
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title

Bridging Gaps in Programmable Laboratories-on-a-Chip Workflows and MediSyn: A
Modular Pharmaceutical Discovery and Synthesis Framework

Permalink

https://escholarship.org/uc/item/2rk096p6

Author

Loveless, Tyson

Publication Date

2022

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2rk096p6
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Bridging Gaps in Programmable Laboratories-on-a-chip Workflows
and

MediSyn: A Modular Pharmaceutical Discovery and Synthesis Framework

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Tyson Lee Loveless

December 2022

Dissertation Committee:

Dr. Philip Brisk, Chairperson
Dr. William H. Grover
Dr. Mohsen Lesani
Dr. Manu Sridharan

Copyright by
Tyson Lee Loveless

2022

The Dissertation of Tyson Lee Loveless is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I’ve many times heard an appropriation of Thomas Edison’s quip toward completing a

PhD: “a doctor is 1% inspiration and 99% perspiration” – looking back at my journey, I

can’t help but disagree. To be clear: this work has been far from a stroll in the park—it

has stretched me in every way (except physically: apparently, countless hours of sitting

can lead to degeneration of physique)—but to suggest that this is almost entirely the

result of sheer willpower flagrantly undermines the village of people who have supported

me in various ways over the years.

To start, I would like to thank my advisor, Dr. Philip Brisk: your eagerness to color with

humor the somber weight that oftentimes accompanies graduate school made the tough

times less so. Your patience and encouragement has been treasured. To Dr. William

Grover – I can’t remember a conversation with you that didn’t trigger new insights or

spur on helpful questions; thank you for being a constant source of encouragement and

inspiration. To Dr. Mohsen Lesani: thank you for the enthusiasm exuded for everything

we’ve worked on together; it was both an encouragement and a driving force toward

delivering my best work.

To my wife, Lindsey: your (sometimes tough) love pushed me to persevere through

countless difficult seasons, and your patient endurance in listening to my incomprehensible

ramblings has surely inspired some of the better ideas contained herein. Thank you for

standing next to me through this, and for choosing to spend your life with me.

To my firstborn, Gideon, who inspired me to pursue higher education at the start, and

the rest of you, Corban, Asher, Jude, and Ezra: I cannot thank you enough – even

though this has likely been as hard, if not harder, for you than it has been for me,

iv

you’ve patiently and lovingly endured with me, sharing your silliness, joy, and constant

eagerness to remind me in all the ways of how glad I am to be your dad.

Thank you, Mom and Dad, for cheering me on over these many years. You’ve always

lifted me up, and your support has not gone unnoticed. To EJ and Hayle, thank you for

the formative years I spent with you, and for the ways in which you’ve endured with me

since. Our many sibling rivalries have shaped me in numerous ways, and have given me

the drive to always try to be harder/better/faster/stronger.

To Jason, Shelley, and your kiddos – thank you for our cherished friendship. Through

leisurely cooking all day, helping me with the grueling demands of a home that is literally

falling apart, or laughing through the woes of sub-par internet during a pandemic, you

have made this journey far more palatable. Jason, your eagerness to support me has

been remarkable; I wouldn’t have made it here if it weren’t for you.

To The Cameron’s: your friend-lord thanks you for your love and support. You’ve been—

despite our best efforts to drive you away—steadfast friends and neighbors throughout

this journey; your prayers and company have been life-giving.

To Skyler and Mel: despite missed opportunities when y’all lived closer, our burgeoning

friendship has been a refreshing spring of encouragement.

To my labmates, friends, and countless others who have lent me your ear on many an

occasion: thank you for your advice, encouragement, friendship, support, and overall

general willingness to bear with me.

v

Portions of this dissertation contain previously published materials, reprinted or adapted

under the following permissions:

© 2018 ACM. Adapted with permission, from Jason Ott, Tyson Loveless, Christopher

Curtis, Mohsen Lesani, and Philip Brisk. BioScript: Programming Safe Chemistry

on Laboratories-on-a-Chip, Object-Oriented Programming, Systems, Languages &

Applications, 2018.

© 2020 ACM. Reprinted with permission, from Tyson Loveless, Jason Ott, and Philip

Brisk. A Performance-Optimizing Compiler for Cyber-Physical Digital Microfluidic

Biochips, Code Generation and Optimization, 2020.

© 2021 ACM. Reprinted with permission, from Tyson Loveless, Jason Ott, and Philip

Brisk. Time- and Resource-Constrained Scheduling for Digital Microfluidic Biochips,

International Conference on Cyber-Physical Systems, 2021.

Thank you to the following entities for their generous awards, fellowships and stipends

which made this research possible:

• UCR for their Provost Research Fellowship, and

• The Department of Education for their Graduate Assistance in Areas of National

Need (GAANN) Fellowship.

vi

Dedication

For Jesus Christ, my guiding light, savior of my soul, and ultimate source of joy.

Your provision and direction has given me the strength to persevere in this journey;

everything that comes from this belongs to You;

For Lindsey – who selflessly stood by my side, graciously pushed me forward, and

helped me grapple with the many challenges graduate school has thrown our way. I

couldn’t have been blessed with a greater helpmate;

For my boys – Gideon, Corban, Asher, Jude, and Ezra – while patiently enduring

with me as I would seemingly disappear for days on end to write or push forward a

project, you’ve witnessed God’s unimaginable grace in our lives. Never forget His

faithfulness.

vii

ABSTRACT OF THE DISSERTATION

Bridging Gaps in Programmable Laboratories-on-a-chip Workflows
and

MediSyn: A Modular Pharmaceutical Discovery and Synthesis Framework

by

Tyson Lee Loveless

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2022

Dr. Philip Brisk, Chairperson

Life scientists have a need for making their work more efficient, cost-effective, and

reproducible. The ongoing reproducibility crisis underscores the need for efforts to

improve and transform existing methods, and the normative 10-15 years and $2.6 billion

cost to develop new life-saving drugs is harrowing.

This dissertation consists of two parts that aim to partially address these concerns: the

first reviews programmable microfluidic labs-on-a-chip (pLoCs), which have been widely

promised to solve issues with human error and resource waste when used for biochemical

experimentation (assays). Despite touted advantages, existing pLoCs are unwieldy to

operate, requiring manual translation of assays to sequences of electrode actuations to

control their operation. Progress on high-level languages for pLoCs is encouraging, but

back-end compiler support is lacking. This part provides solutions to fill in gaps between

existing languages and pLoCs, allowing would-be adopters to translate their existing

workflows to utilize these devices. Namely, it details (1) abstractions necessary for

viii

translating and compiling assays featuring time-constrained reactions, (2) optimizations

that reduce waste, decrease latency, and—perhaps most importantly—enable targeting

the very small surfaces of existing devices, and (3) a strategy for statically compiling

and executing assays featuring pre-compiled functions, showcased on a real-world pLoC.

The second part introduces MediSyn, a pharmaceutical research framework providing

abstractions for building systems for discovering, synthesizing, and verifying safe drugs.

MediSyn implements a superoptimizing search utilizing a Markov chain Monte Carlo

strategy over a candidate space of drugs specified as a probabilistic context-free grammar

(PCFG). Back-end modules (for candidate synthesis and evaluation) provide abstractions

for connecting to remote cloud labs, local execution on pLoC(s), or manual entry when

work is carried out on a benchtop. A proof-of-concept is presented as PepSyn, which

implements two front-ends: (1) a regex-style domain-specific language (PepSketch) that

takes inspiration from sketch-based syntax-guided synthesis, and (2) a user-interface that

harnesses techniques used in natural language processing (PepGen) in the programming-

by-example paradigm.

ix

Contents

List of Figures xiv

List of Tables xvii

Introduction 1

Part I Bridging Gaps: Making pLoC Workflows Practical

1 Introduction 4

2 Background and Related Work 7
2.1 Background and Related Work . 7

2.1.1 Analytical Biochemical Protocols (Assays) 7
2.1.2 Digital Microfluidic Biochips (DMFBs) 8

2.1.2.1 OpenDrop . 11
2.1.3 DMFB Compilation . 11
2.1.4 Language Design for Programmable Chemistry 16

2.1.4.1 Ontologies . 16
2.1.4.2 Laboratory Automation 16
2.1.4.3 Domain-Specific Languages for pLoCs 17

2.1.5 Mixing Modules . 20

3 Supporting Time-Constrained Chemistry 21
3.1 Introduction . 21
3.2 Timing Constraint Annotations . 22

3.2.1 Timing Constraints . 23
3.2.2 BioScript Example . 25

3.3 Scheduling Problem . 25
3.3.1 Precedence Constraints . 26
3.3.2 Fluidic Identifiers (Types) . 26
3.3.3 DMFB Architecture . 27
3.3.4 Resource Constraints . 29
3.3.5 Timing Constraints . 29

3.4 Scheduling Algorithms . 32

x

3.4.1 Relative Interval Scheduling . 33
3.4.1.1 Phase 1 – Satisfying Precedence and Timing Constraints 33
3.4.1.2 Relative Interval Forest 35
3.4.1.3 Phase 2 – Satisfying Resource Constraints 37
3.4.1.4 RIS Example . 39

3.4.2 Integer Linear Programming Formulation 39
3.5 Benchmarks . 41
3.6 Evaluation . 42

3.6.1 Setup . 42
3.6.2 Simulation Results: Schedule Length 44
3.6.3 Execution Time . 45

3.7 Conclusion . 46

4 Practical Compiler Optimizations 47
4.1 Introduction . 47
4.2 Overview . 48
4.3 An Optimizing Compiler for Cyber-Physical DMFBs 50

4.3.1 Scheduling . 50
4.3.2 Interference Graph . 55

4.3.2.1 Definitions and Properties 55
4.3.2.2 Construction . 56

4.3.3 Placing a CFG . 58
4.3.3.1 Global Placement as an Optimization Problem 60
4.3.3.2 Adapting Graph Coalescing for CFG Placement 61
4.3.3.3 Optimized CFG Placement 68
4.3.3.4 Mix Operation Resizing and Rescheduling 71

4.3.4 Droplet Routing . 74
4.4 Implementation . 74

4.4.1 Overview . 74
4.4.2 Modification of Placement Algorithms for Placing Interference

Graphs . 75
4.4.3 Modification of Placement Algorithms for Mix Module Resizing . 77

4.5 Evaluation . 79
4.5.1 Experimental Setup . 80
4.5.2 Benchmarks . 80
4.5.3 Compiler Configurations . 80
4.5.4 Results and Analysis . 81

4.6 Conclusion . 82

5 Compiling Functions onto pLoCs 87
5.1 Introduction . 87
5.2 Technology Issues . 89
5.3 Fluidic Functions . 90

5.3.1 Function Definition . 91
5.3.2 Function Placement . 91
5.3.3 Coordinate Spaces . 92
5.3.4 The Physical Function Prototype 92
5.3.5 Stack Management for Fluidic Variables 94
5.3.6 External Devices . 97

xi

5.3.7 Droplet I/O . 99
5.3.8 Calling Context and Multiple Function Versions 102
5.3.9 Recursion . 104

5.4 Evaluation . 109
5.4.1 Implementation . 109
5.4.2 Benchmarks . 110
5.4.3 Setup . 111
5.4.4 Discussion . 111

5.5 Conclusion . 114

6 Conclusion 115

Part II MediSyn: A Modular Pharmaceutical Discovery and
Synthesis Framework

7 Introduction 117

8 Preliminaries 120
8.1 Drug Discovery and Development . 120

8.1.1 Antimicrobial Peptides . 121
8.1.2 Drug Efficacy Evaluation . 123
8.1.3 Cost Considerations . 124

8.2 Superoptimization and Program Synthesis 124
8.2.1 Probabilistic Context-Free Grammars 126

8.3 Word Embeddings and Semantic Clusters 128

9 Overview 132
9.1 Modules . 132
9.2 Generalized Core, Gen, and Back-end Modules 136

10 PepSyn 139
10.1 PepSyn Front-ends . 142

10.1.1 PepSketch Front-end . 142
10.1.2 PepGen Front-end . 145

10.1.2.1 Augmentation . 146
10.1.2.2 Semantics-encoding Transformation 151

10.2 Peptide Filter . 154
10.3 Back-end . 154

10.3.1 MIC Estimation . 155

11 Evaluation 157
11.1 Benchmarks . 158
11.2 Methods . 158
11.3 Results . 159
11.4 Discussion . 160

12 Related 165

13 Conclusion 167

xii

Conclusion 169

A Mix Module Resizing Example 170

B Benchmarks 174
B.1 Benchmarks for Chapter 4 . 174

B.1.1 Benches from [178] . 174
B.1.2 Benches from [41] . 181

B.2 Benchmarks for Chapter 3 . 185
B.2.1 SLE-only . 186

B.2.1.1 Multiplexed . 187
B.2.1.2 Split-Dilutes . 191

B.2.2 Mixed . 194
B.3 Benchmarks for Chapter 5 . 198
B.4 OpenDrop Demos . 202

C Pseudocode for Relative Interval Scheduling 203

D Overview of Peptide Synthesis 206

E BioV ec(k) 210
E.1 Number of sentences a BioV ec(k) model processes from a single input

instance . 212
E.2 Number of sentences in the training corpus for PepGen’s ProtV ec(3) model213

Bibliography 215

xiii

List of Figures

Part I Bridging Gaps: Making pLoC Workflows Practical

2 Background and Related Work
2.1 The electrowetting effect: applying an electrostatic potential to a droplet

modifies its contact angle. 10
2.2 Droplet transport is achieved by activating and deactivating electrodes in

sequence. 10
2.3 A DMFB (left) comprises a 2D array of discrete electrodes, with an

optional ground electrode on top. A cyber-physical feedback loop to a
microcontroller is enabled by sensory feedback. 10

2.4 DMFB instruction set architecture (ISA). 10
2.5 OpenDrop V4 . 12
2.6 A basic pLoC compilation path . 12
2.7 A simple assay written in BioScript. 20

3 Supporting Time-Constrained Chemistry
3.1 A BioScript assay utilizing all six timing constraint variants. 24
3.2 Partitioning a DMFB into a Virtual Topology 28
3.3 Example of Relative Interval Scheduling’s phases 36

4 Practical Compiler Optimizations
4.1 Programming and Execution Workflow for pLoCs 49
4.2 A BioScript-specified assay and its corresponding CFG augmented with

SSI form’s ϕ and π nodes. 51
4.3 (a) Implicit store operations inserted by our scheduler, and (b) scheduled

CFG . 52
4.4 Virtual Topology: a DMFB partitioned into a 2× 2 array of work modules

exposed to the scheduler, where one module has a heater and one has a
sensor. The topology is arranged to provide deadlock free routing around
the modules. 54

4.5 I/O and Module Interferences . 57
4.6 The effect of globally optimized placement of a CFG in SSA/SSI Form . 59
4.7 Eliminating routes through optimized placement 62

xiv

4.8 The interference graph and coalescing solutions for the assay depicted in
Figure 4.2a . 64

4.9 Effect of maintaining affinity edges over conflicting operations when coa-
lescing . 65

4.10 Dimensions and type of coalesced operations 67
4.11 Phase ordering of Iterated Coalescing 68
4.12 Overview of Our Optimized DMFB Compiler 69
4.13 Results of resizing mix operations . 85

5 Compiling Functions onto pLoCs
5.1 A compiled function f requires an unoccupiedm×n regionRf for placement. 91
5.2 A function’s virtual space is mapped to the chip’s physical space. 92
5.3 A function f ’s prototype Sf , and routing to/from a placement of Rf . . . 93
5.4 The split-technology stack for storing digital and fluidic variables. 95
5.5 Moving droplets to/from Rf ’s placement when interferences exist. . . . 96
5.6 Determining Rf when external resources are specified in Sf 98
5.7 Placement issues of Rf when I/O is required. 100
5.8 Routing I/O to/from an executing function f 101
5.9 A collection of pre-compiled version prototypes Sf for a function f 103
5.10 Tail-recursive function setup and teardown. 105
5.11 A dynamic Just-In-Time approach. 107
5.12 Maximum call depth for arbitrary recursive functions. 108
5.13 A thermocycling function written in BioScript. 110

Part II MediSyn: A Modular Pharmaceutical Discovery and
Synthesis Framework

8 Preliminaries
8.1 A workflow diagram of the drug development process 122
8.2 Treebank entry and its underlying grammar 129
8.3 Word Vectors . 130

9 Overview
9.1 Simplified diagram of component structures and basic interfaces of MediSyn.133

10 PepSyn
10.1 PepSyn Workflow . 140
10.2 PepSketch’s syntax. 141
10.3 A PepSketch which specifies the protegrin family of antimicrobial peptides 142
10.4 PepSketch Transformation Rules . 144
10.5 High-level overview of PepGen . 147
10.6 PepGen’s Corpus Augmentation and Semantics-Encoding Transformation 148
10.7 2D projections of embedding spaces used for augmentation and transfor-

mation . 149

xv

10.8 Difficulty of interpreting sequence alignment similarity scores: due to
varied lengths and scoring parameters, sequence alignment scores must be
normalized to provide consistent interpretation. 156

11 Evaluation
11.1 Trace of MCMC for distinctin benchmark 162

A Mix Module Resizing Example
A.1 Mixing Tree Assay . 170
A.2 Application of Dilworth’s Theorem for Finding the Width of an Assay . 171
A.3 Virtual Topology for Varied Module Sizes 173

D Overview of Peptide Synthesis
D.1 Chemical structures and single-letter abbreviations for the 21 proteinogenic

amino acids found in the genetic code for eukaryotic organisms (including
humans). 208

D.2 Solid-phase peptide synthesis . 209

E BioV ec(k)

E.1 ProtVec’s approach to preparing a peptide for training a word embedding
model . 210

E.2 ProtV ec(3)’s approach for preparing a peptide for training a word embed-
ding model . 211

xvi

List of Tables

Part I Bridging Gaps: Making pLoC Workflows Practical

2 Background and Related Work
2.1 Operations supported by BioScript . 19
2.2 Mixing module dimensions and their latencies. 20

3 Supporting Time-Constrained Chemistry
3.1 Time constraint variants on the intermediate fluid between operations u

and v, which is generated when u completes at time t; syntax associates a
constraint with u, applying it to all (u, v) dependencies 23

3.2 Fluidic operations and their associated latencies 23
3.3 Notation . 30
3.4 DMFB Scheduling Problem Constraints 31
3.5 Scheduling Results and Execution Time for Each of the Scheduling Algo-

rithms Described in Section 3.5 . 43

4 Practical Compiler Optimizations
4.1 Compile time and simulated execution times 79
4.2 Impact of coalescing, choice of placement heuristic, and mix operation

resizing on total assay execution time. 83
4.3 Impact of coalescing on placement effort and droplet routing time. . . . 84

5 Compiling Functions onto pLoCs
5.1 Results comparing execution of inlined vs. pre-compiled non-recursive

functions on a cycle-accurate DMFB simulator 112
5.2 Results for compiling recursive functions, where recursive calls may gener-

ate additional droplets; a droplet-generation factor (DF) and maximum
depth before failure K is reported for compiling to an 8× 14 electrode grid.112

xvii

Part II MediSyn: A Modular Pharmaceutical Discovery and
Synthesis Framework

8 Preliminaries
8.1 The 21 proteinogenic amino acids found in the genetic code for eukary-

otic organisms (including humans), and their single-letter abbreviations,
organized by classification. 123

11 Evaluation
11.1 Benchmarks . 158
11.2 Characteristics of the PCFGs that PepSyn’s two front-ends create. . . . 161
11.3 Results of MCMC simulation . 163

xviii

Introduction

Life scientists are burdened with the monumental task of understanding—and, by proxy,

caring for—living organisms. Their discoveries often lead to improving the quality

and standard of life and have far-reaching applications from healthcare and medicine

to agriculture and food production. Nevertheless, much of their work suffers from

inefficiencies, astronomical costs, or is difficult to reproduce. The ongoing reproducibility

crisis ([14]) reveals that much work is needed to improve, transform, or altogether displace

existing methods in biological and chemical sciences, and the normative 10-15 years and

upwards cost of $2.6 billion for pharmaceutical researchers to develop new life-saving

drugs ([169, 50]) suggests that the next pandemic might come before the current one is

over, mandating that we simply must do better.

