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ABSTRACT OF THE DISSERTATION

Graphene Nanoelectromechanical Systems

by

Tengfei Miao

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, March 2015

Dr. Marc Bockrath , Chairperson

Graphene, a carbon-based two-dimensional material, has remarkable electrical

and mechanical properties, making it an ideal material for studying the Nanoelectrome-

chanical Systems (NEMS). In this thesis, we focus on the performance of few-layer

graphene NEMS resonators in drumhead geometry. We will discuss the experimental

techniques and studies on their intrinsic properties, nonlinear dynamics and quality fac-

tor. We report our measurement on the coefficient of the Duffing nonlinearity, suggesting

a geometric origin of this term. The line width of resonance at large drives is enhanced by

nonlinear damping, in qualitative agreement with recent theory of damping by radiation

of in-plane phonons. The amplitude of response is parametrically amplified due to peri-

odic thermal expansion from the ac source-drain voltage, resulting an anomalously large

line width at the largest drives. We observe Q scales inversely with the temperature. We

develop a model that includes the intermodal coupling in tensioned graphene resonators

and demonstrate Q is determined by the stochastic frequency broadening rather than

frictional damping. We will also report our work on a graphene/h-BN (hexagonal boron

nitride) drum resonator and discuss its potential applications.
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Chapter 1

Introduction

1.1 Introduction

Nanoelectromechanical systems (NEMS) are the successor of microelectromechanical

systems (MEMS). They integrate the electrical and mechanical functionality of devices

on the submicron scale. Particularly, for a resonant NEMS device, the input electri-

cal signal couples to the device and excite resonant modes of the mechanical element.

The mechanical resonance is then transduced back into the electrical signal. [2] One

simple example of such type of devices is a doubly-clamped beam resonator. The low-

dimensional carbon-based materials such as carbon nanotubes [3] and graphene [4] are

ideal materials for making the NEMS devices because of their miniature sizes, remark-

able electrical and mechanical properties. They are promising for applications including

ultra-sensitive mass sensing [5, 6, 7], and signal processing [8, 9], and are also good sys-

tems for studying nonlinear physics [10, 11]. This thesis will focus on the performance

of graphene nanoelectromechanical resonators.
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1.2 Electronic Properties of Graphene

Monolayer graphene is a sheet of carbon atoms arranged in a honeycomb lattice. The

conduction band and valence band touch at isolated points at the corners of the Brillouin

zone, and the touching points are named Dirac points. The low energy band structure

near the Dirac point has a linear dispersion relation:

E±(q) ≈ ±vF |q| (1.1)

where q is the momentum relative to the Dirac point and vF is Fermi velocity [12]. The

electronic states are described by a massless Dirac equation. Due to its low electron effec-

tive mass, graphene obtains a high mobility with an intrinsic limit of 2×105 cm2V−1s−1

at room temperature. [13] This high room temperature field effect mobility greatly en-

hance the transduced signal of the graphene mechanical resonators and make them

promising for real applications.

1.3 Mechanical Properties of Graphene

Graphene has excellent elastic properties. It has high stiffness: the 2D elastic stiffness of

monolayer graphene is measured to be 340N/m, corresponding to an effective Young’s

modulus of 1TPa. It can also take strains up to 25% without breaking. [14] It also

has low mass (ρ = 7.6 × 10−19kg/µm2). Because of the high stiffness and low mass,

a graphene NEMS resonator has a high fundamental resonance frequency. The low

mass also increases its sensitivity to the applied forces. Because graphene is atomically

thin, the mechanics behaves as an elastic membrane. The fundamental frequency of a

monolayer or few-layer graphene NEMS resonator is typically tension dominated and the

bending energy can be neglected. This allows us to study to the intermodal coupling.
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1.4 Harmonic Oscillator

Here we follow ref. [15] to explore the behavior of a driven harmonic oscillator

under damping. In addition to the driving force, the oscillator experiences frictional

damping forces that tend to damp the oscillation. In the linear damping case, the

frictional damping force is proportional to the velocity. The equation of motion is

mz̈ +mω2
0z +mΓż = F, (1.2)

where m is the mass of the oscillator, ω0 is the resonance frequency which is intrinsic to

the oscillator, z is the displacement of the oscillator, mω2
0z is the restoring force, mΓż

is the frictional damping force and F = F0cos(ωt) is the driving force. We can simplify

the above equation by defining γ = Γ/m:

z̈ + ω2
0z + γż = F/m. (1.3)

To solve this equation, we first write F in the form of F0e
iωt and the solution in the

form of z0eiωt. Then we solve for z0. The final solution should be the real part of z0eiωt.

By plugging z = z0eiωt into the homogeneous equation, we have

− ω2 + ω2
0 + iγω = 0. (1.4)

This leads to

ω = ±
√
ω2

0 − γ2/4 + iγ/2. (1.5)

For our graphene mechanical resonators measured in a vacuum condition, we are usu-

ally in the situation where ω2
0 > γ2/4. Thus we can get the transient solution of the

homogeneous equation:

zt(t) = z0
t e
− γ

2
t cos(t

√
ω2

0 − γ2/4 + φt), (1.6)
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where z0
t and φt are determined by the initial conditions. The amplitude of the transient

solution decays as time goes on.

The non-homogeneous equation, we can first get the susceptibility:

χ(ω) =
z(ω)

F (ω)
=

1

m

1

−ω2 + ω2
0 + iωγ

(1.7)

By taking the real part of χ(ω)F0e
iωt, we can get the steady-state solution satisfying

the non-homogeneous equation:

zs(t) = z0
scos(ωt+ φs), (1.8)

where

z0
s =

F0/m√
(ω2

0 − ω2)2 + (ωγ)2
. (1.9)

Here φs is the phase of the response relative to the driving force. We should have

φs = arctan(
ωγ

ω2 − ω2
0

). (1.10)

Fig. 1.1 plots z0
s and φs near the resonance frequency ω0. The final solution should be

a combination of the transient and steady-state solutions:

z(t) = zt(t) + zs(t). (1.11)
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Figure 1.1: Amplitude and phase of steady-state response of a harmonic oscillator with
damping. The amplitude z0

s is a Lorentzian function of ω with a peak at the resonance
frequency ω0. As the frequency goes through ω0, the phase φs goes from 0 to −π through
−π/2 at the resonance frequency.

There is an important parameter called quality factor Q that characterizes the

energy loss (damping) in the oscillator. The definition is

Q = 2π
Energy Stored

Energy dissipated per cycle
. (1.12)

It can be shown that Q = ω0/γ. Then the displacement z has the form of

zt(t) = z0
t e
− ω0

2Q
t
cos(t

√
ω2

0 − (ω0/2Q)2 + φt) (1.13)

and

zs(t) =
F0/m√

(ω2
0 − ω2)2 + (ωω0/Q)2

cos(ωt+ φs), (1.14)

where φs = arctan(ωω0/Q
ω2−ω2

0
). If the driving force is turned off, the amplitude of the

oscillation decays. Since the energy stored in the oscillator is 1
2kz

2
t , the decay of energy

is twice as fast as the decay of the amplitude of displacement. It can be shown that it

takes about a number of Q oscillation cycles for the energy to drop to e−2π of the initial

5



energy. We usually define that the energy decays as e−t/τ . Here τ = Q/ω0 is defined as

the characteristic time scale of the resonance.
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Chapter 2

Device Fabrication and

Measurement Techniques

2.1 Introduction

The most two common geometries of graphene NEMS resonators are the drum resonators

and the doubly-clamped resonators. One of the drawbacks of the doubly-clamped res-

onators is they sometimes have vibrational modes at the free edges (edge modes) due

to the nonuniform stress in some of the resonators [16], which makes the analysis more

complicated. The drum resonators eliminate this edge mode problem. So throughout

the thesis, we mainly focus on the performance of suspended graphene drum resonators.

The monolayer and multilayer graphene can be obtained by two methods: mechanical

exfoliation of graphite using scotch tapes [17] and chemical vapor deposition (CVD)[18].

Here we used both of the two types of graphene and developed two different procedures

to fabricate the devices. The fabrication prodecures will be discussed in Section 2.2

and Section 2.3.The electrical measurement techniques and measurement setups are

described in the following sections.
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2.2 Drum Resonator Made by Exfoliated Graphene

Our goal is to fabricate a graphene field effect transistor on a Si/SiO2 substrate, with

the center part of the graphene suspended on a circular hole. The fabrication procedure

has three stages: first, we fabricate arrays of circular holes in the SiO2, and deposit

graphene onto the holes; second, we tailor the graphene into a small size to maximize

the ratio between suspended and unsuspended part; third, we fabricate source-drain

electrodes to the graphene.

Stage one is shown in Fig. 2.1. First, we start with a p-doped Si chip with 290

nm of SiO2. We want to fabricate circular holes in the oxide layer with a diameter of

2µm. Here we choose buffered oxide etch (BOE) to wet etch the SiO2, and electron-

beam lithography to define the etch mask. One MMA resist layer (a positive e-beam

resist) is spun onto the chip with a rotational speed of 4000 rpm, and a ramp-up rate

of 1000 rpm/s. Then the chip with MMA resist is baked on a hot plate at 150 ◦C for

10 minutes. After that, e-beam lithography is used to pattern arrays of holes with a

diameter of 1.4µm as an etching mask for the SiO2. The e-beam exposed MMA resist is

then developed in MIBK/IPA (1:3) solution for 65 seconds. Then we use BOE to etch

the SiO2 for 200 seconds. The etch rate is about 1.5 nm/s, so the 290 nm of SiO2 should

all be etched away. Since the BOE etching is isotropic, the actual diameter of the holes

will be about 600 nm larger than 1.4µm. After etching, the chip is transfered into a

beaker with deionized (DI) water. Then it is transfered into another beaker with new

DI water. We rinse the chip this way for 6 times. After that we use acetone to dissolve

the MMA resist, and rinse the chip with isopropyl alcohol (IPA).

Now we have the chip with arrays of holes on the SiO2. The next step is to use

the scotch tape method to get the exfoliated graphene and randomly deposit them onto

8



the chip. There should be a chance that the graphene flakes land on some of the holes

and form “graphene drums”. Then we search for the “graphene drums” using optical

microscope. Once the “drums” are found, we can do a Raman spectroscopy on them to

find the number of layers of graphene.

Figure 2.1: Fabrication procedure for graphene drum on SiO2. (a) A MMA resist layer
is spun on the chip followed by e-beam exposure. (b) The exposed resist is developed in
MIBK/IPA(1:3) solution. (c) The SiO2 is etched by BOE with the MMA resist mask.
(d) MMA resist is dissolved by acetone. (e) Graphene is mechanical exfoliated and
randomly deposited onto the holes. (f) Optical image of a multi-layer graphene drum.

The deposited graphene layers are usually larger than the holes, so we need

to tailor them into smaller shapes. This is to make sure that the suspended graphene

9



dominate the conductance of the devices. Here we use PMMA, another positive e-beam

resist, to define a etch mask for the graphene. However, spinning e-beam resist onto

the chip in most of the cases will collapse the suspended graphene. In order to avoid

this, we developed a new technique to dry transfer the e-beam resist onto the chip. The

procedure is as follows. We prepare another chip with a little smaller size than the chip

with the graphene drum, and spin coat a layer of water soluble poly(vinyl alcohol) (PVA)

and then a layer of PMMA on it. Then we carefully cover the chip with a piece of blue

dicing tape with a slightly larger size and press the tape to squeeze out the bubbles. We

then put the chip/PVA/PMMA/tape in DI water on a hot plate and wait until the PVA

is dissolved by water. The chip is now separated with the tape/PMMA bilayer. Then we

take the tape/PMMA bilayer out from the DI water and blow-dry it with nitrogen gas.

After that, we press the PMMA/tape onto the chip with the graphene drum carefully.

The last step is to put the chip/PMMA/tape onto a hot plate at 120 ◦C, and slowly

peel off the blue tape leaving the PMMA on the chip. Now the PMMA is successfully

dry transferred onto the graphene drum. Then we use e-beam lithography to pattern

a mask for etching the graphene. The graphene is then tailored using oxygen plasma

etching. With the etch mask still on the chip, another layer of PMMA is spun coated

on to the chip. We then use e-beam lithography to pattern the window for source-drain

electrodes and use e-beam evaporator to deposit Ti/Au electrodes. The lift-off process

is done in acetone at 60 ◦C for 15 minutes. Here we only use 15 minutes to minimize

the chance of collapsing the graphene. After that, the device is transferred carefully

into IPA. A critical point drying is followed to prevent the graphene drum from being

damaged by the surface tension of liquid.[19]

10



Figure 2.2: Fabrication procedure for dry transferring the PMMA resist. (a) A
PVA/PMMA bi-layer is spun on a silicon chip, and a blue dicing tape is pressed on
top of the PMMA. (b) The PVA layer is dissolved by water leaving the PMMA on the
blue tape. (c) The PMMA/tape bi-layer is transferred onto the chip with the graphene
drum on it. (d) The tape/PMMA/Graphene/SiO2/Si chip is placed on a hot plate at
120 ◦C and the blue tape is peeled off. (e) PMMA resist is transferred onto the graphene
drum. (f) Optical image of a multi-layer graphene drum with PMMA on it. It shows
that the graphene drum has a smaller size and a different color than the holes not
covered by suspended graphene. This is a different sample than that shown in Fig. 2.1

11



Figure 2.3: Fabrication procedure for tailoring the graphene. (a) E-beam lithography is
used to expose the PMMA on top of the unwanted graphene. (b) The exposed PMMA is
developed in MIBK/IPA (1:3) for 65 seconds leaving the unwanted graphene exposed to
air. (c) Oxygen plasma is used to etch the exposed graphene. (d) Schematic diagram of
tailored graphene. (e) Optical image of a multi-layer graphene drum in Fig. 2.2 tailored
into a certain shape, covered with the PMMA resist.

12



Figure 2.4: Fabrication procedure for the electrodes. (a) After oxygen plasma etching,
the PMMA mask is kept on the chip. (b) Another layer of PMMA is spun on the
top. (c) The electrode patterns are defined by e-beam lithography. (d) The PMMA is
developed. (e) The Ti/Au electrodes are deposited by e-beam evaporation. (f) Lift-off
process is done in acetone at 60 ◦C for 15 minutes. (g) Scanning Electron Microscope
(SEM) image of the final device.
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2.3 Drum Resonator Made by CVD Grown Graphene

The advantage of using the mechanically exfoliated graphene is they usually have better

quality as compared to the CVD grown graphene. The drawback is it is very difficult

to get a monolayer graphene landing on a hole by random deposition. However, with

the CVD grown graphene, we can easily get a monolayer graphene and the fabrication

yield can be significantly improved. So we also developed a procedure for fabricating

graphene drum resonators using the monolayer CVD grown graphene.

The idea is to make arrays of predefined holes and electrodes on a chip, and

then transfer CVD grown monolayer graphene onto the chip. The last step is to etch

the graphene into small rectangles and form a device for etch hole.

First, we prepare a silicon chip with 290nm of oxide (SiO2). Here, we use

the E-beam Direct Write Lithography System (JBX-5500FS) to write patterns on the

e-beam resist for the electrodes. After e-beam lithography and development, the chip

is placed in the buffered oxide etch for 30 seconds. This is to etch a trench for the

electrodes with a depth of about 50 nm. Then we use e-beam evaporator to deposit 5

nm of Ti and 45 nm of Au in to the trench. This makes the electrodes at about the

same height as the oxide surface so that it becomes easier to transfer the graphene onto

the chip. After that, we use the e-beam writer again to write holes with a diameter of

1.4µm and use BOE to etch the SiO2 for 200 seconds. The 290 nm of oxide should all

be etched away.

