq.

Here, 〈Mp,Mq〉 is obtained by adding up all the signs of points in the moduli

space of broken trajectories made of an anti-trajectory ηp : (−∞, 0] → Sp of gp
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starting atMp and the Floer trajectory ũ(s, t) = (u(s, t), λ(s)) of (3.2.1) such that

the line ũ(s, 0) connects η(0) and mq. The sign of a point in the moduli space is

determined by the coherent orientations. Similarly, 〈mp,mq〉 is obtained by adding

up all the signs of points in the moduli space of broken trajectories made of the

Floer trajectory from Sp to Sq with lim
s→−∞

ũ(s, t) = mp and an anti-trajectory ηq of

gq connecting lim
s→∞

ũ(s, t) and mq. The red line in Figure 3.2 represents the broken

trajectories.

When µ(r) = µ(p)− 2, the second term ∂2 is defined by

∂2(mp) =
∑
r

〈mp,Mr〉Mr and ∂2(Mp) = 0,

where 〈mp,Mr〉 is the number of Floer trajectories from Sp to Sr with the line

ũ(s, 0) connecting mp and Mr. The green line in Figure 3.2 represents the Floer

trajectories.

Then ∂2 = 0. We refer to [9] for the proof. In addition, the homology of the

chain complex (CF(H̃), ∂) is the the ordinary Floer homology of H̃. Denote the

Floer homology by HFm(H̃).

Let CM(H̃) and Cm(H̃) be the vector subspaces generated by {Mp | p ∈

Crit(AH̃)} and {mp | p ∈ Crit(AH̃)}, respectively. Then the pair (CM(H̃), ∂1) is a

subcomplex of (CF(H̃), ∂) and the quotient space CF(H̃)/CM(H̃) is isomorphic

to Cm(H̃). The pair (Cm(H̃), ∂1) is also a subcomplex. Thus, we have the short

exact sequence

0→ (CM(H̃), ∂1)→ (CF(H̃), ∂)→ (Cm(H̃), ∂1)→ 0 (3.3.1)

34



By recalling the definition of the differential ∂S1,m in (3.2.3), one can see that

H∗(Cm(H̃), ∂1) = HFS
1,m
∗−1 (H̃) and H∗(Cm(H̃), ∂1) = HFS1,m

∗ (H̃).

The short exact sequence (3.3.1) gives rise to a long exact sequence in homology

· · · → HFm∗ (H̃)→ HFS1,m
∗ (H̃) D−→ HFS

1,m
∗−2 (H̃)→ HFm∗−1(H̃)→ · · · (3.3.2)

The connecting map D is induced by the map ∂2 : Cm(H̃)→ CM(H̃). We call the

map D the shift operator.

Let I = [a, b] ∈ R be an interval with end points outside S(H̃). From the

exact sequence (3.3.2), we have the same type of exact sequence in homology

filtered by the action AH̃ .

· · · → HFI,m∗ (H̃)→ HFI,S1,m
∗ (H̃) D−→ HFI,S

1,m
∗−2 (H̃)→ HFI,m∗−1(H̃)→ · · · (3.3.3)

Let H : S1 × Ŵ → R be a Hamiltonian admissible at infinity and I =

[a, b] ∈ R be an interval with end points outside S(H). Consider a cofinal sequence

of parametrized Hamiltonians H̃ converging to H as we did in Remark 3.2.5. By

applying direct limits H̃ → H and m → ∞ to the exact sequence (3.3.3), we

obtain the long exact sequence in Floer homology of H

· · · → HFI∗(H)→ HFI,S1

∗ (H) D−→ HFI,S
1

∗−2 (H)→ HFI∗−1(H)→ · · · (3.3.4)
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3.3.2 Lusternik-Schnirelmann theory for the shift opera-

tor

Let H : S1 × Ŵ → R be a Hamiltonian admissible at infinity and I =

[a, b] ∈ R be an interval with end points outside S(H).

Definition 3.3.1. Assume that H is autonomous. a one-periodic orbit y is said

to be a reparametrization of x if y(t) = x(t + θ) for some θ ∈ G = S1. Two

one-periodic orbits are said to be geometrically distinct if one of them is not a

reparametrization of the other.

Denote by P(H) the collection of all geometrically distinct contractible one-

periodic orbits of H when H is autonomous. Denote by P(H, I) the set of one-

periodic orbits in P(H) with the actions in the interval I. For a nonzero class

ξ ∈ HFI,S1

∗ (H), define the spectral invariant or action selector cξ(H) by

cξ(H) = inf{b′ ∈ I \ S(H) | ξ ∈ im(ib′)},

where ib′ : HFI′,S1

∗ (H)→ HFI,S1

∗ (H) is the natural map for I ′ = [a′, b′] ⊂ I. Action

selectors cξ are in S(H) for a nonzero class ξ ∈ HFI,S1

∗ (H).

Theorem 3.3.2. [25, Theroem 2.12] Assume that all one-periodic orbits in P(H, I)

are isolated and non-constant. Then for any nonzero class ξ ∈ HFI,S1

∗ (H), we have

cξ(H) > cD(ξ)(H),

where D is the shift operator in the sequence (3.3.4).
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Define the action gap by

gap(H) := min
x 6=y

x,y∈P(H,I)

|AH(x)−AH(y)|.

Then gap(H) > 0.

Corollary 3.3.3. [25, Corollary 2.14]

cξ(H) ≥ cD(ξ)(H) + gap(H) > cD(ξ)(H).
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Chapter 4

Vanishing of symplectic homology

4.1 Vanishing of symplectic homology on aspher-

ical manifolds

In this section we analyze general quantitative and qualitative consequences

of vanishing of the symplectic homology, focusing mainly on symplectically aspher-

ical manifolds.

4.1.1 Homology calculations and equivariant capacities

The condition that SH(W ) = 0 readily lends for an explicit calculation

of the (equivariant) positive symplectic homology, which then can be used to

define several variants of the homological symplectic capacities. We start with a

calculation of the negative and positive equivariant symplectic homology of W .

Proposition 4.1.1. Assume that W 2n is symplectically aspherical and SH(W ) =

0. Then we have the following natural isomorphisms:

(i) SH−(W ) = H∗(W,∂W )[−n] and SH−,S1(W ) = H∗(W,∂W )⊗H∗(CP∞)[−n];
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(ii) SH+(W ) = H∗(W,∂W )[−n+ 1] and

SH+,S1(W ) = H∗(W,∂W )⊗ H∗(CP∞)[−n+ 1]; (4.1.1)

(iii) combined with the identification (4.1.1), the Gysin sequence shift map

SH+,S1

r+2 (W ) D→ SH+,S1

r (W )

is the identity on the first factor and the map Hq+2(CP∞) → Hq(CP∞), on

the second given by the pairing with a suitably chosen generator of H2(CP∞).

In particular, D is an isomorphism when r ≥ n+ 1.

Proof. Assertion (i) is an immediate consequence of the definitions and the con-

dition that W is symplectically aspherical; see, e.g., [9, 61]. With our grading

conventions (which ultimately result in the same grading as in [9]), we have

SH−r (W ) = Hn+r(W,∂W ),

SH−,S1

r (W ) =
⊕
p+q=r

Hp+n(W,∂W )⊗ Hq(CP∞),

where all homology groups are taken with coefficients in Q. In particular, as W is

oriented,

SH−n (W ) = Q,

SH−q (W ) = 0 if q ≥ n+ 1

Combining the assumption SH(W ) = 0 with the long exact sequence
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SH(W ) SH+(W )

SH−(W )

[−1]

we see that SH+
q+1(W ) = SH−q (W ). Hence, we have

SH+
n+1(W ) = SH−n (W ) = Q, (4.1.2)

SH+
q (W ) = 0 if q ≥ n+ 2.

This proves the second assertion.