In this dissertation, you will find two loosely related contributions pursuing the disruption

and transformation of existing workflows for life scientists concerned with analytical

biochemical protocols (or assays) and discovering promising new pharmaceuticals.

Part I discusses how programmable microfluidic laboratories-on-a-chip (pLoCs) can

overcome some of the aforementioned issues, and presents practical optimizations and

additions to workflows necessary for scientists to adopt existing and future devices. The

methods are showcased with an end-to-end workflow, where assays specified in a high-

1

level domain-specific language are compiled to target an existing commercially-available

open-hardware pLoC, revealing that sharing of protocols (in the form of completely

specified executable assays or pre-compiled binaries) is tenable on these mediums.

Part II introducesMediSyn, a modular framework for pharmaceutical researchers to create

cyber-physical systems that can automate the discovery, synthesis, and evaluation of safe

de novo drugs. MediSyn aims to both reduce the exorbitant costs and the unreasonable

time-to-delivery associated with drug development. MediSyn’s utility is evaluated with

PepSyn a proof-of-concept implementation targeting pharmaceutical peptides. PepSyn

compares program synthesis-inspired approaches to defining and searching over the

space of peptide pharmaceuticals: PepSketch, a SKETCH -inspired[212] domain-specific-

language that specifies a domain of candidate peptides using inlined wildcards in a

peptide’s primary sequence, and PepGen, a front-end in the programming-by-example

(PBE) paradigm[107, 82, 188], which constructs a domain of interest using user-provided

example drugs and their efficacy against a target pathogen. A superoptimization approach

explores the peptide space using a Markov Chain Monte Carlo search [200, 4, 196]; the

resulting Markov chains characterize a domain of drugs of interest for further exploration

in a wet-lab environment.

2

Part I

Bridging Gaps: Making pLoC

Workflows Practical

3

Chapter 1

Introduction

The last two decades have witnessed the emergence of software-programmable, integrated

microscale machines capable of miniaturizing, automating, and accelerating fluidic bio-

chemical laboratory experimentation (assays). So-called programmable laboratories-on-a-

chip (pLoCs), these devices have promised to revolutionize biochemical experimentation

in the life sciences by reducing reagent waste, increasing safety, eliminating human error,

and increasing reproducibility. Despite researchers regularly validating these promises,

adoption of pLoCs is still in its infancy, partly due to their relative obscurity, and

to a greater extent due to their unwieldy operation. Commercially-available pLoCs

(OpenDrop, DropBot, etc.) for general-purpose lab use are currently operated manually,

or “programmed” through inefficient (and error-prone) processes akin to writing machine

code by hand, preventing many would-be adopters from integrating pLoCs into their

labs.

4

While high level programming languages designed for specifying assays for execution

on pLoCs have made large strides in recent years, compiler support has lagged behind,

and there are currently no general-purpose runtimes capable of driving physical pLoCs

that utilize compiled assays written in a high level language. Additionally, though a

primary objective of executing assays on pLoCs is to provide reproducible results, there

is a present lack of any language or compiler support for implicit timing constraints.

This is concerning, as reagents can be extremely sensitive to temperature changes,

evaporation, and exposure to other reagents, particularly at sub-microliter volumes,

leading to inaccuracies in reporting or failure in the worst case.

The rest of this part discusses and presents practical solutions to gaps that exist in

the end-to-end workflow of assay specification, compilation, and execution on pLoCs.

After detailing necessary background material in Chapter 2, Chapter 3 discusses nec-

essary language and compiler additions that allow scientists to concisely express time

constraints and statically ensure the synthesized results will not fail due to missed

deadlines. Generalized syntactical constructs are presented that can be added to any

language, and a time- and resource-constrained scheduling problem is formalized and

solved using a new efficient heuristic and an optimal Integer Linear Programming (ILP)

formulation. Methods are demonstrated and evaluated by adding syntax to the BioScript

language [178] and compiling contrived time-constrained assay benchmarks, revealing

that existing scheduling methods are in general unable to properly schedule assays when

timing constraints are present.

Chapter 4 introduces necessary optimizations for successfully compiling assays onto

pLoCs with severely constrained spatial resources (a reality of existing devices), exploring

various ways of placing microfluidic operations with fluidic dependencies crossing basic

5

blocks at a global scope. Further optimizations explore trade-offs between operation-level

parallelism and execution latency. In addition to accelerating benchmark assays (with

an average decrease in latency of 25%), the optimizations provided a 450% increase in

compilability when compiling onto severely spatially-constrained architectures.

Chapter 5 provides observations necessary for setting up, running, and tearing down

assay protocols specified using (possibly pre-compiled) functions. While the vast majority

of real-world assays that have been translated for execution on LoCs are easily specified

using straight-line code, scientists could benefit from utilizing functions to organize

complex protocols, defining repeatable operations with parameterized reagents, or the

ability to disseminate pre-compiled executable protocols. We introduce a split-technology

stack, which segregates the digital representation of a stack frame from physical droplets

requiring on-chip storage that lives across function calls, an idiosyncrasy that traditional

computing architectures need not consider. This chapter culminates by demonstrating

execution of various protocols on OpenDrop, a commercially-available open-source pLoC

device.

6

Chapter 2

Background and Related Work

2.1 Background and Related Work

2.1.1 Analytical Biochemical Protocols (Assays)

An assay is a laboratory procedure that aims to assess the activity of a target entity, called

the analyte; as an over-generalization, we use the term assay to represent a biochemical

“algorithm” that will execute on an pLoC. Ideally, the (bio-)chemist of the future will

specify an assay using an appropriately designed high level domain-specific programming

language (DSL) meant for programmable chemistry. A number of domain-specific

programming languages have been proposed for pLoCs [230, 226, 6, 5, 40, 41, 178, 239]

(see Section 2.1.4); while most of these languages are tied to specific pLoC technologies,

any DSL compatible with DMFBs (see Section 2.1.2) could be used as a front-end for

the work presented here.

7

Many assays are time-sensitive, although it may not always be obvious from the descrip-

tion. Reagents can be extremely sensitive to temperature changes, evaporation, and

exposure to other reagents, especially at sub-microliter volumes [51], and can lead to

inaccuracies in reporting or failure in the worst case. Benchtop-scale assays specified

either formally or informally without explicit statements of timing constraints can be

scheduled in a way that causes problems on a resource-constrained microfluidic format:

constrained resources may lead a scheduler to store time-sensitive interactions past their

usable lifespan. To mitigate these concerns, Chapter 3 introduces language constructs

and compiler support in order to support and enforce these constraints; it formalizes the

time- and resource-constrained scheduling problem for assays specified to run on pLoCs,

and implements an efficient heuristic and optimal Integer Linear Programming model for

solving the problem.

2.1.2 Digital Microfluidic Biochips (DMFBs)

The compiler described in this paper targets a class of pLoCs called Digital Microfluidic

Biochips (DMFBs), which manipulate discrete droplets of fluid using electrostatic actua-

tion [130, 168]. DMFBs exploit a physical phenomenon called electrowetting, shown in

Fig. 2.1: an electrostatic potential applied to a droplet at rest modifies its shape and

angle of contact with the surface, causing it to spread. DMFBs exploit this property

to facilitate programmable droplet manipulation: droplet transport can be achieved by

activating and deactivating adjacent electrodes in sequence, as shown in Fig. 2.2. An

optional top “ground electrode” reduces the voltage required to move a droplet and

improves the fidelity of on-chip operations.

8

A DMFB is a programmable 2-dimensional array of individually addressable electrodes

(Fig. 2.3) which supports an instruction set consisting of five basic operations: store

(hold droplet at position (x, y), transport (move a droplet from position (x, y) to position

(x′, y′)), merge (combine two droplets), mix (combine two droplets and route them in a

rectangular motion), and split (separate a larger droplet into two roughly equal smaller

droplets) (Fig. 2.4) [187, 167, 75, 174, 86, 1]. An “executable program” is a sequence of

electrode activations supplied by a host PC or microcontroller. A compiler translates

a text-based assay specification into an executable program [41, 178]. A DMFB is

“reconfigurable” in the sense that each operation can be performed anywhere on the

electrode array and any given electrode may contribute to different operations at different

points in time during execution. A typical DMFB will integrate non-reconfigurable

resources such as I/O reservoirs on its perimeters, as well as heaters [137], sensors

[190, 140, 39, 223, 125, 206, 197, 121, 68, 199, 20, 170, 205, 126, 1], optical detectors

[218, 135, 136, 236], or online video monitoring [207, 16, 93, 65, 233, 127] into the array

itself.

Integration of sensors [190, 140, 39, 223, 125, 206, 197, 121, 68, 199, 20, 170, 205, 126, 1]

and online video monitoring [251, 138, 139, 92, 103, 2, 98, 99, 3, 184, 100, 127] allows a

host PC or microcontroller connected to a DMFB to obtain online feedback regarding

the state of the assay during execution, and facilitates cyber-physical control. At the

language design level, this provides targets for control flow: arbitrary computations can

be performed on acquired sensory data, including predicates that resolve conditions

at run-time [81, 41]. Feedback-control has been applied for precise droplet positioning

[206, 170, 20, 126, 16, 65, 93, 233, 127, 1], online error detection and recovery [251, 138,

9

Figure 2.1: The electrowetting effect: applying an electrostatic potential to a droplet
modifies its contact angle [130, 168].

Figure 2.2: Droplet transport is achieved by activating and deactivating electrodes in
sequence.

Figure 2.3: A DMFB (left) comprises a 2D array of discrete electrodes, with an optional
ground electrode on top. A cyber-physical feedback loop to a microcontroller is enabled
by sensory feedback.

Figure 2.4: DMFB instruction set architecture (ISA).

10

139, 92, 103, 2, 98, 99, 3, 184, 100, 127], and to provide control flow constructs at the

language syntax level [81, 40, 41, 178].

2.1.2.1 OpenDrop

OpenDrop (Figure 2.5a) is an open-source (hardware/software) DMFB that features

a modular cartridge design. Cartridge designs with integrated heaters are available,1

and custom cartridges supporting optical detection or varied electrode patterns for

application-specific usage have been demonstrated.2 OpenDrop is programmed through

an open-source graphical interface through which the user manually turns electrodes on

and off over time; an integrated joystick on the device allows for real-time user-control,

but can only actuate one electrode at a time. Chapter 5 utilizes OpenDrop’s electrode

layout for presenting technical concepts, and culminates with proof-of-concept execution

utilizing the methods presented throughout this part.

2.1.3 DMFB Compilation

Compilation of assays lacking control flow or timing deadlines is relatively mature. The

input is a fluidic variation of a directed acyclic dependency graph (DAG), where vertices

represent fluidic operations and edges represent “fluidic dependencies,” i.e., an edge

between vertices u and v indicates operation u produces a droplet that is consumed by

operation v. Figure 2.6 depicts the compilation path for a fluidic DAG, which must solve

three interdependent NP-complete sub-problems: scheduling of operations [52, 191, 221,

80, 176, 131], reconfigurable module placement [220, 245, 240, 241, 141, 129, 37, 142, 78],

and droplet routing [222, 24, 38, 246, 95, 194, 195, 112, 111].

1https://gaudishop.ch/index.php/product/opendrop-v4-cartridge-heated-pads/
2http://www.gaudi.ch/OpenDrop/?p=759, http://www.gaudi.ch/OpenDrop/?p=751

11

(a)

(b)
Figure 2.5: (a) An OpenDrop DMFB device with a 8× 14 cartridge. (b) The virtual
representation of the OpenDrop’s electrode arrangement we use in this paper.

Figure 2.6: A DMFB compiler must determine when and where operations will be
performed, as well as how droplets will arrive at their destinations.

12

The scheduler must determine exact times in which each operation starts and stops,

while observing fluidic dependency constraints within the dependency graph and physical

resource constraints associated with the target device. All five basic operations can

be performed at the same location as e.g., a heater (when off) or a detector; however,

heating and detection cannot be performed at any location on-chip. Thus, the compiler

must know the precise location of all I/O pads on the device perimeter and both the

location and function of all other integrated components. Once the DAG is scheduled,

the placer finds physical locations where each fluidic operation will be performed at each

time step. Droplet routing is tasked with transporting droplets to appropriate placed

locations at the appropriate times without inadvertently colliding with other live droplets.

If reagent residues may cause contamination of routing droplets, wash droplets may be

introduced by the router to prepare for subsequent routing [96, 249, 242].

While DAG-level compilation is mature, compiling more complex assays represented by a

Control Flow Graph (CFG) is still an active area of research. Early work in this context

targeted online error detection and recovery for the DAG compilation model described

above [251, 138, 139, 92, 103, 2, 98, 99, 3, 184, 100, 127]. With appropriate extensions to

handle CFGs, these techniques could be integrated into the runtime system that executes

assays compiled using the techniques described in this part on a DMFB, but is beyond

the scope of this work to design and evaluate such techniques. Two techniques have

been recently proposed for compiling CFGs: the first, which is orthogonal to what is

proposed here, is to interpret assays online, rather than compile them offline [81, 239].

During execution, the runtime analyzes sensory data to resolve conditionals and then

JIT-compiles each basic block, emphasizing compilation speed over solution quality. To

the best of our knowledge, prior work has not attempted to JIT-compile an assay on

13

the granularity of the CFG; any such approach could build on the techniques used here,

noting that the runtime overhead of mix operation resizing may be prohibitive. Further,

there is a complex interplay between coalescing and module resizing (see Chapter 4),

as resizing may affect interferences across the CFG during rescheduling; hence, the

combination of these optimizations are not well-suited for online compilation.

The alternative approach, which we build upon in Chapter 4, statically compiles a CFG

by using any of the aforementioned scheduling, placement, and routing algorithms on

each individual basic blocks (fluidic DAGs), and stitches together the results afterward.

We build directly upon the work in [41], which described these techniques; it introduced

the hybrid computational-fluidic IR used herein, and demonstrated how to compile a

CFG: each basic block could be compiled individually, with additional droplet routes

inserted at control flow edges. These routes ensure that each basic block begins with its

incoming droplets at the same position regardless of which control path is taken leading

into that basic block. As basic blocks are considered in isolation, unnecessary droplet

transport operations are introduced, leading to increased reagent residue waste, longer

execution times, and possible failure to compile.

Previous microfluidic placement work has taken inspiration from spatial computing: [52,

241, 78] and have adapted algorithms originally introduced for dynamically reconfigurable

FPGAs [18] to the microfluidic context. These algorithms, while practical and useful, do

not assume that tasks compiled onto a dynamically reconfigurable FPGA communicate,

and are thus unable to effectively reduce or eliminate droplet transport latencies when

applied to a microfluidic context.

14

The optimizations presented in Chapter 4 propose a compiler framework that take

principles from graph coloring register allocation [33, 32, 28, 70]: fluidic variables whose

lifetimes overlap “interfere,” and must therefore be placed at non-overlapping positions

on the spatial 2-dimensional array to prevent inadvertent mixing and cross-contamination.

Operations within basic blocks are defined atomically (i.e., an operation cannot start in

one basic block and finish in another); further, [41] splits fluidic variable live ranges at

basic block boundaries in accordance with the ϕ- and π-functions of the Static Single

Assignment (SSA) [42] and Static Single Information (SSI) [7, 208, 25] Forms, localizing

all interfering operations to isolated basic blocks, while ensuring a linearized def-use

chain over all variables. While [41] ensures that fully correct CFG compilation can

be achieved by considering basic blocks in isolation, and inserting inter-block routes

at control edge boundaries, producing a correct “executable program,” but, as noted

previously this does nothing to mitigate spurious droplet transport operations, and may

induce additional wash droplet requirements. By ensuring that fluidic operations oi and

oj having a non-interfering dependency edge (oi, oj) in the CFG are placed at the same

location, then otherwise necessary routing is eliminated entirely. This is identical, in

principle, to coalescing operations performed during register allocation; moreover, as

SSA(SSI) Form may introduce many copy operations at block boundaries, the techniques

can have significant effects on routing requirements between blocks.