Now we have a chip with arrays of predefined electrodes and holes. The next

step is to transfer the CVD graphene which is grown on a copper foil onto the chip. Here

we use a thermal release tape (NITTO DENKO)[20, 21] to assist the transferring. We

first attach a piece of thermal release tape to the graphene on copper and gently apply

14



a force on it to ensure they conform without bubbles. Then we use HCl/H2O2 solution

to dissolve the copper foil, leaving the gaphene on the thermal release tape. Then we

rinse the tape/graphene in the DI water. The tape/graphene is then transferred and

gently pressed onto the chip with the predefined electrodes and holes. The chip with

the graphene/tape is then placed on a hot plate at 95 ◦C, so that the tape can be easily

peeled off because it loses adhesion. There is usually tape residue left on the chip.

The next step is to etch the graphene into small rectangles. Here we choose a negative

e-beam resist, ma-N2403 to define the etch mask. In order to minimize the chance of

collapsing the suspended graphene, we spin coat the ma-N2403 resist at a slow speed

(1000 rpm) for 30 seconds and ramp-up rate at 100 rpm/s. We still use the spin coating

here because the CVD graphene sheets are much larger than the mechanical exfoliated

graphene sheets and they are less likely to collapse than the small exfoliated graphene.

Then we bake the resist at 90 ◦C for 1 minute. We use the e-beam direct writer to

write the etch mask, and use the ma-D525 developer to develop the resist for 2 minutes.

The e-beam exposed resist remains on the chip and the unexposed resist is dissolved.

After the development, we can see there is more resist residue left on the chip probably

because the tape residue tends to attract the resist residue. Then, we treat the chip

with the oxygen plasma to etch the graphene into rectangles. After that, the etch mask

is dissolved in the Remover PG (a proprietary NMP based solvent stripper) at 65 ◦C for

15 minutes, and the chip is placed in IPA. A critical point drying process is followed to

reduce the chance of collapsing the suspended graphene by liquid surface tension. The

final step is to anneal the chip in H2/Ar (0.2/0.4 SLM) at 220 ◦C for 2 hours to clean

the sample. Then we look for good devices on the chip under SEM. Now we have a chip

with many monolayer graphene resonators ready for the measurement.
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Figure 2.5: Fabrication procedure for the CVD graphene drum resonators. (a) A piece
of thermal release tape is attached to the graphene on copper foil, and the copper is
dissolved by HCl/H2O2 solution. (b) The tape/graphene is then transferred and gently
pressed onto the chip with the predefined electrodes and holes. (c) The chip with
graphene/tape is then placed on a hot plate at 95 ◦C, and the tape can be easily peeled
off. (d) A negative e-beam resist ma-N2403 is spun on with a slow speed. The resist in
a rectangular area around the hole is then exposed by e-beam. (e) The unexposed area
of the resist is developed by the developer ma-D525. The oxygen plasma then is used
to etch the unwanted graphene. (f) The etch mask is dissolved in Remover PG at 65 ◦C
for 15 minutes, followed by a critical point drying and H2/Ar (0.2/0.4 SLM) annealing
at 220 ◦C for 2 hours.

16



Figure 2.6: SEM image of a CVD graphene drum resonator. The shape of graphene is
torn into a non-rectangular shape during the fabrication process.

2.4 Electrical Actuation

The graphene and doped silicon or metal gates form a parallel plate capacitor. By

varying the relative voltage difference between graphene and gate, we can vary the

electric field on graphene which will result in a change in the electrostatic force on

graphene. Performing this at the resonance frequency can actuate the resonance.

Figure 2.7: Diagram of a parallel plate capacitor formed by the graphene and the gate.

To derive the electrostatic force between the gate and graphene, here we start

with the electrostatic energy stored in the system. We can easily get the electrostatic
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energy:

Ues =
1

2
CV 2

g , (2.1)

where C is the parallel plate capacitance and Vg is the gate voltage. The charge on the

graphene is

Q = −CVg. (2.2)

If now the graphene changes its position by dz, the work done to the system by the

battery is −VgdQ = dCV 2
g . The change of the total energy of the system is:

dE = dUes − dCV 2
g = −1

2
dCV 2

g . (2.3)

Then the electrostatic force acting on the graphene is

Fes = −dE
dz

=
1

2

dC

dz
V 2
g . (2.4)

If we apply a small ac voltage in addition to the dc gate voltage,

Fes =
1

2

dC

dz
(Vg + Ṽg)

2. (2.5)

The ac driving force is

F̃es =
dC

dz
VgṼg. (2.6)

Instead of applying an ac gate voltage, We could also apply a small ac source-drain

voltage to actuate the resonance. The effective potential on the graphene is 1
2 Ṽsd, so the

electrostatic force is

Fes =
1

2

dC

dz
(Vg −

1

2
Ṽsd)

2, (2.7)

Then the ac driving force has an extra factor of 1/2:

F̃es = −1

2

dC

dz
VgṼsd. (2.8)
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2.5 Electrical readout

The electrical readout of the mechanical resonance signal is feasible because the con-

ductance of the graphene is tunable by the charge density in the graphene. The charge

density is tunable by the the gate capacitance, and the gate capacitance is tunable by the

distance between the gate and graphene. So overall, the conductance is tunable by the

displacement of graphene. Direct readout of the change of conductance at the resonance

frequency (∼ 100 MHz for graphene resonators) is difficult for for the following reason.

The characteristic impedance of transmission line is 50 Ω and the typical value for the

device resistance is ∼ kΩ, so the the signal is always divided by a factor of approximately

1k/50 = 20 or even more. In our experiments, we decided to use the electrical mixing

technique to readout the mechanical resonance signal. There are several ways to do the

electrical mixing. They can generally be categorized: the two source method (two RF

sources are involved) [22, 5, 23] and one source methods[24, 25, 8, 10].

For the two source method, an ac signal with frequency ω is applied to the

gate and an ac signal with frequency ω + ωL is applied to source electrode. ω is on the

order of MHz and should be close to the mechanical resonance frequency and ωL is on

the order of kHz (typically 1 kHz). Then we collect the low frequency (ωL) current at

the drain electrode.

For one source methods, we either send an amplitude modulation (AM) signal

or a frequency modulation (FM) signal to the source electrode and collect the low

frequency current at the drain electrode.
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2.6 Two Source Mixing

Previous works have used two source mixing technique to study the mechanical resonance

of carbon nanotubes [22, 5] and graphene [23]. In this section, we will go through the

mechanism for the two source mixing technique.

We can write the total current at drain electrode as:

I = GṼsd (2.9)

G is the conductivity, which is a function of the charge q in the graphene. The charge

q depends on the gate voltage Vg and the displacement of graphene z. So we can write

the conductance as

G(Vg, z) = G(V dc
g , zs) +

∂G

∂q

∂q

∂Vg
Ṽg +

∂G

∂q

∂q

∂z
z̃. (2.10)

Since

∂G

∂q
=

1

C

∂G

∂Vg
,

∂q

∂Vg
= C,

∂q

∂z
= Vg

∂C

∂z
, (2.11)

we have

G(Vg, z) = G(V dc
g , zs) +

∂G

∂Vg
Ṽg +

∂G

∂Vg
V dc
g

C ′

C
z̃. (2.12)

The ac gate voltage is

Ṽg = δVgcos(ωt). (2.13)

The displacement z has an extra phase relative to the gate voltage determined by

eq. 1.10:

z̃ = δzcos(ωt+ φM ). (2.14)

The source-drain voltage has a frequency detuned by ωL from the frequency of the gate

voltage, and an extra phase. The extra phase φE is possibly due to the different cable

lengths[26], and some other unknown factors.

Ṽsd = δVsdcos(ωt+ ωLt+ φE). (2.15)
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The low frequency mixing current is

ĨωL =
1

2

∂G

∂Vg
δVgδVsdcos(ωLt+ φE) +

1

2

∂G

∂Vg
V dc
g

C ′

C
δVsdδzcos(ωLt+ φE − φM ). (2.16)

It can also be expressed with Re(δ∗z) and Im(δ∗z):

ĨωL =
1

2

∂G

∂Vg
δVgδVsdcos(ωLt+ φE)

+
1

2

∂G

∂Vg
V dc
g

C ′

C
δVsd[Re(δ∗z)cos(ωLt+ φE) + Im(δ∗z)sin(ωLt+ φE)], (2.17)

where δ∗z is the complex displacement of graphene, Re(δ∗z) = δzcos(φM ) is the real

part of the complex displacement and Im(δ∗z) = δzsin(φM ) is the imaginary part.

The first term in eq. 2.17 is a pure electrical signal, which looks like a back-

ground signal. The second term is related to the mechanical resonance of graphene

and is on top of the background signal. Fig. 2.8 plots the data of our graphene drum

resonator. Fig. 2.8a shows the mixing current (magnitude R) vs. frequency and gate

voltage. The resonance frequency is tunable by the gate voltage due to the change of

tension and electrostatic softening effect. The tunability of the frequency is a signature

of the mechanical resonances and it helps us to identify them. Details will be discussed

latter in this thesis. Fig. 2.8b shows a line trace when Vg = 10V, which indicates a

resonance near 60MHz.
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Figure 2.8: Two source mixing signal of a few-layer graphene drum resonator with diam-
eter of 2µm (device T2). δVsd = 18mV, δVg = 18mV, ωL = 2π × 1.39kHz, Temperature
= 296K. (a) Mixing signal vs. frequency and gate voltage. (b) Mixing signal (magnitude
R) vs. frequency at Vg = 10V.

Ref. [26] also described a method to measure the amplitude of the resonance.

Here is the detail of the method. Instead of measuring the magnitude R in the lock-in

amplifier, we could also measure the in phase signal X and the quadrature signal Y .

They are related to the magnitude by

X = R cos(θ), (2.18)

and

Y = R sin(θ), (2.19)

where θ is the phase of the lock-in amplifier’s input signal (including both the electrical

background part and the mechanical part) relative to the reference signal. θ can also

be tuned by the phase of the lock-in amplifier. We could properly tune the phase of

the lock-in amplifier, so that Y becomes zero when ω is away from ω0. This means the
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electrical background signal is in phase with the reference signal now. Then the Re(δ∗z)

term in eq. 2.17 should not show up in Y at the resonance frequency either. Then Y

at the resonance frequency should be equal to the Im(δ∗z) term. Given that the phase

φM = −π/2 at the resonance frequency, we should have |Im[δ∗z(ω0)]| = δz(ω0).

Figure 2.9: Simulation of the line shapes for the two source mixing. (a) Simulation of
the Lorentzian line shape of the amplitude δz vs. frequency ω. (b) Simulation of the
line shape of Re(δ∗z) vs. ω. (c) Simulation of the line shape of Im(δ∗z) vs. ω.

2.7 Amplitude Modulation Mixing

The amplitude modulation mixing technique is also an often used technique to study the

mechanical resonance of graphene and carbon nanotube devices. [24, 25]. The idea is to

apply an amplitude modulated (AM) signal as a source-drain voltage, and for simplicity

assume the modulation is 100%:

Ṽsd = δVsd[1 + cos(ωLt)] cos(ωt). (2.20)
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The ac driving force is

F̃ = −1

2
C ′V dc

g Ṽsd

= −1

2
C ′V dc

g δVsd[1 + cos(ωLt)] cos(ωt). (2.21)

From eq. 1.14, we can get the displacement of graphene z̃:

z̃ = δz(ωi)[1 + cos(ωLt)] cos(ωt+ φM ), (2.22)

where

δz(ωi) =
F0/m√

(ω2
0 − ω2

i )
2 + (ωiω0/Q)2

, (2.23)

F0 = −1
2C
′V dc
g δVsd, and φM is the phase of the mechanical response relative to the

driving force.

Here we follow ref. [8] to do a Taylor expansion of the current with respect to

Ṽsd and z̃:

I =
∂I

∂Vsd
Ṽsd +

∂I

∂z
z̃ +

1

2

∂2I

∂V 2
sd

Ṽ 2
sd +

∂2I

∂Vsd∂z
Ṽsdz̃ +

1

2

∂2I

∂z2
z̃2. (2.24)

In the above equation, ∂I
∂Vsd

Ṽsd and ∂I
∂z z̃ has no low frequency component at ωL. 1

2
∂2I
∂z2

z̃2

is zero because of no dc source-drain voltage. Let us check 1
2
∂2I
∂V 2

sd
Ṽ 2
sd and ∂2I

∂Vsd∂z
Ṽsdz̃:

1

2

∂2I

∂V 2
sd

Ṽ 2
sd =

1

2

∂2I

∂V 2
sd

δV 2
sd[1 + cos(ωLt)]

2 cos2(ωt)

=
1

2

∂2I

∂V 2
sd

δV 2
sd[1 + 2 cos(ωLt) + cos2(ωLt)]

1

2
[1 + cos(2ωt)]. (2.25)

So the component in the above equation at ωL is 1
2
∂2I
∂V 2

sd
δV 2

sd cos(ωLt).

∂2I

∂Vsd∂z
Ṽsdz̃

=
∂2I

∂Vsd∂z
δVsd[1 + cos(ωLt)] cos(ωt)δz(ωi)[1 + cos(ωLt)] cos(ωt+ φM )

=
1

2

∂2I

∂Vsd∂z
δz(ωi)δVsd[1 + 2 cos(ωLt) + cos2(ωLt)][cos(φM ) + cos(2ωt+ φM )]. (2.26)
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The component at ωL is:

∂2I

∂Vsd∂z
δVsdδz(ωi) cos(ωLt) cos(φM ) =

∂2I

∂Vsd∂z
δVsdRe(δ∗z). (2.27)

The total current at ωL is:

IωL =
1

2

∂2I

∂V 2
sd

δV 2
sd cos(ωLt) +

∂2I

∂Vsd∂z
δVsdRe(δ∗z) cos(ωLt). (2.28)

The first term in the right hand side of the above equation is purely electrical background

which does not depends on the motion of the resonator. The coefficient ∂2I
∂V 2

sd
is related

to the nonlinearity of I vs. Vsd. The second term is related to the mechanical motion

z̃. The coefficient ∂2I
∂Vsd∂z

= ∂G
∂Vg

V dc
g

C′

C . So the mixing current is:

IωL =
1

2

∂2I

∂V 2
sd

δV 2
sd cos(ωLt) +

∂G

∂Vg
V dc
g

C ′

C
δVsdRe(δ∗z) cos(ωLt). (2.29)

Here if neglect the nonlinearity of I vs.Vsd, the coefficient in the first term ∂2I/∂V 2
sd

should come from the fact that changing the potential of the graphene also changes the

relative gate voltage which changes the conductance of the graphene.

Figure 2.10: Simulation of line shapes. (a) Simulation of the Lorentzian line shape of
amplitude δz vs. frequency ω. (b) Simulation of Line shape of Re(δ∗z) vs. ω.
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Figure 2.11: AM mixing signal vs. frequency of a few-layer graphene drum resonator
with diameter of 2µm.

2.8 Frequency Modulation Mixing

The frequency modulation (FM) mixing is a powerful and easy-to-use technique, which

requires a much simpler measurement setup than the two source mixing technique.

