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2 Graduate School of Education, Harvard University, Cambridge, MA 02138
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Abstract
Models of pedagogy highlight the reciprocal reasoning un-
derlying learner-teacher interactions, including that learners’
inferences should be shaped by what they believe a teacher
knows about them. Yet, little is known about how this influ-
ences learning, despite the fact that even young children make
rapid inferences about teaching from sparse data. In the cur-
rent work, six- to eight-year-olds’ performance on a picture-
matching game was either overestimated, underestimated, or
accurately represented by a confederate (the “Teacher”), who
then presented three new matching games of varying assessed
difficulty (too easy, too hard, just right). A simple model of this
problem predicts that while children should follow the recom-
mendation of an accurate Teacher, learners should choose eas-
ier games when the Teacher overestimated their abilities, and
harder games when she underestimated them. Results from our
experiment support these predictions, providing insight into
children’s ability to consider teachers’ knowledge when learn-
ing from pedagogy.
Keywords: Cognitive Development, Teaching, Evidence,
Pedagogical Model

Introduction
From a young age, humans learn much about the world from
the people around them (Csibra & Gergely, 2009; Koenig,
Clément, & Harris, 2004). In order to communicate infor-
mation effectively, informants must have a clear understand-
ing of the learner’s prior beliefs and abilities. To illustrate
this point, imagine that the authors of this paper started by
jumping straight to the results of our experiment, assuming
that the reader already knew our research question and meth-
ods. This would render much of the resulting information
difficult to interpret, and clearly inappropriate for this audi-
ence. On the other hand, it might be equally unhelpful for us
to spend the majority of this introduction focusing on mate-
rial that the reader likely already knows – for instance, pro-
viding a detailed review of classic fundamental work in psy-
chology and cognitive science (e.g., see Bayes, 1763; Hume,
1748/1999; Karmiloff-Smith, 1996; Newell, Shaw, & Simon,
1958; Piaget, 1929). Without an accurate representation of
the learner’s prior knowledge and abilities, effective teaching
is difficult. Here, we ask whether young learners share this
intuition – and, if made aware that their teacher has inaccu-
rate beliefs about their competence, whether they accordingly
calibrate subsequent choices about attempted task difficulty.

Models of Pedagogy & Representing Others’ Beliefs
To formally investigate the idea that good teachers should
accurately represent their learner’s prior knowledge, we ap-
peal to computational models of cognition, which can help us

characterize nuanced social reasoning processes both quali-
tatively and quantitatively. Particularly relevant here is the
pedagogical model originally presented by Shafto and Good-
man (2008). This account describes how recursive mental-
state reasoning between a teacher and a learner results in the
teacher sampling pedagogically, such that they select the set
of evidence that should maximally increase the learner’s be-
lief in the target hypothesis. Specifically, the probability that
the teacher should present the learner with a particular set of
exemplars (or data, d), given that they are trying to commu-
nicate a target hypothesis h, is formalized as:

p(d|h)teacher ∝ (p(h|d)learner)
α (1)

where α controls the degree to which a teacher selects use-
ful examples. Learners, in turn, update their beliefs following
Bayesian inference, under the assumption that the data have
been pedagogically sampled by a knowledgeable teacher:

p(h|d)learner ∝ p(d|h)teacher p(h) (2)

Under this model, then, pedagogy is understood as a
set of recursive, mutually dependent inferences: The infor-
mant presents the evidence she believes will maximize the
learner’s belief in the target hypothesis; and the learner ra-
tionally updates her belief in that hypothesis, assuming that
the informant sampled the evidence pedagogically. (See also
Bonawitz & Shafto, 2016; Shafto, Goodman, & Frank, 2012;
Shafto, Goodman, & Griffiths, 2014).