In short, the strategies presented in Chapter 4 derive (both in principle and literally)

techniques from graph coalescing to minimize the number of transport operations that the

fluidic SSI Form from [41] inserts into the CFG. Additionally, when droplet transportation

requirements persist after placement, the placement mechanisms attempt to minimize

overall transport distances required by incorporating a static estimate of how critical

15

the transport operation is to overall assay execution time — i.e., by placing interfering,

but dependent, operations near one another, the transport routing can be effectively

minimized.

2.1.4 Language Design for Programmable Chemistry

Languages designed for programmable chemistry, including those intended for pro-

gramming DMFBs, can generally be classified into one of three categories: laboratory

automation, ontologies, or domain-specific languages. [198] provides a detailed review of

historical language development for programmable chemistry. The following is a brief

selection and description of some notable languages:

2.1.4.1 Ontologies

An ontology in synthetic biology and chemistry aims to standardize how scientists discuss

and disseminate information. Notable ontologies are the Synthetic Biology Open Language

(SBOL) [67] and EXACT [213]; by describing experiments and models in a common

language, scientists are able to concisely define properties and relations between concepts,

data, and entities involved in an experiment. Despite their aim, ontologies are unable to

directly execute experiments, and thus lack the ability to enforce reproducibility within

their design.

2.1.4.2 Laboratory Automation

Lab automation workflows aim to enforce reproducibility and remove human-error

by coupling standard inventories with formal/informal operational statements. [114]

specifies and composes processes from individual protocols, which are then parallelized

and scheduled on available laboratory equipment. In principle, inventories could be

16

supplemented to include pLoCs programmed using available domain-specific languages.

Cloud-based automation provides scientists the ability to remotely execute assays in

laboratories controlled by robots over the Internet. Assays are specified using lab- and

domain-specific languages, such as Transcriptic’s Autoprotocol 3 or Synthace’s Antha 4.

Similar to [114], these processes could be extended to facilitate operation of pLoCs, yet

would still require interaction with an appropriate high-level language.

2.1.4.3 Domain-Specific Languages for pLoCs

BioStream [230, 226] targeted a pLoC designed primarily for serial dilution protocols,

which pair fluidic mixers with fluidic memories. Now defunct, BioStream promised ease of

use by abstracting away architecture-specific details from the programmer and including

a set of algorithms that would automatically generate the dilution protocols from a set

of user-set target concentrations.

Aquacore [6, 5] is a pLoC technology comprised of a collection of microvalve-based

components connected to a centralized control bus, and is programmed using the assembly-

like AquaCore Instruction Set (AIS). Other high-level languages could be adapted to

output AIS with compatibility with Aquacore’s components, but this is out of the scope

of this part.

Originally an ontology, BioCoder [8] was later extended to target pLoCs [150, 81, 40, 41].

While a significant first-of-its-kind proof-of-concept in the direction of providing high-level

access to programming LoCs, the syntax was not intuitive, and it lacked any formal

semantics.

3http://autoprotocol.org
4https://docs.antha.com

17

Puddle [239], while not technically a domain-specific language, is an ongoing effort

to implement domain-specific APIs for read-eval-print-loop (REPL) programming of

a custom-designed pLoC. Puddle’s novelty is in its simplicity of interleaving fluidic

operations within a traditional language’s existing infrastructure through custom APIs.

As an API library, high-order concepts such as arrays, unbounded looping, and functions

using fluidic types are supported for free. Despite the relative simplicity of using, e.g.,

Python as a front-end, Puddle’s single-architecture target and choice to embrace complete

dynamism at the expense of static guarantees makes reasoning about fluidic types and

providing verifiable contracts (e.g., support for timing-constrained protocols) untenable.

BioScript [178] serves as a long-term replacement for BioCoder. It features a chemical

safety type system that warns programmers when potentially dangerous chemical reactions

may take place in a provided program, and formalizes its semantics for provably correct

operation. BioScript further shines in its syntactical constructs, where very-high-level

operations are specified in a cookbook style, enabling life scientists, who are not typically

trained in the idiosyncrasies of typical programming languages, to effortlessly and

concisely specify assays for use on pLoCs.

Work presented in this part leverages and builds upon BioScript for all proof-of-concept

implementations. Table 2.1 lists the operations BioScript supports and the corresponding

syntax, categorized by microfluidic technology complexity. The core of the language

consists of generic fluidic operations common to all LoCs, including declarations of fluidic

variables, mixing of fluids, and storage. Notably, to reduce the programming burden

and to keep the language small, certain constructs are omitted from the syntax that

can be directly inferred by the compiler or execution engine (transportation, storage).

BioScript enables programming control-flow constructs for pLoCs having integrated

18

sensors with conditional branches and while loops, as well as DMFB-specific operations

for reading and writing to integrated modules (detect, heat) and droplet splitting. The

detect instruction abstracts the reading from the hardware implementation, and can

be used for various read tasks: e.g., measuring temperature, mass, or fluorescence, etc.

While declaration of (non-recursive) functions is supported, BioScript’s compiler inlines

all function calls due to the execution of functions on pLoCs being non-trivial (Chapter 5

addresses this).

Table 2.1: Operations supported by BioScript

Target Feature Syntax

Core

Material Decl
Input
Output
Mix
Transport
Store
Repeat

manifest A

a = dispense 5 units of A

drain ab

ab = mix a with 10 units of B for 10s

/* inferred through routing */

/* inferred through scheduling */

repeat n times { ... }

Control Flow
Branch
Loop

if (...) { ... } else { ... }

while (...) { ... }

DFMB
Detect
Heat
Split

detect temperature on ab

heat ab at 30c for 10s

x = split ab into 2

Figure 2.7 depicts a simple assay written in BioScript. The BioScript syntax allows the

programmer to specify the latency of assay operations (e.g., “. . . for 1m”), but not

timing constraints on the intermediate products (fluids) that are generated and later

consumed (Chapter 3 addresses this limitation). BioScript provides the programmer

with abstractions for acquiring sensory data from the DMFB, processing that data, and

making control flow decisions based on the result of the computation.

19

1 /* inputs: sample, reagent */
2 analyte = mix sample with reagent for 1m
3 heat analyte at 80c for 2m
4 result = detect analyte for 30s
5 drain analyte

Figure 2.7: A simple assay written in BioScript.

2.1.5 Mixing Modules

Mixing fluids together is a common operation in any assay; the latency of mixing two

fluids depends on the number of electrodes that have been allocated to perform the

mixing and also the routing path that the droplet takes within the mixer [179] (see

Table 2.2). While larger mixers yield lower latency, they reduce the availability of spatial

parallelism on-chip. Several prior papers for single basic block compilation effectively

co-optimized scheduling and placement to account for different mixing latencies and their

associated resource consumption [240, 241, 141]. In contrast, the compiler additions

described in Chapter 4 includes a feedback loop that adjusts the size of different mixing

operations in order to optimize performance by exploring trade-offs between increasing

operation-level parallelism and/or reducing individual operation latencies. Although not

discussed, these techniques could be utilized in order to meet assay deadlines, as well

(see Chapter 3).

Table 2.2: Mixing module dimensions and their latencies [179].

Mixing Dimensions Mixing time (sec)

2× 2 9.95
2× 3 6.61
1× 4 4.6
2× 4 2.9

20

Chapter 3

Language and Compiler Support

for Time-Constrained Chemistry

3.1 Introduction

Today’s programming languages and compilers support timed operations (e.g., mix or

heat for s seconds) but do not support timing constraints on the intermediate fluids

that are produced and subsequently consumed during assay execution; for example, it

may be necessary that a fluid generated at time t must be consumed before time t+∆ to

prevent spoilage. Existing compilers aim to minimize assay execution time [177], but do

not enforce timing constraints. When available on-chip resources are scant, the compiler

may temporarily store a time-sensitive intermediate product beyond its usable lifespan.

To address these concerns, this chapter makes the following contributions:

21

• It introduces syntactical annotations that can be added to any microfluidic program-

ming language to allow specification of timing constraints for fluids; the annotations

are added to the BioScript language [178] as a proof-of-concept.

• It reformulates the resource-constrained scheduling problem for compilers targeting

Digital Microfluidic Biochips (DMFBs) and presents a new heuristic and an optimal

Integer Linear Programming (ILP) formulation to solve this problem.

• It presents two benchmark suites to evaluate a scheduler’s ability to solve the

updated scheduling problem, and compares existing scheduling methods against

those presented here, demonstrating their effectiveness

The remainder of this chapter is organized as follows: Section 3.2 describes the moti-

vation for timing constraints, and introduces syntactical annotations to associate them

with operations, culminating with a proof-of-concept implementation in BioScript.

Section 3.3 specifies the scheduling problem for DMFBs and introduces scheduling con-

straints; Section 3.4 presents heuristic and optimal algorithms to solve the scheduling

problem; Sections 3.5 and 3.6 summarizes the benchmarks used in our study and presents

an experimental evaluation of our proposed methods; finally, Section 3.7 concludes the

chapter and outlines potential directions for future research.

3.2 Timing Constraint Annotations

This section introduces and characterizes six types of timing constraints on the usage

of intermediate fluids that the designers of an assay may want to include in the assay’s

specification. To express these constraints, syntactic constructs are presented in the form

22

of annotations. As a proof-of-concept, the annotations are added to the syntax of the

BioScript language.

Table 3.1: Time constraint variants on the intermediate fluid between operations u and
v, which is generated when u completes at time t; syntax associates a constraint with u,
applying it to all (u, v) dependencies

Constraint Description New Syntax

SLE ∆ v must begin no later than t+∆ @use.in ∆
SGE ∆ v must begin no earlier than t+∆ @use.after ∆
SEQ ∆ v must begin at t+∆ @use.at ∆
FLE ∆ v must complete no later than t+∆ @finish.in ∆
FGE ∆ v must complete no earlier than t+∆ @finish.after ∆
FEQ ∆ v must complete at t+∆ @finish.at ∆

3.2.1 Timing Constraints

Assays that feature time-sensitive reagents must include timing constraints to guarantee

correctness. The designer of such an assay must be able to specify these constraints

unambiguously in a manner that is both readable by humans and executable or inter-

pretable by machines. Table 3.1 summarizes six timing constraints that can be applied

to an intermediate fluid produced by operation u and consumed by operation v; these

constraints are associated with the edge (u, v) in the associated DAG.

Table 3.2: Fluidic operations and their associated latencies

Operation Latency (in t time-steps)

input 2
output 0
split,merge 2
heat, sense programmer-specified
mix programmer-specified†

† – Ref [179] associates a mixer’s dimensions with concrete
latencies for homogenization; Ref [133] adjusts specified
latencies based on the chosen module size.

23

The constraints in Table 3.1 are categorized based on how they relate to the consumption

of the intermediate fluid; in each constraint ∆ is a non-negative value that represents

the amount of time specified in the constraint. Constraints starting with S (start) links

∆ to the start of the operation v consuming the droplet, while those starting with F

(finish) are associated with the completion of operation v. LE, GE, and EQ correspond

to the ≤,≥ and = comparison operators.

The full set of constraints can be expressed by either S or F groupings. For example, an

SLE constraint could enforce an FLE constraint by incorporating the latency of v into

the value of ∆.

The new syntax in the final column of Table 3.1 attaches an annotation to an operation

u which generates a droplet d; the associated constraint is then applied to edge (u, v)

where v is an operation that consumes d. Split operations may be inserted after u if

multiple operations will consume the fluid produced by u.

1 /* inputs: a, b, c, d, e */
2 @use.in 30s
3 ab = mix 1 units of a with 1 units of b for 15s
4 @finish.at 37s
5 cd = mix 1 units of c with 1 units of d for 10s
6
7 t_e = dispense 2 units of e
8 temp_e = split t_e into 2
9

10 @finish.in 15s
11 heat temp_e[0] at 30c for 15s
12
13 @finish.after 10s
14 heat cd at 90c for 35s
15
16 @use.at 5s
17 cde = mix cd with temp_e[0] for 5s
18
19 @use.after 5s
20 abcde = mix ab with cde for 10s
21
22 abcde = mix abcde with temp_e[1] for 5s
23
24 result = detect sensor on abcde for 5s
25
26 dispose abcde

Figure 3.1: A BioScript assay utilizing all six timing constraint variants.

24

3.2.2 BioScript Example

The annotations introduced in the preceding section can be added to any language;

we add them to the BioScript language [178] as a proof of concept. BioScript’s

type system ensures that no fluidic variable is used more than once, enforcing the

semantic that variable uses are destructive. Figure 3.1 shows a toy example assay,

written in BioScript and featuring timing annotations: to attach a time constraint

to the intermediate fluid (u, v), an annotation is inserted in the program immediately

before operation u.

As described in Section 3.2.1, a timing constraint constrains the duration of time between

a pair of operations – e.g., the @use.in 30s annotation on line 2 in Fig. 3.1 indicates

there is a SLE constraint on the droplet referred to by ab with ∆ = 30s. The annotation

associates the constraint with the definition of ab on line 2 and the use of ab on line

20, specifying that operation abcde = . . . on line 20 must start within 30 seconds of

generating the droplet. It is the responsibility of the compiler–in particular, of the

scheduler–to ensure that this constraint is satisfied.

3.3 Scheduling Problem

This section reformulates the DMFB scheduling problem to support timing constraints.

Using this updated formulation, the following section will present new constraint-aware

scheduling algorithms that can be integrated into a compiler. Table 3.3 lists the notation

used throughout this section; Table 3.4 lists the constraints that characterize a problem

instance.

25

The input is a DAG G = (V,E) and a description of the relevant physical parameters of

the DMFB architecture; details about the latter are deferred until Section 3.3.3. Each

operation u ∈ V has a latency L[u] ∈ Z+ (Table 3.2). The scheduler computes the

starting time of each operation S[u]. The objective is to minimize the latency of the

schedule, i.e.,

Objective : min

{
max
u∈V

F [u]

}
(3.1)

where F [u] is the finishing time of operation u:

F [u] = S[u] + L[u] (3.2)

3.3.1 Precedence Constraints

Precedence constraints are fundamental to scheduling. An edge (u, v) ∈ E means that

operation u produces a droplet that operation v will consume; v cannot commence until

u completes, i.e.:

S[v] ≥ F [u], ∀(u, v) ∈ E. (3.3)

3.3.2 Fluidic Identifiers (Types)

Scheduling is built on top of a set of identifiers, which we call types (not to be confused

with type systems [178]). Each operation u ∈ V has a type denoted T [u]. Likewise, each

physical resource in a DMFB can execute assay operations of at least one type.

Each input reservoir on the perimeter of a chip can supply one specific fluid; each output

reservoir collects one specific fluid. We treat each uniquely named fluid as its own type.

The sets of m and n input and output types are I = {i1, . . . , im} and O = {o1, . . . , on}.

26

The electrode array on the DMFB surface performs a set of reconfigurable operation

types: R = {split, store,mix,merge} (Fig. 2.4); droplet transport is implicit, and is not

included as a type. Operations such as heat and sense that require external modules

can be treated as unique types as well.

T = R ∪ I ∪O ∪ {heat, sense} is the set of types. T can be extended, for example, if a

DMFB integrates multiple sensor types.

3.3.3 DMFB Architecture

Next, we describe our representation of the DMFB architecture. The number of reservoirs

(on the perimeter of the chip) of a given input type if or output type of are denoted as

Nif and Nof , respectively, where f is the type of the fluid. To ensure that the scheduling

problem is tractable, we employ a virtual topology (Fig. 3.2), which partitions the DMFB

into a set of N work modules based on its dimensions. Absent the virtual topology, the

scheduler must effectively solve placement (itself NP-complete) to determine if a schedule

is legal; the virtual topology enables schedule legality to be specified via integer linear

constraints.

All work modules can execute reconfigurable operations of type R. Work modules

overlapping regions of the chip featuring integrated sensors or heaters can additionally

perform operations of type sense and heat respectively; the number of work modules

having these capabilities are denoted Nsense ≤ N and Nheat ≤ N , respectively. A work

module can store up to k droplets, depending on its size; at most N × k droplets may be

stored at the same time on the chip.

27

Figure 3.2: Virtual topology (VT): to ensure placing and routing feasibility, DMFB
resources are partitioned into a set of work modules capable of performing all instruction
in Fig. 2.4, with interference-free streets reserved for droplet transport. The VT for
this 11x8 DMFB exposes 4 work modules, with one capable of heating and one capable
of sensing. Interference regions completely surround each work module to prevent
inadvertent merging of droplets.

28

3.3.4 Resource Constraints

Let X[j, t] be the number operations of type j ∈ T scheduled at time t. The following

resource constraints must be satisfied at each time-step t:

X[i, t] ≤ Ni ∀i ∈ I (3.4)

X[o, t] ≤ No ∀o ∈ O (3.5)

X[heat, t] ≤ Nheat (3.6)

X[sense, t] ≤ Nsense (3.7)

X[j, t] ≤ N ∗ k − 1 ∀j ∈ R ∪ {heat, sense} (3.8)

Equations (3.4) to (3.7) ensure that the number of scheduled operations at time t does

not exceed the number of available resources that can execute those operations; Eq. (3.8)

limits droplet storage to prevent deadlock [77].