Next consider the Gysin sequence

SH+,S1

∗ (W ) SH+,S1

∗−2 (W )

SH+
∗ (W )

D

[+1]

where D is the shift operator. Then

SH+,S1

q+2 (W ) ∼= SH+,S1

q (W ) if q ≥ n+ 1.

By assertions (i) and (ii) of Theorem 3.2.8, we have that SH(W ) = 0 if and only

if SHS1(W ) = 0. From the long exact sequence, we see that

SH+,S1

r+1 (W ) = SH−,S1

r (W ) =
⊕
p+q=r

Hp+n(W,∂W )⊗ Hq(CP∞).

This isomorphism commutes with D and, on the right, D is given by the pairing

Hq(CP∞) → Hq−2(CP∞) with a generator of H2(CP∞). This proves assertion
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(iii) and completes the proof of the theorem.

With this calculation in mind, we define homological symplectic capacities,

a.k.a. spectral invariants, a.k.a. action selectors, depending on the perspective.

The construction follows the standard path which goes back to [15, 34, 55, 60].

(See also [25, 33] for a recent detailed treatment in the case where W is a ball.)

To a non-zero class β ∈ SH+(W ), we associate the capacity

c(β,W ) = inf{a ∈ R | β ∈ im(ia)} ∈ R,

where the map ia : SH+,(−∞,a)(W ) → SH+(W ) is induced by the inclusion of

the complexes. (When β = 0, we have, by definition, c(β,W ) = −∞.) This

capacity can be viewed as a function of β or W . In the latter case, c(β,W ) has all

expected features of a symplectic capacity as long as W varies within a suitably

chosen class of manifolds with naturally isomorphic homology groups SH+(W ).

For β ∈ SH+,S1(W ), the equivariant capacity cS1(β,W ) is defined in a similar

fashion.

By assertion (ii) of Proposition 4.1.1, every class ζ ∈ H∗(W,∂W ) gives rise

to class ζ+ ∈ SH+(W ) and we set cζ(W ) = c(ζ+,W ). The capacity arising from

the unit ζ = [W,∂W ] is of particular interest and we denote it by c(W ). Likewise,

by (4.1.1), we can associate to ζ a sequence of classes ζS1
k = ζ+⊗σk ∈ SH+,S1(W )

for k = 0, 1 , 2, . . ., where σk is a generator in H2k(CP∞) and D(ζS1
k+1) = ζS

1
k . We

set

cS1

ζ,k(W ) := c(ζS1

k ,W ).

When ζ = [W,∂W ], we write cS1
k := cS1

ζ,k. The operator D does not increase the
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action filtration (see, e.g., [9, 25]). Hence,

cS1

ζ,0(W ) ≤ cS1

ζ,1(W ) ≤ cS1

ζ,2(W ) ≤ . . . . (4.1.3)

Lemma 4.1.2. The capacities are non-negative:

cζ(W ) ≥ 0 and cS1

ζ,k(W ) ≥ 0 (4.1.4)

and

cS1

ζ,0(W ) ≤ cζ(W ). (4.1.5)

These inequalities are well known when W is exact. Moreover, then all

capacities are strictly positive. However, when W is only assumed to be symplec-

tically aspherical, non-trivial closed Reeb orbits on ∂W can possibly have negative

Hamiltonian action, and (4.1.4) is not entirely obvious.

Proof. To prove (4.1.4) for cζ(W ), consider an admissible Hamiltonian H which

is nondegenerate and bounded below by −δ < 0 on W . It is clear that the action

selector corresponding to ζ+ for H is also bounded from below by −δ. Indeed,

after a small nondegenerate perturbation of H outsideW , the value of the selector

is attained on an orbit which is connected by a Floer trajectory to a critical point

of H in W . Passing to the limit, we see that cζ(W ) ≥ 0. For the capacities cS1
ζ,k

the argument is similar.

The proof of (4.1.5) is identical to the argument in the case where W is

exact. Namely, by arguing as in the proof of Proposition 4.1.1 it is easy to show

that the natural map

Hn+∗(W,∂W )
∼=−→ SH−∗ (W )

∼=−→ SH+
∗+1(W )→ SH+,S1

∗+1 (W ),
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where we suppressed in the notation the grading shift by the second arrow iso-

morphism, sends ζ to ζS1
0 = ζ+ ⊗ σ0. With this in mind, (4.1.5) follows from the

commutative diagram

SH+,(−∞,a)(W ) SH+(W )

SH+,(−∞,a),S1(W ) SH+,S1(W )

Remark 4.1.3. We expect that the strict inequalities also hold in (4.1.4). How-

ever, proving this requires a more subtle argument. One can use, for instance, a

continuation or “transfer” map between W and a slightly shrunk domain W ′ to

show that this map decreases the action by a certain amount and reasoning as

in the proof of Theorem 4.1.9. In Section 4.2, we will show that this is true for

prequantization bundles by a rather simple and different argument.

4.1.2 Uniform instability of the symplectic homology

Let us now turn to quantitative consequences of vanishing of the symplectic

homology.

We say that the filtered symplectic homology of W is uniformly unstable if

the natural “quotient-inclusion” map

SHI(W )→ SHI+c(W ) (4.1.6)

is zero for every interval I (possibly infinite) and some constant c ≥ 0 independent

of I. One way to interpret this defintion, inspired by the results in [58], is that

every element of the filtered homology is “noise” on the c-scale or, equivalently,
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all bars in the barcode associate with this homology have length no longer than

c. (See, e.g., [47, 62] for a discussion of barcodes and persistence modules in the

context of symplectic topology.)

The requirement that the homology is uniformly unstable is seemingly

stronger than that the global homology vanishes: setting I = R we conclude

that SH(W ) = 0. However, as was pointed out to us by Kei Irie, [37], the two

conditions are equivalent for Liouville domains. In other words, somewhat sur-

prisingly, vanishing of the global homology is equivalent to the uniform instability

of the filtered homology. The next proposition is a minor generalization of his

observation.

Proposition 4.1.4. Assume that ω|π2(W ) = 0. The following two conditions are

equivalent:

(i) SH(W ) = 0 and

(ii) there exists a constant c0 > 0 such that for any c > c0 and any interval

I ⊂ R the map (4.1.6) is zero.

Moreover, the smallest constant c0 with this property is exactly the capacity c(W ).

Proof. As has been pointed out above, to prove the implication (ii) ⇒ (i), it is

enough to set I = R in (ii). Indeed, then (4.1.6) is simultaneously zero and the

identity map, which is only possible when SH(W ) = 0.

Let us prove the converse. Assume that SH(W ) = 0 and consider the natural

map ψ : SH−(W )→ SH(−∞,c)(W ). By definition, c(W ) = inf{c | ψ(ζ) = 0} <∞

where we took ζ to be the image of the fundamental class [W,∂W ] ∈ SH−(W );

see Proposition 4.1.1. Our goal is to show that the map (4.1.6) vanishes for any

c > c(W ) and any interval I.
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Step 1. For a /∈ Sω̂(W ), consider an interval I = (−∞, a). We have the

following commutative diagram where the horizontal maps are given by the pair-

of-pants product:

SH(−∞,a)(W )⊗ SH(−∞,0](W ) SH(−∞,a)(W )

SH(−∞,a)(W )⊗ SH(−∞,c)(W ) SH(−∞,a+c)(W )

id⊗ψ φ

Recall that ζ ∈ SH−(W ) is a unit with respect to this product.(We refer

the reader to [1] for the definition of the pair-of-paints product applicable in this

case and also to, e.g., [49].) Thus, for any σ ∈ SH(−∞,a)(W ),

σ ⊗ ζ σ

σ ⊗ 0 0.
Hence, the map φ vanishes.

Step 2. For a, b /∈ Sω̂(W ), consider an interval I = (a, b). We have the the

following commutative diagram:

SH(−∞,a)
k (W ) SH(−∞,b)

k (W ) SH(a,b)
k (W )

SH(−∞,a+c)
k (W ) SH(−∞,b+c)

k (W ) SH(a+c,b+c)
k (W )

φ1 φ2 ψ

By Step 1, the maps φ1, φ2 are zero maps. Hence the map ψ vanishes.