An even more important advantage of this technique is when the frequency is at off

resonance, the background in the signal should be zero in principle. This makes life

much easier when we want to identify the mechanical resonance signal. It is widely

used by various works, for example ref. [8, 10]. Here we follow ref. [8] to go over the

mechanism of this technique. The idea is to apply a FM signal as the source-drain

voltage:

Ṽsd = δVsd cos(ωct+
ω∆

ωL
sin(ωLt)), (2.30)

where ωc is the carrier’s base frequency which is on the order of the mechanical resonance

frequency of our graphene devices, from 50 MHz to a few hundred MHz. ωL is the

modulation frequency, typically at 1 kHz in our experiments. ω∆ controls how much the
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frequency is modulated, typically from 10 kHz to 200 kHz in our experiments depending

on the condition which we will discuss about later.

The ac source-drain voltage provides a ac driving force to the device as shown

in eq. 2.8:

F̃ = −1

2
C ′V dc

g Ṽsd, (2.31)

Let’s first look at Ṽsd. It can be expressed as follows:

Ṽsd = δVsd cos(φ(t) + ωi∆t), (2.32)

Here ∆t is smaller or on the order of the timescale of the mechanical resonance Q/ω0,

where Q is the quality factor of the resonator. Also the modulation of frequency should

at a sufficiently slow frequency ωL. That means 1/ωL should be much longer than the

timescale of the resonance Q/ω0 so that we do not measure the transient oscillation of

the resonator. Within the timescale of ∆t, the ac driving force is at the instantaneous

frequency ωi with a constant phase φ(t). [8]:

F̃ = F0 cos(φ(t) + ωi∆t), (2.33)

where the instantaneous frequency is

ωi = ωc + ω∆ cos(ωLt), (2.34)

and magnitude F0 = −1
2C
′V dc
g δVsd.

The ac source-drain voltage also drives a current through device. We do a

Taylor expansion of the current with respect to Ṽsd and z̃, similar to the AM mixing

technique:

I =
∂I

∂Vsd
Ṽsd +

∂I

∂z
z̃ +

1

2

∂2I

∂V 2
sd

Ṽ 2
sd +

∂2I

∂Vsd∂z
Ṽsdz̃ +

1

2

∂2I

∂z2
z̃2. (2.35)
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With similar reason as in the AM technique, the first, second and last term has no

components at ωL. It can also be shown that the third term 1
2
∂2I
∂V 2

sd
Ṽ 2
sd has no component

at ωL because Ṽsd is a FM signal. [8] Then the only term left is ∂2I
∂Vsd∂z

Ṽsdz̃, and it is

related to the mechanical motion of the resonator.

Let’s check z̃Ṽsd:

z̃Ṽsd = δz(ωi) cos(ωi∆t+ φ(t) + φM )δVsd cos(ωi∆t+ φ(t))

=
1

2
δz(ωi)δVsd[cos(φM ) + cos(2ωi∆t+ 2φ(t) + φM )]

=
1

2
Re(δ∗z)δVsd +

1

2
δz(ωi)δVsd cos(2ωi∆t+ 2φ(t) + φM ) (2.36)

Here δ∗z is complex amplitude of the displacement, and we have δz = |δ∗z|. From

eq. 1.14, we have:

Re(δ∗z) =
(ω2

0 − ω2
i )F0/m

(ω2
0 − ω2

i )
2 + (ωiω0/Q)2

, (2.37)

where ω0 is the intrinsic mechanical resonance frequency, Q is the quality factor. From

eq. 2.34 we know that ωi is slowly modulated at frequency ωL with an amplitude mod-

ulation of ω∆. As a result, Re(δ∗z) should also be modulated at frequency ωL. Because

ω∆ << ωc, we can do a Taylor expansion of δz(ωi) to the first order of ω∆ cos(ωLt):

Re(δ∗z) = Re(δ∗z)|ω=ωc +
∂Re(δ∗z)

∂ω
ω∆ cos(ωLt). (2.38)

By plugging eq. 2.36 and eq. 2.38 into eq. 2.35, we can get the low frequency current at

ωL:

IωL =
1

2

∂G

∂Vg
V dc
g

C ′

C
δVsd

∂Re(δ∗z)

∂ω
ω∆ cos(ωLt). (2.39)

Fig. 2.12 (c) shows the simulation of the line shape of lock-in amplifier’s in-

phase signal of a mechanical resonance by FM mixing technique. Fig. 2.12 (d) shows the

simulation if we choose to measure the magnitude R instead of the in-phase signal X in

the lock-in amplifier. Fig. 2.13 shows the data of a few-layer graphene drum resonator.
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Fig. 2.13(a) shows the magnitude R of the lock-in signal. Figure 2.13(b) shows the

phase θ of the lock-in signal. In principle, eq. 2.39 indicates that the lock-in signal

should only have in-phase signal X and no quadrature signal Y . Because X = R cos(θ)

and Y = R sin(θ), the phase θ should be 0◦ or 180◦. However, the data shows the phase

is a little off 0◦ or 180◦, possibly due to some non-zero background quadrature signal.

When it is on resonance, the phase has a 180◦ change because the in-phase signal X has

a sign change. This is also shown in ref. [8].

Figure 2.12: Simulation of line shapes for the FM mixing. (a) Simulation of Lorentzian
line shape of the amplitude δz vs. frequency ω. (b) Simulation of the line shape of
Re(δ∗z) vs. ω. (c) Simulation of the line shape of the low frequency mixing current (in-
phase signal measured by the lock-in amplifier) for mechanical resonance signal using
FM technique: ∂Re(δ∗z)/∂ω vs. ω. (d) Simulation of the line shape of the magnitude
of the signal in (c).
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Figure 2.13: Line trace of the mechanical resonance signal using FM technique of a
few-layer graphene drum resonator. The lock-in is set to measure the amplitude and
phase of the signal. (a) The line trace of the magnitude vs. frequency. (b) The line
trace of the phase vs. frequency. The phase has a 180◦ change due to the sign change
of the in-phase signal.

2.9 Measurement of Quality Factor

The quality factor Q can be measured from the FM mixing technique. We denote the

distance between the two zeros in the linetraces as ∆f and the quality factor Q = f0/∆f ,

where f0 is the resonance frequency. [8] When the driving is large enough and the

nonlinear damping dominates over the linear damping, this measurement of Q is still

valid with a slight correction: Q = 1.09f0/∆f . [10]

In order to measure Q correctly, a proper frequency deviation ω∆ in the formula

of the FM signal (eq. 2.30) should be chosen. Since the FM mixing signal Imix is

proportional to ω∆, ω∆ should be sufficiently large in order to get a decent signal-to-

noise ratio. However when ω∆ > 2π∆f , the measured frequency width is broadened

more than the intrinsic width. [8, 10] This is because when the frequency deviation ω∆

is too large, it is no longer probing ∂Re(δ∗z)/∂ω at the close vicinity of the carrier

frequency ωc as shown in eq. 2.38. So the strategy for choosing the right ω∆ is to start
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with a large value, usually 200kHz in our cases and then keep decreasing it until the

frequency width does not become smaller anymore.

Figure 2.14: Line trace of the FM mixing current vs. frequency of a mechanical reso-
nance. Q is measured by f0/∆f .

2.10 Experimental Setup

The experiments were performed in a home built cryostat, the design details can be

found in ref. [27]. This cryostat is essentially a dipping probe that can be inserted into

the liquid helium dewar. The system can be pumped into high vacuum. We usually

perform the experiments in a vacuum condition of 10−6 − 10−5 Torr. The temperature

can be varied from room temperature down to liquid helium temperature by changing

how much the dipping probe is inserted in the helium dewar. We have two stainless

steel semi-rigid coaxial cables with SMA connectors for RF signal and five Manganin

wires for dc signal. At the bottom of the probe, there is a customized circuit board for

sample mounting.

31



Our early experiments were performed in the circuit developed in the earlier

nanotube mechanical resonator project by Chiu [5]. We used the two source mixing,

AM mixing, and FM mixing on this circuit board. Fig. 2.15 shows a two source mixing

measurement using this circuit. The characteristic impedance of the coaxial cable that

we use is z0 = 50 Ω, and the load impedance needs to match 50 Ω in order to reduce

the power reflection at the load. In our case, the typical graphene device resistance is

∼ kΩ which is much larger than z0. Here we need to terminate the device with a 50 Ω

resistor to the ground. By doing so, the total load impedance the input signal sees is

about 50 Ω. It should be noted that there is a 1 kΩ resistor to the ground, nearby the

source electrode. This resistor is connected to a dc wire for dc bias. It is needed because

otherwise the impedance for the dc wire at high frequency (50 - 500 MHz) is unknown.

With a 1kΩ resistor connected, the impedance is at least 1kΩ and since 1 kΩ >> 50 Ω

it would not affect the total load impedance for V ac
sd .

The source and drain bonding pads normally have lateral sizes of 100−250µm,

and based on the parallel plate capacitor model, the stray capacitances to the global

back gate Cs and Cd are 1 − 7pF. The impedance of Cs is Xs = 1/iωCs. At high

frequencies, Xs sets the total load impedance if Xs ∼ z0. So the cut-off frequency is

fc =
1

2πz0Cs
≈ 450 MHz− 3 GHz. (2.40)

Once the frequency of input signal reaches fc, we start to get significant reflections in

the input signal and the actual power delivered onto the device is less than the input

signal.

FM or AM mixing technique can also be used in the same circuit board, with

the source electrode connected to a FM or AM signal as shown in Fig. 2.16. Most of

the data in my project was taken with the FM mixing in this circuit board. Later, we
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adopted a simplified circuit design from ref. [23].The advantage of the new circuit is it

takes less electronic elements to make the circuit board as shown in Fig. 2.17.

Figure 2.15: Schematic diagram of measurement circuit by by Chiu [27] using two source
mixing technique. The function generator’s output signal is split into two (with a loss
of 3dB). One goes to the device, and the other goes to the mixer. For the device, an
ac signal V ω+∆ω

sd at ω + ∆ω is applied to the source electrode. An ac signal V ω
g at ω is

applied to the gate. Their mixing signal(at ∆ω and 2ω + ∆ω) goes through a voltage
amplifier with a low pass filter. Only the ∆ω signal is amplified and sent to the lock-in
amplifier as an reference. The drain current is collected by a current preamplifier and
then sent to the lock-in amplifier.
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Figure 2.16: Schematic diagram of old measurement circuit by Chiu [27] using FM and
AM mixing technique.

Figure 2.17: Schematic diagram of measurement circuit similar to the circuit in ref. [23].
The ac and dc signals are all applied through the coaxial cable. The 0.1µF capacitor is
used to prevent a dc current in the 50Ω resistor which could damage the resistor if the
current is large.
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Chapter 3

Properties of Graphene Drum

Resonators

3.1 Introduction

In this chapter, we will discuss some of the intrinsic properties of graphene drum res-

onators, including the static and dynamic properties. We will also discuss the magnitude

of FM mixing signal of drum resonator considering its difference with the regular par-

allel plate capacitor model. The contents in this chapter can be found in my previous

published work [1].

3.2 Deflection of Graphene Membranes under Electrostatic

Pressure

To calculate the resonance frequency of an initially tensioned graphene circular mem-

brane with tension T0 versus gate voltage Vg, the starting point is the elastic energy for
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a two dimensional (2D) membrane, [28, 29]

U =
1

2
κ

∫
dxdy

(
∇2h

)2
+

1

2

∫
dxdy 2µ

∑
i,j

u2
ij + λ

(∑
i

uii

)2

− P
∫
dxdy h, (3.1)

where µ is the shear modulus, λ is Lamé’s first constant, h is the vertical height displace-

ment of the membrane, P is the pressure on the membrane, κ is the bending modulus,

and uij is the strain tensor. For graphene, λ ≈ 48 N/m, µ ≈ 144 N/m, and κ ∼ 1

eV. [30] The strain tensor is given by [29]

uij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

+
∂h

∂xi

∂h

∂xj

)
,

A vector in the x-y plane with components ui(x, y), and a z-component h(x, y) represents

the displacement of each point on the membrane from equilibrium. To calculate the

deflection and resonance frequency of the fundamental mode, we neglect the bending

term. [30] The membrane is considered to be initially tensioned by stretching it by an

isotropic in-plane strain factor 1 + c and then vertically displaced by the pressure. We

take a variational approximation to the height to be h = z0(1− r2/r2
0), where r0 is the

radius of the resonator, r is the cylindrical radius coordinate, and z0 is a variational

parameter equal to the vertical displacement of the center of the membrane. This gives

the strain tensor components

uxx = 2x2(z0/r
2
0)2 + c

uyy = 2y2(z0/r
2
0)2 + c

uxy = 2xy(z0/r
2
0)2 (3.2)

Putting eq. 3.2 into eq. 3.1 gives

U =
2

3
π
z4

0

r2
0

(λ+ 2µ) + 2πc(λ+ µ)z2
0 −

1

4

ε0Ā

d2
z0V

2
g + 2c2(λ+ µ)πr2

0 (3.3)
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The term 2c2(λ + µ)πr2
0 is a constant arising from the work required to initially strain

the membrane, and the electrostatic pressure was expressed as

P =
1

2

ε0
d2
V 2
g , (3.4)

where ε0 is the dielectric constant and d is the distance between the gate and the ground

plane. Minimizing the energy with respect to z0 gives the equation

8

3
π(λ+ 2µ)

z̄3
0

r2
0

+ 4πc(λ+ µ)z̄0 −
1

4

ε0Ā

d2
V 2
g = 0, (3.5)

where Ā is the area of the resonator, and z̄0 is the optimizing value. For sufficiently

small Vg we neglect the cubic terms and get

z̄0 =
1

4πc(λ+ µ)

ε0Ā

4d2
V 2
g . (3.6)

The factor c(λ+ µ), which is a strain times an elastic constant, is related to the initial

tension. As the constant term in the energy, 2c2(λ+µ)πr2
0 represents the work required

to strain the membrane we use this to determine the tension by considering the work

required for an infinitesimal expansion. This yields T0 = 2c(λ + µ). Thus equation 3.6

is then rewritten as

z̄0 =
1

8πT0

ε0Ā

d2
V 2
g . (3.7)

For large Vg the cubic term in equation 3.5 dominates, and we expect z̄0 ∼ V 2/3
g .

3.3 Effective spring constant, mass, and Duffing term

The resonance frequency ω0 is given by ω0 =
√
keff/meff with an effective resonator

spring constant keff and mass meff . The effective spring constant is given by

keff =
∂2U
∂z2

0

,
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where U is the total energy including electrostatic terms from the gate voltage. To

account for electrostatic effects on ω0, it is required to approximate the electrostatic

energy to 2nd order in z0 to determine the force gradient. The electrostatic energy is

1
2CV

2, where C is the resonator capacitance, and V is the voltage on the capacitor.

Assuming slow variation of the displacement laterally, we approximate the capacitance

as

C =

∫
ε0

d− z0(1− r2/r2
0)
rdrdθ

Expanding this in a power series in z0, the maximum deflection, so that C = C0 +C1 +

C2..., where Ci is a term in the ith power of z0, gives

C0 =
ε0Ā

d

C1 =
ε0Āz0

2d2

C2 =
ε0Ā

3d3
z2

0

The contribution to the energy from C2 produces a force gradient and alters the effective

spring constant, yielding

keff =
∂2U
∂z2

0

= 8π(λ+ 2µ)
z2

0

r2
0

+ 4πc(λ+ µ)− ε0Ā

3d3
V 2
g (3.8)

Using the relation T0 = 2c(λ+ µ) derived above and eq. 3.7, eq. 3.8 can be rewritten as

ωres = 2πfres =

√√√√2πT0 −
ε0πr20
3d3

V 2
g + aV 4

g

meff
, (3.9)

with a a constant.