Eq. 1 thus implies that good informants should select the
evidence that would be most likely to lead the learner to infer
the correct hypothesis. But what that “optimal” set of exem-
plars actually is will critically depend on what a particular
learner does or does not already know coming into a learning
problem. To illustrate, consider one of the tasks used by Bass
et al. (2019). Here, participants selected evidence to correct
different learners’ false beliefs about how a toy worked. The
toy actually activated when a red block was placed on top of
it; but one learner falsely believed that square blocks made
the toy work, while another thought that circular blocks made
it go. The evidence that would be most effective in commu-
nicating how the toy really worked would be different for the
first learner (who would need to see red, non-square blocks)
than it would be for the second learner (who would need to
see red, non-circular blocks). Indeed, Bass et al. (2019) found
that preschool-aged children are capable of selecting the par-
ticular evidence that would correct different learners’ false
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beliefs. Thus, young children appear to be at least tacitly
aware that learners’ prior knowledge affects the evidence that
would be most likely to help them infer the target hypothesis.

Conversely, then, if an informant misrepresents what the
learner’s prior knowledge actually is, they may select evi-
dence that is sub-optimal for that particular learner. While
many have investigated the nature of children’s evalua-
tions and assumptions in pedagogical reasoning (e.g., Bass,
Bonawitz, & Gweon, 2017; Bonawitz et al., 2011; Gweon,
Pelton, Konopka, & Schulz, 2014; Yu, Landrum, Bonawitz,
& Shafto, 2018), much of this past work has been predi-
cated on the default assumptions of the pedagogical model
– namely, that the teacher accurately represents the learner’s
prior knowledge. What are the consequences for learning
when this assumption is violated? Recent work begins to shed
light on this question: Yang and Shafto (2017) computation-
ally compared the efficacy of pedagogy (i.e., a knowledgeable
teacher presenting helpful evidence) and active learning (i.e.,
a naı̈ve learner exploring the evidence that would maximize
information gain) under circumstances in which the teacher
and learner were conceptually misaligned to varying degrees.
Here, conceptual misalignment reflected circumstances in
which either the learner’s or the teacher’s hypothesis space
did not reflect the true state of the world (i.e., HW = HT 6= HL,
or HW = HL 6= HT ). They found that when there was no con-
ceptual misalignment (HW = HT = HL), learning from peda-
gogy was generally superior to active learning. However, this
benefit diminished when the learner’s concept space was in-
correct – which necessarily involved the teacher generating
examples that would have been useful for a learner with an
accurate hypothesis space. But because the learner’s hypoth-
esis space was not accurate, these examples were less helpful
in leading that learner to the correct solution. This past work
thus suggests that learning may indeed be hindered when
the evidence selector has misrepresented the learner’s prior
knowledge. Critically, Yang and Shafto (2017) examined
cases in which the teacher and learner simply had different
hypothesis spaces with respect to the true state of the world;
whether the teacher’s beliefs about the learner’s knowledge
might shift the learner’s expectations about how that teacher
will sample data for them remains an open question.

Preliminary Evidence from Prior Work
Misrepresenting a learner’s prior knowledge could thus im-
pede effective pedagogy. However, prior work also tells us
that young learners are quite flexible, and may engage in com-
pensatory actions to maximize learning despite sub-optimal
teaching (e.g., Gweon et al., 2014). If made aware of a con-
ceptual misalignment, might learners adjust their own actions
taken during subsequent exploration, compensating for ped-
agogy that was generated using an inaccurate representation
of their knowledge and abilities? Bonawitz et al. (2011) indi-
rectly tested this question. Here, preschool-aged children ob-
served an experimenter pedagogically demonstrate one func-
tion on a novel toy (which actually had four functions) in
one of three conditions: they were either directly shown this

demonstration by the experimenter, or they observed the ex-
perimenter provide this demonstration to another child, or to
an adult. Children then explored the toy themselves. When
they were the direct recipients of pedagogy, children were
more likely to restrict their exploration to the demonstrated
function – which is in line with the predictions of the ped-
agogical model. Patterns of play were similar when chil-
dren observed pedagogy provided to another child; but when
children observed pedagogy provided to an adult, they were
more likely to explore non-demonstrated features of the toy
(Bonawitz et al., 2011).