Step 3. For a /∈ Sω̂(W ) consider an interval I = (a,∞). At Step 2, we

obtained the zero map ψ : SH(a,b)(W ) → SH(a+c,b+c)(W ). By taking b to ∞, we

see the map ψ : SH(a,∞)(W )→ SH(a+c,∞)(W ) vanishes.

Remark 4.1.5. It is worth pointing out that Proposition 4.1.4 and Theorem 4.1.9

below do not have a counterpart in the equivariant setting. Indeed, when W is
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the standard symplectic ball B2n the maps

SHS1,(a,∞)(W )→ SHS1,(a+c,∞)(W )

are non-zero for any a and c ≥ 0 while SHS1(W ) = 0.

4.1.3 Growth of symplectic capacities

Another consequence of vanishing of the symplectic homology is an upper

bound on the growth of the equivariant symplectic capacities.

Proposition 4.1.6. Assume that ω|π2(W ) = 0. Then, for every ζ ∈ Hd(W,∂W )

and k such that 2k ≥ 2n− d, we have

0 ≤ cS1

ζ,k+1(W )− cS1

ζ,k(W ) ≤ c(W ).

Proof. The first inequality is simply the assertion that the sequence cζ,k(W ) is

(non-strictly) monotone increasing (see (4.1.3)) and, as has been pointed out in

Section 4.1.1, this is a consequence of the fact that the operator D does not

increase the action filtration (see, e.g., [9, 25]).

Let us show that cS1
ζ,k+1(W )− cS1

ζ,k(W ) ≤ c(W ). By Proposition 4.1.1,

SH+,S1

n+1 (W ) ∼=
n⊕
k=0

H2n−2k(W,∂W ),

SH+,S1

n+2 (W ) ∼=
n⊕
k=1

H2n−2k+1(W,∂W ).

For r ≥ 1 and e > c(W ), we have the following commutative diagram:
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SH(b+e,∞)
n+r (W ) SH(b+e,∞),S1

n+r+2 (W ) SH(b+e,∞),S1

n+r (W ) · · ·

SH(b,∞)
n+r+2(W ) SH(b,∞),S1

n+r+2 (W ) SH(b,∞),S1

n+r (W ) · · ·

SH+
n+r+2(W ) SH+,S1

n+r+2(W ) SH+,S1

n+r (W ) SH+
n+r+1(W )

SH(ε,b)
n+r+2(W ) SH(ε,b),S1

n+r+2 (W ) SH(ε,b),S1

n+r (W ) · · ·

π∗ D1

D2

(4.1.6) f

jr+2 jr

ir+2 ir

Except for the first row, each row is the Gysin sequence andDi is the shift operator

for i = 1, 2; each column comes from the short exact sequence

0 CF(ε,b)
∗ CF(ε,∞)

∗ CF(b,∞)
∗ 0,

where CFI∗ is a filtered Floer complex; the first row is obtained by shifting the

action interval (b,∞) by e upward.

Consider a class ζ ∈ H∗(W,∂W ). Since 2k ≥ 2n − d, the class ζS1
k lies in

SH+,S1

n+r (W ) for some r ≥ 1. From the fact (4.1.2), we see that SH+
n+r+2(W ) = 0

and SH+
n+r+1(W ) = 0 for all r ≥ 1. Hence the map D2 is an isomorphism. Let ξ be

the preimage of ζS1
k under D2. Assume that there exists a class ζ ′ ∈ SH(ε,b),S1

n+r (W )

which is sent to ζS
1

k by the map ir. Then we see that (ir ◦ jr)(ζ ′) = 0. By

commutativity of the diagram, (D1 ◦ jr+2)(ξ) = 0. Hence, there exists a class

ξ′ ∈ SH(b,∞)
n+r+2(W ) such that π∗(ξ′) = jr+2(ξ). Again, by commutativity of the

diagram, (f ◦ jr+2)(ξ) = 0. Hence, cS1
ζ,k+1(W ) ≤ b+ e.
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4.1.4 Vanishing and displacement

A geometrical counterpart of the condition that SH(W ) = 0 is the require-

ment that W is (stably) displaceable in Ŵ . In this section, we will revisit and

generalize the well-known fact that SH(W ) = 0 for displaceable Liouville do-

mains W . In particular, we extend this result to monotone or negative monotone

symplectic manifolds.

Definition 4.1.7. Let (V, ω) be a closed symplectic manifold and A be a subset

of V. Denote by Hc(S1×V ) the set of time-dependent Hamiltonians with compact

support. When A is compact, the displacement energy of A in V is defined as

e(A, V ) := inf{‖H‖ |H ∈ Hc(S1 × V ), ϕH(A) ∩ A = ∅},

where ϕH is the time-one map of H and the Hofer norm ‖H‖ is defined as

‖H‖ :=
∫
S1

(
max
x∈V

H(t, x)−min
x∈V

H(t, x)
)
dt.

When A is an arbitrary subset, the displacement energy is

e(A, V ) := sup{e(K,V ) |K ⊂ V is compact}.

The stable displacement energy of A in V is defined as

est(A, V ) := e(A× S1, V × T ∗S1, ω ⊕ ω0),

where ω0 is the standard symplectic form on T ∗S1. Throughout the rest of this

thesis, we abbreviate e(A, V ) as e(A) and est(A, V ) as est(A).

Definition 4.1.8. In the setting of Definition 4.1.7, a compact subset A of V is
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said to be displaceable in V if there exists a Hamiltonian H ∈ Hc(S1 × V ) such

that ϕH(A)∩A = ∅. Also, we say that a compact set A of V is stably displaceable

if A× S1 is displaceable in V × T ∗S1.

The following theorem generalizes the result that SH(W ) = 0 for Liouville

domains displaceable in Ŵ proved in [12, 13] via vanishing of the Rabinowitz

Floer homology. (See also [61] for first results in this direction.)

Theorem 4.1.9. Assume that W is positive or negative monotone and that W is

displaceable in Ŵ with displacement energy e(W ). Then for any c > e(W ) and

any interval I ⊂ R the quotient-inclusion map (4.1.6) is zero. Thus the filtered

symplectic homology is uniformly unstable and, in particular, SH(W ) = 0.

The proof of Theorem 4.1.9 when ω|π2(W ) = 0 is implicitly contained in

[58]. Thus the main new point here is that this condition can be relaxed as that

W is allowed to be positive or negative monotone. Note also that when W is

symplectically aspherical one can obtain the uniform instability as a consequence

of Proposition 4.1.4 and of vanishing of the homology although with a possibly

different lower bound on c, which turns out to be better. Namely, combining this

proposition with Theorem 4.1.9, and also using Proposition 4.1.6, we have the

following:

Corollary 4.1.10. Assume that W is symplectically aspherical and displaceable

in Ŵ with displacement energy e(W ). Then

c(W ) ≤ e(W )

and thus, for ζ ∈ Hd(W,∂W ) and k such that 2k ≥ 2n− d,

0 ≤ cS1

ζ,k+1(W )− cS1

ζ,k(W ) ≤ e(W ).
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Combining the Künneth formula from [43] with Theorem 4.1.9, we obtain

the following well-known result.

Corollary 4.1.11. Assume that W is Liouville and that W is stably displaceable

in Ŵ with stable displacement energy est(W ). Then for any c > est(W ) and any

interval I ⊂ R the map (4.1.6) is zero. In particular, SH(W ) = 0.