Fig. 3.1 shows the resonator frequency tunability, originating from both elec-

trostatic force gradient softening as well as the increase in tension with Vg. [31, 32] The

solid curve is a fit using eq. 3.9, yielding the tension T0 at Vg = 0, meff , and a, which de-

scribes the tension increase with Vg. We obtain T0 = 6.9×10−2 N/m, meff = 2.5×10−18

kg, and a = 1.13× 10−6 N/V4·m.
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Figure 3.1: The tunability of resonance frequency by the gate voltage. FM mixing singal
vs. frequency for device T1 at T = 57 K

Duffing term

The Duffing term is represented by a force term F = −αz3
0 . Using eq. 3.3 and α =

− 1
3!∂

3F/∂z3
0 = 1

3!∂
4U/∂z4

0 , yields

α = 8π(λ+ 2µ)/3r2
0. (3.10)

Effective mass

Here we compute the effective mass and resonance frequency of the vibrating

membrane using a variant of Rayleigh’s method. [33] For the vibrating graphene (or few

layer) sheet, we have

z0(t) = z̄0 + |δz| sinωt,

where δz is the complex amplitude of the oscillation, and t is the time. The maximum

kinetic energy when z0 = z̄0 and the potential energy is minimal is then

KE =

∫
1

2
σω2|δz|2(1− r2/r2

0)2rdrdθ,
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where σ is the resonator areal mass density. This gives

KE =
1

6
πσ|δz|2r2

0ω
2.

Comparing this expression to the result for the ordinary harmonic oscillator, we get

meff =
1

3
πσr2

0. (3.11)

For the resonance frequency when Vg = 0, keff = 2πT0 and using the expression for

meff , we get

ω =

√
2πT0
1
3πσr

2
0

=

√
6

r0

√
T0

σ
,

which is within a few percent of the exact result. [34]

3.4 Magnitude of FM signal in drum resonator

The FM technique described in Section. 2.8 will produce a signal with geometric factors

arising from the drumhead geometry as compared to a parallel plate model. The signal

is expected to be smaller both because the average deflection is less due to the pinned

boundary conditions and because the average potential is less because of the voltage

drop along the sample. Moreover, upon the transduction of the motion into an electrical

signal, because of the shape of the deflection, the resistance change will also be less.

This yields a total attenuation factor of 16. This can be understood as one

factor of 1/2 in the drive force from the shape of the distortion not being planar, and

another factor of 1/2 since the average potential over the sheet is 1/2 of the applied

potential. The signal transduction has a relative factor 1/4 because the resistance change

is only concentrated near the center where the deflection is largest, and it is probed by a

potential near the center which is ∼1/2 the potential applied. In the following we show

the detailed computation of the expected total signal reduction from these sources.
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From equation 3.1 the electrostatic energy term is given by

Uel = −
∫
dxdy h(x, y)P (x, y),

where here the pressure P is no longer considered constant within the x− y plane since

the electrostatic potential V is now assumed to drop linearly between the electrodes.

Fig. 3.2 shows a schematic diagram of the device geometry and potential drop. As before

variational expression for the height is given by

h = z0(1− r2/r2
0). (3.12)

The local pressure is given by

P =
ε0

2d2
(V − Vg)2,

with

V = Vsd
L− x− r0

L
,

where Vsd is the source-drain voltage, x = 0, y = 0 corresponds to the center of the

circular drumhead and L = 2r0. We then have

Uel = −
∫
dxdy

ε0
2d2

(
−Vg + Vsd

L− x− r0

L

)2

z0[1− (x2 + y2)/r2
0].

If Vsd << Vg then

Uel ∼= UDC +

∫
dxdy

ε0
d2
VgVsd

L− x− r0

L
z0[1− (x2 + y2)/r2

0] = UDC + UAC ,

where UDC is the electrostatic energy arising from the DC gate voltage Vg. Performing

the integral gives

UAC =
ε0Ā

4d2
VgVsdz0,

Giving a force magnitude

FAC =
ε0Ā

4d2
VgVsd (3.13)
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As discussed above, compared to the usual expression for a parallel plate capacitance

and a spatially constant electrostatic potential,

F =
1

2
C ′V 2

g

=
1

2
C ′(Vg + v0)2

∼= C ′VgVsd

=
ε0Ā

d2
VgVsd,

the effective force is 1/4 as much.

Figure 3.2: Schematic diagram of device geometry on an oxidized Si wafer, with a source,
drain, and Si gate. The coordinate directions are indicated as well as the origin by O at
the center of the resonator. The diameter of the drum membrane is L, and the radius
is r0. The spacing from the substrate is d. The voltage drop profile along the sample is
also shown below the device diagram.

Current change caused by a membrane displacement

The total measured FM signal depends on the change in current caused by

the membrane deflection discussed above. The current change caused by the membrane

displacement in our experiment is expected to be smaller than the parallel plate result.

This is because under the actual parabolic displacement the center has the most change
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in conductance while the edge, which is pinned by the boundary, has zero. To determine

the change in the current, we use the result that if an inhomogeneous sheet resistance

exists then the 2D Laplace equation is modified to [35]

∇2V =
∇R · ∇V

R
, (3.14)

where R is the local sheet resistance and V the electrostatic potential within the sheet.

To solve this, we use perturbation theory by assuming the right hand side is small. The

correction to lowest order will be

∇2Vin =
∇R · ∇Vhom

R
, (3.15)

where Vin is the inhomogeneous potential produced by the forcing term on the right

hand side of eq. 3.15, and Vhom is the unperturbed (homogeneous) potential. The total

potential will be V = Vhom + Vin. Assuming small resistance changes, we replace the

denominator of the right hand side of eq. 3.15 by the unperturbed value of R which we

label R0. To get an expression for ∇R, we start with an expression for R due to small

changes in the charge density ρ.

R = R0 +
∂R

∂ρ
δρ

∇R =
∂R

∂ρ
∇(δρ) (3.16)

using eq. 3.12 δρ can be expressed as

δρ =
∂ρ

∂z0
z0[1− (x2 + y2)/r2

0] (3.17)

Eqs. 3.16 and 3.17 taken together yield

∇R =
∂R

∂ρ

∂ρ

∂z0

z0

r2
0

(−2rr̂), (3.18)
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where r̂ is the in-plane unit radial vector. The two derivatives in eq. 3.18 are considered

constant. We define TR = ∂R/∂ρ. We also have

∂ρ

∂z0
=

∂

∂z0
(−CAVg) = −Vg

∂CA
∂z0

= −Vg
∂

∂z0

ε0
z0

= −Vg
ε0
z2

0

,

where CA is the capacitance per unit area. This yields

∇R = TR
Vgε0
d2

z0

r2
0

(2rr̂),

where d is the distance between the gate and the undisplaced membrane, assuming that

positive z0 indicates downwards deflection towards the gate. The unperturbed potential

gradient is given by

∇Vhom = −Vsd
L
x̂

so the right hand side of eq. 3.15 is given by

∇R · ∇Vhom
R0

=
TRVgε0
R0d2

z0

r2
0

[2rr̂ · (−Vsd
L
x̂)]

=
−2TRε0VgVsd

R0d2L

z0

r2
0

x

Taking the solution to the 2D Poisson equation

∇2V = δ(~x),

where δ(~x) is the Dirac delta function as

V =
1

4π
ln(x2 + y2).

Vin is therefore given by

Vin(~x′) = −
∫
dxdy

2TRε0VgVsd
R0d2L

z0

r2
0

x
1

4π
ln |~x′ − ~x|2.

= A0

∫
dxdy x ln |~x′ − ~x|2,
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with

A0 = −TRε0VgVsd
2πR0d2L

z0

r2
0

.

The integral is taken over the resonator area, a circle of radius r0. Converting this into

a dimensionless integral over the unit circle by a change of coordinates and evaluating

the integral numerically gives

∆V ∼= πA0r
3
0.

Since the voltage and current are related by resistance R by V = IR,

∆V

V
=

∆R

R
= −∆G

G
,

where G = 1/R is the conductance. Then we have

∆V

V
= −∆G

G
=
TRVgε0z0

4d2R0

This gives

∆G = −TRVgε0z0

4d2R0
G = −TRVgε0z0

4d2R2
0

.

Considering the vibration amplitude |δz| this yields an expression for the ac current δI:

δI = −TRVgVsdε0|δz|
4d2R2

0

.

We can rewrite this in terms of the transconductance T = ∂G/∂ρ. We have

T =
∂G

∂ρ
=
∂(1/R)

∂ρ
=
−1

R2

∂R

∂ρ
.

Thus,

δI =
TVgVsdε0|δz|

4d2
, (3.19)

We can compare this to the parallel plate result

δI = Vsd∆G

= VsdTVgC
′|δz|

=
VsdTVgε0|δz|

d2
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Thus we have another 1/4 factor signal reduction because of the geometry. The total

signal will be 1/16 of that expected from a parallel plate model for the resonator. With

this factor of 1/4, the FM signal is expected to be, using the parallel plate result from

ref. [8]

δI =
1

8

∂G

∂Vg
VsdVg

C ′

C
f∆

∂

∂f
<[δz],

We have also the relation for a harmonic oscillator on resonance

d<[δz]

df
=
−2|δz|
δf

,

where δf is the frequency width of the resonance. Therefore the amplitude in terms of

known experimental parameters is given by:

|δz| = 4dδIδf

(∂G/∂Vg)VsdVgf∆
(3.20)
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Chapter 4

Nonlinear Dynamics

4.1 Introduction

In chapter 1, we reviewed the dynamic behavior of harmonic oscillator in the linear

regime, where the equation of motion contains the linear restoring force and linear

damping force:

m
d2z

dt2
+mω2

0z + Γ
dz

dt
= G0 cos(ωt). (4.1)

This equation describes the behavior when displacement z is small. When we turn up

the driving, the higher order nonlinear terms in z start to play an important role. In

this chapter, we will discuss the Duffing nonlinearity and nonlinear damping in harmonic

oscillators. Our experimental data is in consistent with previous related works. [10, 36]

We have also observed an anomalous large line width at large drives. We attribute

this to the periodic thermal expansion of the graphene from the ac source-drain voltage

provides a parametric amplification to the response. Part of the contents in this chapter

can be found in my previous published work [1].
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4.2 Duffing Nonlinearity and Nonlinear Damping

There are two most often seen nonlinearities in NEMS resonators, and both of them

have been reported in graphene and nanotube NEMS devices [10]. One is the restoring

force term that is cubic in displacement −αz3, where α is the coefficient. [10, 37] The

equation of motion including this term is so-called Duffing equation. The origin of the

duffing nonlinearity has two major sources: the external potential has nonlinearity in

z [36, 32] and the geometry causes the elastic energy to be nonlinear in z (for example, the

membrane is clamped at the boundary and the deflection stretches the membrane) [36].

The other one is the nonlinear damping force term −ηz2 dz
dt̄ , where η is the coefficient. [36,

10] The nonlinear damping depends on the displacement. The origin however is still

unknown. The equation of motion contains these two terms is as follows:

m
d2z

dt2
+ Γ

dz

dt
+mω2

0z + αz3 + ηz2dz

dt
= G0 cos(ωt). (4.2)

The duffing term tends to change the effective spring constant and hence the

resonance frequency. The frequency of the maximum response shifts as the driving

amplitude increases, as shown in fig. 4.1. The relation of the resonance frequency of the

maximum response ωmax and the amplitude of displacement z0 is as follows [36]:

ωmax = ω0 +
3

8

α

mω0
z2

0 (4.3)

For most cases in our experiments, we observe an increase of resonance frequency as z0

increases, which means we see a positive α. But we sometimes also observe a decrease

of the resonance frequency as z0 increases, with a negative α. The reason for this is still

unknown, but it could be related to that the development of the force term quadratic in

z renormalizes the measured α. [36] Fig. 4.1 is from ref. [36], and it shows the solution

for the magnitude and phase of the response of a Duffing oscillator at various driving
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amplitudes. The magnitude of the response grows and the resonance frequency shifts

as the driving force increases. Here we also plot in fig. 4.2 a series of line traces of the

mixing current vs. frequency at difference driving amplitude for a few-layer graphene

drum resonator using FM mixing technique. The line shape becomes more and more

asymmetric around the resonance frequency and the resonance frequency increases as

the ac driving voltage Vsd goes up.

Figure 4.1: Magnitude |a| (upper) and phase φ (lower) of the response of a Duffing
resonator as a function of frequency Ω with nonlinear damping coefficient η = 0. The
different line traces are at various driving amplitude. This figure is adapted from ref. [36].
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At sufficiently large driving amplitude, we start to see the saddle-node bifur-

cation in the solution of the response. We the frequency sweeps from left to right in

fig. 4.1, we see changes of number of solutions of magnitude for each frequency. At first,

we only see one solution. Then at a critical point, there are two solutions. After that we

see three solutions. Finally, the number of solutions becomes back to one. The stable

solution is indicated as solid lines and the unstable solution is indicated as dashed lines

in fig. 4.1. This could result in hysteresis if we sweep the frequency upwards and downs.

For the upward frequency sweeping, the magnitude of response |a| follows the upper

branch until it reaches the maximum point and suddenly falls onto the lower branch;

for the downward frequency sweeping, |a| follows the lower branch until it reaches the

critical point and switches to the upper branch. Fig. 4.3 shows upward and downward

frequency sweeps of the mechanical resonance signal of a device measured by FM mixing

technique. Since the mixing current Imix ∝ ∂Re(z)/∂ω, it is complicated to simulate

the line shape of the mixing current of a duffing oscillator using FM mixing technique.

However the upward and downward frequency sweep does show a hysteresis and it is

similar to the data shown in ref. [10].
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Figure 4.2: FM mixing signal vs. frequency at different source-drain voltages Vsd for a
few-layer graphene drum resonator (device T1) at T = 57V and Vg = 20V. Vsd ranges
from 2mV to 7mV. The asymmetric line shapes and shift of resonance frequency shows
the duffing nonlinearity.

Figure 4.3: Hysteresis of the FM mixing signal vs. frequency of a few-layer graphene
drum resonator (device T2). Diameter = 2µm, Vsd = 60mV, f∆ = 50 kHz, Vg =-10V, T
= 4.3 K. Red curve: upward frequency sweep. Black curve: downward frequency sweep.
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Figure 4.4: Nonlinear resonator dynamics. (a) Main panel: resonance frequency vs.
frequency width at T = 16 K and Vg = 18 V plotted as black circles. Solid curve is a
straight line fit to the data. Inset: resonance frequency vs. amplitude at T = 16 K and
Vg = 18 V plotted as black circles. The amplitude is obtained from the FM line shape
when it is still approximately Lorentzian (eq. 3.20). Solid curve is a fit to the theoretical
expectation (eq. 4.22). (b) Frequency width δf vs. force on the oscillator. Dashed blue
curve is the expected trend based on a cubic nonlinear damping term; dashed red curve
is the width in the linear damping regime as determined by extrapolating the data in
the main panel of part (a) to the zero amplitude frequency determined by the fit to
part (a) inset; the solid black curve takes into account both nonlinear damping and a
simultaneous parametric drive due to Joule heating by the source drain voltage. Data
taken at T = 16 K and Vg = 18 V.

Plotting ∆f against fres, it reveals a straight line trend, as shown in Fig. 4.4a.

It can be shown that (eq. 4.23) the slope of this line is related to α/η by α/η ≈ 4π d∆f
dδf f0.

Fitting the data gives α/η = 3.4×109 s−1. We obtain α by plotting ∆f versus amplitude

(Fig. 4.4a inset), [36, 10, 37] and fitting to the theoretical expectation for α, which gives

a frequency shift that is quadratic in the amplitude (eq. 4.22). From Fig. 4.4a inset

data with the trilayer meff we obtain α = 2.4 × 1015 N/m3. This yields η ∼ 1.8 × 105

Ns/m3.
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To understand the origin of the Duffing nonlinearity, we use a variational

method along with continuum elastic theory to determine α = 8π(λ+2µ)/3r2
0 (eq. 3.10).