Why might we see this selective interpretation of pedagog-
ical sampling? One explanation is that children understood
that the evidence the teacher would select for another child
might be similar to what she would select for the participant;
however, this assumption would not extend to sampling for
an adult, given the vast differences in their prior knowledge.
Therefore, children may attend to whether a teacher’s demon-
stration is likely to be relevant to them. However, these ef-
fects raise questions about how exactly children’s inferences
are shaped by what they believe a teacher knows about them
– which has yet to be directly empirically tested.

Current Work
The current work asks whether young learners use informa-
tion about the correctness of their teacher’s beliefs about them
to contextualize pedagogical actions and optimize their own
choices. In particular, here we investigate how a teacher’s
representation of the learner’s competence could shape learn-
ers’ decisions about attempted task difficulty when learning
from that teacher in the future. This is in some ways different
from the concept and causal learning research in which inves-
tigations of the pedagogical model are often situated. How-
ever, notions of competence and knowledge may be tightly
related in the context of pedagogy. For instance, past work
has found that when acting as teachers themselves, preschool-
ers calibrate their own pedagogical demonstrations to their
learner’s competence (Gweon & Schulz, 2019), similarly to
how they do so in light of a learner’s beliefs (Bass et al.,
2019). Further, just as instruction can constrain exploration
in the context of novel toy exploration tasks (Bonawitz et al.,
2011), 18-month-olds have been shown to rationally integrate
information about their own abilities with parental feedback
about task difficulty, constraining their motor actions accord-
ingly (Tamis-LeMonda et al., 2008).

We suggest that if a teacher’s representation underesti-
mates a rational learner’s competence, that learner will inde-
pendently seek out additional challenge in a subsequent learn-
ing task. Conversely, this kind of challenge-seeking might be
curbed if a teacher instead overestimates that learner’s abil-
ities. We present a causal model that formalizes these in-
tuitions. In our behavioral experiment, we test our predic-
tions with a group of six- to eight-year-old children. It is
possible that children as young as four might be sensitive
to subtle cues about others’ knowledge in pedagogy (Bass
et al., 2019; Bonawitz et al., 2011). However, our task
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may prove difficult for younger children for two main rea-
sons: First, explicit second-order false belief reasoning abil-
ities – which may be recruited when considering another’s
false belief about one’s own mental state – are still devel-
oping through the later preschool years (Wellman, Cross, &
Watson, 2001); second, the added attentional demands asso-
ciated with running this task remotely via Zoom due to the
COVID-19 pandemic might make this task more difficult for
a younger sample.

Method
In order to investigate how children may use the accuracy of
an informant’s beliefs about their abilities to calibrate learn-
ing from that informant’s future demonstrations, we designed
a task in which a confederate (the “Teacher”) overestimates,
underestimates, or accurately represents participants’ perfor-
mance on a picture-matching game (between-subjects). Us-
ing their prior “knowledge” of the participant’s ability, this
Teacher then presents three new matching games and evalu-
ates them as much too difficult, not difficult enough, or just
right for the participant; children then rank their preferences
for which of these new games they want to play.

Participants
Methods, participant Ns, and analyses were pre-registered.1

We recruited 20 participants per condition such that our final
sample included N = 60 six- to eight-year-olds (M(SD)age =
88.1(9.58) months, range = 72− 108 months; N = 29 fe-
male). An additional 3 children were dropped and replaced
due to failure to pass comprehension check questions (N = 2;
see Procedure), or asking to terminate the study early (N = 1).

Procedure
See Figure 1 for a schematic of our procedure.