3.3.5 Timing Constraints

Let C be the set of all timing constraint types listed in Table 3.1 and let Et ⊆ E be

the set of time-constrained edges. Each edge (u, v) ∈ Et is labeled with a constraint

pair {C[u, v], D[u, v]}, where C[u, v] ∈ C is the constraint type and D[u, v] ∈ Z≥0 is the

associated duration. Let SLE, SGE . . . be the subsets of edges in Et that have the

29

T
ab

le
3.
3:

N
ot
at
io
n

N
o
ta

ti
o
n
/
V
a
ri
a
b
le

D
e
sc
ri
p
ti
o
n

Architecture

N
#

o
f
w
o
rk

m
o
d
u
le
s
th
e
V
T

p
ar
ti
ti
o
n
s
th
e
D
M
F
B

in
to

N
h
ea

t
≤
N

#
o
f
w
o
rk

m
o
d
u
le
s
ca
p
ab

le
o
f
h
ea
ti
n
g

N
se
n
se
≤
N

#
o
f
w
or
k
m
o
d
u
le
s
ca
p
ab

le
o
f
se
n
si
n
g

N
i f
,i

f
∈
I

#
o
f
in
p
u
t
re
se
rv
o
ir
s
w
it
h
ty
p
e
i f

N
o
f
,o

f
∈
O

#
o
f
ou

tp
u
t
re
se
rv
o
ir
s
w
it
h
ty
p
e
o f

k
#

o
f
d
ro
p
le
ts

a
w
o
rk

m
o
d
u
le

ca
n
st
or
e

OperationsandTypes

G
=

(V
,E

)
D
A
G
:
V

is
th
e
se
t
of

o
p
er
at
io
n
s;
E

is
th
e
se
t
o
f
fl
u
id
ic

d
ep

en
d
en
cy

ed
ge
s
b
et
w
ee
n
o
p
er
a
ti
o
n
s

R
=
{s
p
li
t,
st
or
e,
m
ix
,m

er
g
e}

S
et

of
re
co
n
fi
g
u
ra
b
le

op
er
a
ti
on

ty
p
es

I
=
{i

1
,.
..
,i

m
}

S
et

of
in
p
u
t
ty
p
es

O
=
{o

1
,.
..
,o

n
}

S
et

of
o
u
tp
u
t
ty
p
es

T
=

R
∪
I
∪
O
∪
{h
ea
t,
se
n
se
}

S
et

of
a
ll
op

er
at
io
n
ty
p
es

T
[v
]
∈
T
,v
∈
V

O
p
er
at
io
n
ty
p
e
fo
r
op

er
at
io
n
v

L
[v
]
∈
Z +

,v
∈
V

L
a
te
n
cy

o
f
o
p
er
at
io
n
v

S
[v
]
∈
Z ≥

0
,v
∈
V

S
ch
ed
u
le
d
st
ar
t
ti
m
e
fo
r
op

er
at
io
n
v

F
[v
]
∈
Z +

,v
∈
V

S
ch
ed
u
le
d
fi
n
is
h
ti
m
e
fo
r
o
p
er
at
io
n
v

X
[j
,t
],
j
∈
T

#
of

sc
h
ed
u
le
d
op

er
at
io
n
s
of

ty
p
e
j
at

ti
m
e
t

Timing

E
t
⊆
E

S
u
b
se
t
of

fl
u
id
ic

d
ep

en
d
en
cy

ed
g
es

h
av
in
g
ti
m
in
g
co
n
st
ra
in
ts

C
=
{S
L
E
,S
G
E
,S
E
Q
,F
L
E
,F
G
E
,F
E
Q
}

S
et

of
ti
m
e
co
n
st
ra
in
t
ty
p
es

C
[u
,v
]
∈
C
,(
u
,v
)
∈
E

t
T
im

e
co
n
st
ra
in
t
ty
p
e
fo
r
ed
ge

(u
,v
)

D
[u
,v
]
∈
Z ≥

0
,(
u
,v
)
∈
E

t
T
im

e
co
n
st
ra
in
t
d
u
ra
ti
o
n
fo
r
ed
g
e
(u
,v
)

S
L
E
,S
G
E
,.
..

T
h
e
su
b
se
ts

of
ed
ge
s
∈
E

t
h
av
in
g
th
e
m
a
tc
h
in
g
co
n
st
ra
in
t
ty
p
e
fr
om

C

30

T
ab

le
3.
4:

D
M
F
B

S
ch
ed

u
li
n
g
P
ro
b
le
m

C
on

st
ra
in
ts

C
o
n
st
ra

in
t

D
e
sc
ri
p
ti
o
n

Prec.

F
[u
]
=
S
[u
]+

L
[u
]

O
p
er
at
io
n
u
’s

fi
n
is
h
ti
m
e
is

it
s
st
ar
t
ti
m
e
+

it
s
la
te
n
cy

S
[v
]
≥
F
[u
],
∀(
u
,v
)
∈
E

O
p
er
at
io
n
v
ca
n
n
ot

st
ar
t
u
n
ti
l
op

er
at
io
n
u
co
m
p
le
te
s

Resource

X
[i
f
,t
]
≤
N

i f
,
∀i

f
∈
I

N
o
m
or
e
th
an

N
i f

in
p
u
t
op

er
at
io
n
s
of

ty
p
e
i f

ca
n
b
e
sc
h
ed

u
le
d
si
m
u
lt
an

eo
u
sl
y

X
[o

f
,t
]
≤
N

o
f
,
∀o

f
∈
O

N
o
m
or
e
th
an

N
o
f
ou

tp
u
t
op

er
at
io
n
s
of

ty
p
e
o f

ca
n
b
e
sc
h
ed

u
le
d
si
m
u
lt
an

eo
u
sl
y

X
[h
ea
t,
t]
≤
N

h
ea

t
N
o
m
or
e
th
an

N
h
ea

t
h
ea
t
op

er
at
io
n
s
ca
n
b
e
sc
h
ed

u
le
d
si
m
u
lt
an

eo
u
sl
y

X
[s
en
se
,t
]
≤
N

se
n
se

N
o
m
or
e
th
an

N
se
n
se

se
n
se

op
er
at
io
n
s
ca
n
b
e
sc
h
ed

u
le
d
si
m
u
lt
an

eo
u
sl
y

X
[j
,t
]
≤
N
∗
k
−
1,
∀j
∈
R
∪
{h
ea
t,
se
n
se
}

O
n
e
le
ss

th
an

th
e
m
ax

ca
p
ac
it
y
of

al
l
m
o
d
u
le
s
ca
n
b
e
sc
h
ed

u
le
d
si
m
u
lt
an

eo
u
sl
y

Timing

S
[v
]−

F
[u
]
≤
D
[u
,v
],
∀(
u
,v
)
∈
S
L
E

O
p
er
at
io
n
v
m
u
st

st
ar
t
n
o
la
te
r
th
an

D
[u
,v
]
af
te
r
op

er
at
io
n
u
co
m
p
le
te
s.

S
[v
]−

F
[u
]
≥
D
[u
,v
],
∀(
u
,v
)
∈
S
G
E

O
p
er
at
io
n
v
m
u
st

st
ar
t
n
o
ea
rl
ie
r
th
an

D
[u
,v
]
af
te
r
op

er
at
io
n
u
co
m
p
le
te
s.

S
[v
]−

F
[u
]
=
D
[u
,v
],
∀(
u
,v
)
∈
S
E
Q

O
p
er
at
io
n
v
m
u
st

st
ar
t
ex
ac
tl
y
D
[u
,v
]
af
te
r
op

er
at
io
n
u
co
m
p
le
te
s.

F
[v
]
−
F
[u
]
≤
D
[u
,v
],
∀(
u
,v
)
∈
F
L
E

O
p
er
at
io
n
v
m
u
st

co
m
p
le
te

n
o
la
te
r
th
an

D
[u
,v
]
af
te
r
op

er
at
io
n
u
co
m
p
le
te
s.

F
[v
]
−
F
[u
]
≥
D
[u
,v
],
∀(
u
,v
)
∈
F
G
E

O
p
er
at
io
n
v
m
u
st

co
m
p
le
te

n
o
ea
rl
ie
r
th
an

D
[u
,v
]
af
te
r
op

er
at
io
n
u
co
m
p
le
te
s.

F
[v
]
−
F
[u
]
=
D
[u
,v
],
∀(
u
,v
)
∈
F
E
Q

O
p
er
at
io
n
v
m
u
st

co
m
p
le
te

ex
ac
tl
y
D
[u
,v
]
af
te
r
op

er
at
io
n
u
co
m
p
le
te
s.

31

associated time constraints. The timing constraints are as follows:

S[v]− F [u] ≤ D[u, v], ∀(u, v) ∈ SLE (3.9)

S[v]− F [u] ≥ D[u, v], ∀(u, v) ∈ SGE (3.10)

S[v]− F [u] = D[u, v], ∀(u, v) ∈ SEQ (3.11)

F [v]− F [u] ≤ D[u, v], ∀(u, v) ∈ FLE (3.12)

F [v]− F [u] ≥ D[u, v], ∀(u, v) ∈ FGE (3.13)

F [v]− F [u] = D[u, v], ∀(u, v) ∈ FEQ (3.14)

3.4 Scheduling Algorithms

As noted earlier, the DMFB scheduling problem comprises a DAG G = (V,E) specifying

the assay to perform, a subset of edges Et ⊆ E that feature timing constraints, and a

set of parameters characterizing the DMFB architecture (see Table 3.3). The scheduler

must compute the start times S[u]∀u ∈ V such that precedence, resource, and timing

constraints are satisfied (see Table 3.4).

Prior work on DMFB scheduling decomposes the schedule on the granularity of time-steps,

typically 1 second [221]; assay operations are integer multiples of the time-step. Droplet

transport times are assumed to be orders of magnitude faster than assay operations, and

are assumed to be zero during scheduling; transport times are computed directly by the

droplet router [222], which is beyond the scope of this paper.

This section presents two approaches to our updated variant of the scheduling problem.

The first is a heuristic, Relative Interval Scheduling, that converges quickly but is not

guaranteed to find legal or optimal solutions; the second is an Integer Linear Program

32

will compute an optimal schedule, if one exists, but runs in exponential worst-case time

unless it is eventually proven that P = NP .

3.4.1 Relative Interval Scheduling

This section presents Relative Interval Scheduling (RIS), an efficient heuristic. Limited

pseudocode for RIS is available in Appendix C. RIS proceeds in two phases: the first

phase satisfies precedence and timing constraints, and the second satisfies resource

constraints. The scheduler fails if either phase cannot satisfy all constraints.

3.4.1.1 Phase 1 – Satisfying Precedence and Timing Constraints

The first phase of RIS produces an implicit schedule, which satisfies precedence (Sec-

tion 3.3.1) and timing (Section 3.3.5) constraints, but not resource constraints (Sec-

tion 3.3.4). This phase inserts storage operations into the DAG to ensure S[v] =

F [u],∀(u, v) ∈ E, ensuring that each droplet is either used or stored immediately after it

is produced.

For each edge (u, v) ∈ Et with constraint type C[u, v] and duration D[u, v] (see Sec-

tion 3.3.5), we consider three cases:

1 – Infeasible Edges: If C[u, v] ∈ {FLE,FEQ} ∧D[u, v] < L[v], then the constraint

cannot be satisfied; no legal schedule exists.

2 – Storage Node Insertion: If S[v] = F [u] violates a timing constraint, then a

storage operation s of appropriate duration is inserted into the DAG between u and v.

3 – Storage Windows: Let δ be the maximum value that can satisfy the constraint

should S[v] = F [u] + δ. To model this possibility, we associate a storage window

33

W [u, v] = δ with edge (u, v) indicating that we can store the droplet produced by

u for up to δ time-steps while satisfying the timing constraint. Additionally, we set

W [u, v] =∞ for each unconstrained edge (u, v) ∈ E \ Et.

Storage Window Expansion: Storage operations can be inserted along DAG

edges where storage windows exist. Consider an edge (u, v) ∈ E with storage window

W [u, v] = δ > 0. We can expand W [u, v] by inserting a storage operation s with latency

λ ≤ δ, and then reducing W [u, v] by λ. If W [u, v] remains positive, then subsequent

expansions may be possible; with these limits, storage window expansion cannot induce

new timing constraint violations.

Path Length Equalization: A path P in G is a sequence of vertices that are connected

by edges. The latency of P , denoted L[P], is the sum of the latencies of the vertices on

the path. Two paths P1 and P2 in a DAG are divergent-convergent if they share the same

initial vertex u and terminal vertex v, and no other vertices. Without loss of generality,

if L[P1] < L[P2], then one or more storage nodes totaling L[P2]− L[P1] time-steps will

need to be added to P1; this ensures that all droplets consumed by v will be present

at time-step S[v]. This can be accomplished by applying storage window expansion on

vertices in P1, stopping when L[P1] = L[P2]. If it is not possible to do so, then a legal

schedule does not exist. Equalizing the lengths of all divergent-convergent path pairs

ensures that S[v] = F [u],∀(u, v) ∈ E. We integrate path-length equalization with a call

to an algorithm that computes a latency-constrained schedule of the DAG, such as as As

Soon As Possible (ASAP) or As Late As Possible (ALAP) scheduling [153]; details are

omitted to conserve space. We abstract this process as a function Ω(G) which returns

an implicit schedule of operations in G, starting at time 0.

34

3.4.1.2 Relative Interval Forest

The relative interval forest is a data structure that encodes the implicit schedule cor-

responding to Ω(G) in a way that provides an efficient mechanism to test for resource

constraint violations at any time-step of the schedule.

Droplet Lifetime: The lifetime of droplet d can be characterized by a path Pd =

⟨u1, u2, . . . , um⟩ where u1 is the operation that produces d and um is the operation that

consumes d. The operations that produce new droplets are inputs, mixes, merges, and the

immediate successors of splits; the operations that consume droplets are outputs, splits,

and the immediate predecessors of mixes or merges. Sensing and heating operations do

not consume or produce new droplets; a sensing operation produces data from a droplet,

while a heating operation changes a physical property of the droplet.

Relative Interval Tree: Path length equalization ensures that S[ui+1] = F [ui], 1 ≤

i ≤ m− 1. In other words, the lifetimes of the operations that comprise the lifetime of

d are a set of contiguous intervals [S[u1], F [u1])[F [u1], F [u2]) . . . [F [um−1], F [um]) with

no gaps between them. To evaluate resource constraints, the scheduler may ask if an

operation of type j is processing droplet d at time t. The answer is ‘yes’ if there exists an

operation ui ∈ Pd such that S[ui] ≤ t < F [ui] ∧ T [ui] = j and ‘no’ otherwise. This query

can be answered in O(m) time using a linear search of the intervals, or in O(logm) time

by representing the intervals with a balanced binary search tree, which we call a relative

interval tree. We employ the latter, omitting details to conserve space.

35

(a) The DAG from Fig. 3.1

(b) Relative Interval Forest: droplet lifetimes are encoded as distinct interval trees within
the forest

(c) Phase II: storage windows are expanded to satisfy resource constraints
Figure 3.3: Relative Interval Scheduling (RIS): (a) is parsed by RIS in Phase I to impose
a schedule satisfying all timing constraints; given the architecture in Fig. 3.2, the Relative
Interval Forest (b) corresponding to the schedule found in Phase I exposes a resource
violation from [39, 49). During Phase II, RIS expands the storage window occurring at
[54,+inf), resolving this violation.

36

A relative interval forest consists of a set of relative interval trees for all the variables in

a DAG. A query Q[j, t] on a relative interval forest returns the set of operations of type

j scheduled to execute at time t, i.e.,

Q[j, t] = {u ∈ V | S[u] ≤ t < F [u] ∧ T [u] = j}. (3.15)

By querying the relative interval forest, it is straightforward to determine whether any

of the resource constraints listed in Table 3.4 are violated at time t.

3.4.1.3 Phase 2 – Satisfying Resource Constraints

Phase 2 of RIS tries to resolve any resource constraint violations present in the implicit

schedule Ω(G). It first resolves all resource constraint violations in each connected

component γ ∈ G, as described next, then checks for violations when all γ are considered.

Violations existing across connected components are trivially resolved by shifting compo-

nents’ schedules in relation to each other; in the worst case, components are scheduled

in a way where none of them overlap, as timing constraints and fluidic dependencies are

absent between them. Ω(G) returns when all constraints are satisfied.

Resolving Resource Violations: Without loss of generality, suppose that one of

Eqs. (3.4) to (3.7) is not satisfied in a connected component. Let ⟨ti, ti+1, . . . ti+m⟩ be the

maximum-length contiguous sequence of time-steps where resource constraints for type j

are not satisfied, i.e., X[j, tα] > Nj , i ≤ α ≤ i+m. We say that a resource violation of

duration m exists between the set of droplets Θ that correspond to operations returned

by queries Q[j, tα], i ≤ α ≤ i+m.

The basic strategy is to expand storage windows between some of the operations in the

respective lifetimes of some of the droplets in Θ, adjusting the schedule in a manner that

37

satisfies one or more resource constraints (i.e., reducing the value of X[j, tα]); however,

doing so may introduce new resource violations in other parts of the DAG. Whenever

a storage window is expanded, RIS recomputes the relative interval forest, iteratively

lengthening the schedule until all resource constraints are satisfied. For each distinct

pair of droplets {d1, d2} ∈ Θ, we expand storage windows along particular paths in the

DAG to offset their relative positions by m; there are three cases to consider:

1 – Convergent (or Divergent) Paths: If d1 and d2 are on paths that converge (or

diverge), we expand storage windows that exist after(prior to) the operations involved

in the violation.

2 – Divergent-Convergent Paths: If d1 and d2 are on a pair of divergent-convergent

paths, we expand storage windows by an equal amount on opposite sides of the offending

operations.

3 – Descendant-Ancestor Paths: If d1 and d2 have descendants with a common

ancestor ûa that is not an ancestor of the operations that produce d1 and/or d2, then we

expand either of the paths between ûa and the associated descendant.

If a violation of Eq. (3.8) exists within any connected component, where all droplets are

related by the first two cases described above, then RIS aborts; in this case, expanding

any storage windows would not reduce the number of simultaneously scheduled droplets

below the threshold.

38

3.4.1.4 RIS Example

Fig. 3.3a depicts the DAG corresponding to the BioScript assay shown in Fig. 3.1.