Putting in λ = 3× 48 N/m, µ = 3× 144 N/m, [30] for a trilayer and r0=10−6 m we find

α = 8.4× 1015, in good agreement to the measured value. This suggests that the origin

of the Duffing term is geometric in nature. A smaller value of α is found at a higher

temperature T = 57K (Fig. 4.5), which may indicate the development of a quadratic

force that renormalizes α. [36]

To account for the nonlinear damping, previous work has proposed a viscoelas-

tic model for damping in NEMS. [38] However, the predicted nonlinear damping is

much smaller than the typically observed magnitude. [10] Another model for graphene

resonators that considers in-plane and bending mode coupling and energy loss by in-

plane phonon radiation into the substrate performs numerical calculations for a similar

geometry to the one presented here, consisting of a doubly clamped graphene sheet that

is 1 µm × 1 µm. [39] A scaling analysis shows that η ∼ T1σ
3ω3, where T1 = λ+ 2µ. A

similar value to the one measured for our trilayer sample is obtained with a mass ∼ 3

trilayer masses, suggesting that this mechanism plays an important role in determining

the nonlinear damping in graphene resonators.
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Figure 4.5: Nonlinear oscillator dynamics of the lowest-frequency mode. Main panel:
resonance frequency vs. frequency width at T = 57 K and Vg = 18 V plotted as black
circles. Solid curve is a straight line fit to the data. Inset: resonance frequency vs.
amplitude at T = 57 K and Vg = 18 V plotted as black circles. The amplitude is
obtained from the FM lineshape when it is still approximately Lorentzian (eq. 3.20).
Solid curve is a fit to the theoretical expectation (eq. 4.22). The data analysis yields
η = 8× 104 Ns/m3 and α = 2.4× 1014 N/m3. T he lower value for α than at T = 16 K
may indicate the presence of quadratic displacement terms as in eq. 4.7.
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4.3 Parametric Driving by Thermal Expansion

To investigate the resonator response at larger drives, in Fig. 4.4b we plot δf versus the

effective ac force on the sheet at the drive frequency f , given by Fac =
επr20
4d2

VgVsd (eq.

3.13), measured at T = 16 K. At small drive force, δf is approximately ∝ V 2/3
sd (shown

by the blue dashed line) following the expected trend due to nonlinear damping. [10]

At larger biases, however, the measured frequency width becomes much larger, tending

towards a ∝ V 2
sd power law.

One possibility is that this originates from higher order terms such as a 5th

order damping force term. However, detailed calculation shows such terms lead to a

smaller predicted response, rather than larger. We therefore consider the possibility that

an unintentional parametric drive is being applied to the resonator. Such a parametric

drive results when the resonance frequency is modulated by δf0 by changing one of the

parameters of the oscillator, such as its stiffness (see e.g. ref. [36] review and ref. [26] for

recent work on carbon nanotubes). The parametric drive is quantified by H = 2δf0/f0

which is the dimensionless stiffness modulation,[36] and can produce amplification or

even self-oscillations.[36] One possible source of parametric driving is electrostatic forces,

however over the voltage range shown we estimate these forces are likely too small to

produce the observed behavior. We then consider a parametric drive caused by the

periodic thermal expansion of the graphene sheet due to Joule heating by Vsd. Then in

terms of the ac force drive Fac given above, the power dissipated P0 and the temperature

shift in the sheet ∆T , H ∝ ∆T ∝ P0 ∝ V 2
sd = bF 2

ac with b given by

b ≈
(

4d2

ε0AVg

)2 |aT |(λ+ µ)

2πRκ2DT0
, (4.4)

where aT is the negative thermal expansion coefficient and the 2D thermal conductivity

κ2D=κBτ with κB the bulk thermal conductivity and τ the layer thickness, and R
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the electrical resistance. (eq. 4.21.) The nonlinear equations of motion are solved

approximately using the method of harmonic balance. [40] For large drive δf is given

by (eq. 4.20)

δf =
3

8

(
1 +

√
3α

2πηf0

)
bF 2

ACf0 + const. (4.5)

scaling as V 2
sd for large drive, as observed. Further approximations yield a function de-

scribing the behavior from the linear to the nonlinear asymptotic regime (Section 4.4).

The solid curve in Fig. 4.4b shows a fit to this function with b and meff as fit param-

eters, yielding b = 7.8 × 1017 N−2, and meff = 8.3 × 10−18 kg. From this, using the

measured R of 1.7 kΩ we determine at T = 16 K, |aT |/κ2D ∼ 2 W−1. The expected room

temperature value with aT = −10−5K−1, [41] and κ=2000 W/m·K for a ∼1 nm thick

trilayer [42] gives ∼ 5 W−1. From elementary kinetic theory this ratio is unlikely to vary

strongly with temperature since the phonon mean free path is expected to be impurity

or surface limited below 300 K. [42] The result is thus in reasonable agreement with ex-

pectations, providing strong evidence that thermal expansion driven parametric driving

is occurring. This result therefore constitutes the first low-temperature measurement of

this ratio |aT |/κ2D.

4.4 Solution to the Nonlinear Equation of Motion

The equation of motion for a nonlinear oscillator can be expressed as

m
d2z̄

dt̄2
+ Γ

dz̄

dt̄
+mω2

0 z̄ + χ̄z̄2 + µ̄0z̄
dz̄

dt̄
+ ᾱz̄3 + η̄z̄2dz̄

dt̄
= Ḡ0 cos(ω̄t̄+ φ). (4.6)

Here we add a bar to notate the real length variables. To switch to units such that

α = m = ω0 = 1 the dimensionless length variable is taken to be z = z̄
√
ᾱ/mω2

0, and

the parameters of the oscillator equation of motion can be expressed in dimensionless
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form as follows [36]

ε = Q−1 =
Γ

mω0
; η =

η̄ω0

ᾱ
;G0 =

Ḡ0

ω3
0

√
ᾱ

m3
;χ =

χ̄

ω0

√
mᾱ

;µ0 =
µ̄0√
mᾱ

;ω =
ω̄

ω0
.

Here we assume that Q is determined from frictional forces alone, and ignore frequency

broadening which is an interesting topic we will discuss in the next chapter. We take this

as a good approximation when the resonator is driven into the regime where nonlinear

damping is important. The equation of motion can then be scaled to yield

z̈ + εż + z + χz2 + µ0zż + z3 + ηz2ż + [h0ε cos(2ωt+ 2φ)]z = ε3/2g0 cos(ωt+ φ) (4.7)

The parameter ε which is the inverse quality factor is considered a small parameter that

enables approximate solutions that are expanded in ε. Motivated by our experimental

results, in eq. 4.7 we have also included a parametric drive parametrized by h0 that

modulates the resonance frequency by δω0 at a frequency 2ω as well as force drive

parametrized by g0 such that G0 = ε3/2g0. The quantity h0ε = 2δω0/ω0 gives the

fractional amplitude of the frequency modulation relative to the undriven characteristic

frequency ω0. To solve this equation, following the original method used by Duffing,

(See for example ref. [40]) we first assume to zero order the time dependence for the

oscillator displacement with amplitude parameter Γ0 and frequency ω given by

z0 = Γ0ε
1/2 sinωt. (4.8)

Here we reference the phases of the force and parametric drives to the response, which

is taken to be a sine function. For a linear oscillator, the φ = 0 on resonance (the drive

being proportional to a cosine when the response is a sine). Note that in this definition

of the phase φ occurs in the drive term rather than the response. This differs from the

conventional treatment of the harmonic oscillator but simplifies the calculations below.
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The equation of motion 4.7 is rearranged to yield an expression for the acceleration:

z̈ = −εż − z − χz2 − µ0zż − z3 − ηz2ż − [h0ε cos(2ωt+ 2φ)]z + ε3/2g0 cos(ωt+ φ) (4.9)

the expression for z0 is substituted into the right hand side of the above equation, and

integrated twice to yield a solution for z1. which produces the following result:

z1 = −1

4
Γ2

0χεt
2 +

Γ3
0ε

( 3
2)η cos (ωt)

4ω

−Γ3
0ε

( 3
2)η cos (3ωt)

36ω
+

Γ2
0εµ0 sin (2ωt)

8ω

+
3 Γ3

0ε
( 3
2) sin (ωt)

4ω2
− Γ3

0ε
( 3
2) sin (3ωt)

36ω2

−Γ2
0χε cos (2ωt)

8ω2
− Γ0ε

( 3
2)h0 sin (ωt+ 2φ)

2ω2
+

Γ0ε
( 3
2)h0 sin (3ωt+ 2φ)

18ω2

+
Γ0ε

( 3
2) cos (ωt)

ω
− ε(

3
2)g0 cos (ωt+ φ)

ω2
+

Γ0
√
ε sin (ωt)

ω2

(4.10)

Equating the coefficients of sin(ωt) and cos(ωt) between z0 and z1 produces

a set of equations that can then be solved for Γ0 and φ. The resulting solution is

approximate, and when substituted into the original equation of motion produces non-

zero error terms. However, these error terms will be at other harmonics besides those

at frequency ω and of order ε or smaller. Thus the obtained values for Γ0 and φ will be

correct to lowest order in ε. In the present case, there are two additional issues to the

expression given for z0 in eq. 4.8. One is that it generates a term quadratic in t of order

ε in z1. This can be eliminated by adding an ε-order constant to z0 and setting it so the

t2 term vanishes. The other issue is that z1 contains terms of order ε and frequency 2ω.

If one were to proceed to higher order, the quadratic terms in the equation of motion

would generate additional terms of order ε3/2 which are at the same order as the terms

with frequency ω. To avoid this, z0 must be corrected to add these terms so that z1 is
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correct to order ε3/2 with only one iteration. The necessary expression is then:

z0 = Γ0

√
ε sin (ωt) + Λ1ε sin (2ωt) + Λ2ε cos (2ωt) + Λ3ε,

with Λ1, Λ2 and Λ3 constants to be determined. After substituting z0 into the right hand

side of eq. 4.9 and matching the appropriate coefficients we get the following coupled

cubic equations for Γ0 and φ with effective cubic parameters η and α:

(
2Ω +

1

2
h0 cos 2φ− 3

4
αΓ2

0

)
Γ0 − g0 sinφ = 0

1

4
Γ3

0η −
1

2
Γ0h0 sin 2φ+ Γ0 − g0 cosφ = 0 (4.11)

The frequency width in the FM technique is determined by the frequency spacing

between the stationary points of the real part of the response. [8] The real part is

given by the in-phase response to the drive, which we find based on eq. 4.7 to yield

<[z] = −Γ0 sinφ. Thus we want to find the stationary points of −Γ0 sinφ subject to the

constraints given by the coupled cubic equations in eq. 4.11. Thus we use the method

of Lagrange multipliers, which requires finding the stationary points of the function

f = −Γ0 sinφ+ λ1

[(
2Ω +

1

2
h0 cos 2φ− 3

4
αΓ2

0

)
Γ0 − g0 sinφ

]
+λ2

(
1

4
Γ3

0η −
1

2
Γ0h0 sin 2φ+ Γ0 − g0 cosφ

)
,

introducing auxiliary Lagrange multiplier variables λ1, and λ2 that multiply the two

constraint equations. Optimizing this gives 3 equations, which together with the original
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constraints eq. 4.11 yield 5 equations and 5 unknowns for Ω, φ,Γ0, λ1, and λ2.

1

4

(
3Γ2

0η − 2h0 sin 2φ+ 4
)
λ2 −

1

4

[
9Γ2

0α− 2h0 cos 2φ− 8Ω
]
λ1 − sinφ = 0

−(Γ0h0 cos 2φ− g0 sinφ)λ2 − (Γ0h0 sin 2φ+ g0 cosφ)λ1 − Γ0 cosφ = 0

2Γ0λ1 = 0(
2Ω +

1

2
h0 cos 2φ− 3

4
αΓ2

0

)
Γ0 − g0 sinφ = 0

1

4
Γ3

0η −
1

2
Γ0h0 sin 2φ+ Γ0 − g0 cosφ = 0

(4.12)

From the third equation down in the above equation, we see that unless Γ0 is zero then

λ1 = 0. The system of equations can then be simplified to

1

4

(
3Γ2

0η − 2h0 sin 2φ+ 4
)
λ2 − sinφ = 0 (4.13)

−(Γ0h0 cos 2φ− g0 sinφ)λ2 − Γ0 cosφ = 0 (4.14)(
2Ω +

1

2
h0 cos 2φ− 3

4
αΓ2

0

)
Γ0 − g0 sinφ = 0 (4.15)

1

4
Γ3

0η −
1

2
Γ0h0 sin 2φ+ Γ0 − g0 cosφ = 0 (4.16)

We first seek an asymptotic solution to the system of equations 4.13-4.16 valid for large

g0 and h0. Dividing eq. 4.16 through by Γ0h0 gives

Γ2
0η

4h0
− 1

2
sin 2φ+

1

h0
− g0 cosφ

Γ0h0
= 0 (4.17)

If we assume the parametric drive comes from heating as discussed in Section 4.3, then

we expect the parametric drive h0 will be related to the force drive by h0 = bg2
0, where

b is a constant. Therefore in the limit of large g0, keeping the dominant term in Γ0 eq.

4.17 reduces to

Γ2
0η

h0
= 2 sin 2φ
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Eq. 4.14 can then be solved for λ2:

λ2 = − Γ0 cos (φ)

Γ0h0 cos (2φ)− g0 sin (φ)

and substituted in to eq. 4.13, which gives

1

4

(2Γ2
0η + 4)Γ0 cosφ

Γ0h0 cos 2φ− g0 sinφ
+ sinφ = 0

Neglecting the 4 compared to 2Γ2
0η, as appropriate for the large amplitude limit, and

dividing the top and bottom of the fraction by h0 gives:

1
4

(2Γ2
0η)
h0

Γ0 cosφ

Γ0 cos 2φ− (g0/h0) sinφ
+ sinφ = 0 (4.18)

In the limit of large h0 this reduces to

1

4
(4 sin 2φ)

cosφ

cos 2φ
+ sinφ = 0

which gives

sin 2φ cosφ+ cos 2φ sinφ = 0

sin 3φ = 0

φ = 0,±π/3,±2π/3...