Proof of Theorem 4.1.9. First, assume that W is aspherical and I = [a, b] for

a, b /∈ S(α). Consider a cofinal sequence of admissible Hamiltonians {Hi : S1 ×

Ŵ → R} satisfying the following conditions:

(i) Hi is C2−small on W ;

(ii) Hi = hi(r) on the cylindrical part ∂W × [1,∞), where

h′′i (r) ≥ 0 if r ∈ [1, ri]

hi(r) = kir + li if r ∈ [ri,∞)

for ki /∈ S(α) and some ri > 0;

(iii) ki →∞ and ri → 1 as i→∞

Define a sequence of Hamiltonians {Fi : S1 × Ŵ → R} by

(i) Fi is on C2−small W ;

(ii) Fi = fi(r) on the cylindrical part ∂W × [1,∞), where for ε > 0

fi(r) =



hi(r) if r ∈ [1, ri]

k−i (r − ri) if r ∈ [ri, r−i − ε]

ci if r ∈ [r−i , r+
i ]

k+
i (r − ri) if r ∈ [r+

i + ε,∞)
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Figure 4.1: The graphs of Fi and Hi

for k+
i = ki, k−i /∈ S(α) and k−i > k+

i ;

(iii) f ′′i (r) ≤ 0 if r ∈ [r−i − ε, r−i ] and f ′′i (r) ≥ 0 if r ∈ [r+
i r

+
i + ε];

(iv) minFi → 0 as i→∞.

The graphs of Fi and Hi are illustrated in Figure 4.1. Then the sequence {Fi} is

cofinal and each Fi ≥ Hi. Thus, we have

SHI(W ) = lim→
i

HFI(Fi),

where the limit is taken over the cofinal sequence {Fi}.

We show that the map HFI(F ) → HFI+e(F ) is zero for a Hamiltonian

F ∈ {Fi}i≥N and sufficiently large N . By the assumption that W is displaceable

in Ŵ , there exists a Hamiltonian K : S1× Ŵ → R such that φ1
K(W )∩W = ∅ and

e(W ) < ‖K‖ < e, where φtK is the Hamiltonian flow of K. Consider the positive
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and negative parts of Hofer’s norm of K:

‖K‖+ =
∫
S1

max
x∈Ŵ

K(t, x) dt

and

‖K‖− =
∫
S1
−min

x∈Ŵ
K(t, x) dt.

Then ‖K‖ = ‖K‖+ + ‖K‖−. Choose a constant s � 0 meeting the following

conditions:

inf S(H) + s > b+ ‖K‖+,

inf S(K) + s > b+ ‖K‖+.

Select constants c and r± such that

c > s,

suppK ⊂ W ∪ ∂W × [1, r+],

φ1
K displaces W ∪ ∂W × [1, r−].

Define a Hamiltonian K#F by

K#F (t, x) = K(t, x) + F
(
t,
(
φtK
)−1

(x)
)
.

Then φtK#F = φtK ◦ φtF which is homotopic to the catenation of φtF with φtK .

Let P(K) be the collection of one-periodic orbits ofK which are contractible

in W . Define the collections P(F ) and P(K#F ) similarly. Then there is one-

to-one correspondence between P(H) and P(F ) for orbits lying on a level r ∈

[r+, r+ + ε]. Denote by P(F, r+) the collection of such orbits in P(F ). It is not
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hard to see that P(K#F ) consists of the orbits in P(K) and the orbits in P(F, r+).

Indeed, all of the orbits in P(F ) on r ≤ r− are displaced by φ1
K . Thus, the orbits

near r = r+ survive the displacement by φ1
K .

Evaluating the action functional for x ∈ P(K) and y ∈ P(F, r+),

AK#F (x) = −
∫
x̄
ω̂ +

∫
S1
K#F (t, x(t)) dt

= AK(x) +
∫
S1
F
(
t,
(
φtK
)−1

(x(t))
)
dt

= AK(x) + c

≥ b+ ‖K‖+,

where x̄ is a capping of x.

Let z ∈ P(H) be the orbit corresponding to y ∈ P(F, r+). Then

AK#F (y) = −
∫
ȳ
ω̂ +

∫
S1
K#F (t, y(t)) dt

= −
∫
z̄
ω̂ + (r+ − 1)

∫
z
α +

∫
S1
H(t, z(t)) dt+ c

= AH(z) + (r+ − 1)
∫
z
α + c

≥ b+ ‖K‖+,

where ȳ and z̄ are cappings of y and z, respectively.

Let Hs be a linear homotopy from F to K#F. For x ∈ P(F ) and y ∈

P(K#F ), consider the moduli space

M(x, y,Hs, Js) = {u ∈ C∞(S1 × R, Ŵ )| lim
s→−∞

u(t, s) = x, lim
s→+∞

u(t, s) = y,

∂su+ Js(∂tu−XHs(u)) = 0}.
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If the moduli space is not empty,

AK#F (y) ≤ AF (x) +
∫
S1

∫
R

∂Hs

∂s
(u) dsdt

≤ AF (x) +
∫
S1

max
x∈Ŵ

(K#F − F ) dt

= AF (x) + ‖K‖+.

Similarly, consider a linear homotopy from K#F to F. Then for x ∈ P(F ) and

y ∈ P(K#F ), we have

AF (x) ≤ AK#F (y) + ‖K‖−.

For e > ‖K‖, we have the following commutative diagram:

HFI(F ) HFI+e(F )

HFI+‖K‖+(K#F ) HFI+‖K‖++‖K‖−(F )

(1)

(2)

Since AK#F (x) ≥ b + ‖K‖+ for every x ∈ P(K#F ), the map (2) vanishes. The

map (1) vanishes as well. By taking direct limit of the map (1) over the cofinal

sequence {Fi}, we see thate the map (4.1.6) vanishes.

Next let us show that the map (4.1.6) vanishes when W is monotone, i.e.,

[ω]|π2(W ) = λ c1(TW )|π2(W ) for some nonzero constant λ. Let H be an admissible

Hamiltonian. Consider the set

Sq(H) = {AH(x̄) | ∆H(x̄) ∈ [q, q + 2n]} ,

where dimW = 2n. The set Sq(K) is defined similarly for the Hamiltonian K.
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Clearly, these sets are compact. Now, choose a constant s � 0 meeting the

following conditions:

inf Sq(H) + s > b+ ‖K‖+,

inf Sq(K) + s > b+ ‖K‖+.

By following the same process as the case of that W is aspherical, we conclude

that the map (4.1.6) is zero.

4.2 Vanishing of symplectic homology for pre-

quantization bundles

Throughout this section, we keep the notation and convention from Section

2.3. Furthermore, all loops and periodic orbits are assumed to be contractible in

E unless stated otherwise.

Recall that to every such loop x in Mα we can associate two actions: the

symplectic area Aω(x) obtained by integrating ω over a disk bounded by x in E

or W and the contact action Aα(x) which is the integral of α over x. These two

actions are in general different.

Example 4.2.1. Let M be the S1-bundle r = ε in E. Then the closed Reeb

orbits x in M are the iterated fibers. (In particular, every Reeb orbit is closed.)

As a straightforward calculation shows, we have Aω(x) = πkε2/2 and Aα(x) =

πk(1 + ε2)/2 for x ∈ fk.

Lemma 4.2.2. Let x be a loop in Mα in the free homotopy class fk, k ∈ Z, i.e.,

LB(x) = k. Then

Aω(x) = Aα(x)− π

2k. (4.2.1)
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Proof. It is clear that the differenceAω(x)−Aα(x) is a purely topological invariant

completely determined by the free homotopy class of x in E \B. Calculating this

difference for the k-times iterated class of the fiber of M → B we see that the

difference is equal to −πk/2; see Example 4.2.1.

It follows from Lemma 4.2.2 that the Hamiltonian action is bounded from

below by −πk/2 and the question if it can really be negative was raised in, e.g.,

[44]. Our next proposition gives an affirmative answer to this question.

Proposition 4.2.3. For every k there exists a contact form α = fα0, where

f > 1/2, with a closed Reeb orbit x in the class fk such that Aω(x) is arbitrarily

close to −πk/2.