Introduction to Teacher This task was administered over
Zoom, with stimuli displayed to participants using Open
Broadcaster Software. After signing onto the call with the
Experimenter, children were introduced to the “Teacher” –
who, children were told, would be joining the call periodi-
cally throughout the activity. Unbeknownst to participants,
the Teacher was actually a pre-recorded video. To explain
away the Teacher’s inability to interact with the participant, it
was established that she was experiencing a technical glitch
such that she could hear the Experimenter, but not the partic-
ipant. The Teacher then (temporarily) signed off the call.

Novel Object Naming Because the task would later involve
the Teacher either accurately or inaccurately representing the

1The pre-registration for this experiment can be found at:
http://aspredicted.org/blind.php?x=bm68j7. In this pre-registration,
we neglected to re-run our power analysis after changing our pri-
mary dependent measure from a categorical variable to a continuous
variable. Therefore, although the pre-registration denotes our inten-
tion to run 30 participants in each condition, this was in error; 20
participants per condition should be sufficient for our anticipated ef-
fect sizes.

learner’s abilities, we wanted to avoid the possibility that chil-
dren would be more likely to follow the Teacher’s recommen-
dation in the Accurate condition simply because she was a
more reliable informant; rather, we wanted to ensure that any
observed differences between conditions could be more read-
ily attributed to a specific difference in the Teacher’s knowl-
edge about the participant’s competence. To this end, the Ex-
perimenter familiarized the participant with the names of two
novel objects; then, she invited the Teacher back into the call,
and asked her to name the objects. In the conditions in which
the Teacher would later overestimate or underestimate the
child’s abilities, she correctly labeled one of the two novel ob-
jects. In the Accurate condition, she incorrectly labeled both
objects. Thus, in all three conditions, the Teacher was correct
on one of three total judgments throughout the task. We opted
to control for overall accuracy using a novel object naming
paradigm because a wealth of prior work suggests that chil-
dren track this information, and use it to infer informant relia-
bility (e.g., see Harris, Koenig, Corriveau, & Jaswal, 2018 for
a review). This manipulation also happened to be particularly
simple to implement: The pre-recorded video of the Teacher
naming the objects was identical across conditions, and the
Experimenter simply provided the child with different “cor-
rect” labels.

Experimenter’s Matching Games With the Teacher off
the call again, children were then shown how to play the
matching game task. This was a simple memory matching
game: Children were shown a target picture and an array of
cards with different colored shapes on them. This array of
cards was then briefly flipped over, revealing pictures on their
undersides. After flipping back over, children indicated the
color and shape of the card they thought the match was under.
Once the child identified the correct location for the match,
the experimenter moved the target picture to a “counter”,
which tracked the matches the child was able to complete.

After playing a practice game and displaying sufficient un-
derstanding of the task, children were told they would be
playing the Experimenter’s two matching games: first an easy
set, and then a hard set. Their goal would be to find as many
matches as possible before time ran out. In all conditions, the
task was controlled such that all children finished the easy set,
and no children completed any matches on the hard set.

Teacher Forms Representation The Experimenter then
pulled up a display of participants’ results on the screen.
In the Accurate condition, this display correctly showed 1/2
matching sets completed, and the Experimenter reiterated the
child’s actual performance (“The screen shows that you were
able to finish the easy set and not the hard set!”). In the Over-
estimate condition, the Experimenter “accidentally went to
the answers screen”, and the display showed 2/2 sets com-
pleted. In the Underestimate condition, the Experimenter “ac-
cidentally reset the counter”, and the display showed 0/2 sets
completed. The Teacher then re-entered the call and saw the
display; she said she was about to pick out some new match-
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Figure 1: A schematic of the method used in our experiment.

ing games to play, and would keep the child’s performance in
mind when picking these new games. Due to the Teacher’s
previously established inability to hear the participant, chil-
dren were not able to correct the Teacher if she saw an inac-
curate display.