The values φ = 0, π are not considered since in conjunction with eq. 4.18 these values

imply that Γ0 = 0. Since the low-amplitude resonance has φ = 0, we expect the flanking

minima will have φ = ±π/3. These values for the phase can then be substituted into

eq. 4.16. For φ = π/3, we get the cubic equation

Γ3
0 +

(
4−
√

3h0

η

)
Γ0 −

2 g0

η
= 0

For large h0, it can be shown that there are three real roots, and the one that matches

continuously to the single real root for small h0 is given approximately by

Γ0 ≈

√√
3h0 − 4

η
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This value for Γ0 can then be substituted back into eq. 4.15 along with φ to determine

Ω corresponding to a stationary value of the phase. Solving eq. 4.15 for Ω yields

Ω =
3

8
Γ2

0α−
1

4
h0 cos (2φ) +

g0 sin (φ)

2 Γ0

This gives for large h0 the frequency of the upper frequency minimum in the FM signal,

Ω+:

Ω+ =
1

8
h0 +

3

8

α

η
(
√

3h0 − 4) +
31/4

4

√
η

b

=

(
1

8
+

3
√

3

8

α

η

)
bg2

0 + const.

for the case φ = −π/3 the equation for Γ0 is given by

Γ3
0 +

(
4 +
√

3h0

η

)
Γ0 −

2 g0

η
= 0

It can be shown that this equation has one real root,

Γ0 =
2
√

3

3

g0

h0

When substituted into eq. 4.15 along with the value for φ, we find for large h0 the

frequency of the lower frequency minimum Ω−:

Ω− = −1

4
h0 = −1

4
bg2

0

This gives in the large drive asymptotic limit

∆Ω = Ω+ − Ω− =
3

8

(
1 +

√
3α

η

)
bg2

0 +
31/4

4

√
η

b
− 3

2

α

η
. (4.19)

This is quadratic in the drive as observed experimentally. Going back to physical units

gives

δf =
3

8

(
1 +

√
3α

2πηf0

)
bF 2

ACf0 + const., (4.20)

where FAC is the ac electrostatic force on resonator.
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To obtain an approximate solution valid for any drive strength, numerical

solutions of the systems of equations 4.13-4.16 are used to show that the two oscillator

phases φ+ and φ− corresponding to the two minima in the FM signal can be serviceably

approximated by the mathematical functions

φ+ = π/4 + π/12 tanh(bg2
0)

φ− = −π/4− π/12 tanh(bg2
0)

These phases can be substituted into eq. 4.16 and the resulting cubic equation for Γ0

solved for each phase. When these values for Γ0 are substituted back into eq. 4.15 the

resulting equation can be solved for Ω. The difference between the two Ω solutions

corresponding to φ+ and φ− gives the frequency width function. The solution can be

expressed in physical units and then fit to the data.

4.5 Estimation for b

Using the Fourier heat law, the temperature rise ∆T at the center of the graphene

membrane assuming thermal equilibration to the ambient substrate temperature at the

boundary is

∆T =
P0r

2

4κ2DĀ
,

where Ā is the membrane area, P0 is the power dissipated, r is the radius, and κ2D is

the two-dimensional thermal sheet conductivity. Taking P0 = V 2
sd/R, where R is the

device resistance then

∆T =
V 2
sd

4πRκ2D
.
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If aT is the (negative valued) thermal expansion coefficient, then the change in strain

δc is given by

δc ≈
V 2
sd|aT |

4πRκ2D
,

which changes the membrane tension T0 by an amount δT0 given by

δT0 =
V 2
sd|aT |(λ+ µ)

2πRκ2D

The parametric drive H is given by 2δfres/fres, where δfres is the modulation of the

resonance frequency fres. In terms of the tension, we have δfres/fres = 1
2δT0/T0. Thus,

H =
V 2
sd|aT |(λ+ µ)

2πRκ2DT0

Using the result for the force drive from eq. 3.13, we find

H =

(
4d2

ε0ĀVg

)2

G2
0

|aT |(λ+ µ)

2πRκ2DT0
,

and therefore the constant b is given by

b =

(
4d2

ε0ĀVg

)2 |aT |(λ+ µ)

2πRκ2DT0
(4.21)

4.6 Expression for α/η

The ratio α/η can be determined from the data at small drive, from the equations 4.13-

4.16 setting h = 0, and considering g to be small. The phase at the minima of the FM

signal is taken to be ≈ ±π/4. Using these approximations, the system of equations can

be solved to yield in dimensionless units

∆Ω = 1 +
3

4
ηΓ2

0

Using also the expression for the frequency shift with drive in terms of α [10, 37]
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fres = f0 +
3α|δz|2

32π2f0m
(4.22)

where f0 is the linear response resonance frequency, and setting ∆f = fres − f0 and

δf = εf0∆Ω the linewidth we find

α

η
= 4π

d∆f

dδf
f0, (4.23)

which gives a way of measuring the ratio α/η.
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Chapter 5

Stochastic-Frequency Oscillators

5.1 Introduction

In this chapter, we will discuss our experimental results on the quality factor of graphene

drum resonators. We measure Q of the lowest frequency mode and observe that Q

inversely scales with the temperature. We attribute this to the frequency broadening

of the low frequency mode from nonlinear coupling to thermally excited high frequency

modes. The contents in this chapter can be found in my previous published work [1].

5.2 Experimental Results

A key parameter of NEMS resonators is their quality factor Q, which is the ratio of

the stored energy to the dissipation per oscillation cycle, and is inversely proportional

to the resonance line width. The dissipation can be linear, in which Q is amplitude-

independent, or non-linear, [38, 10] in which Q is amplitude-dependent. [36]

Here, we measure both linear and nonlinear damping in monolayer and few-

layer electrically-driven graphene drum resonators. Addressing the linear damping

66



regime first, we show that for sufficiently small drive voltage Vsd, Q follows a 1/T law in

temperature T down to low temperatures. A canonical model for dissipation considers

a primary oscillator coupled to a bath of environmental oscillators. [43, 44, 45] How-

ever, membranes have a complex thermodynamic behavior that has been well-studied

in the literature, including in graphene, for example in ref. [46], that may exhibit new

phenomena. Recently Duffing forces in conjunction with fluctuations have been found

that could account for Q in nanotube resonators. [11] However, based on the measured

Duffing forces in our samples, this phenomenon is too small is account for the observed

Q. Other recent work has shown that thermal fluctuations in the fundamental mode’s

effective spring constant and resonance frequency produced by coupling to thermally

excited out of plane modes can potentially determine the linewidth in graphene [47] or

carbon nanotube [48] resonators, and predict Q ∝ 1/T . However, ref. [48], calculates

the Q in SWNTs from tension fluctuations, but does not explicitly take into account

the nonlinear mode coupling, and is not immediately applicable to two-dimensional

(2D) membranes such as graphene. In ref. [47] a tensioned membrane is not directly

considered, which is most relevant to typical experimental conditions.

Here we conceptually divide the graphene sheet modes into “fast” and “slow”

modes (see e.g. ref. [49]) interacting through nonlinear coupling. The slow mode behav-

ior is reminiscent to that found in NMR, in which Larmor frequency fluctuations from

fluctuating environmental magnetic fields broaden the resonance as compared to iso-

lated nuclei. [50, 51] The frequency-dependent oscillator susceptibility has an imaginary

dissipative part with a characteristic width Γ ∝ T on the same scale as the resonance

width, similar to a damped oscillator with a damping force Fd = −mΓż, where z is the

oscillator coordinate and m its mass.
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Under steady-state conditions the slow mode motion modulates the sheet ten-

sion, transferring energy to the fast modes via parametric driving. This produces a

viscous damping force ∝ T 2. The fluctuation-driven broadening is expected to domi-

nate the frictional broadening for typical experimental conditions, consistent with our

observation of ∝ 1/T behavior of Q. We find that the measured Q varies with the gate

voltage Vg, which we attribute to the changing tension as well as electrostatic forces.

We have studied 12 devices in total, but found observable resonances and ob-

tained Q vs. T data from 4 devices, 2 trilayer and 2 monolayer. Fig. 5.1a shows a

scanning electron microscope (SEM) image of a trilayer graphene resonator, suspended

over a hole in an oxidized highly doped Si wafer with attached source and drain elec-

trodes. Except where otherwise noted, all data shown is from this device. The Si wafer

acts as a back gate. A schematic diagram is shown in Fig. 3.2. A frequency-modulated

(FM) ac source-drain voltage Vsd at carrier frequency f with modulation frequency fL

excites the vibration. This produces a current Imix at frequency fL proportional to the

frequency derivative of the real part of the mechanical response, [8, 10, 25] detected

using a lock-in amplifier.

Fig. 5.1b shows the current plotted as a colorscale versus gate voltage Vg and

f . Bright features correspond to resonances with gate voltage tunable frequency. The

black curve in Fig. 5.1c shows a line trace along the dotted line in Fig. 5.1b, showing a

maximum at the resonance frequency f0. The maximum is surrounded by two minima [8,

10] with frequency spacing δf , equal to the resonance frequency width; Q = f0/δf . [10]

Fig. 5.2a shows the resonator frequency tunability, originating from both elec-

trostatic force gradient softening as well as the increase in tension with Vg. [31, 32]

A change in concavity of the fres vs. Vg relationship is expected for sufficiently large
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Figure 5.1: Few-layer graphene resonator device image and nanomechanical resonance
data. (a) Scanning electron image of a completed graphene drumhead resonator device.
Devices are fabricated by exfoliation of graphene layers onto an array of holes etched
into an oxidized Si wafer. To avoid collapsing the device when spinning resist on, a layer
of PMMA is prepared on a layer of water soluble polyvinyl alcohol, lifted off in water
then applied dry to the substrate and baked on. Areas are then exposed and developed,
unwanted material is removed using a reactive ion etch. Finally, leads are attached using
electron beam lithography and then the device is dried using a critical point dryer. (b)
Color plot of signal from FM technique versus gate voltage Vg and drive frequency. The
lowest frequency mode visible is taken to be the fundamental resonant mode. (c) Line
trace along the dotted line in (b) at Vg = 8 V showing the resonance signal.

gate voltages. [23, 31] However, as we do not observe such a change we use a small Vg

approximation to fit the data over the entire Vg range. The solid curve is a fit to the

function (eq. 3.9)

fres =

√(
2πT0 −

επr20
3d3

V 2
g + aV 4

g

)
/meff/(2π), yielding the tension T0 at Vg =

0, meff , and a, which describes the tension increase with Vg. We obtain T0 = 6.9×10−2

N/m, meff = 2.5× 10−18 kg, and a = 1.13× 10−6 N/V4·m.

For small Vsd, the damping is linear and δf is nearly constant, but δf begins to

visibly increase as Vsd increases above ∼9 mV, as shown in Fig. 5.2b. This increase in δf

is a signature of nonlinear damping. [10] In the linear damping regime, Q follows a 1/T

dependence over more than a decade of measured temperatures, denoted by the dashed

line, down to T = 16 K as shown at various Vg in Fig. 5.2c. In previous work, a larger

exponent power law ∼ 1/T 2 was observed in conjunction with a saturation to a lower
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Figure 5.2: Quality factor and resonance frequency of the lowest-frequency mode. (a)
Resonant frequency fres vs. Vg plotted as black circles. Solid line fit to the equation
described in the text. (b) FM mixing signal vs. frequency for different source-drain drive
voltages Vsd taken at T = 57 K and Vg = 20 V. The curves have been offset horizontally
to align the left minima and vertically for clarity. Each line trace shows a maximum
at resonance surrounded by two minima. The resonance frequency width is determined
by the spacing between the minima. Above Vsd ∼ 9 mV, the frequency width increases
visibly because of the presence of nonlinear damping. Above Vsd ∼ 5 mV, the resonance
frequency shifts upwards from the presence of an anharmonic force on the oscillator. (c)
Main panel: Log-log plot of measured quality factor vs. temperature for different gate
voltages. The straight line is a guide to the eye proportional to 1/T . Frequency values
for Vg = 8V are: T = 16.0 K, f = 75.6 MHz; T = 29.5 K, f = 71.2 MHz; T = 35.0 K,
f = 68.1 MHz; T = 57.0 K, f = 66.2 MHz; T = 296.0 K, f = 71.4 MHz.

exponent ∼ 1/T 0.3 below T ∼ 100 K, [23, 25] However, variables such as membrane

tension, which could in principle affect Q were not controlled or accounted for, nor were

the effects of nonlinear damping.

Recent work considers potential dissipation mechanisms, including thermoelas-

tic losses and currents due to strain-induced dynamic synthetic fields. [52, 53, 39] Other

mechanisms, for example clamping losses [54] and surface state dissipation [55] have also

been considered. However, none of these proposed mechanisms can account for the mag-

nitude, size, [56] and temperature dependence of Q. Here, we consider a tensioned elastic

membrane, with an isotropic strain c from the uniform tension T0 = 2c(λ+ µ), where µ

is the shear modulus and λ is Lamé’s first constant. The slow modes couple to the fast

modes since out of plane bending fluctuations modulate the sheet tension. Fast mode
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thermal fluctuations stochastically shift the slow modes’ effective spring constant, broad-

ening their resonances. This yields for the fundamental mode with resonance frequency

ω0 = 2πf0 (eq. 5.15)

Q =
ξT

3/2
0 r0

kBT

√
κ

E
(5.1)

where ξ ≈ 6.84 is a numerical factor, E = N2(λ2 + 4λµ+ 4µ2) ≈ N2× 1.1× 105 (N/m)2

with N the number of layers, κ ≈ 10−16 Nm is the bending modulus, T0 the tension, kB

is the Boltzmann constant, and r0 is the resonator radius.

Since the frequency does not change significantly as the temperature is varied,

we assume that the tension is approximately constant [31] for this sample. For some

samples the frequency variation is more significant. Fig. 5.3a inset shows the measured

Q for all 4 samples, two trilayer samples T1 and T2 and 2 CVD-grown monolayers M1

and M2. The dotted line shows a 1/T trend as a guide to the eye. Some samples follow

it more closely, while others, for example sample T2, follow a somewhat different Q vs.

T scaling. To fit the data to eq. 5.1 we write the tension T0 as T0 = meffω
2
0/(2π).

Then we re-arrange eq. 5.1 and define Q̄ = QkB

ξω3
0r0m

3/2
eff

√
E
κ . Note that Q̄ depends only

on measured and known parameters. According to eq. 5.1 Q̄ = 1/T . Plotting the

measured Q̄ vs. T along with the curve 1/T we find that the data follows the expected

1/T dependence for all 4 samples. No free parameters are used in the plot. Within

the experimental sample-dependent variation of the Q vs. T , the characteristic 1/T

behavior and magnitude of the data is described by eq. 5.1. This provides strong

evidence that frequency broadening from nonlinear coupling to thermally excited modes

determines the observed quality factor. The predicted Q increases for increasing size as

∝ r0, as observed, [56] providing additional evidence for this picture. As as result, this

mechanism is expected to dominate in micro- or nanoscale resonators.
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Figure 5.3: Quality factor temperature dependence and gate voltage tunability of the
resonance frequency and quality factor at T = 57 K. (a) Main Panel: Scaled quality
factor Q̄ as described in the text vs. T . The masses used for scaling are: M1, 0.8
mm, M2, 5.2 mm, T1, 3.2 mm, T2, 0.7 mm where mm is the monolayer effective mass.
The masses of T1, T2, and M1 were obtained by fitting to eq. S9 to the measured
fres vs. Vg curves, while the mass of M2 was obtained using results for pressurized
membranes under large load because only large Vg data was available, and obtaining an
unambiguous mass using eq. S9 was difficult. Blue and magenta, trilayer devices, green
and red, single layer devices. Solid line: 1/T , plotted without free parameters. Inset:
Q vs. T for the same samples. (b) Q vs. Vg for T1 plotted as solid circles normalized
to the extrapolated value at Vg = 0. Solid curve plot of theoretical model without free
parameters as described in Section 5.3.3.

Q depends weakly on Vg as shown in Fig. 5.3b. Previous work has reported a Vg-

dependence of Q in carbon nanotube because of single-electron charging effects. [57, 58]

However, as no Coulomb blockade is observed in our samples, we extend the above model

to account for the electrostatic forces from an applied Vg, which change the frequencies

of the fundamental and excited modes and the resulting intermodal perturbation of

the fast modes on the slow modes. Fig. 5.3b shows the measured Q/Q(Vg = 0) vs.

Vg, while the solid line shows the theoretically expected curve (Section 5.3.3) using the

parameters obtained from Fig. 5.2a, without performing a fit. The agreement is good

considering the lack of free parameters in the model curve, providing further evidence
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that frequency broadening through nonlinear mode coupling determines Q in graphene

resonators. A similar analysis for room temperature data is shown in Fig. 5.4, where

both the measured Q modulation and frequency tuning with Vg are larger than at low

temperature. More work will be required to fully understand the detailed changes of

these curves with temperature. Nevertheless, the order of magnitude of the measured

and predicted effects are similar, suggesting that the model captures the basic physics

of the Q and fres tunability with Vg.