Proof. Recall that every free homotopy class can be realized by an embedded

smooth oriented loop which is tangent to the contact structure; see, e.g., [17] and

references therein. Let y be such a loop in the class fk. By moving y slightly in

the normal direction to ẏ in ξ = kerα0, i.e., in the direction of Jẋ where J is

an almost complex structure on ξ compatible with dα0, we obtain a transverse

embedded loop x. The loop x is nearly tangent to ξ and we can have

0 <
∫
x
α0 < ε

for an arbitrarily small ε > 0.

It is a standard (and easy to prove) fact that there exists a contact form β

on M supporting ξ such that x is, up to a parametrization, a closed Reeb orbit of

α. Let g = α0/β, i.e., g is defined by α0 = gβ. By scaling β if necessary, we can

ensure that g ≤ 1. In other words, 1/g ≥ 1. It is not hard to see that g|x extends

to a function h on M so that h/g > 1/2 and the derivative of h in the normal

direction to x is zero, i.e., ker dh ⊃ ξ at all points of x.
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The latter condition guarantees that x is still a closed Reeb orbit of α :=

hβ = fα0, where f = h/g. By construction, f > 1/2. Furthermore, we have

α|x = α0|x, and hence

0 <
∫
x
α =

∫
x
α0 < ε.

Thus, by (4.2.1), −πk/2 < Aω(x) ≤ ε − πk/2 and Aω(x) can be made arbitarily

close to −πk/2.

4.2.1 Applications of homology vanishing to prequantiza-

tion bundles

When B is aspherical, SH(W ) = 0 for W = Wf by the Künneth formula

from [44] and the results proved in Section 4.1 directly apply to W .

For instance, combining the Thom isomorphism H(B) = H(W,∂W )[−2]

with Proposition 4.1.1, we obtain

Corollary 4.2.4. Assume that B2m is symplectically aspherical and W = Wf .

Then we have natural isomorphisms

(i) SH−(W ) = H(B)[−m+ 1] and SH−,S1(W ) = H(B)⊗ H(CP∞)[−m+ 1];

(ii) SH+(W ) = H(B)[−m+ 2] and

SH+,S1(W ) = H(B)⊗ H(CP∞)[−m+ 2]; (4.2.2)

(iii) and, under the identification (4.2.2), the Gysin sequence shift map

SH+,S1

r+2 (W ) D→ SH+,S1

r (W )

is the identity on the first factor and the map Hq+2(CP∞)→ Hq(CP∞), given
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by the pairing with a suitable chosen generator of H2(CP∞), on the second.

In particular, D is an isomorphism when r ≥ m+ 2.

Remark 4.2.5. Recall that even when B is not aspherical but simply meets the

standard conditions, e.g., that E is weakly monotone, sufficient to have the (equiv-

ariant) symplectic homology of Wf defined, the homology is independent of f ; see

[61] and also [50].

Likewise, and Lemma 4.1.2 and Proposition 4.1.6 yeild

Corollary 4.2.6. Assume that B is symplectially aspherical. Then, for every

ζ ∈ Hd(B) and W = Wf , we have

0 ≤ cS1

ζ,0(W ) ≤ cS1

ζ,1(W ) ≤ cS1

ζ,2(W ) ≤ . . . and cS1

ζ,0(W ) ≤ cζ(W ), (4.2.3)

and, when 2k ≥ 2m− d,

0 ≤ cS1

ζ,k+1(W )− cS1

ζ,k(W ) ≤ c(W ).

Moreover, cS1
ζ,0(W ) > 0, and hence all capacities are strictly positive.

The new point here, when compared to the general results, is the last as-

sertion that the capacities are strictly positive. To see this, note first that these

capacities are monotone (with respect to inclusion) on the domains Wf . Thus

it suffices to show that cS1
ζ,0(U) > 0 for a small tubular neighborhood U of B

in E bounded by the S1-bundle r = ε. It is not hard to see that in this case

cS1
ζ,0(U) = Aω(x) for a closed Reeb orbit x on M ; see Section 5.2. Hence, by

Example 4.2.1, cS1
ζ,0(U) ≥ πε2/2 > 0.
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4.2.2 Stable displacement

The zero section of a prequantization bundle E is never topologically dis-

placeable since its intersection product with itself is Poincaré dual, up to a non-

zero factor, to [σ] 6= 0. As a consequence, no compact subset containing the

zero section is topologically displaceable either. However, the situation changes

dramatically when one considers stable displaceability.

Proposition 4.2.7. The zero section is stably displaceable in E.

Proof. The zero section B is a symplectic submanifold of E. Thus M := B × S1

is nowhere coisotropic in E × T ∗S1, i.e., at no point the tangent space to M is

coisotropic. Furthermore, M is smoothly infinitesimally displaceable: there exists

a non-vanishing vector field along M which is nowhere tangent to M . Now the

proposition follows from [30, Theorem 1.1]. (When dimB = 2 one can also use

the results from [39, 45]).

Remark 4.2.8. This argument shows that every closed symplectic submanifold M

of any symplectic manifold is stably displaceable.

As a consequence of Proposition 4.2.7, a sufficiently small tubular neighbor-

hood of M is also stably displaceable in E. However, in contrast with the case

of Liouville manifolds, this is not enough to conclude that arbitrary large tubular

neighborhoods, and thus all compact subsets of E, are also stably displaceable

and in fact they need not be.

Example 4.2.9. Let E be the tautological bundle over CP1, i.e., a blow up of C2.

Then E contains a monotone torus L which is the restriction of the S1-bundle (for

a suitable radius) to the equator. It is known that HF(L,L) 6= 0; [57, Section 4.4].

Then, by the Künneth formula, HF(L′, L′) 6= 0 where L′ = L×S1 in E×T ∗S1. See
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[51, 59] for generalizations of this example and its connections with non-vanishing

of symplectic homology.

Remark 4.2.10. Note that Proposition 4.2.7 holds for any base B, but gives no

information about SH(W ). The reason is that the Künneth formula does not

directly apply in this case even when B is aspherical; see [43]. The boundary of a

tubular neighborhood U of B×S1 in E×T ∗S1 does not have contact type and, in

fact, the symplectic form is not even exact near the boundary. As a consequence,

the symplectic homology of U is not defined. One can still introduce an ad hoc

variant of such a homology to have the Künneth formula and then reason along the

lines of the proof of Theorem 4.1.9 to show that this homology, and hence SH(W ),

vanishes. However, the argument is not much simpler than the proof in [44]. It is

also worth pointing out that SH(W ) might or might not vanish depending on B;

[50, 51, 59].

On the other hand, the proposition does imply, via the Künneth formula,

vanishing of the Rabinowitz Floer homology for low energy levels in E, i.e., for r

close to zero, proved originally in [2]. Note in this connection that, as was pointed

out to us by Alex Oancea, the Rabinowitz Floer homology might depend on the

level in this case.

Proposition 4.2.7 has some standard consequences along the lines of the al-

most existence theorem, the Weinstein conjecture and lower bounds on the growth

of periodic orbits, which all are proved via variants of the displacement energy–

capacity inequalities and are accessible by several methods requiring somewhat

different assumptions on (B, σ); see, e.g., [46]. Here, dealing with the almost

existence, we adopt the setting from [55] which is immediately applicable.

The condition which E must satisfy then is that it is stably strongly semi-

positive in the sense of [55], which is the case if and only if NB ≥ n+ 1 or (B2n, σ)
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is positive monotone, i.e., c1(TB) = λ[ω] on π2(B) where λ ≥ 0 and in addition

we require that 〈[ω], π2(B)〉 = 0 whenever 〈c1(TB), π2(B)〉 = 0. (Here NB is the

minimal Chern number of B. Note that NE = NB − 1.)

Corollary 4.2.11 (Almost Existence in E near B; [40]). Assume that B is as

above. Let H be a smooth, proper, automous Hamiltonian on E and let I be a

(possibly empty) interval such that {H = c} is contained in a sufficiently small

neighborhood of B in E. Then, for almost all c ∈ I in the sense of measure theory,

the level {H = c} carries a periodic orbit of H.