New Games & Rank Ordering The Teacher then returned
with three new matching games, each of which would be
worth a different number of points. Based on her pur-
ported understanding of the child’s performance on the Ex-
perimenter’s matching games, the Teacher thought one of
these games would be “just right” for the child, and each cor-
rect match would be worth 4 points. Correct matches on the
game that she thought “might not be hard enough” would be
worth 3 points each; and for the game that she thought would
be “much too hard”, matches would be worth 5 points each.
The participant was made aware that the Teacher would re-
turn later to see how many points they had earned. With the
Teacher again off the call, the Experimenter then asked the
child which game they wanted to play, given that they would
only have time to play one of the Teacher’s new games. After
the child made their initial choice, the experimenter feigned
an inability to open the game and asked participants what
their next choice would be if she couldn’t get their first choice
to work. By doing this, the experimenter elicited a natural
ranked choice of the participant’s game preferences.

Comprehension Checks After playing their selected
matching game (which was identical for all children, re-
gardless of which game they chose) with the Experimenter,
and then saying goodbye to the Teacher, participants were
asked to recall: 1) how many of the Experimenter’s matching
sets the Teacher thought they were able to complete; and 2)
how many of the novel objects the Teacher correctly named.
Children who were not able to answer these questions cor-
rectly after two attempts and a forced-choice follow-up were
dropped and replaced prior to analysis.

Coding
Game choices were assigned different values (too easy = 1,
just right = 2, too hard = 3), and rankings were assigned
different weights (first choice = 2, second choice = 1, third
choice = 0). From this, we calculated a “difficulty score”,

which was simply the weighted rank-ordering of children’s
choices (e.g., a first choice of the “just right” game and a sec-
ond choice of the “too hard” game implies a difficulty score
of (2(2) + 1(3))/3 = 2.33). We computed this continuous
score as opposed to looking only at children’s first choices to
allow for more sensitivity in our measure; we suspected from
past work on epistemic trust that children might have a bias
to follow the teacher’s recommendation across conditions (a
pattern that was also supported by pilot data).

Model
In what follows, we present a simple causal framework for
the problem participants might be solving in this task. Al-
though we do not test all of the variables in this model here,
this kind of formal causal framework is useful in formalizing
our predictions, and could also serve to illuminate additional
empirical questions that could be tested in future work.

When choosing to play one of the three presented games,
participants might compute something akin to the expected
value of playing each of the three games. This can be thought
of simply as the maximum number of points (or reward, R)
that could be earned by playing a particular game, weighted
by the child’s belief p(Sg) that they will be able to success-
fully complete that particular matching game g:

E(g) = Rg p(Sg) (3)

Importantly, to calculate p(Sg), the learner needs to esti-
mate the actual objective difficulty of each game, which is
unobserved. Therefore, this must be inferred from the avail-
able evidence – namely, the Teacher’s statement about how
difficult she thinks the game will be for the child, and the
Teacher’s beliefs about the learner’s competence.2 (See Fig-
ure 2 for a causal graphical model of this inference problem.)

Thus, the actual difficulty of each game (as known by the
Teacher) and the Teacher’s beliefs about the learner’s compe-
tence will mutually inform the statement the Teacher makes

2In our model, p(Sg) is also dependent on the Learner’s beliefs
about her own competence. We conceptualize this as the child’s per-
formance on the Experimenter’s matching games, which was con-
trolled across all participants in our task. Therefore, we do not con-
sider this node further here – but see the Discussion for why it may
be critical to probe this variable in future work.
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Figure 2: A causal graphical model of the inference problem
in our task. In order to estimate the probability of success
on a particular game, the learner must infer the true level of
game difficulty that would be most likely to lead the Teacher’s
evaluation of how difficult that game would be for the learner,
given her beliefs about the learner’s competence.