Figure 5.4: (a) Plot of the frequency vs. gate voltage measured at room temperature for
the device T1 taken with Vsd = 70 mV. The solid line is a fit to a 2nd order polynomial.
Since the dependence of the frequency on Vg is relatively strong, we assume that the
frequency is dominated by the tension and neglect electrostatic effects. The tension is
then related to the frequency by ω =

√
2πT0/m. (b) The measured Q vs. Vg is shown

as the black circles. We then use the method discussed in section S5 to compute the
expected Q, which is plotted as the solid line. Since Q was not easily extrapolated back
to zero frequency, the data and theory were matched at the lowest measured Vg.

Within this model, while the frequency broadening Γ does not correspond

to a viscous damping force, in steady state under a sinusoidal drive it produces an

average dissipation rate that is the same as if Γ originated from such a viscous force.

This implies that the root mean square amplitude of the motion must become large
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enough for conventional friction to dissipate the input power from the drive (eq. 5.19).

We calculate the energy transfer rate to the fast modes by assuming that the tension

modulations during oscillation parametrically drive the fast modes in conjunction with

a Langevin force. This produces a calculated frictional damping force proportional to

velocity that is ∝ T 2 and is characteristically smaller than the frequency broadening

given above for typical device parameters and measurement conditions (eq. 5.18). This

is consistent with our observation of ∝ T behavior for the linewidth.

5.3 Theoretical Anslysis

Recent theoretical work has suggested that the linewidth in carbon nanotube[48] or

graphene [47] resonators could result from fluctuations in the tension caused by the

thermally excited modes. However, the work on carbon nanotubes considers tension

fluctuations, which is not immediately applicable to two-dimensional membranes. It

also does not consider the temporal behavior of the fluctuations, which is important

for determining the contribution of motional narrowing to the linewidth. The work on

graphene does not explicitly consider a tensioned membrane, which is relevant to our

experimental situation. As a result, we first consider a model in which the modes of the

sheet are divided conceptually into “fast” and “slow” modes by their frequency. As the

fast modes oscillate due to thermal excitation, they perturb the slow modes’ resonance

frequency through nonlinear coupling. Later in this section we consider dissipative line

broadening due to intermodal energy transfer. This contribution to line broadening

is found to be small compared to the frequency fluctuation broadening for our device

geometry and typical parameters.
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We now focus specifically in the fluctuations in the effective spring constant of

the fundamental mode. We take its equation of motion as that of a harmonic oscillator:

d2z

dt2
+ ω2

0[1 + x(t)]z = Fext(t)/m, (5.2)

where z is the displacement, t is the time, ω0 is the characteristic frequency, Fext(t) is

any external force applied to the oscillator, m the oscillator mass, and x(t) is a random

function with a mean of zero and autocorrelation function R(τ) = 〈x(t)x(t+ τ)〉 which

represents the frequency fluctuations δω due to the fast modes. Since the frequency in

the oscillator equation is a stochastic variable, the physical situation is reminiscent of

that in nuclear magnetic resonance (NMR) in which a precessing spin undergoes Larmor

frequency fluctuations due to fluctuating environmental magnetic fields.[50, 51] For this

situation, this stochastic equation was successfully treated using the method of model

coefficients in which the random variable is assumed to have a specific known behavior

that produces an exact result for the mean solution of equation 5.2.[50, 51] (see also

ref. [59] for review.)

Two limits exist with different behavior, determined by comparing the magni-

tude of the frequency fluctuations δω with the inverse correlation time of the fluctuations

ν. If ν << δω then the frequency fluctuations are sufficiently slow that the full intrin-

sic linewidth Γi = δω results. On the other hand, if ν >> δω the oscillator averages

the fluctuations, resulting in a narrower linewidth Γmn than δω, which is the regime of

motional narrowing in NMR.

The spectral density of the frequency fluctuations in x, S(ω), defined as

S(ω) =

∫ ∞
−∞

R(τ)eiωτdτ,

at zero frequency can be written as S(0) = ∆t〈x2〉 = 4∆t〈δω2〉/ω2
0, where ∆t is a

characteristic correlation time for the fluctuations. Setting ∆t = 1/ν, the frequency
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width Γmn is given by [50, 51, 59]

Γmn =
ω2

0

2
S(0), (5.3)

The linewidth is therefore

Γ = min [Γmn,Γi] (5.4)

To compute Γi and Γmn, we begin by Fourier transforming the energy given in

eq. 3.1, by using the Fourier transform relations

h(~q) =

∫
h(~x)e−i~q·~xd2~x

h(~x) =

∫
h(~q)ei~q·~x

d2~q

(2π)2

which yields

U =

∫
d2~q

(2π)2
h∗(~q)h(~q)

[
c(λ+ µ)q2 +

1

2
κq4

]
+

∫
d2~q1d

2~q2d
2 ~q3d

2 ~q4

(2π)6
h∗(~q1)h∗(~q2)h(~q3)h(~q4)u(~q1, ~q2, ~q3, ~q4)

× δ(~q4 + ~q3 − ~q2 − ~q1) (5.5)

where u(~q1, ~q2, ~q3, ~q4) is given by

u(~q1, ~q2, ~q3, ~q4) =
1

16
λ[(~q1 · ~q3)(~q2 · ~q4) + (~q1 · ~q4)(~q2 · ~q3)] +

1

4
µ(~q1 · ~q2)(~q3 · ~q4)

If u were zero then U would be that of noninteracting quadratic normal modes. The u

function thus describes the nonlinear modal interactions to 4th order in h. For a given

configuration of h(q) values the shift in the effective spring constant of the mode with

wavevector ~̄q is determined by adding a cosine wave to the sheet and collecting quadratic

terms in its amplitude Am. The height Fourier components then become

hm(~q) = h(~q) +
(2π)2Am

2
[δ(~q − ~̄q) + δ(~q + ~̄q)]
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Then

δU =

∫
d~q1d~q2d~q3d~q4

(2π)6

(
h∗(~q1) +

(2π)2Am
2

[δ(~q1 − ~̄q) + δ(~q1 + ~̄q)]

)
×

(
h∗(~q2) +

(2π)2Am
2

[δ(~q2 − ~̄q) + δ(~q2 + ~̄q)]

)
×

(
h(~q3) +

(2π)2Am
2

[δ(~q3 − ~̄q) + δ(~q3 + ~̄q)]

)
×

(
h(~q4) +

(2π)2Am
2

[δ(~q4 − ~̄q) + δ(~q4 + ~̄q)]

)
× u(~q1, ~q2, ~q3, ~q4)δ(~q1 + ~q2 − ~q3 − ~q4) (5.6)

Collecting the terms quadratic in Am, the shift is related to integrals over the mean

squares of the modal displacements. In thermal equilibrium, the mean square modal

displacements undergo thermal fluctuations, broadening the frequency response. The

contribution of a given fast mode with frequency ω′ to S(0), labeled Sω′(0) is

Sω′(0) =
4

ω2
0

〈δω2〉ω′∆tω′ ,

where 〈δω2〉ω′ is the mean square fluctuation in the slow mode with frequency ω0 caused

by the fast mode with frequency ω′, and ∆tω′ is the characteristic time scale of those

fluctuations. Since the bandwidth of a harmonic oscillator with characteristic frequency

ω′ and quality factor Qω′ is ω′/Qω′ this gives ∆tω′ ≈ Qω′/ω′. We then have

S(0) =

∫
Sω′(0)ρ(ω′)dω′, (5.7)

where ρ(ω′) is the density of modes at frequency ω′.

The quantity 〈δω2〉ω′ is computed by first computing the total 〈δω2〉 by squar-

ing equation 5.6 and thermally averaging it with respect to the quadratic part of U ,

using the relation that 1
2δkeff/keff = δω/ω, where keff is the slow mode effective
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spring constant. To perform the thermal average, we use the relation that

〈h∗(~q4)h∗(~q3)h(~q2)h(~q1)〉0> =
1

4

(2π)2δ(~q4 − ~q2)

β(A~q2
4 +B~q4

4)

(2π)2δ(~q3 − ~q1)

β(A~q2
3 +B~q4

3)

+
1

4

(2π)2δ(~q3 − ~q2)

β(A~q2
3 +B~q4

3)

(2π)2δ(~q4 − ~q1)

β(A~q2
4 +B~q4

4)

+
1

4

(2π)2δ(~q4 + ~q3)

β(A~q2
4 +B~q4

4)

(2π)2δ(~q2 + ~q1)

β(A~q2
2 +B~q4

2)
(5.8)

where A = c(λ + µ) and B = 1
2κ are elastic constants that define the quadratic part

of U , and β = 1/kBT , with kB the Boltzmann constant and T the temperature. (See

for example, ref. [49].) The factor of 1/4 and the extra term compared to the work in

ref. [49] arise because the height is real, so h(~q) = h∗(−~q). The result is that the total

mean square frequency fluctuations are given by

〈δω2〉 =
27Āq̄4ω2

0E

512β2k2
eff

∫
dq

2π

q5

(Aq2 +Bq4)2
=

27Āq̄4ω2
0E

2048πβ2k2
effAB

, (5.9)

where E = N2(λ2 + 4λµ + 4µ2) is an elastic constant and N is the number of layers.

Converting this to an integral over frequency using the density of modes obtained from

the frequency relation ω =
√

2(Aq2 +Bq4)/σ gives,

〈δω2〉 =
27q̄4ω2

0E

512β2k2
eff

∫
dω′

(
−A+

√
A2 + 2σω′2B

B

)2
1

σ2ω′4
ρ(ω′)

From this we find that Sω′(0) is given by

Sω′(0) =
27q̄4E

128β2k2
eff

(
−A+

√
A2 + 2σω′2B

B

)2
Qω′

σ2ω′5
(5.10)

5.3.1 Fast mode behavior

Completing the calculation requires finding the Qω′ in eq. 5.10. Similar to the funda-

mental mode, the linewidth and Qω′ of the fast modes also have two potential sources,

frequency fluctuations and energy damping. However, frequency fluctuations are in-

effective at causing the fast mode amplitude fluctuations that produce the frequency
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shifts in the fundamental mode. These amplitudes fluctuate on a timescale determined

by the modal energy damping rate. Therefore a determination of the energy damping

rate for the fast modes is necessary to find the appropriate Qω′ . A variety of energy

relaxation mechanisms are possible including coupling to electrons, clamping losses, or

to in-plane phonons which are expected to produce relatively high quality factors ∼ 105

or higher for geometries similar to our experiment. [39, 53, 52] Here, we also consider a

mechanism of energy transfer from one vibrational mode to another. The tension fluctu-

ations within the sheet give rise to spatially inhomogeneous wave velocity fluctuations.

Such fluctuations also scatter the standing waves of the sheet in a manner similar to

Rayleigh scattering. However, because the fluctuations are time dependent, scattering

among modes with different frequencies is expected to occur. We compute the energy

damping rate of the fast modes due to such scattering using perturbation theory for the

wave equation. The Lagrange density for the membrane is

L =
1

2σ

(
∂h

∂t

)2

−A(∇h)2 − 1

8
(λ+ 2µ)(∇h)4 −B(∇2h)2.

Neglecting bending for modes that are longer wavelength than the cutoff
√
A/B the

equation of motion is

σ
∂2h

∂t2
−A∇2h−

{
1

4
(λ+ 2µ)

[
∇(∇h)2 · ∇h+ (∇h)2∇2h

]}
= 0

We consider the term in braces as a perturbation. The unperturbed problem has time-

periodic solutions satisfying the eigenvalue equation

∇2h+ k2
l h = 0,

where k2
l is the lth eigenvalue for each solution. The perturbation scatters a given mode

into other modes, giving it a finite lifetime. We denote the instantaneous state of the
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membrane as a superposition of eigenmodes Ψl = 1/
√
Āei

~kl·~x, where l is the mode index.

h(t) =
∑
l

Ψle
−iωltcl(t),

where cl(t) are coefficients for which we want to obtain a differential equation. Substi-

tuting the expression for h(t) into the equation of motion, we get

∑
l

Ψle
−iωlt

{
−2iωlċl(t) + c̈l(t) +

1

4σ
(λ+ 2µ)

[
2(~kl · ∇h)2 + (∇h)2k2

l

]}
= 0

Taking the inner product denoted by

〈f, g〉 =

∫
d2~xf∗(~x)g(~x)

of this equation with Ψme
iωmt yields

− 2iωmċm(t) + c̈m(t) =
∑
l

1

4σ
(λ+ 2µ)〈Ψm, [2(~kl · ∇h)2 + (∇h)2k2

l ]Ψl〉eiωlmtcl(t)

where ωlm = ωm−ωl. Assuming only one of the modes has non-negligible amplitude so

that cl(t) ≈ 0 << cn(t) except for one particular mode n, the equation becomes

− 2iωmċm(t) + c̈m(t) =
1

4σ
(λ+ 2µ)〈Ψm, [2(~kn · ∇h)2 + (∇h)2k2

n]Ψn〉eiωnmtcn(t)

For large times, growing amplitude solutions for cm occur when the right hand side

of the above includes zero frequency components. In this case the c̈m term yields a

fast oscillating homogeneous solution and no time-averaged energy transfer so long as

that the perturbation is sufficiently weak that cn(t) varies slowly on the time scale of

1/ωm. We will see below that this condition is satisfied to first order. Neglecting this

term, which makes a negligible contribution to the slowly growing inhomogeneous term

and energy transfer, the equation then becomes essentially the same as time-dependent

perturbation theory in quantum mechanics. The lowest order solution is

cm =
i

2ωm

∫ t

0

cn(0)

4σ
(λ+ 2µ)

[
〈Ψm, (∇h)2k2

nΨn〉+ 〈Ψm, 2(~kn · ∇h)2Ψn〉
]
eiωnmt

′
dt′

(5.11)
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The first matrix element term in the brackets results from velocity fluctuations. The

thermal expectation value of the second term is the same as the first. Therefore we

replace the entire integrand with twice the first term. Factoring out the kn the matrix

element is therefore

Vmn = 〈Ψm, (∇h)2Ψn〉 =
1

Ā

∫
d2~x(∇h)2ei(

~kn−~km)·~x (5.12)

Thus the matrix element is the Fourier transform of (∇h)2 at the scattering wave vector

∆~k = ~kn−~km. This should depend on the squared height modulations with wavevector

∆~k, which have a characteristic frequency ω(∆~k).

The energy transfer rate is determined from eq. 5.11.

1

En

dEm
dt

=
d

dt

keff,m|cm(t)|2

keff,n|cn(0)|2
=
keff,m
keff,n

k4
n(λ+ 2µ)2

64ω2
m

∫ t

0
Vmn(t)V ∗mn(t)eiωmnτdτ + c.c.

Taking the thermal average gives

〈
1

En

dEm
dt

〉
=
keff,m
keff,n

k4
n(λ+ 2µ)2

64ω2
m

∫ t

0
〈Vmn(t)V ∗mn(t)〉eiωmnτdτ + c.c.

for large t, this becomes

〈
1

En

dEm
dt

〉
=
keff,m
keff,n

k4
n(λ+ 2µ)2

32ω2
m

<[SVmn(ωmn)], (5.13)

where SVmn is the power spectral density of Vmn at frequency ωmn. This should be

peaked at frequency ω(∆~k) with width ∼ ω(∆~k), while the area under the peak vs.

frequency is |Vmn|2. We therefore expect an analog of Fermi’s golden rule to apply, i.e.