This is an immediate consequence of the displacement energy–capacity in-

equality from [55] and [41, Theorem 2] which allows us to avoid imposing the extra

condition that H is bound from below or above. The corollary is not the most

general result of this kind. It is a particular case of the main theorem from [40].

However, our proof is simpler than the argument ibid and, in fact, Remark 4.2.8

can be used to simplify some parts of that argument. Corollary 4.2.11 implies

the Weinstein conjecture for contact type hypersurfaces in E near B. There are,

of course, many other instances where the Weinstein conjecture is known to hold

for hypersurfaces in E. For example, although to the best of knowledge it is still

unknown if it holds in general for prequantization bundles, it does hold under

suitable additional conditions. For instance, this is the case when σ is aspherical,

[44], or more generally if π∗[σ] is nilpotent in the quantum cohomology of E, [50].

The second application is along the lines of the Conley conjecture (see [24])

or [60, Prop. 4.13] and concerns the number or the growth of simple periodic orbits

of compactly supported Hamiltonian diffeomorphisms. For the sake of simplicity

we assume that σ is aspherical although this condition can be significantly relaxed.

Let H : S1 × E → R be a compactly supported Hamiltonian.

Corollary 4.2.12. Assume that σ is symplectically aspherical and suppH is con-

61



tained in a sufficiently small neighborhood of B in E. Then ϕH has infinitely many

simple contractible periodic orbits with non-zero action provided that ϕH 6= id.

Moreover, when H ≥ 0 the number of such orbits of period up to k and with

positive action grows at least linearly with k unless, of course, H = 0.

Here the first assertion follows readily from [19, Theorem 2] and the second

assertion is a consequence of [30, Theorem 1.2].
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Chapter 5

Linking number filtration

In this section we construct and utilize a certain additional filtration on

the positive (equivariant) symplectic homology of a prequantization disk bundle

W → B. This filtration is, roughly speaking, given by the linking number of a

closed Reeb orbit and the zero section. It “commutes” with the Hamiltonian action

filtration and plays essentially the same role as the grading by the free homotopy

class of the fiber in the contact homology of the corresponding circle bundle.

Although the linking number filtration can be defined in a more general setting,

it is of particular interest to us when the base B is symplectically aspherical. This

is the assumption we will make henceforth. We will then use the linking number

filtration to reprove the non-degenerate case of the contact Conley conjecture,

originally established in [26, 27], without relying on the machinery of contact

homology.

5.1 Definition of the linking number filtration

Throughout this section we keep the notation and convention from Sections

2.3 and 4.2. In particular, E and M are the prequantization line and circle
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bundles, respectively, over a symplectically aspherical manifold (B2m, σ). Let f be

a function on E such that f > 1/2. The domain Wf is bounded by the fiberwise

star-shaped hypersurface given by (1 + r2)/2 = f. This hypersurface Mf is of

contact type and the restriction of the primitive (1 + r2)α0/2 to Mf is α = fα0.

Hence, we will also use the notations Mα and Wα for the hypersurface Mf and

the domain Wf . Furthermore, recall that all loops and periodic orbits we consider

are assumed to be contractible in E unless stated otherwise.

Assume hat α is nondegenerate. Let H is a time-dependent admissible

Hamiltonian on E = Ŵf . We require H to be constant on a neighborhood U of

B. As well, it is required that all one-periodic orbits x of H outside U are small

perturbations of closed Reeb orbits. We call these orbits non-constant. For a

generic choice of such a Hamiltonian H, all non-constant orbits are nondegenerate.

Fix an almost complex structure J on E compatible with ω, which is inde-

pendent of time near B and outside a large compact set, and such that B is an

almost complex submanifold of E. Consider solutions u : R×S1 → E of the Floer

equation for (H, J) asymptotic as s→ ±∞ to non-constant orbits. By the results

from [18] the regularity conditions are satisfied for a generic pair (H, J) meeting

the above requirements. With this in mind, we have the complex CF+(H) gen-

erated by non-constant one-periodic orbits of H, contractible in E, and equipped

with the standard Floer differential. Clearly, the homology of this complex is

HF+(H).

The complex CF+(H) carries a natural filtration by the linking number with

B. Indeed, since H is constant near B, every solution u of the Floer equation is a

holomorphic curve near B. Then, by the assumption that B is an almost complex

submanifold of E, the intersection index of u with B is non-negative. When u is a

solution connecting x to y, the difference LB(x)−LB(y) is exactly this intersection
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number. Thus

LB(x) ≥ LB(y) (5.1.1)

and the Floer differential does not increase LB. In other words, for every k ∈ Z, the

subspace CF+
(
H, f≤k

)
generated by the orbits x with LB(x) ≤ k is a subcomplex

and we obtain an increasing filtration of the complex CF+(H). Set

CF+
(
H, fk

)
:= CF+

(
H, f≤k

)
/CF+

(
H, f≤k−1

)
.

We denote the homology of the resulting complexes by HF+
(
H, f≤k

)
and, respec-

tively, HF+
(
H, fk

)
.

Passing to the direct limit overH, we obtain the homology groups SH+
(
W, f≤k

)
and, SH+

(
W, fk

)
, which fit into a long exact sequence

. . .→ SH+
(
W, f≤k−1

)
→ SH+

(
W, f≤k

)
→ SH+

(
W, fk

)
→ . . . .

Furthermore, the complexes CF+
(
H, f≤k

)
and CF+

(
H, fk

)
inherit the filtration

by the Hamiltonian action from the complex CF(H) and this filtration descendes

to the resulting homology groups.

The construction extends to the equivariant setting in a straightforward way.

Let H̃ : S1×E×S2m+1 → R be a parametrized Hamiltonian. Assume that H̃ is a

small perturbation of an ordinary non-degenerate Hamiltonian H : S1 × E → R.

Then x in such a pair (x, z) is small perturbation of a one-periodic orbit of H

for a critical point (x, z) of the parametrized action functional AH̃ . As defined in

Remark 3.2.6, we have the quotient complex CF+,S1,m(H̃). The essential point is

that again the Hamiltonian H̃ can be taken constant on U on every slice E×(t, z),

where t and z are points on S1 and S2m+1, respectively. Then the quotient complex

CF+,S1,m(H̃) is generated by the critical orbit S(x,z) such that x is a non-constant
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orbit.

Recall that the parametrized Floer equation has the form

∂su+ J∂tu = ∇EH̃,

dλ

ds
=
∫
S1
∇zH̃(u(t, s), t, λ(s)) dt,

where λ : R → S2m+1 and u : S1 × R → E. Thus, when H̃ is constant and the

projection u to E of a solution (u, λ) is a holomorphic curve near B. It follows

that (5.1.1) holds when (u, λ) connects a critical family containing x to a critical

family containing y. As a consequence, the complex CF+,S1,m(H̃) is filtered by

the linking number. Passing to the limit as m → ∞ and then over H̃ we obtain

the linking number filtration on SH+,S1(W ).

We denote the resulting equivariant symplectic homology groups by SH+,S1 (
W, f≤k

)
and SH+,S1 (

W, fk
)
. As in the non-equivariant case, these groups fit into the long

exact sequence

. . .→ SH+,S1 (
W, f≤k−1

)
→ SH+,S1 (

W, f≤k
)
→ SH+,S1 (

W, fk
)
→ . . .

and also inherit the action filtration. Moreover, it is easy to see that the shift

operator D from the Gysin sequence respects the linking number filtration.

It is clear that the linking number filtration is preserved by the continuation

maps because the continuation Hamiltonians can also be taken constant on U . As

a consequence, the resulting groups are independent of the original contact form

α or, equivalently, the domain Wα.
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5.2 Calculation of the homology groups

The calculation of the linking number filtration groups SH+
(
W, fk

)
and

SH+,S1 (
W, fk

)
is based on the standard Morse–Bott type argument in Floer ho-

mology.