Phase 1 of RIS inserts storage operations and storage windows in the DAG, leading to

the construction of the relative interval forest on Ω(G) shown in Fig. 3.3b. For example,

the finish.after constraint with δ = D[u, v] = 10s on the edge (u, v) between the heat

(u) of variable cd and subsequent mix (v) of cd and e requires that F [v] ≥ F [u] + δ

(Section 3.2.1). As L[v] = 5 ̸≥ δ, phase one inserts a storage operation s into G with a

latency of δ − L[v] = 5 as described in Section 3.4.1.1. Additionally, as the constraint

allows v to finish at any time later than F [u] + δ, storage window W [s, v] = ∞ is

associated on (s, v). Phase 2 of RIS then finds the resource violation of the overlapping

heat operations over the interval [39, 49) shown in Fig. 3.3b and expands W [s, v] inserted

in phase 1 to resolve this constraint (Fig. 3.3c). In this state, the forest reveals that no

resource violations exist; hence, Ω(G) is a legal schedule of G on the given architecture.

3.4.2 Integer Linear Programming Formulation

We present an Integer Linear Programming (ILP) formulation of the DMFB scheduling

problem with timing constraints; an ILP solver can produce optimal solutions, but will

not be able to scale to large instances. The formulation derives from prior work ([177])

which does not support timing constraints.

The ILP scheduler first computes an upper bound B on the length of the schedule using

any efficient (and presumably suboptimal) heuristic [221, 177]. For each u ∈ V and

1 ≤ t ≤ B, we introduce a binary variable xu,t which is set to 1 if u is scheduled to start

at time t and 0 otherwise (Eq. (3.16)); the solver ensures that each operation is scheduled

to start at exactly one time-step (Eq. (3.17)) and determines the start time S[u] of each

39

operation (Eq. (3.18)):

xu,t =


1, if operation u starts at time-step t

0, otherwise

(3.16)

B∑
t=1

xu,t = 1,∀u ∈ V (3.17)

S[u] = t|xu,t = 1 (3.18)

The scheduling objective, operation finish times, and precedence constraints are obtained

directly from Eqs. (3.1) to (3.3).

Resource constraints from Eqs. (3.4) to (3.8) are obtained directly after first counting

the number of operations of each type that are scheduled at each timestep; we compute

each count as follows:

X[τ, t] =
∑

u∈v|T [u]=τ

t∑
j=max{1,t−L[u]}

xu,j , ∀τ ∈ T (3.19)

Storage operations are inferred from the schedule. For each edge (u, v) ∈ E, variable

zu,v,t is set to 1 if the corresponding droplet is stored during time-step t, S[v] > t > F [u]

and 0 otherwise.

zu,v,t =

t−L(u)∑
k=1

xu,k −
t∑

k=0

xv,k ∀(u, v) ∈ E (3.20)

X[store, t] =
∑

(u,v)∈E

zu,v,t 1 ≤ t ≤ B (3.21)

Timing constraints described previously in Eqs. (3.9) to (3.14) are modeled directly for

all (u, v) ∈ Et.

We observed that the ILP-based scheduler led to an inordinate number of seemingly

unnecessary storage operations, which increased the amount of work being done by the

40

placer and router downstream. To compensate, we introduced a secondary scheduling

objective to minimize the amount of allocated storage:

Minimize :
∑

X[store, t], 1 ≤ t ≤ B (3.22)

3.5 Benchmarks

To the best of our knowledge, benchmarks that presently exist for evaluation of mi-

crofluidic compilers and synthesis tools do not feature timing constraints akin to those

introduced in this paper. We created two sets of benchmarks by adding timing constraints

to existing benchmarks, all of which are DAGs. The original (unmodified) benchmarks

have been widely used in prior papers that evaluate DMFB scheduling [177] without

timing constraints.1

SLE-only consists of DAGs annotated with SLE constraints, serving to limit the amount

of time that a volatile reagent could be stored before spoilage occurs; all SLE constraints

were set with ∆ = 0 to maximally stress the schedulers. SLE-only is further separated

into three sections: the first (unnamed) section contains ELISA, an immunoassay that

detects various opiates in a sample, and the Polymerase Chain Reaction (PCR), which

amplifies DNA through replication. The Multiplexed section contains a multiplexed

version of PCR (with 4 targets to replicate), as well as 5 variants of an in vitro diagnostics

assay, where all combinations of the number of samples (s) and reagents (r) are evaluated.

Lastly, the ProteinSplit assays in the Split-Dilutes section employ high fan-out trees to

dilute a sample to varying concentrations.

1Listings of the benchmarks used here are available in Appendix B.2.

41

Mixed category DAGs were synthetically generated to stress-test the scheduler’s ability

to satisfy different types of timing constraints. The two versions of all six utilize all

six timing constraints introduced in this paper, while all eq, all finish and all start

use only the types of constraints that match their names. The last benchmark has an

infeasible set of constraints; no legal schedule exists.

3.6 Evaluation

3.6.1 Setup

All experiments were performed on a mobile PC with an Intel® Core™ i9 processor, with

1TB SSD storage and 32GB DDR4 memory running macOS 10.15.6®. All assays were

written in BioScript [178] using the constraint annotations introduced in Section 3.2.

Each assay was compiled and passed to an open source cycle-accurate DMFB synthesis

simulation framework [79] for evaluation.

We compare against four baseline schedulers available within the framework that do

not account for timing constraints: List Scheduling (LS) [221], Force-directed List

Scheduling (FDLS) [177], Path Scheduling (PS) [177], and an ILP-based scheduler

[221, 177], which we rewrote to use the Gurobi optimizer2. We implemented Relative

Interval Scheduling (RIS) within the same framework and extended the ILP scheduler

to include timing constraints (ILP-T).

For SLE-only, we target a 15 × 19 DMFB architecture featuring input ports with a

2-second latency, output ports with zero latency, and 5 heating and sensing regions

2https://www.gurobi.com

42

T
ab

le
3
.5
:
S
ch
ed

u
li
n
g
R
es
u
lt
s
an

d
E
x
ec
u
ti
on

T
im

e
fo
r
E
ac
h
of

th
e
S
ch
ed

u
li
n
g
A
lg
or
it
h
m
s
D
es
cr
ib
ed

in
S
ec
ti
on

3.
5

S
ch

e
d
u
le
d

T
im

e
(s
e
c
o
n
d
s)

E
x
e
c
u
ti
o
n

T
im

e
(m

il
li
se
c
o
n
d
s)

S
u
it
e

B
e
n
ch

m
a
rk

L
S

F
D
L
S

P
S

R
IS

IL
P

IL
P
-T

L
S

F
D
L
S

P
S

R
IS

IL
P

IL
P
-T

SLE-only

E
L
IS
A

F
ai
l
(1
)

F
ai
l
(1
)

F
ai
l
(1
)

7
,6
0
0

F
ai
l
(1
)

7
,6
0
0

-
-

-
4
8

-
33
3,
23
3

P
C
R

F
ai
l
(1
)

F
ai
l
(1
)

F
ai
l
(1
)

6
9
7

F
ai
l
(1
)

6
9
7

-
-

-
4

-
1,
22

0

Multiplexed

M
-P

C
R

1
,0
4
2

1
,0
4
2

1
,0
4
2

1
,0
4
2

1
,0
4
2

1
,0
4
2

1
4

11
,5
82

1
4

22
13
3,
43
6

10
4,
49
8

In
V
it
ro

2s
,2
r

1
5

1
5

1
5

17
1
5

1
5

2
3

1
3

5,
13
1

5,
15

8
In
V
it
ro

2s
,3
r

19
19

1
9

19
1
8

1
8

3
6

3
6

5,
21
0

5,
30

4
In
V
it
ro

3s
,3
r

F
ai
l
(5
)

F
ai
l
(4
)

F
a
il
(3
)

24
F
ai
l
(1
)

2
0

-
-

-
1
7

-
6,
00

5
In
V
it
ro

3s
,4
r

F
ai
l
(9
)

F
ai
l
(7
)

F
a
il
(1
)

27
F
ai
l
(3
)

2
3

-
-

-
3
6

-
7,
54

6
In
V
it
ro

4s
,4
r

F
ai
l
(1
0)

F
ai
l
(7
)

F
a
il
(2
)

32
F
ai
l
(1
)

2
8

-
-

-
7
7

-
10
,5
20

Split-Dilutes

P
ro
te
in
S
p
li
t1

F
a
il
(6
)

F
ai
l
(6
)

64
5
5

F
ai
l
(2
)

5
5

-
-

3
23

-
6,
05

7
P
ro
te
in
S
p
li
t2

F
ai
l
(1
2)

F
ai
l
(1
2)

91
F
ai
l
(R

)
F
a
il
(7
)

7
5

-
-

3
-

-
31
,9
02

P
ro
te
in
S
p
li
t3

F
ai
l
(2
4)

F
ai
l
(2
4)

14
5

F
ai
l
(R

)
F
ai
l
(2
0
)

1
1
5

-
-

1
2

-
-

32
2,
72
1

P
ro
te
in
S
p
li
t4

F
ai
l
(4
8)

F
ai
l
(4
8)

2
5
3

F
ai
l
(R

)
F
a
il
(5
6
)

F
a
il
(T

)
-

-
6

-
-

-
P
ro
te
in
S
p
li
t5

F
ai
l
(9
6)

F
ai
l
(9
6)

5
6
2

F
ai
l
(R

)
F
a
il
(T

)
F
a
il
(T

)
-

-
1
4

-
-

-

Mixed

al
l
si
x

F
ai
l
(6
)

F
ai
l
(6
)

F
ai
l
(6
)

1
0
0

F
ai
l
(5
)

1
0
0

-
-

-
5

-
14
,6
92

al
l
si
x
2

F
a
il
(4
)

F
ai
l
(4
)

F
ai
l
(4
)

2
3
7

F
ai
l
(4
)

2
3
7

-
-

-
2

-
11
,8
81

al
l
eq

F
ai
l
(7
)

F
ai
l
(7
)

F
ai
l
(8
)

6
4

F
ai
l
(7
)

6
4

-
-

-
4

-
5,
86

0
al
l
fi
n
is
h

F
ai
l
(2
)

F
ai
l
(2
)

F
ai
l
(2
)

3
8

F
ai
l
(2
)

3
8

-
-

-
1

-
4,
57

8
al
l
st
a
rt

F
a
il
(2
)

F
ai
l
(2
)

F
ai
l
(2
)

6
4

F
ai
l
(2
)

6
4

-
-

-
2

-
4,
35

2
in
fe
as
ib
le

F
ai
l
(1
)

F
ai
l
(1
)

F
ai
l
(1
)

A
b
o
rt

F
ai
l
(1
)

A
b
o
rt

-
-

-
1

-
15

0

F
ai
l:

(T
)
IL
P
-T

ti
m
ed

ou
t
w
it
h
o
u
t
im

p
ro
v
in
g
u
p
o
n
o
r
co
n
fi
rm

in
g
o
p
ti
m
a
li
ty

o
f
se
ed
ed

so
lu
ti
o
n

(#
)
n
u
m
b
er

of
ti
m
in
g
co
n
st
ra
in
ts

v
io
la
te
d

(R
)

R
IS

fa
il
ed

to
ov
er
co
m
e
re
so
u
rc
e
co
n
st
ra
in
ts

b
o
ld

b
es
t
re
st

u
n
d
er
li
n
e

o
p
ti
m
a
l
sc
h
ed
u
le

A
b
or
t:

sc
h
ed
u
le
r
re
p
or
te
d
in
fe
as
ib
il
it
y
a
n
d
a
b
o
rt
ed

-
ti
m
e
n
o
t
re
p
o
rt
ed

d
u
e
to

fa
il
u
re

43

available. For Mixed, we target the same DMFB with a single heating region, similar to

the scheduling example with resource constraint violation in Fig. 3.3.

Table 3.5 reports the length of each schedule (in seconds) along with the execution time

of each algorithm. For each benchmark, the shortest obtained schedule that satisfies

all constraints is reported in bold; optimal solutions, as verified by the ILP solver, are

underlined. Table 3.5 also reports scheduling failures:

• The baseline heuristics and unmodified ILP may find schedules that satisfy resource

and precedence constraints, but not timing constraints; we report the number of

timing constraint violations as Fail(#)

• RIS may satisfy precedence and timing constraints, but not resource constraints;

when this occurs, we report Fail(R)

• We give ILP and ILP-T a 4-hour timeout; if a legal schedule is not found within 4

hours, we report Fail(T)

We only report the execution time of successful scheduling runs; if a scheduler is able

to determine that no legal schedule can be found that satisfies all timing constraints, it

aborts and reports “infeasibility” which we consider to be an optimal result.

3.6.2 Simulation Results: Schedule Length

LS, FDLS, and ILP found legal schedules for 3 of the 19 benchmarks, but failed to

satisfy at least one timing constraint for the others. On average, ILP generated schedules

with 23% and 22% fewer timing constraint violations than LS or FDLS. Results for LS

44

and FDLS only differed for the 3 largest multiplexed In vitro benchmarks, with FDLS

having 24% fewer violations for them.

PS successfully scheduled 8 of the 19 benchmarks; it was more successful than FS, FDLS,

and ILP, especially in the Split-Dilutes subcategory, noting that PS was optimized for

DAGs with high fan-out [177]. ILP-T confirmed that PS’ schedules for ProteinSplit1-3

were suboptimal, but timed out for ProteinSplit4-5.

RIS succeeded in 15 of the 19 benchmarks, 10 of which were confirmed as optimal.

Notably, RIS produced a shorter schedule than PS for ProteinSplit1; however, its four

failures were for the larger ProteinSplit2-5 DAGs, which are all trees with high fan-out.

The failures occurred as a byproduct of the process for choosing storage windows to

expand when resource violations arise;determining better expansion orders is left open

for future work.

ILP-T reported the optimal time for 17 of the 19 benchmarks; the two failures are due

to timeout after 4 hours. In 5 of the 17 successful cases, ILP-T reported shorter schedules

than the best result obtained among the heuristics.

3.6.3 Execution Time

The four heuristics ran orders of magnitude faster than ILP or ILP-T. Among the

heuristics, RIS was a bit slower than LS or PS. The runtime of RIS was comparable to

FDLS for all but one benchmark (M-PCR), where FDLS ran orders of magnitude slower

(but still much faster than ILP or ILP-T). For the three benchmarks where ILP and

ILP-T found legal solutions, their runtimes were comparable for two, while ILP ran a bit

slower than ILP-T for the third (once again, M-PCR).

45

If a legal schedule that satisfies timing constraints is desired, a good strategy might

first try scheduling using RIS, followed by scheduling using ILP-T. The good-quality

schedules produced by RIS will provide a reasonable lower-bound on the schedules that

can be achieved.

3.7 Conclusion

This chapter identified and provided solutions to an important problem for writing

and executing assays on programmable microfluidic biochips; the key insight is that

most real world assays have timing-sensitive reactions — whether listed explicitly or

implied — which are unable to be specified or enforced using existing languages and

compilers. Any language and compiler could adopt the methods presented here to

enable fine-tuned control over timing-constrained operations at the granularity of any

straight-line program with no branches or branch targets (i.e., a basic block). Future

work should investigate precise methods to schedule programs satisfying time constraints

across multiple execution paths.

46

Chapter 4

Practical Compiler Optimizations

4.1 Introduction

The emergence of laboratory-on-a-chip technologies, enabled by technological advances in

microfabrication coupled with scientific understanding of microfluidics, have resulted in

many experimental laboratory procedures being miniaturized, accelerated, and automated.

While the bulk of microfluidic devices are essentially Application Specific Integrated

Circuits (ASICs), several programmable LoCs (pLoCs) have been demonstrated [187,

230, 6, 105, 63, 5].

While recent work on programming languages for pLoCs is promising [178], gaps still

exist in supporting existing architectures through compilation of programmed protocols;

namely, the severely constrained spatial resources of existing pLoCs lack supporting

compiler optimizations that are able to reduce latency requirements, increase operational

parallelism, or even successfully synthesize a result. To address these needs, this chapter

presents compiler optimizations that exploit the parallelism provided by the target

47

platform to execute as many concurrent chemical operations as possible, when practical, or

enable compilation through module resizing when space is limited. Section 4.2 reviews the

workflow for specifying and executing assays on pLoCs. Section 4.3 presents an updated

formulation of the microfluidic compilation problems (scheduling, placement, and routing)

in the context of assays featuring control-flow, as opposed to assays that can be represented

by a single basic block. Of note, the placement problem formulation (Section 4.3.3)

borrows ideas from graph coloring register allocation and spatial/data flow compilation;

Section 4.3.3.1 details global placement as an optimization problem that is solved

using an evolutionary heuristic, while Section 4.3.3.2 presents a unified global placement

approach where a modified interference graph is placed, rather than individually scheduled

operations. Section 4.4 reviews algorithms implemented. Compiler optimizations are

empirically evaluated via simulation using a set of benchmark applications obtained from

the scientific literature; discussion of benchmarks and evaluation is found in Section 4.5.

Finally, Section 4.6 concludes the chapter and outlines directions for future work.

4.2 Overview

A basic pLoC workflow for executing assays (depicted in Fig. 4.1), consists of three

parts: a front-end language compiler, a device-specific code generator, and a runtime

environment. The assay is specified in an appropriate domain-specific language such

as BioCoder [41] or BioScript [178]1, that seamlessly interleaves fluidic operations with

computation. The target is a cyber-physical DMFB (Fig. 2.3) which provides sensory

feedback to the runtime software that manages the device. This enables the programmer

to specify assays featuring arbitrary control flow: the assay obtains sensory feedback

from the device and performs computations on the acquired data; the result of the

1We utilize BioScript for all proof-of-concept examples

48

computation can be used as a condition which determines which fluidic operations to

execute next.

Figure 4.1: A front-end language compiler, code generator, and a cyber-physical runtime
form a pLoC workflow.