about how difficult she believes each game will be for the
learner. In particular, the model captures the intuition that
if the actual game difficulty is approximately equal to the
Teacher’s subjective appraisal of the learner’s abilities, the
Teacher will assess that game as being “just right”. On the
other hand, if the actual game difficulty exceeds what the
Teacher believes the learner is capable of, she will evaluate
the game as being “much too difficult”; conversely, if the
actual game difficulty level is lower than what the Teacher
has represented as the learner’s competence, she will instead
judge that game to be “not hard enough”.3

Results
In line with our pre-registered analysis plan, we first con-
ducted a one-way ANOVA on the difficulty score for chil-
dren’s preferred games. This ANOVA was significant:
F(2,57) = 13.02, p < 0.0001, η2 = 0.314. Follow-up
Bonferroni-corrected pairwise comparisons further revealed
significant differences between the Overestimate condition
and the other two conditions. Specifically, when the Teacher
overestimated their competence, children selected easier
games (M = 1.58,SD = 0.40) than when she had been ac-
curate (M = 1.97, SD = 0.42; p < 0.05) or when she had un-
derestimated their abilities (M = 2.3, SD = 0.51; p < 0.01).
See Figure 3 for a summary of these results.

We also discretely analyzed children’s first choice of game
across conditions. A 3x3 Fisher’s exact test on these choices
was significant (p < 0.0001). To follow up on this result,
we compared the modal response in each condition to chance
(1/3) by exact binomial test. A majority of children in the
Accurate condition chose the “just right” (16/20, one-tailed
p < 0.0001). In the Overestimate condition, 10/20 children
picked the “just right” game (one-tailed p = 0.092); this was
closely followed by the predicted “too easy” game (9/20), al-
though this latter proportion did not differ from chance. In
contrast, the most common choice in the Underestimate con-

3The specific quantitative formalization of this can be further
specified, but the above details are sufficient to capture the pattern
of qualitative results presented here.
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Figure 3: The average difficulty scores for children’s selected
games across conditions. Children preferred easier games
when the Teacher overestimated their knowledge, and harder
games when she underestimated their knowledge, while those
in the Accurate condition fell in between. ∗p < 0.05; **p <
0.01. Error bars represent (+/-) the standard error.

dition was the “too hard” game (11/20, one-tailed p = 0.038).
See Figure 4 for children’s ranked choices across conditions.

Together, these results are broadly in line with our predic-
tions, suggesting that children’s choices were directionally
informed by what they thought the informant believed about
their abilities.

Discussion
We teach and learn from one another every day, yet this is no
simple cognitive feat. If informants are to select helpful evi-
dence, they must consider what exactly their learner already
knows. And for learners to be able to interpret the mean-
ing of presented evidence, they must consider whether their
informant is sampling appropriately for them. Can children
use a teacher’s beliefs about their abilities to directionally ad-
just their learning from that teacher’s future demonstrations?
The current work suggests the answer to this question may
be “yes”. When a teacher correctly understood their com-
petence, six- to eight-year-old children were happy to play a
game that she thought would be about right for them. How-
ever, if she overestimated their knowledge, children com-
pensated by choosing to play games that the teacher thought
might not be challenging enough for them; in contrast, when
she underestimated them, children instead preferred games
that she thought would be too difficult. Thus, beyond a
mere sensitivity to an informant’s beliefs about them, chil-
dren may use this information to rationally calibrate choices
when learning from that informant in the future.

This work probes a previously untested prediction that falls
out of the original pedagogical model (Shafto & Goodman,
2008; Shafto et al., 2014), and provides insight into the pro-
cesses that facilitate learning from sub-optimal evidence se-
lections. While we propose a general model outlining these
inferences, we have yet to mathematically specify the under-
lying distributions in this model, and there are many more
specific predictions that could be tested. For instance, we
suggest that learners may gauge the probability of succeeding
at a task using both the difficulty of that task and their own

497



Figure 4: Children’s first and second choices of games, split by experimental condition. The 3x3 Fisher’s exact test on children’s
first choices was significant. Further, the proportions of children who chose the “just right” game in the Accurate condition,
and the “too hard” game in the Underestimate condition, both significantly differed from chance.

perceived competence. We held this latter variable constant
in the current work by controlling children’s performance on
the Experimenter’s matching games; future work could in-
stead test the converse by holding the Teacher’s beliefs con-
stant and manipulating the child’s abilities on the task. This
might illuminate the role that “confidence” plays in children’s
decisions about attempted task difficulty during pedagogy.