Proposition 5.2.1. Let, as above, W be the prequantization disk bundle over a

symplectically aspherical manifold (B2m, σ). Then

(i) SH+
(
W, fk

)
= 0 and SH+,S1 (

W, fk
)

= 0 for k ≤ 0,

(ii) SH+
(
W, fk

)
= H∗(M)[2k −m] and

(iii) SH+,S1 (
W, fk

)
= H∗(B)[2k −m] for k ∈ N,

where all homology groups are taken with rational coefficients.

In particular,

SH+,S1

2k+m

(
W, fk

)
= Q for k ∈ N (5.2.1)

and, as expected, SH+,S1 (
W, fk

)
is isomorphic to the contact homology groups of

(M, ξ) for the free homotopy class fk, cf. [10].

Proof. Consider an admissible Hamiltonian of the form H = h(r2), where h is

monotone increasing, convex function equal to zero on [0, 1 − ε] and to ar2 + b

on [1 + ε,∞). The non-trivial one-periodic orbits of H occur on Morse–Bott non-

degenerate levels r = r1, . . . , rl, where l = ba/πc, when the form α0 is normalized

to have integral π over the fiber. The linking number of the orbits on the level

r = rk with B is exactly k. Now the proposition follows by the standard Morse–

Bott argument in Floer homology (see, e.g., [5, 48] and also [25]) together with

an index calculation as in, e.g., [22].
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Comparing Case (iii) of Proposition 5.2.1 and Case (ii) of Proposition 4.2.4,

we see that

SH+,S1(W ) =
⊕
k∈N

SH+,S1 (
W, fk

)
(5.2.2)

although the isomorphism is not canonical in contrast with (4.2.2). Note that there

is no similar isomorphism in the non-equivariant case: SH+(W ) 6= ⊕
k∈N SH+

(
W, fk

)
and, in fact, the sum on the right is much bigger than SH+(W ).

Remark 5.2.2. Although this is not immediately obvious, one can expect the nat-

ural maps SH+,S1 (
W, f≤k

)
→ SH+,S1(W ) to be monomorphisms, resulting in a

filtration of SH+,S1(W ) by the groups SH+,S1 (
W, f≤k

)
. Then the right hand

side of (5.2.2) would be the graded space associated with this filtration. On the

other hand, the decomposition (4.2.2) gives rise to the filtration ⊕
q≤k H∗(B) ⊗

H2q(CP∞), and the two filtrations appear to be different. Namely, the shift oper-

ator D is strictly decreasing with respect to the filtration coming from (4.2.2) and

thus the induced operator on the graded space is zero. However, under the iden-

tification SH+(W, fk) ∼= H∗(B) from Case (ii) of Proposition 5.2.1 the operator D

is given by pairing with [σ] ∈ H2(B) (see [25, Proposition 2.22]) and this pairing

is non-trivial. To put this somewhat informally, the decompositions (4.2.2) and

(5.2.2) do not match term-wise.

Remark 5.2.3 (Lusternik–Schnirelmann inequalities). We can also use the linking

number filtration to extend the Lusternik–Schnirelmann inequalities from [25,

Theorem 3.4] to prequantization bundles. Namely, assume that all closed Reeb

orbits on Mα are isolated. Then, for any β ∈ SH+,S1(W ), we have

c(β,Wα) > c(D(β),Wα), (5.2.3)

where the right hand side is by definition −∞ when D(β) = 0. In particular,
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when the orbits are isolated,

0 < cS1

ζ,0(W ) < cS1

ζ,1(W ) < cS1

ζ,2(W ) < . . .

in (4.2.3) for every ζ ∈ H∗(B). For the sake of brevity we only outline the proof

of (5.2.3). Consider a “sufficiently large” admissible autonomous Hamiltonian

H constant on U . Then, by Theorem 3.3.2, the strict Lusternik–Schnirelmann

inequality holds for H. As a consequence, there exist two one-periodic orbits x

and y of H contractible in E, the carriers for the corresponding action selectors for

β and D(β) in HF+,S1(H), such that AH(x) > AH(y) and x and y are connected

by a solution u of the Floer equation. As in the proof of [25, Theorem 3.4], we

need to show that this inequality remains strict as we pass to the limit. When

x and y are in the same free homotopy class (i.e., LB(x) = LB(y)), that proof

goes through word-for-word. When, LB(x) > LB(y), the Floer trajectory u has

to cross U , where it is a holomorphic curve, passing through a point of B. By the

standard monotonicity argument, AH(x)−AH(y) = E(u) > ε > 0, where E(u) is

the energy of u and ε is independent of H.
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Chapter 6

Contact Conley conjecture

6.1 Local symplectic homology

In this section we recall the definitions of the (equivariant) local symplectic

homology and of symplectically degenerate maxima (SDM) for Reeb flows – the

ingredients essential for the statement and the proof of the non-degenerate case

of the contact Conley conjecture.

Let x be an isolated closed Reeb orbit of period T , not necessarily simple,

for a contact form α on M2m+1. The Reeb vector field coincides the Hamiltonian

vector field of the Hamiltonian r onM×(1−ε, 1+ε) equipped with the symplectic

form d(rα). Consider now the Hamiltonian H = T · h(r), where h′(1) = 1 and

h′′(1) > 0 is small. On the level r = 1, this flow is simply a reparametrization of

the Reeb flow and the orbit x corresponds to an isolated one-periodic orbit x̃ of

H. By definition, the equivariant local symplectic homology SHS1(x) of x is the

local S1-equivariant Floer homology HFS1(x̃) of x̃; see [25, Section 2.3]. It is easy

to see that SHS1(x) := HFS1(x̃) is independent of the choice of the function h.

Note also that this construction is purely local: it only depends on the germ of α

along x. In what follows, we will use the notation x for both orbits x̃ and x.
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These local homology groups do not carry an absolute grading by the

Conley–Zehnder index. To fix such a grading, it is enough to pick a symplec-

tic trivialization of T
(
M × (1− ε, 1 + ε)

)
|x. Depending on a specific setting, there

can be different natural ways to do this. For instance, one can start with a trivial-

ization of the contact structure ξ = kerα along x; for this trivialization naturally

extends to a trivialization of T
(
M × (1− ε, 1 + ε)

)
|x. However, we are interested

in the setting where M has an aspherical filling W and x is contractible in W .

Then it is more convenient to obtain a trivialization of

T
(
M × (1− ε, 1 + ε)

)
|x = TW |x

from a capping of x in W . In any event, when x is iterated, i.e., x = yk where y is

simple and also contractible in W , we will always assume that the trivialization

of TW |x comes from a trivialization along y. This is essential to guarantee that

the mean index is homogeneous under iterations: µ̂(x) = kµ̂(y).

Example 6.1.1. Assume that x is non-degenerate. Then SHS1(x) = Q, concen-

trated in degree µ(x), when x is good; and SHS1(x) = 0 when x is bad; see [25,

Section 2.3] and, in particular, Examples 2.18 and 2.19 therein.

Furthermore, it is worth keeping in mind that x̃ is degenerate even when x

is non-degenerate. Indeed, the linearized flow along x̃ has 1 as an eigenvalue and

its algebraic multiplicity is at least 2.

As a consequence, SHS1(x) is supported in the interval of length 2m centered

at the mean index µ̂(x) of x, i.e., only for the degrees in this range the homology

can be non-zero. (If x̃ were non-degenerate the length of the interval would be

2m+ 2.) In other words, using self-explanatory notation, we have

supp SHS1(x) ⊂ [µ̂(x)−m, µ̂(x) +m]; (6.1.1)
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see [25, Proposition 2.20]. Moreover,

supp SHS1(x) ⊂ (µ̂(x)−m, µ̂(x) +m) (6.1.2)

when x is weakly non-degenerate, i.e., at least one of its Floquet multipliers is

different from 1.