Our input language supports function calls, but does not support unbounded recursion.

The compiler’s preprocessor inlines all function calls, which converts the assay to one

procedure. The input language restricts all fluidic variables to be scalars; it does not

support fluidic arrays. We hope to relax these assumptions in the future.

Figure 4.2a depicts an assay specified in the BioScript language [178]. After semantic

parsing, we convert the assay to a hybrid computational-fluidic intermediate representa-

tion (IR) [41], as shown in Fig. 4.2b. This IR represents the assay as a Control Flow

Graph (CFG). Next, we convert both fluidic and computational variables to Static Single

Information (SSI) Form [7, 208, 25], whereby each definition of a variable dominates

each use, and each use of a variable post-dominates its definition, effectively linearizing

def-use chains. Each basic block is represented as a hybrid fluidic/data dependence

graph. Figures 4.2c and 4.2d respectively show the BioScript specification and hybrid-IR

49

converted to SSI Form: in this case, π- and ϕ- functions2 are inserted for one fluidic

variable.

Once CFG construction and SSI transformation is complete, the code generator then

schedules, places, and routes each basic block in the CFG onto an abstract representation

of a provided architecture. A static code generator [41] inserts inter-block routes at

compile-time, while an online interpreter [81] JIT-compiles each block on demand (and

must communicate directly with the runtime environment. The cyber-physical runtime is

composed of the pLoC and a connected microcontroller, which processes sensory feedback

produced by the pLoC, enabling e.g., control flow decisions to be made at run-time, or

dynamic error detection and recovery [251, 138, 139, 92, 103, 2, 98, 99, 3, 184, 100, 127].

4.3 An Optimizing Compiler for Cyber-Physical DMFBs

Compilation begins with a typeable program, whose CFG, including fluidic variables,

has been converted to SSI Form, as described above. To conserve space, we assume that

the reader is familiar with SSI’s ϕ- and π-functions, which respectively split variable live

ranges at branch convergence and divergence points [42, 7, 208, 25].

4.3.1 Scheduling

The first step is to schedule assay operations. Each basic block is scheduled individually.

The scheduler ensures that each operation starts and finishes within the basic block

containing it to ensure atomicity. Referring back to Table 2.2, the scheduler assumes

2× 2 mixers with 9.95s latencies; this assumption is later relaxed during Rescheduling

2SSI’s π-function (sometimes σ-function) defines a split set for a variable at the end of some basic
blocks where control flow follows, allowing a unique identifier for each conditional usage of the variable
in a similar way that a ϕ-function provides a single definition point for each variable.

50

1 dispense a
2 dispense b
3 dispense c
4 heat a
5 heat c
6 d = mix a with b
7 detect d
8 if (...)
9 dispense a

10 d = mix a with d
11 d = mix c with d
12 heat d
13 drain d

(a) (b)

1 dispense a0
2 dispense b0
3 dispense c0
4 a1 = heat a0
5 c1 = heat c0
6 d1 = mix a1 with b0
7 detect d1
8 d2, d3 = π(d1)
9 if (...)

10 dispense a2
11 d4 = mix a2 with d2
12 d5 = ϕ(d3, d4)
13 d6 = mix c1 with d5
14 d7 = heat d6
15 drain d7

(c) (d)
Figure 4.2: A simple assay written in BioScript (a) and the associated CFG (b) can be
augmented with SSI form’s ϕ and π nodes (c and d).

51

1 dispense a0
2 dispense b0
3 dispense c0
4 a1 = heat a0
5 c1 = heat c0
6 d1 = mix a1 with b0
7 detect d1
8 c2 = store c1
9 d2, d3 = π(d1)

10 c3, c4 = π(c2)
11 if (...)
12 dispense a2
13 d4 = mix a2 with d2
14 c5 = store c3
15 d5 = ϕ(d3, d4)
16 c6 = ϕ(c4, c5
17 d6 = mix c6 with d5
18 d7 = heat d6
19 drain d7

(a) (b)
Figure 4.3: Our scheduler adds implicit store operations (a) and updates SSI form to
generate a schedule (b) that captures the linear def-use chain that SSI form provides.

52

(Section 4.3.3.4). O’Neal et al. [177] present the problem formulation and survey many

scheduling heuristics that have been published to date.

The compiler infers droplet storage operations from the schedule and inserts them into

the IR. The IR treats storage as an explicit operation that uses (and consumes) its input

and defines a new output droplet. This may necessitate the insertion of additional π- and

ϕ- functions to maintain SSI Form, as shown in Figs. 4.3a and 4.3b. This representation

enables the placer (Section 4.3.3) to treat droplet storage the same as all other scheduled

assay operations.

The scheduler enforces resource constraints that conservatively over-approximate place-

ment. To simplify the discussion, we omit resource constraints involving I/O operations

(see Chapter 3 for more detail on resource-constrained scheduling). The scheduler par-

titions the DMFB into a virtual topology (VT) of N reconfigurable modules (Fig. 4.4)

based on a provided module size, providing deadlock free routing space around the work

modules. The VT provides several benefits to placement and routing (Sections 4.3.3

and 4.3.4); most important, a legal placement and route is guaranteed when using the

VT and supporting placement/routing algorithms. At any point in the schedule, a

reconfigurable module can perform one mix, split, or merge operation, or can store up

to k droplets, depending on its size. Any module that features an integrated heater

or sensor can perform a heating or sensing operation as well; let the number of such

modules be Nheat and Nsense respectively. Let rj(p) be the number of operations of

type j ∈ {mix, split,merge, store, heat, sense} scheduled at program point p. A legal

schedule must satisfy the following constraints for each program point p:

53

Figure 4.4: Virtual Topology: a DMFB partitioned into a 2× 2 array of work modules
exposed to the scheduler, where one module has a heater and one has a sensor. The
topology is arranged to provide deadlock free routing around the modules.

rheat(p) ≤ Nheat (4.1)

rsense(p) ≤ Nsense (4.2)

rmix(p) + rsplit(p) + rmerge(p) +

⌈
rstore(p)

k

⌉
+ rheat(p) + rsense(p) ≤ N

(4.3)

Scheduling failures may occur and are unavoidable in the general case, even if the problem

is solved optimally. If scheduling fails, the only option is to switch to a larger DFMB

target, or rewrite the assay. During compilation, switching to larger and faster mixers

Table 2.2 increases the likelihood of failure, which is one reason why we default to the

smallest, slowest mixer for the initial scheduling step. Failures due to module sizes are

addressed in Section 4.3.3.4.

54

4.3.2 Interference Graph

After scheduling, the compiler is able to construct a graph characterizing how operations

relate to one another, either with interference (i.e., they should not cross paths), or with

affinity (i.e., there is some dependency between operations). This section formally defines

the interference graph and describes how it is constructed.

4.3.2.1 Definitions and Properties

Let G = (V,E,A) be the interference graph [33, 32, 28]: V is the set of assay operations,

which have already been scheduled; thus, the lifetime of each operation in V , which is

contained wholly within each basic block, can be derived from the schedule. E is the set

of interference edges, and A is set of affinity edges that represent fluid transfers between

operations.

Let adj [vi] and aff [vi] denote the sets of interference and affinity neighbors of vi ∈ V ;

additionally, let adj ∗[vi] = adj [vi] ∪ {vi} and aff ∗[vi] = aff [vi] ∪ {vi}.

Each vertex is labeled with a type, denoted

type[vi] ∈ {mix , split ,merge, store, heat , sense}.

As shorthand, and albeit a slight abuse of notation, we define a meta-type, reconfig , as

the union of types mix , merge, split , or store.

The set of interference or affinity neighbors of type t are respectively denoted adjt [vi] =

{vj ∈ adj [vi] | type[vj] = t} and afft [vi] = {vj ∈ aff [vi] | type[vj] = t}; adjt∗[vi] and

afft
∗[vi] are defined analogously to adj ∗[vi] and aff ∗[vi].

55

4.3.2.2 Construction

An interference edge is placed between two operations whose lifetimes overlap; in other

words, for each pair of fluidic variables or operations vi, vj ∈ V , interference edge

(vi, vj) ∈ E exists if and only if the lifetimes of vi and vj overlap; in other words, vi and

vj must be placed at different locations on the surface of the DMFB. Let qi = (xi, yi)

denote the location at which operation or fluidic variable vi is placed (for non-unit-size

operations, such as 3× 3 mixers, the location can be defined anywhere, e.g., upper-left

corner, center, etc., as long as the definition is applied consistently). Two operations

(and/or stored variables) are placed “legally” if they do not overlap and there is at

least one row of unused electrodes between them. For a more precise definition, refer to

[220, 41]; details are omitted to conserve space.

Affinity edges arise from fluidic dependencies in the IR, including those arising between

fluidic variables used and defined by the ϕ- and π-functions inserted during SSI con-

struction [41, 178]. Conceptually, for each pair of non-interfering fluidic variables or

operations vi, vk ∈ V , an affinity edge vi, vk ∈ A exists if a droplet must be transported

between the locations where vi and vk are placed; thus, it is possible to eliminate a

droplet transport operation by placing vi and vk at the same location. This occurs in

three situations: operation vi produces a fluid that is used by operation vk (or vice-versa)

as discussed earlier; there exists a ϕ-function dj,k ← ϕj(. . . , di,j , . . .); or there exists a

π-function (. . . , dj,k, . . .)← πj(di,j).

Affinity edges can only be inserted between “compatible” operations. For example, a

mix operation is compatible with a heat because a mix operation can be scheduled on

a DMFB module that includes an integrated heater (presumably turned off). On the

56

(a) I/O interferences

(b) External module interferences

Figure 4.5: I/O & Module Interferences: All I/O reservoirs (a) are universal nodes; their
subgraph forms a clique. The subgraph of external modules (b) is a complete multipartite
graph, with each module type comprising a part.

other hand, heat and sense operations are incompatible: to date no DMFB devices has

integrated a heater and sensor at the same on-chip location.

The interference graph includes a complete multipartite gadget (Fig. 4.5b) to make

resource-related incompatibilities explicit. I/O operations bound to the same reservoir

cannot interfere, while I/O operations bound to different reservoirs explicitly interfere.

57

Without loss of generality, a sensing operation cannot be bound to a region of a DMFB

that features an integrated heater, and vice-versa.

Figure 4.8a shows the interference graph corresponding to the assay in Fig. 4.2 after

scheduling and storage insertion, and assuming that the target DMFB has at least two

heaters. Instructions 1, 2, 3, 9, and 13 are statically bound to I/O reservoirs. Operation 5

(heat c) overlaps with operations 4, 6, and 7; droplet c is stored after operation 7 (detect

d) completes. To conserve space, the interference graph omits the interference edges

that belong to the gadget in resource-interferences between operation 7 (detect d) and

the three heat operations (4, 5, and 12). Fluidic dependencies result in affinity edges:

(v4, v6), (v6, v7), (v7, v10), (v5, v11), (v7, v11), (v10, v11), and (v11, v12).

4.3.3 Placing a CFG

The next step, which is a novel contribution of this work, is to perform “global” placement

in a manner that is cognizant of the CFG, as opposed to prior work [41], which limited

the scope of placement to individual basic blocks. As noted in Section 2.1.3, a fluidic

dependency (vi, vj) represents a droplet di,j that is produced by vi and consumed by vj ,

which necessitates fluid transport; however, if vi and vj are placed at the same location, or

at least nearby, the transport operation can be eliminated or shortened. When compiling

a CFG, this observation generalizes to dependencies that cross basic block boundaries.

In SSI Form, droplets that are stored across basic block boundaries are represented

explicitly by ϕ- and π-functions; prior work has introduced techniques to translate out of

fluidic SSI Form [41], but did not attempt to minimize droplet transport latencies while

58

(a
)

(b
)

(c
)

F
ig
u
re

4
.6
:
A
n
S
S
A
/
S
S
I
p
ro
g
ra
m

fr
a
g
m
en
t
(a
),

sh
ow

n
w
it
h
a
si
n
g
le
ϕ
-f
u
n
ct
io
n
:
d
3
←

ϕ
(d

1
,d

2
).

A
n
ex
a
m
p
le

o
f
p
la
ce
m
en
t
th
a
t
h
a
s
n
o
t

b
ee
n
gl
ob

al
ly

op
ti
m
iz
ed

fr
om

th
e
p
er
sp
ec
ti
v
e
of

th
e
C
F
G

(b
):

th
e
op

er
at
io
n
th
at

p
ro
d
u
ce
s
d
ro
p
le
t
d
1
is

p
la
ce
d
at

th
e
sa
m
e
lo
ca
ti
on

as
th
e

o
p
er
a
ti
o
n
th
a
t
co
n
su
m
es

d
ro
p
le
t
d
3
(a
ft
er

re
n
a
m
in
g
v
ia

th
e
ϕ
-f
u
n
ct
io
n
),
el
im

in
a
ti
n
g
th
e
d
ro
p
le
t
tr
a
n
sp
o
rt

o
p
er
a
ti
o
n
if
th
e
p
a
th

o
n
th
e
le
ft

is
ta
k
en
;
h
ow

ev
er
,
th
e
o
p
er
a
ti
o
n
th
a
t
p
ro
d
u
ce
s
d
ro
p
le
t
d
2
o
n
th
e
ri
g
h
t
is

n
o
t
p
la
ce
d
a
t
th
e
sa
m
e
lo
ca
ti
o
n
a
s
th
e
o
p
er
a
ti
o
n
th
a
t
co
n
su
m
es

d
3
,
n
ec
es
si
ta
ti
n
g
th
e
in
tr
o
d
u
ct
io
n
o
f
a
n
ew

b
a
si
c
b
lo
ck

(v
ia

cr
it
ic
a
l
ed

g
e
sp
li
tt
in
g
[2
17
])

th
a
t
co
n
ta
in
s
th
e
tr
a
n
sp
o
rt

o
p
er
a
ti
o
n
.
G
lo
b
a
ll
y

o
p
ti
m
iz
ed

p
la
ce
m
en
t
(c
):

th
e
o
p
er
a
ti
o
n
s
th
a
t
p
ro
d
u
ce

d
ro
p
le
ts
d
1
a
n
d
d
2
a
re

p
la
ce
d
a
t
th
e
sa
m
e
lo
ca
ti
o
n
a
s
th
e
o
p
er
a
ti
o
n
th
a
t
co
n
su
m
es

d
ro
p
le
t
d
3
,
th
er
eb
y
el
im

in
a
ti
n
g
th
e
n
ee
d
to

in
se
rt

ad
d
it
io
n
al

d
ro
p
le
t
tr
an

sp
or
t
op

er
at
io
n
s.

59

doing so; Figure 4.6 illustrates the different results that may occur depending on whether

the placer accounts for transport operations that occur due to ϕ- and π-functions.

The global placement problem shares many principle similarities to graph coloring register

allocation [33, 32, 70, 28], however there are significant and subtle differences. The first

is that global placement must account for both scheduled operations and fluidic variables

that are stored on-chip, as both compete for space on the surface of the DMFB. The

second is that operations and variables must be placed on a 2D surface, as opposed

to being allocated to registers; this requires an extension to the graph coloring model,

as simply assigning distinct integer “colors” to two concurrent mixing operations is

insufficient to describe where they are placed. The third and final difference is that

there is no off-chip fluidic memory, which means that “spilling” is not allowed; if a legal

placement cannot be found, then code generation fails, and a larger DMFB is needed.

4.3.3.1 Global Placement as an Optimization Problem

These observations allow us to define global placement as a constrained optimization

problem. Let G = (V,E,A) be the fluidic interference graph and Q = {qi|vi ∈ V } be the

set of locations at which each operation or fluidic variable is placed. A global placement

solution is legal if the placement for each interference edge (vi, vj) is legal. The objective

is to minimize an estimate of the total distance traveled by each droplet, e.g.:

T =
∑

(vi,vj)∈E D
′(vi, vj)

It is straightforward to generalize this objective, e.g., to add additional weight terms to

favor shorter estimated transport distances in deep loop nests.

60

As an example, Figure 4.7a shows a scheduled basic block. Figure 4.7b shows the resulting

interference graph, which features three interference edges and one affinity edge (v1, v2).

Figure 4.7c shows a legal, but unoptimized placement, the places v1 and v2 at different

locations, thereby incurring the overhead of droplet transport. Figure 4.7d shows a legal

and optimized placement, where v1 and v2 are placed at the same location, thereby

eliminating the need to transport the droplet.

To solve the constrained global optimization placement problem (Section 4.3.3.1) in

practice, we used NSGA-II [47], a publicly available genetic algorithm3. As an iterative

improvement heuristic, NSGA-II produces locally optimal solutions, although the running

time and overall solution quality depend on a number of user-specified parameters. An

initial feasible solution is obtained using an efficient heuristic [78]. The solution is

encoded as binary variables of the form (xi, yi, vi, si), where vi and si are the orientation

and size of operation or stored variable vi; the number of bits required for xi and yi vary,

based on the maximum dimension of the architecture.

4.3.3.2 Adapting Graph Coalescing for CFG Placement

Alternatively, we can adapt the principles of graph coloring register allocation directly

to the placement problem. Here, we describe how coalescing the interference graph can

work toward a unified global placement solution, whereby (possibly coalesced) vertices

are placed, rather than discrete operations.