There were asymmetries in our data across conditions that
could be worth exploring further. On the one hand, difficulty
scores in the Accurate and Underestimate conditions did not
significantly differ; but on the other hand, a majority of chil-
dren’s first choices in the Underestimate condition was the
predicted (“too hard”) game, while this was not the case in
the Overestimate condition. Perhaps this reflects something
about the trade-off between p(SG) and Rg in the computation
of the expected value for each game across conditions, par-
ticularly with respect to the goals imposed by the experiment.
Indeed, children were told that the Teacher was going to come
back to see how many points they earned. This is distinct
from how developmental learning tasks are typically con-
strued, in which exploration is relatively consequence-free;
thus, how the goals of our experiment might have asymmetri-
cally incentivized choice patterns across conditions (e.g., see
Figure 4) would be an exciting question for future work.

There are also open questions about what exactly children
believed the Teacher was inferring about them. Did they think
her judgment of their performance was limited to this partic-
ular matching game task? Or might they have taken this to
be an evaluation of their competence in general? Answers
to these questions could inform our understanding of how
the current findings might extend to more formal pedagogical
contexts, such as classroom settings. Indeed, student-teacher
rapport is a key factor in predicting students’ academic suc-
cess (see Wentzel, 2009 for a review). For instance, Skinner
and Belmont (1993) found that teachers’ support of individual
students’ autonomy predicted children’s motivation in grades
three through five; and correlations have been found between
student–instructor relationships and student achievement ori-
entations even in samples of college students (Creasey, Jarvis,
& Gadke, 2009). While rapport is a rich and complex con-

struct that likely incorporates a multitude of mutually depen-
dent social judgments that extend beyond the confines of one
specific task (e.g., general liking of one another), it is possi-
ble that one component of rapport is this sense that a teacher
is providing evidence at the appropriate level for the learner.
If we are to ultimately connect the current line of work to the
formal education literature, it will be critical to investigate
how children believe teachers’ judgments of their competence
generalize across domains, tasks, and time.

It may be fruitful to expand the target age range of this
study in both directions. Testing younger children on this
task could shed light on the cognitive capacities that serve
as prerequisites for this kind of nuanced social reasoning in
pedagogy. While we suspect that false belief reasoning abili-
ties might support performance on our task, we could directly
test this idea by collecting data from toddlers and preschool-
ers in an adapted paradigm. On the other hand, it might also
be worthwhile to investigate whether our findings extend into
adulthood, and how individual differences in traits such as
Need for Cognition (the degree to which an individual enjoys
engaging in cognitively challenging tasks; Cacioppo & Petty,
1982) might influence choices on this task. This develop-
mental approach would also allow us to further flesh out our
model: Are these potential additional factors better thought
of as moderating variables, or unique causal nodes? Answers
to these questions could elucidate how these representations
might shift throughout the lifespan.

The information provided by other people can help us nav-
igate an uncertain world. But even well-intentioned teachers
often have imperfect knowledge, both about the subject mat-
ter and about their learners. How does learning remain robust
in the face of non-ideal teaching? Here, we show how even
young learners may capitalize on subtle information about
others’ knowledge to make rational inferences during infor-
mal pedagogy. This work connects to a growing body of lit-
erature showing that from a young age, children deftly reason
both about evidence, and the people providing that evidence.
Although many open questions remain, we hope that we have
neither overestimated nor underestimated the potential impli-
cations of the current work.
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