Remark 6.1.2. Conjecturally, when as above x is the kth iteration of a simple

orbit,

SHS1(x) ∼= HC(x) ∼= HF(ϕ)Zk , (6.1.3)

where HC(x) is the local contact homology of x introduced in [35] (see also [28]),

ϕ is the return map of x, and HF(ϕ)Zk is the Zk-invariant part in the local Floer

homology of ϕ with respect to the natural Zk-action. When x is simple, i.e.,

k = 1, this has been proved. Indeed, in this case, HC(x) is rigorously defined

and the first isomorphism is a local version of the main result in [10]. The second

isomorphism is established in [35] and can also be thought of as a local variant

of the isomorphism between Floer and contact homology in [16]. When k ≥ 1,

there are foundational problems with the construction of HC(x) common to many

versions of the contact homology (see, however, [42]) and proving directly that

the first and the last term in (6.1.3) are isomorphic might be a simpler approach.

We will return to this question elsewhere.

When M is compact, the groups SHS1(x), where x ranges over all closed

Reeb orbits of α (not necessarily simple), are the building blocks for SH+,S1(W )

where W is a symplectically aspherical filling of M . (For instance, vanishing of

the local homology groups for all x implies vanishing of the global homology.)

However, there might be a shift of degrees which depends on the choice of trivial-

izations along the orbits x. This shift is obviously zero when x is contractible in
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W and the trivialization of TxW comes from a capping of x. The same holds for

filtered (by action or linking number) homology groups. In particular, we have

Lemma 6.1.3. Let α be a contact form on the prequantization circle bundle over

a symplectically aspherical manifold (B2m, σ). Assume that all closed Reeb orbits

x in the class fk are isolated and SHS1

q (x) = 0 for all such x with respect to the

trivialization of TxW coming from a capping of x in W . Then SH+,S1

q

(
W, fk

)
= 0.

The lemma readily follows from the observation that under the above con-

ditions SH+,S1

q

(
H, fk

)
= 0 for a suitable cofinal family of admissible Hamiltonians

H. (More generally, there is a spectral sequence starting with ⊕x SHS1(x) and

converging to SH+,S1(W ), which also implies the lemma. We do not need this fact

and we omit its proof for the sake of brevity, for it is quite standard; see, e.g., [26]

where such a spectral sequence is constructed for the contact homology.)

Next recall that an iteration k of x is called admissible when none of the

Floquet multipliers of x, different from 1, is a root of unity of degree k. For

instance, every k is admissible when no Floquet multiplier is a root of unity or,

as the opposite extreme, when x is totally degenerate, i.e., all Floquet multipliers

are equal to 1. Furthermore, every sufficiently large prime k (depending on x) is

admissible.

For our purposes it is convenient to adopt the following definition. Namely,

x is a symplectically degenerate maximum (SDM) if there exists a sequence of

admissible iterations ki →∞ such that

SHS1

q (xki) 6= 0 for q = µ̂(xki) +m = kiµ̂(x) +m. (6.1.4)

This condition is obviously independent of the choice of a trivialization along x.

It follows from (6.1.2) that then xki , and hence x, must be totally degenerate.
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Thus the definition can be rephrased as that x is totally degenerate and (6.1.4)

holds for some sequence ki →∞.

Remark 6.1.4. Continuing the discussion in Remark 6.1.2 note there are several,

hypothetically equivalent, ways to define a closed SDM Reeb orbit. The definition

above is a contact analog of the original definition of a Hamiltonian SDM from

[20] and it lends itself conveniently to the proof of the non-degenerate case of

the contact Conley conjecture. Alternatively, a contact SDM was defined in [28]

as a closed isolated Reeb orbit x with HCµ̂(x)+m(x) 6= 0. By (6.1.3), its contact

analogue would be that SHS1

µ̂(x)+m(x) 6= 0. For a simple orbit this is equivalent

to that the fixed point of ϕ is an SDM. Furthermore, one can show that the Zk-

action on the homology is trivial for totally degenerate orbits and thus HF(ϕ)Zk =

HF(ϕ). Hence, the equivalence of the two definitions would then follow from the

identification of the first and the last term in (6.1.3) combined with the persistence

of the local Floer homology, [23].

6.2 Conley conjecture

Now we are in the position to state and prove the non-degenerate case of

the contact Conley conjecture, a contact analogue of the main result from [53].

Theorem 6.2.1 (Contact Conley Conjecture). Let M → B be a prequantization

S1-bundle and let α be a contact form on M supporting the standard (co-oriented)

contact structure ξ on M . Assume that

(i) B is symplectically aspherical,

(ii) π1(B) is torsion free.

Then the Reeb flow of α has infinitely many simple closed Reeb orbits with con-

tractible projections to B, provided that none of the orbits in the free homotopy
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class f of the fiber is an SDM. Assume in addition that the Reeb flow of α has

finitely many closed Reeb orbits in the class f. Then for every sufficiently large

prime k the Reeb flow of α has a simple closed orbit in the class fk.

Before proving this theorem let us compare it with other results on the

contact Conley conjecture. Theorem 6.2.1 was proved in [26, 27] without the as-

sumption that none of the orbits is an SDM. However, that argument relied on

the machinery of linearized contact homology which is yet to be put on a com-

pletely rigorous foundation. (See, however, [42] where some of the foundational

issues have been resolved in dimension three.) The key difficulty in translating

the proof from those two papers into the symplectic homology framework in the

non-degenerate case was purely conceptual: the grading by the free homotopy

classes fk is crucial for the proof and while the cylindrical contact homology is

graded by fk the symplectic homology is not. The linking number filtration is

an analogue of this grading in symplectic homology which allows us to overcome

this problem. On the other hand, removing the “non-SDM” assumption requires

replacing the contact homology by the symplectic homology in the main result of

[28]. This is a non-trivial but technical issue and we will return to it elsewhere.

There are also some minor discrepancies between the assumptions of The-

orem 6.2.1 and its counterpart in [26, 27]. Namely, there the base B is assumed

to be aspherical, i.e., πr(B) = 0 for r ≥ 2, but as is pointed out in [26, Section

2.2], this assumption is only used to make sure that σ is aspherical and π1(B) is

torsion free. Then, it is also required there that the class c1(ξ) be atoroidal. This

is a minor technical restriction imposed only for the sake of simplicity and it does

not arise in the symplectic homology setting because the fiber is contractible in

W .

Proof of Theorem 6.2.1. The argument closely follows the reasoning in [26] which
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in turn is based on the proof in [53]. We need the following simple and purely

algebraic fact, proved in [26, Lemma 4.2], which only uses the conditions that ω

is aspherical and that π1(B) is torsion free.

Lemma 6.2.2. Under the conditions of the theorem, for every k ∈ N the only

solutions h ∈ π̃1(P ) and l ≥ 0 of the equation hl = fk are h = fr, for some r ∈ N,

and l = k/r. (In particular, f is primitive.)

Next, without loss of generality we may assume that there are only finitely

many closed Reeb orbits in the class f, for otherwise there is nothing to prove. We

denote these orbits by x1, . . . , xr and set ∆j = µ̂(xj), where we equipped Txi
W

with a trivialization coming from a capping of xi in W . Let k be a large prime.

Then, unless there is a simple closed Reeb orbit in the class fk, every closed Reeb

orbit in this class has the form xkj by Lemma 6.2.2.

We will show that in this case SH+,S1

m+2k

(
W, fk

)
= 0, when k is large, which

contradicts Proposition 5.2.1 and more specifically (5.2.1). By Lemma 6.1.3, it is

enough to prove that

SHS1

m+2k(xkj ) = 0. (6.2.1)

Pick the prime k so large that k|∆j − 2| > 2m for all xj with ∆j 6= 2. Then, since

µ̂(xkj ) = k∆j, we have

supp SHS1(xkj ) ⊂ [k∆j −m, k∆j +m]

by (6.1.1), and hence m + 2k is not in the support. Thus (6.2.1) holds in this

case. On the other hand, when ∆j = 2, (6.2.1) holds when k is sufficiently large,

for otherwise (6.1.4) would be satisfied for some sequence of primes ki →∞ and

xj would be an SDM. This completes the proof of the theorem.
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