Coalescing merges non-interfering affinity-related vertices in the interference graph to

ensure that the corresponding operations are placed at the same on-chip location: this

eliminates the need to transport droplets, which can reduce the burden on placement and

3Source code available at: https://www.iitk.ac.in/kangal/codes.shtml

61

https://www.iitk.ac.in/kangal/codes.shtml

1 2

1

2
3

4

(a
)

1

2

3

4

(b
)

v
v 4

2v
v 3

1

(c
)

v

v
&

 v
v

2
1

4

3

(d
)

F
ig
u
re

4
.7
:
A

sc
h
ed

u
le
d
b
a
si
c
b
lo
ck

(a
);

th
e
re
su
lt
in
g
in
te
rf
er
en

ce
g
ra
p
h
co
rr
es
p
o
n
d
in
g
to

th
e
sc
h
ed

u
le
,
w
it
h
o
n
e
a
ffi
n
it
y
ed

g
e
(b
);

a
n

u
n
op

ti
m
iz
ed

p
la
ce
m
en
t
(c
):

si
n
ce

th
er
e
is

an
affi

n
it
y
ed
ge

b
et
w
ee
n
v 1

an
v 2
,
p
la
ci
n
g
th
em

at
d
iff
er
en
t
lo
ca
ti
on

s
n
ec
es
si
ta
te
s
d
ro
p
le
t
tr
an

sp
or
t;

an
d
an

op
ti
m
iz
ed

p
la
ce
m
en
t
(d
):

si
n
ce

th
er
e
is

an
affi

n
it
y
ed

ge
b
et
w
ee
n
v 1

an
v 2
,
p
la
ci
n
g
th
em

at
th
e
sa
m
e
lo
ca
ti
on

el
im

in
at
es

th
e
n
ee
d
to

tr
a
n
sp
or
t
a
d
ro
p
le
t.

62

routing (Sections 4.3.3 and 4.3.4), two NP-complete problems. Coalescing is implemented

as an affinity edge contraction operation [28, 70, 123, 109]: given an affinity edge

(vi, vj) ∈ A where (vi, vj) /∈ E, vertices vi and vj are merged to form new vertex

vij having interference and affinity neighbor sets adj [vij] = (adj [vi] ∪ adj [vj]) and

aff [vij] = (aff [vi] ∪ aff [vj]) \ {vi, vj}. Figure 4.8a shows the interference graph derived

from the scheduled CFG shown in Fig. 4.3b; Figs. 4.8b and 4.8c show two possible

coalescing outcomes. In this example, Fig. 4.8c has coalesced more affinity edges than

Fig. 4.8b. This, in turn, reduces the workload of the placer (Section 4.3.3) and router

(Section 4.3.4) downstream.

Coalescing here differs from register allocation in one key respect. Consider the example

shown in Fig. 4.9a: when coalescing (vi, vj) into vij , traditional mechanisms discard

(vi, vk), which may result in extended routes (Fig. 4.9b). We instead maintain the affinity,

allowing routes to be optimized by placing operations near each other (Fig. 4.9c).

When reconfigurable operations of different dimensions are coalesced, the coalesced

vertex is given the minimum rectangular dimension that can accommodate its constitu-

tions (see Fig. 4.10a). The type of a coalesced vertex has the most restrictive among

{reconfig , heat , sense}, as shown in Fig. 4.10b.

Next, we describe two important subroutines, followed by a description of two coalescing

heuristics adapted for our constraints. In the discussion that follows, we talk about

interference graph “vertices” rather than assay operations.

63

(a
)

(b
)
{4

,6
}
&
{7

,1
0,
11
}

(c
)
{6

,7
,1
0}

&
{5
,1
1,
12
}

F
ig
u
re

4
.8
:
(a

)
T
h
e
in
te
rf
er
en
ce

g
ra
p
h
fo
r
th
e
A
ss
ay

in
F
ig
u
re

4
.2
a
:
so
li
d
li
n
es

a
re

in
te
rf
er
en
ce
s,
w
h
il
e
d
o
tt
ed

li
n
es

a
re

a
ffi
n
it
ie
s
b
et
w
ee
n

n
o
d
es
.
N
o
te

th
at

al
l
in
te
rf
er
en

ce
s
in

F
ig
u
re

4.
5
ar
e
p
re
se
n
t
b
u
t
n
ot

d
ep

ic
te
d
;
(b

)
an

d
(c
)
sh
ow

th
at

a
co
al
es
ci
n
g
so
lu
ti
on

is
n
ot

u
n
iq
u
e.

64

(a) (b)

(c)
Figure 4.9: (a) vi has affinity with vj and vk, while vj and vk interfere; traditional
coalescing does not maintain the affinity edge when coalescing vij , which may result in
extended routes (b); by keeping the edge, we can optimize routes by placing dependent
operations near each other (c).

65

Simplification is a subroutine commonly used during register allocation, which we

here adapt for our purposes. Any vertex that trivially satisfies the scheduling resource

constraints above, but is not affinity-adjacent to any other vertices can be removed from

the graph: the rationale is that a legal placement for the simplified vertex can always be

found regardless of where all of its neighboring vertices are placed. Removing simplified

vertices from the graph creates opportunities for new coalescing while also rendering

other vertices simplifiable. Following repeated rounds of simplification, all vertices in

the remaining graph can be placed. Simplified vertices can then be placed by processing

them in reverse order of their removal.

Conservative Coalescing Coalescing is conservative if the coalesced vertex vij and

its interference neighbors satisfy the scheduler’s resource constraints (Eqs. (4.1) to (4.3)),

i.e.:

|adjheat∗[vij]| ≤ Nheat (4.4)

|adjsense∗[vij]| ≤ Nsense (4.5)

|adjmix
∗[vij]|+ |adjsplit∗[vij]|+ |adjmerge

∗[vij]|

+

⌈
|adjstore∗[vij]|

k

⌉
+ |adjheat∗[vij]|

+ |adjsense∗[vij]| ≤ N

(4.6)

Coalescing Strategy Iterated Coalescing, depicted in Fig. 4.11, is adapted from

iterated register coalescing [70], but without spilling. The iterated coalescer simplifies the

interference graph until it is not possible to do so any further. It then applies conservative

coalescing; if coalescing occurs, further simplification is performed; otherwise, a low-

degree vertex with at least one incident affinity edge is “frozen” i.e., the coalescer gives up

66

(a)

(b)
Figure 4.10: The rectangular dimensions of a coalesced vertex are the minimum dimen-
sions that can accommodate its constituent parts (a); a coalesced vertex takes on the
type of its most restrictive module (b).

67

Figure 4.11: Phase ordering of Iterated Coalescing [70]

hope of coalescing its incident affinity edges, thereby allowing the vertex to be simplified.

Iterated coalescing terminates when all vertices have been removed via simplification.

The graph is then rebuilt and passed to the placer. Conservatism is guaranteed by the

observation that the initial interference graph, simplification process, and conservative

coalescing strategy ensure that the scheduler’s resource constraints are satisfied at each

step of the heuristic.

4.3.3.3 Optimized CFG Placement

While the optimization approach in Section 4.3.3.1 worked at the granularity of individual

basic blocks, and iteratively adjusted each basic block to try to find a converging (locally)

optimal global placement solution, the updated model shown in Fig. 4.12 is able to utilize

existing placement methods with adjustments for placing (possibly coalesced) graph

vertices, rather than discrete operations.

68

F
ig
u
re

4.
12

:
O
ve
rv
ie
w

of
ou

r
D
M
F
B

co
m
p
il
er
.
T
h
e
fr
on

t-
en

d
co
m
p
il
es

an
as
sa
y
sp
ec
ifi
ca
ti
on

to
a
C
F
G

(n
ot

sh
ow

n
).

T
h
e
b
ac
k
-e
n
d
co
n
ve
rt
s

th
e
C
F
G

to
a
n
ex
ec
u
ta
b
le

fo
rm

a
t.

T
h
e
“
In
te
rf
er
en

ce
G
ra
p
h
”
,
“
C
o
a
le
sc
in
g
”
,
a
n
d
“
R
es
ch
ed

u
li
n
g
”
a
rr
ow

s
a
re

n
ov
el

a
d
d
it
io
n
s
to

tr
a
d
it
io
n
a
l

3-
st
ep

sy
n
th
es
is

(e
.g
.,
[7
9]
)

69

As before, the placer determines the location on-chip where each assay operation will

execute. A legal placement satisfies the constraint that operations vi and vj are placed

at non-overlapping positions for each interference edge (vi, vj) ∈ E. In addition to

supporting the new NSGA-II placement algorithm, the updated version of our compiler

updates two distinct placement strategies that have been published elsewhere: Virtual

Topology with Left-Edge Binder (VT-LEB) [78] and Keep All Maximal Empty Rectangles

(KAMER) [18]. The Virtual Topology aspect of VT-LEB refers to the partitioning of the

DMFB that the scheduler performs as described in Section 4.3.1 (see Fig. 4.4). Prior work

implemented these heuristics in a manner similar to linear scan register allocation [185]:

starting with a scheduled basic block, the placer scans each program point in sequential

order: operations scheduled to complete at the previous time-step are removed from the

current placement, and operations scheduled to begin at the subsequent time-step are

added to the placement.

Our compiler uses modified versions of NSGA-II, VT-LEB and KAMER to perform

placement on a coalesced interference graph rather than a scheduled CFG; vertices are

processed one-by-one in a worklist sorted by the earliest time step.

When coalescing is performed, affinity relationships between interfering vertices may still

exist, indicating exactly which vertices should be placed near each other; hence, after

placing vi, if aff [vi] ≠ ∅, we recursively process affinity neighbors prior to returning to

the sorted order (see Fig. 4.9c).

Let adj<[vi] be the set of vi’s interference neighbors that precede vi in the computed

order. Placement proceeds in a greedy fashion: operation vi can be placed at any position

that does not overlap the position(s) where operations in adj<[vi] have been placed. All

70

vertices that have been coalesced with/into vi are placed at the same location. The

resulting placement is guaranteed to be legal as it ensures that vi’s position never overlaps

that of any vertices in adj[vi]. VT-LEB guarantees that a legal placement can be found

because it ensures that all placement decisions adhere to scheduling resource constraints.

4.3.3.4 Mix Operation Resizing and Rescheduling

The rescheduling loop in Fig. 4.12 enables the compiler to adjust the size of mixing

operations (Table 2.2) during placement to reduce assay execution time, enable valid

placement results, or increase available operation-level parallelism. The availability

of space to accommodate larger mixing operations is not known until placement; on

the other hand, the benefits of adjusting the latency of a mixing operation cannot be

ascertained without rescheduling, and the updated schedule may change which fluidic

variable live ranges overlap, thereby rendering the interference graph invalid. This

observation necessitates the rescheduling loop.

The compiler uses a local search, which converges to a locally optimal solution, to adjust

mixing operation sizes. When placing an interference graph, the first mixing operation

or coalesced vertex oi that contains at least one mix operation invokes Algorithm 1 to

select an appropriate mixer size. The heuristic relies on two subroutines:

1. MaxParallel applies Dilworth’s Theorem [49] to compute the width, i.e., the

maximum number of operations that could be scheduled concurrently, of the basic

block that contains oi; if oi contains multiple coalesced vertices, MaxParallel

returns the maximum width of among all the basic blocks containing them.

71

2. CanFit computes the number of mixing modules of size s that can fit on a given

DMFB architecture. Referring back to Fig. 4.4, CanFit is effectively the same

subroutine that a scheduler would use to determine the resource constraints of the

target chip.

The heuristic first checks if oi’s scheduled module size CanFit MaxParallel operations.

If more parallelism is available than what is currently scheduled, it checks if smaller

modules CanFit more than those currently scheduled, and continues until it finds a

module size that CanFit up to MaxParallel operations.

The heuristic will increase oi’s size in two cases:

1. If the chip CanFit strictly fewer than MaxParallel operations, and the heuristic

is unable to increase the number of operations the chip CanFit by decreasing oi’s

module size, then it increases oi’s size as long as it does not further reduce the

number of operations that the chip CanFit.

2. If oi’s scheduled module size CanFit MaxParallel operations, then the heuristic

increases oi’s size to the largest point where MaxParallel operations CanFit

on the chip.

When the size of a mixing operation is updated, the size of any other mixing operations

that are coalesced with it are updated as well. If a mixing operation is updated during

placement, its latency is scaled as per Eq. (4.7) and the compiler loops back to scheduling:

t′ = t ∗ latencynew/latencyold (4.7)

72

For example, if the compiler changes a 10 second mix operation’s given work module

from a 2 × 3 to a 2 × 4 module, then the compiler computes the new latency as

t′ = 10 ∗ 2.9/6.1 ≈ 4.76 seconds. The compiler rounds the new latency up to the next

millisecond. The termination criteria to continue on to droplet routing is either (1)

module sizes are not updated during placement, so rescheduling is unnecessary, or (2)

the loop taken during a rescheduling loop failed during scheduling or placement. In the

case of (2), we revert to the best legal schedule and placement found. The interested

reader can find an example of module resizing in Appendix A.

Algorithm 1 Resizing Heuristic

1: function ChooseModuleSize(Block(s) b, Vertex oi)
2: current← oi.size
3: choice← current
4: max← MaxParallel(b)
5: currNum← CanFit(current)
6: updated← False
7: if max > currNum then
8: chosenNum← currNum
9: smaller ← current

10: while smaller ̸= smallest do
11: smaller ← decrease(current)
12: check ← CanFit(smaller)
13: if check > chosenNum then
14: choice← smaller
15: updated← True
16: chosenNum← check
17: if chosenNum ≥ max then break

18: if updated = False then
19: larger ← decrease(current)
20: check ← CanFit(larger)
21: while check = currNum OR check ≥ max do
22: choice← larger
23: if larger = largest then break

24: larger ← increase(choice)
25: check ← CanFit(larger)

26: oi.size← choice

73

4.3.4 Droplet Routing

Once a legal placement solution is obtained, each droplet must be routed from its source

to its destination; many papers published in the past 15 years have described routing

algorithms, and in principle any can be used [222, 24, 38, 246, 95, 194, 195, 112, 111]. The

most advanced routers also integrate washing operations to eliminate cross-contamination

[97, 250, 243]. The only additional requirement is that droplet routes must be inserted at

basic block boundaries; our compiler implements these routes as part of SSI elimination

[41].

4.4 Implementation

4.4.1 Overview

Our compiler targets an open-source cycle-accurate DMFB simulator [77, 79]; we modified

a back-end that can statically compile CFGs [41], and rely on the simulator to report

execution time. The simulator is primarily used for performance characterization under

idealized (i.e., fault-free) operating conditions.

As the simulator does not have access to physical sensors, it generates pseudo-random

numbers, constrained within realistic values, to represent sensor readings that are then

passed to the execution engine when confronted with a detect instruction. We used a

collection of benchmarks specified using the BioScript language, which is compatible

with the framework’s static compilation model [178].

Scheduling is performed block-by-block using a modified List Scheduling algorithm

[221, 78]. We construct the interference graph as detailed in Section 4.3.2 prior to

74

performing placement, using our novel NSGA-II algorithm or modified versions of VT-

LEB [78] or KAMER [18]. Finally, all methods use a greedy, yet effective, droplet router

[194, 78].

The NSGA-II heuristic, in its basic form, does not utilize coalescing or module resizing;

the basic 3-step synthesis method (Fig. 2.6) is instead followed. We configured NSGA-

II to use a population size of 100 and to run for 250 iterations. The initial feasible

solution is implanted in the initial population, and additional solutions are generated

via mutation and crossover operations. After each generation, encoded solutions that

NSGA-II discovers via evolution are extracted and examined for legality; the objective is

computed for legal solutions. The constraints and objectives are returned to NSGA-II

for the subsequent evolution. We maintain a copy of the best solution(s) found thus

far. After the final generation, we return the best legal placement solution that was

discovered.

4.4.2 Modification of Placement Algorithms for Placing Interference

Graphs

The updates to the synthesis model for utilizing a (possibly coalesced) interference

graph for placement is evaluated with all three aforementioned placers, but as coalescing

is abstracted away from placement, any existing placement heuristic could be easily

modified to operate on a coalesced interference graph. Our coalescing model employs

the three placement strategies described in Section 4.3.3. The modifications required on

these algorithms to place a coalesced interference graph are summarized here:

75

Virtual Topology with Left-Edge Binder (VT-LEB) [78]: We extended VT-LEB

to accept an interference graph as input and imposed the constraint that two operations

whose corresponding vertices are adjacent cannot be bound to the same work module,

which allowed our implementation of VT-LEB to be compatible with our proposed global

coalescing strategy: our updated VT-LEB binds vertices, rather than operations, to

available work modules; when a binding decision is made, all the operations that have

been coalesced into the interference graph vertex are bound to the same work module.

We added or modified 23 lines to the VT-LEB code to allow for VT-LEB to bind a

coalesced interference graph.

Keep All Maximal Empty Rectangles (KAMER) [18]: KAMER performs free

placement of operations for each time step in a given block one-by-one in an iterative

manner as follows:

1. the DMFB array is segmented into a set of maximum empty rectangles (MERs) –

the largest rectangles that do not have any placed operations

2. the operation oi being considered for placement then checks each MER to see

if it contains the appropriate resources required and has ample room to fit oi’s

dimensions.

3. the MER with the smallest area that fits oi is chosen for placement, and a module

is assigned to the location with oi’s scheduled time assigned to it

It is straightforward to modify KAMER to place an interference graph: when a vertex is

placed, all the operations that have been coalesced into that vertex are placed at the

same location. The size of the placed location of an individual operation or a coalesced

76

operation is equal to the size of the largest operation that has been coalesced into the

vertex. KAMER’s underlying algorithmic details (how to select free space, and how to

update the data structure that represents free space) remain the same. We added or

modified 31 lines to the KAMER code to allow KAMER to place a coalesced interference

graph.

NSGA-II: Coalescing does not impact the NSGA-II problem formulation in the

slightest: when a vertex is placed, the space and location allocated is equal to that of the

largest operation that has been coalesced into the vertex. As described in Section 4.3.3.1,

NSGA-II can optimize the placement of interfering vertices that are also affinity-adjacent.

Since the vertices interfere, coalescing is not possible and the corresponding operations

cannot be placed at the same location; however, droplet routing paths can still be

shortened by placing them near one another. We added or modified 18 lines to our

NSGA-II interface to enable these changes.

4.4.3 Modification of Placement Algorithms for Mix Module Resizing

While rescheduling is abstracted away from placement, the resizing operations, by

necessity, must be performed during placement, which necessitates a more substantial

revamp of existing methods. Our current implementation is only compatible with placers

that place operations one-at-a-time in a greedy fashion.