〈
1

En

dEm
dt

〉
=

keff,m
keff,n

k4
n(λ+ 2µ)2

32ω2
m

|Vmn|2δ[ω(qn)− ω(qm)± ω(qn − qm)] (5.14)

=
k2
n(λ+ 2µ)2

32σ2u2
|Vmn|2δ[ω(qn)− ω(qm)± ω(qn − qm)],

where keff,n ≈ ĀAq2
n, u is the wave velocity and

ω(q) =

√
2(Aq2 +Bq4)

σ
,
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where the final result for the total normalized energy loss rate is obtained by an integra-

tion over the final states. Evaluating eq. 5.14 numerically for typical parameters yields

Qf ∼ 104 at room temperature and ∼ 106 at low temperature, scaling as 1/T 2. Note

that using a broader frequency function than a δ-function to account for the finite fre-

quency width of SVmn leads to a larger predicted Q, thus the above estimates constitute

a lower bound on Q from this mechanism. Having found Qf , we must now compare

Γmn to Γi to determine whether motional narrowing is expected to be important. To

first evaluate Γi we use eq. 5.9 using keff ≈ ĀAq2, yielding

Qi =
ξT

3/2
0 r0

kBT

√
κ

E
(5.15)

where ξ ≈ 6.84 is a numerical factor, E = N2(λ2 + 4λµ+ 4µ2) ≈ N2× 1.1× 105 (N/m)2

with N the number of layers, κ ≈ 10−16 Nm is the bending modulus, T0 the tension,

kB is the Boltzmann constant, and r0 is the resonator radius. Evaluation of eq. 5.7

using Qω′ = Qi ∼ 100 − 1000, obtained from eq. 5.15 using typical parameters gives

Γi ∼ Γmn. Since we have instead Qω′ = Qf >> Qi, the fluctuations are sufficiently

slow so that we find that Γi << Γmn and thus the static limit is the relevant one, since

other energy damping mechanisms [39, 53, 52] such as clamping loss mentioned above

are also expected to produce significantly larger Q values than Qi. Therefore we expect

the effects of motional narrowing to be minimal and the measured quality factor should

follow the relation given for Qi, eq. 5.15, as observed.

5.3.2 Energy Transfer to fast modes from fundamental mode

In the steady state, vibrations of the fundamental mode produce a periodic modulation

of the membrane tension with frequency ω0 and amplitude δω. Each fast mode, approxi-

mated as an independent oscillator with frequency ωf , then has its frequency modulated
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at frequency ω0. The equation of motion for each fast mode can then be written as [60]

z̈ + Γż + ω2
f [1 + ε cos(ω0t)]z =

√
ΓDξ(t) (5.16)

where D = kBT/meff is a diffusion constant and
√

ΓDξ(t) is a delta-correlated stochas-

tic function that models the Langevin force. In the steady state the root mean square

amplitude of the oscillator is given by (assuming Q >> 1 and neglecting terms of order

higher than ε2 (ε = 2δωf/ωf or terms with frequency 2ω0 or higher)

σzz =
D

ω2
f

+
3D

2ω4
f

δω2 − 2δω
D

ωf

[
1

2ω2
f

cos(ω0t) +
Γ

4ω0ω2
f

sin(ω0t)

]
.

Here we neglect frequency broadening, since we are in the static limit where ν << δω,

and the moments of the solutions σzz(ωf ) corresponding to the equations with different

ωf in the ensemble would be expected to be very similar since ω0 << ωf . When

the parametric drive is zero, the modal amplitude thermal fluctuations are given by

σzz = D/ω2
f . For finite parametric drive caused by the vibrations in the fundamental

mode, the relative frequency modulations δωf/ωf = 1
2δT0/T0 and are therefore the same

for each fast mode. The sine and cosine terms thus represent a coherent response of all

the fast modes to the vibration of the fundamental mode. Thus the fundamental mode

vibration modulates the sheet tension at the same frequency ω0. Since the membrane

is under electrostatic pressure, the changing tension displaces the equilibrium point of

the fundamental mode, which corresponds to a force z0δkeff . The term proportional

to the sine therefore yields a frictional damping force on the fundamental mode that is

proportional to its velocity.

In addition, the second term of eq. 5.16 shows that in steady state each fast

mode has excess energy above the equipartition energy, Eexcess = 3D
4ω4
f
δω2

fkfast, where

kfast is the stiffness of the fast mode. Each fast mode oscillator dissipates this excess
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energy at an average rate 3D
4ω4
f
δω2

fΓkfast, which balances the input power due to the

parametric drive. The total energy loss per unit time from all the fast modes is given

by

〈
dE

dt

〉
=
δω2

0

ω2
0

3

4

Ā2A

mβ

∫ qmax

0

dq

2π

q3

Qω(q)
(5.17)

where qmax =
√
A/B. The damping force Fd due to the coherent tension modulations

is given by (setting 〈h∗(~q1)h(~q2)〉 = 1
2Āσzz(2π)2δ(~q1 − ~q2) and taking the expectation

value of the eq. 5.6 to find the mean stiffness modulation)

Fd = ż
Ẽq̄2Ā2δω0

2ω3
0mβ

∫ qmax

0

dq

2π

q3

Qω(q)
, (5.18)

where Ẽ is an elastic constant on the order of the Young’s modulus. It can be verified

that the damping force given by eq. 5.18 leads to essentially the same energy loss from

the excited slow resonator mode as the steady state loss from the fast modes given

by eq. 5.17 when the tension is dominated by the stretching from the displacement.

Thus, within this picture, energy flows from the slow modes to the fast modes via

coherent tension oscillations in the sheet. Energy relaxation can also occur to the wider

environment through loss mechanisms such as clamping loss or radiation of in-plane

phonons.

For typical device parameters and at room temperature and below this friction

force produces a frequency broadening less than Γi. We thus expect the frequency broad-

ening to dominate the linewidth. This is consistent with the observed ∝ T linewidth

dependence.

Relation between steady-state dissipation and the friction force

In steady state, we assume that the motion is effectively ergodic and the time

and ensemble averages of quantities related to the motion are equal. The oscillator sus-
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ceptibility determines the steady state response of the fundamental mode. The imagi-

nary part determines the mean rate of energy dissipation in the fundamental mode due

to energy transfer to the environment. If the frictional damping force is represented by

mΓdż, then the power dissipated is P = 1
2mω

2
0Γd〈δz2〉. On the other hand the imaginary

part of the susceptibility including frequency fluctuations on resonance is

χ′′(ω) =
1

ω0Γ
,

with Γ determined by the fluctuation broadening, eq. 5.15, assuming that Γd << Γ. The

dissipated power is then P = F 2Q/(mω0), where F is the magnitude of the sinusoidal

force drive. Equating these, we find the mean square amplitude of the motion is

〈δz2〉 =
F 2

ΓΓdm2ω2
0

. (5.19)

Note that since Γd < Γ this is in general larger than 〈δz2〉 would be if Γ originated

from a frictional force. Nevertheless, the amplitude response measured at the drive

frequency, e.g. by a lock-in amplifier will be identical to that determined by χ(ω), just

as if Γ represented a frictional force. This is because unlike the case of purely frictional

force damping, the amplitude response power spectrum is spread out in frequency ∼ δω

because of the fluctuating stiffness, while a lock-in measures the amplitude only in a

narrow bandwidth around the excitation frequency.
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5.3.3 Electrostatic forces effect on quality factor

The electric field up to second order in the height is given by, [61]

E(~r) =

[
−V
d

+
V

d

∫
d2~q

(2π)2

cosh(qz)

sinh(qd)
qh(q)ei~q·~x (5.20)

− V

d

∫
d2~q1

(2π)2

d2~q2

(2π)2

cosh(q2d)

sinh(q2d)

cosh(q1z)

sinh(q1d)
q1q2h(~q2)h(~q1 − ~q2)ei~q1·~x

]
ẑ

− V

d

∫
d2~q

(2π)2

sinh(qz)

sinh(qd)
qh(~q)ei~q·~x(iq̂)

+
V

d

∫
d2~q1

(2π)2

d2~q2

(2π)2

cosh(q2d)

sinh(q2d)

sinh(q1z)

sinh(q1d)
q2h(~q2)h(~q1 − ~q2)ei~q1·~x(i~q1)

where ~r = (~x, z) is the three dimensional position vector for in-plane position ~x = (x, y).

Using the expression of the electric field the capacitance correction can be computed from

the surface charge density σs = ε0 ~E · n̂ with the unit normal to the graphene membrane

n̂ = (∇h − ẑ)/[1 + (∇h)2]1/2. The capacitance C is given by C = Q/V =
∫
σsdĀ/V .

Including this electrostatic term modifies U . Keeping terms up to 2nd order yields

additional terms ∆U (The 4th order electrostatic term is negligible compared to the

mechanical one under typical physical conditions in our experiment).

∆U =

∫
d2~q

(2π)2
h∗(~q)h(~q)

(
−
ε0V

2
g

2d2

cosh qd

sinh qd
q −

ε0V
2
g

4d
q2

)

The addition of these terms modifies eq. 5.9 to

〈δω2〉 =
27

512

Āq̄4ω2
0E

β2k2
eff

∫
dq

2π

q5[
− ε0V 2

g

2d2
cosh qd
sinh qd q + (A− ε0V 2

g

4d )q2 +Bq4
]2 , (5.21)

This can be approximated by

〈δω2〉 =
27

512

Āq̄4ω2
0E

β2k2
eff

∫
dq

2π

q5

(C +Dq +Aq2 +Bq4)2
, (5.22)

with A = c(Vg)(λ + µ) − ε0V 2
g

4d , B = 1
2κ, C = − ε0V 2

g

2d3
, D = − ε0V 2

g

2d2
. Equation 5.22 is

used to compute Q by numerical integration and plotted for appropriate parameters in

Fig. 5.3.
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Chapter 6

Graphene/h-BN NEMS

Resonator

Recently hexagonal boron nitride (h-BN), a two-dimensional insulator has been used

as a substrate for graphene to achieve ultra-high mobility (60000 cm2/Vs). [62] For

our graphene NEMS resonators, the high field effect mobility is welcomed because it

will enhance the transconductance dG/dVg, which as a result will enhance the signal

of mechanical resonance. If the graphene is covered by h-BN without exposing to the

air, the electrical quality will be very stable. So we decided to make a graphene/h-BN

NEMS resonator and test its performance. In this chapter, we will present some data

from a graphene/h-BN drum resonator as well as its fabrication technique.

The strategy we choose for fabricating the device is as follows: Firstly, we

prepare an oxidized Si chip with a 2µm large hole in the SiO2, and also two electrodes

embedded in the SiO2 on two sides of the hole. To make this chip with predefined hole

and electrodes, we use the same techniques as for making the CVD grown graphene drum

resonators described in Chapter 2. Secondly, we transfer a graphene/h-BN bilayer on top
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of the hole and electrodes, with graphene attached to the electrodes and h-BN covering

graphene. Here we follow ref. [63, 64] to fabricate clean graphene devices without being

contaminated by polymers. We first use mechanical exfoliation method to deposit thin

layer of h-BN and monolayer graphene separately onto two clean oxidized Si chips. Then

we put a piece of a polydimethylsiloxane (PDMS) on a glass slide. We spin coat a layer

of poly-propylene carbonate (PPC) on top of that. We then use this to pick up the

h-BN from the Si chip to the surface of PPC. After that, we pick up the graphene from

the Si chip to h-BN on PPC with careful alignment. Now we have a graphene/h-BN

heterostructure on PPC with graphene on top of h-BN. Then we transfer graphene/h-

BN onto the predefined chip with holes and electrodes, with graphene facing the hole

and electrodes. Finally, we dissolve the PPC in Remover PG.

Figure 6.1: Device image of a graphene/h-BN drum resonator with a diameter 2µm.
(a) Optical image of the device. The graphene is monolayer and h-BN is multilayer.
The graphene is not visible in the optical image. (b) SEM image of the device.

Fig. 6.2 shows the plot of room temperature conductance vs. gate voltage. The

transconductance dG/dVg = 27µS/V near the Dirac point, which is much higher than

my previous graphene drum resonator devices. Here we use FM mixing technique to

actuate and detect the mechanical resonance signal. We apply a FM signal as source-
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drain voltage and a DC voltage to the back gate.

Figure 6.2: Conductance vs. gate voltage at room temperature. dG/dVg = 27µS/V
near the Dirac point.

Figure 6.3: Room temperature data of a graphene/h-BN drum resonator with diameter
of 2µm. (a) Color plot of FM mixing signal vs. gate voltage Vg and drive frequency.
Vsd = 225mV. (b) Line trace of mixing signal vs. frequency at Vg = 23V.

What is more interesting is that graphene on h-BN can be doped by simply

shining a light on the device while a gate voltage Vd is applied. [65] The Dirac point
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will shift to and stay at Vd if we turn off the light. Because dG/dVg is largest near

the Dirac point, this will allow us to optimize the Dirac point location and maximize

the mechanical resonance signal. Also, if we have a clean device with Dirac point near

zero gate voltage, we are usually not able to study the mechanical resonance behavior

near the Dirac point. This is because the ac driving force F̃ = C ′VgṼsd near zero gate

voltage is small and the mechanical resonance mixing signal is also small. However,

this photoinduced doping technique for graphene/h-BN device will allow us to study

the mechanical resonance behavior near the Dirac point. Graphene’s density of states

is finite, which makes the problem interesting too.
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Chapter 7

Conclusions

7.1 Summary

We mainly studied two problems on graphene NEMS resonators. One is the

nonlinear dynamics of graphene drum resonators. As the driving is sufficiently large,

the system enters into the nonlinear regime. We measured the coefficient of the Duffing

nonlinearity and the nonlinear damping in our devices. We also observed an anomalous

large resonance line width at large driving voltage. We attribute this to that the ac

source-drain voltage periodically heats the graphene and thus cause the thermal expan-

sion of the graphene. This periodic thermal expansion provides parametric amplification

to the amplitude of resonance. Since the resonance line width in the nonlinear damping

regime depends on the amplitude, the parametrically amplified amplitude increases the

line width more rapidly. Based on this model, we provided the first low temperature

measurement of |aT |/κ2D, the ratio of graphene’s thermal expansion coefficient to its

thermal conductivity.

The other problem is the quality factor Q of graphene NEMS resonators. The

quality factor Q measured by spectral measurement techniques are low, for our devices
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typically on the order of 100 at room temperature and on the order of one to a few

thousands at low temperatures down to 4.2K. And we also observed the measured Q

of the fundamental mode of our drum resonators scales inversely with the temperature.

Various dissipation mechanisms have been proposed [52, 53, 39, 54, 55], but none of

them can account for the magnitude, size, [56] and temperature dependence of Q. In

chapter 5, we developed a model in which the thermally excited high frequency modes

stochastically shift the resonance frequency of the fundamental mode through nonlinear

intermodal coupling. The frequency line width is dominated by the stochastic frequency

fluctuation instead of the frictional damping. This result predict the same temperature

and size dependence [56] of Q in the experiments.

7.2 Future Works

To further confirm whether frequency fluctuation dominates the frequency line

width Γ, a time domain experiment such as a ring-down experiment should be able to

yield additional insight into the behavior of these systems. If the frequency fluctuation

dominates, we should be able to see that it takes a much longer time than 1/Γ for the

oscillation to decay. However, it is very challenging to do these type of measurements on

NEMS devices because of the small sizes of the devices. Maybe sometime in the future,

new techniques will be developed to overcome these problems.
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