As the work module size in a virtual topology is fixed (Fig. 4.4), and the VT-LEB relies

on the virtual topology for binding, it is not possible to resize mixing operations with the

LEB without larger adjustments to the underlying resource scheduler, which is outside

the scope of this work. Additionally, as the NSGA-II placer’s current implementation

relies on an initial seed into the population of a placement given from LEB, we did not

77

implement resizing for the NSGA-II algorithm. Ostensibly, resizing with NSGA-II should

be possible; however, the heuristic used would be different. Specifically, as discussed

in [101, 46], optimizing for more than 2 objectives with NSGA-II not only results in

significantly longer computation, but also in poorer results. To encode NSGA-II with

the dual optimization criteria of parallelizing operations and reducing individual module

latencies on top of the current goal of reducing distances between affinity-adjacent

vertices would then likely not give much-improved results. We therefore leave for future

research the implementation of resizing optimizations using a different multi-objective

evolutionary algorithm that is well-suited for three or more optimization objectives.

As KAMER binds regions of the chip freely, we allow KAMER to dynamically adjust the

sizes of a module prior to it being bound using the method described in Section 4.3.3.4.

The application of Dilworth’s Theorem to find the maximum width of an assay is

accomplished through building a bipartite graph B from the block (where each part

of B = V , with edges from (u′, v′′) existing wherever u < v in the block), finding a

maximum matching M on B, and using M to partition the block into a minimal set of

w chains, the maximum number of parallel operations.

When an operation’s size as given from the scheduler is adjusted when placing a module,

we reschedule the assay using the updated module size. As the number of module sizes

we choose from is limited (Table 2.2), and the heuristic we use converges as a local search

(Algorithm 1), the number of times we might reschedule an assay is minimal. Module

resizing required more extensive modifications to the algorithm; around an additional

450 lines of code.

78

4.5 Evaluation

Table 4.1: Compile time and simulated execution times

Benchmark Compilation
Time (sec)

Execution
Engine Time
(m:s:ms)

Execution
Time

Broad Spectrum Opiate [12, 146,
108]

0.011 0:18:55 0:23:21

Ciprofloxacin [108] 0.023 101:31:80 128:54:32
Diazepam [91] 0.024 96:48:13 121:01:39
Dilution [91] 0.014 0:21:05 0:26:33
Fentanyl [146] 0.018 126:32:40 158:10:80
Full Morphine [91] 0.048 127:16:78 159:06:17
Glucose Detection [6] 0.012 0:23:77 0:29:73
Heroine [91] 0.020 126:32:40 158:10:80
Image Probe Synthesis [6] 0.015 8:38:96 10:47:50
Morphine [91] 0.018 126:32:40 158:10:80
Oxycodone [12] 0.026 126:32:40 158:10:80
PCR [6] 0.032 11:16:12 14:36:29
Cancer-detection [210] 0.016 1920:08:01 N/A

Even though we support physical chips, the expense associated with their use is prohibitive

for evaluation purposes; hence, we evaluate our compiler through simulation-based empir-

ical studies on known real-world assays specified for execution on DMFBs. Specifically,

we aim to evaluate the impact of global placement on compilation and assay execution

time, along with the ability to successfully compile onto very-small architectures. We

compare the traditional 3-step synthesis method against our NSGA-II approach, as well

as the updated model with coalescing and mix operation resizing. All reported averages

use the geometric mean over the ratios of each benchmark to avoid providing too much

weight to longer- or shorter-running benchmarks [64].

79

4.5.1 Experimental Setup

Experiments were performed on a 2.7 GHz Intel®; Core™ i7 processor, 8GB RAM,

machine running macOS®. We compare directly against a previously published compiler

[41] using an identical 15× 19 DMFB architecture. We also report results on 15× 15,

12× 12 and 8× 8 DMFBs to evaluate the impact of our mix operation resizing heuristic.

Reducing the amount of on-chip area and the number of heating and sensing models

allows exploration of trade offs between parallelism and operation latency.

4.5.2 Benchmarks

Our evaluation uses a set of DMFB benchmarks that were previously used to evaluate

the compiler that we use as a baseline for comparison. Ref. [41] specified them using a

variant of the BioCoder language, which is now deprecated; Ref. [178] translated these

into the BioScript language; listings of the benchmarks are given in Appendix B.1. Each

of these benchmarks were obtained by reading the scientific literature on DMFBs and

extracting specifications of assays that were used in practice by other research groups.

4.5.3 Compiler Configurations

The baseline DMFB compiler we compare against ([41]) does not employ coalescing or

mix operation resizing; it compiles a CFG one basic block at a time using the standard

VT-LEB algorithm for placement ([78]), eschewing optimizations across basic block

boundaries. The NSGA-II placer does not employ coalescing, but does attempt to

maximize the number of affinity-adjacent operations that are placed at the same location;

it also aims to place affinity-adjacent operations that cannot be placed at the same

location nearby one another to reduce the length of droplet routing paths. The Virtual

80

Topology with Left-Edge Binder (VT-LEB) and KAMER placers are evaluated for their

ability to place a coalesced interference graph, and KAMER is additionally compared

while module resizing is enabled.

4.5.4 Results and Analysis

Table 4.2 compares simulated assay execution times previously reported for the baseline

compiler [41] to the five configurations of the compiler presented here: NSGA-II (N),

NSGA-II plus coalescing (NC), VT-LEB placement plus coalescing (VC), KAMER

placement plus coalescing (KC), and KAMER placement plus both coalescing and mix

operation resizing (KCR). On average, VC, KC, and KCR reduce assay execution time by

1.1%, 1.2%, and 25.0% respectively. These results are not surprising, as assay execution

time is known to be dominated by schedule latency, not droplet routing time [222]; as

optimizations, coalescing aims to reduce droplet routing overhead while mix operation

resizing can lead to shorter schedules. We observed that convergence typically occurs

after 2 iterations of rescheduling when resizing is enabled.

The improvements reported for VC and KC over Ref. [178] indicate situations where

coalescing turns out to be more effective than the NSGA-II placer; however, NSGA-II

may discover different (and possibly better) solutions if the random number seed and

other configuration parameters are varied. Future work may extend the NSGA-II placer

to utilize a coalesced interference graph; the amount of work required to extend the

NSGA-II placer with resizing capabilities (which would entail re-scheduling and re-placing

at every perturbation) is prohibitive, so we did not evaluate this option.

81

The compiler described in Ref. [41] utilizes the same placer as VC, sans coalescing.

Adding coalescing capabilities yielded marginal improvements, due to the fact that

droplet routing does not dominate total assay execution time.

Mix operation resizing had a more profound impact on total assay execution time

than coalescing. Furthermore, Fig. 4.13 depicts an observed linear correlation between

the amount of time an assay is specified for mixing and the percentage decrease we

expect to achieve via resizing across DMFBs of varying size. At the smallest size,

8× 8 (Figure 4.13d), resizing allows us to compile several assays that failed to compile

successfully without this optimization turned on. Through inspection, we determined

that our resizing heuristic was able to avail the minimum required parallelism for these

assays by using a 1× 4 module size; the default 2× 2 mixer did not provide enough room

for a legal schedule.

Table 4.3 provides details into how coalescing impacts the placer’s workload and droplet

routing time. On average, coalescing reduces the number of operations that are placed

by 77%; this, in turn, reduces the amount of work that needs to be done during both

placement and routing. In terms of overall performance impact, the VC and KC placers

reduced droplet routing times by 9.4% and 8.6% compared to the baseline.

4.6 Conclusion

This chapter described the framework of an optimizing compiler that extends the scope

of programmable LoC compilation optimizations to the granularity of the CFG. The key

innovations were twofold: the formulation of the placement problem for CFGs that shares

82

T
ab

le
4
.2
:
Im

p
ac
t
o
f
co
a
le
sc
in
g
,
ch
oi
ce

of
p
la
ce
m
en
t
h
eu

ri
st
ic
,
an

d
m
ix

op
er
at
io
n
re
si
zi
n
g
on

to
ta
l
as
sa
y
ex
ec
u
ti
on

ti
m
e.

T
o
ta

l
E
x
e
c
u
ti
o
n

T
im

e
(m

:s
.m

s)

A
ss
a
y

B
a
se
li
n
e

N
S
G
A
-I
I

+
C
o
a
le
sc
e

V
T
-L

E
B

+
C
o
a
le
sc
e

K
A
M

E
R

+
C
o
a
le
sc
e

K
A
M

E
R

+
C
o
a
le
sc
e

+
R
e
si
z
e

B
ro
ad

S
p
ec
tr
u
m
O
p
ia
te

00
:1
8.
55
0

00
:1
7.
90
0

00
:1
8.
20
0

0
0:
1
7
.8
10

0
0:
16
.1
80

C
an

ce
rD

et
ec
ti
on

19
20
:0
8.
01
0

19
20
:0
6
.0
20

19
20
:0
6.
00
0

19
2
0:
05
.8
10

1
91
9:
24
.0
00

C
ip
ro
fl
ox
ac
in

10
1:
31
.8
00

1
00
:3
7.
17
0

10
0:
37
.1
0
0

1
00
:3
6.
91
0

1
00
:2
9.
95
0

D
ia
ze
p
am

96
:4
8.
13
0

96
:5
0
.0
00

96
:5
0.
18
0

96
:4
9.
76
0

9
6
:1
4.
97
0

D
il
u
ti
on

21
:0
5.
00
0

20
:4
0
.9
80

20
:4
3.
00
0

20
:4
1.
00
0

0
6
:2
5.
47
0

F
en
ta
n
y
l
et

al
.

12
6:
32
.4
00

12
6:
36
.0
00

12
6
:2
4
.5
40

1
26
:2
4.
33
0

7
2
:2
0.
60
0

F
u
ll
M
or
p
h
in
e

15
7:
21
.5
40

15
7:
20
.4
00

15
7:
21
.5
00

15
7:
19
.8
9
0

1
22
:5
2.
78
0

G
lu
co
se
D
et
ec
ti
on

00
:2
3.
77
0

00
:2
3.
22
0

00
:2
3.
59
0

0
0:
2
3
.7
30

0
0:
16
.7
30

Im
ag
eP

ro
b
eS
y
n
th

08
:3
8.
96
0

08
:2
2.
86
0

08
:2
2.
86
0

0
8:
2
2
.7
80

0
6:
58
.8
60

O
p
ia
te
D
et
ec
ti
on

N
25
2:
50
.4
00

25
2:
42
.0
00

2
52
:5
0.
10
0

2
52
:4
7
.5
00

1
4
4:
36
.5
40

O
p
ia
te
D
et
ec
ti
on

P
H

22
7:
04
.0
00

2
26
:5
5.
00
0

22
7:
03
.7
0
0

2
27
:0
1.
80
0

1
37
:0
1
.1
4
0

O
p
ia
te
D
et
ec
ti
on

P
M

35
3:
20
.7
00

35
3:
19
.9
80

35
3
:2
0.
20
0

35
3:
17
.1
00

20
9
:1
3.
70
0

P
C
R
D
ro
p
le
tR

ep
la
ce
m
en
t

40
:4
4.
00
0

3
9:
16
.9
60

39
:1
7
.8
90

3
9:
17
.1
20

3
2:
55
.1
70

P
ro
b
ab

il
is
ti
cP

C
R

ea
rl
y

07
:2
1.
00
0

07
:1
2.
40
0

07
:1
2.
42
0

07
:1
2.
39
0

0
7
:0
5.
43
0

P
ro
b
ab

il
is
ti
cP

C
R

fu
ll

11
:1
9.
00
0

11
:1
0.
55
0

11
:1
0.
60
0

1
1
:1
0.
55
0

1
1:
03
.6
10

P
C
R

11
:4
3.
00
0

11
:2
7.
35
0

11
:2
7.
37
0

11
:2
7.
38
0

1
1
:2
7.
37
0

A
v
e
ra

g
e
D
ec

re
a
se

:
1
.1
%

1
.1
%

1
.2
%

2
5
.0
%

N
-
n
eg
at
iv
e

P
-
p
os
it
iv
e

H
-
h
er
oi
n

M
-
m
or
p
h
in
e

83

T
ab

le
4
.3
:
Im

p
ac
t
of

co
al
es
ci
n
g
on

p
la
ce
m
en
t
eff

or
t
an

d
d
ro
p
le
t
ro
u
ti
n
g
ti
m
e.

#
M

o
d
u
le
s
P
la
c
e
d

D
ro

p
le
t
R
o
u
te

T
im

e
(s
.m

s)

A
ss
a
y

B
a
se
li
n
e

C
o
a
le
sc
e
d

B
a
se
li
n
e

N
S
G
A
-I
I

+
C
o
a
le
sc
e

V
T
-L

E
B

+
C
o
a
le
sc
e

K
A
M

E
R

+
C
o
a
le
sc
e

B
ro
ad

S
p
ec
tr
u
m
O
p
ia
te

5
2

00
.7
40

00
.8
80

00
.7
40

00
.9
10

C
a
n
ce
rD

et
ec
ti
o
n

11
4

00
.8
20

00
.7
10

00
.6
80

01
.0
00

C
ip
ro
fl
ox
ac
in

11
3

02
.3
90

02
.0
60

02
.4
50

02
.2
20

D
ia
ze
p
am

1
3

2
02
.6
00

02
.9
20

02
.6
70

03
.9
50

D
il
u
ti
on

1
1

2
00
.7
10

01
.1
50

00
.7
50

01
.1
50

F
en
ta
n
y
l
et

a
l.

11
3

02
.6
70

02
.1
40

02
.7
70

02
.5
40

F
u
ll
M
o
rp
h
in
e

1
9

8
05
.8
40

08
.0
50

05
.7
60

08
.4
20

G
lu
co
se
D
et
ec
ti
on

10
5

01
.4
70

01
.6
30

01
.2
50

01
.8
00

Im
a
g
eP

ro
b
eS
y
n
th

9
1

00
.7
70

00
.6
50

00
.5
30

00
.7
80

O
p
ia
te
D
et
ec
ti
on

N
49

4
06
.0
60

05
.6
20

05
.0
30

07
.2
30

O
p
ia
te
D
et
ec
ti
on

P
H

49
4

05
.8
20

05
.4
00

04
.7
70

06
.8
70

O
p
ia
te
D
et
ec
ti
on

P
M

4
9

4
08
.4
70

07
.6
80

06
.8
90

10
.0
30

P
C
R
D
ro
p
le
tR

ep
la
ce
m
en
t

4
2

00
.5
10

00
.2
30

00
.5
10

00
.3
50

P
ro
b
a
b
il
is
ti
cP

C
R

ea
rl
y

10
2

07
.6
10

03
.5
30

03
.9
20

05
.4
20

P
ro
b
a
b
il
is
ti
cP

C
R

fu
ll

8
2

00
.6
30

00
.3
40

00
.5
30

00
.3
90

P
C
R

8
2

00
.8
70

00
.4
00

00
.7
70

00
.5
50

A
v
e
ra

g
e
D
ec

re
a
se

:
7
7
.1
%

1
0
.3
%

9
.4
%

8
.6
%

84

(a
)
1
5
×
1
9
ch
ip

(b
)
15
×
15

ch
ip

(c
)
12
×
1
2
ch
ip

(d
)
8
×
8
ch
ip

is
h
am

st
ru
n
g
w
it
h
ou

t
re
si
zi
n
g

F
ig
u
re

4
.1
3
:
R
es
iz
in
g
m
ix

o
p
er
a
ti
o
n
s:

w
e
o
b
se
rv
e
a
li
n
ea
r
co
rr
el
a
ti
o
n
b
et
w
ee
n
th
e
ra
ti
o
o
f
ti
m
e
sp
en
t
m
ix
in
g
a
n
d
th
e
ex
p
ec
te
d
p
er
ce
n
t

d
ec
re
as
e
in

an
as
sa
y
’s

to
ta
l
sc
h
ed
u
le
.
T
h
e
si
ze

of
th
e
b
u
b
b
le
s
in
d
ic
at
e
th
e
ra
ti
o
of

ti
m
e
sc
h
ed
u
le
d
fo
r
I/
O

op
er
at
io
n
s.

W
it
h
ou

t
re
si
zi
n
g,

th
e

8
×
8
ch
ip

ca
n
o
n
ly

sy
n
th
es
iz
e
2
of

th
e
1
8
b
en

ch
m
ar
k
s.

W
it
h
re
si
zi
n
g
en

ab
le
d
,
w
e
ar
e
ab

le
to

su
cc
es
sf
u
ll
y
sy
n
th
es
iz
e
11

ou
t
of

th
e
18

.

85

many principle similarities to register allocation [33, 32], and a mix operation resizing

and rescheduling loop. We presented a novel heuristic to solve the placement problem in

isolation, as well as a generalized update to the placement problem enabling the adaption

of a register coalescing technique [28, 70]; the coalescing technique provides an easy

path for existing placement methods to place CFG-level interference graphs, rather than

individual operations within a basic block, which reduces the burden of placement and

routing during synthesis and eliminates or reduces otherwise-spurious droplet routes. The

resizing and rescheduling operations effectively reduce scheduled latency while increasing

instruction-level parallelism or enabling synthesis onto architectures that are otherwise

useless due to their restricted size. While there is certainly room to investigate more

effective heuristics that solve the various problems within the compiler, we believe that

the general back-end framework presented here represents the correct way to model the

constituent optimization problems that must be solved, along with their interactions.

Moreover, we believe that the most important topics for future investigation start at the

programming language level; for example, determining how to support function calls,

fluidic arrays, and fluidic SIMD operations; additionally, there is need to port BioScript

(and/or other similar languages) to a variety of pLoC targets in addition to DMFBs.

86

Chapter 5

Compiling Functions onto pLoCs

5.1 Introduction

This chapter describes the implementation for compiling function calls onto pLoCs, which

can be realized on a diverse array of devices, ranging from those that are microfluidic in

nature [1, 76, 86, 167, 174, 187] to pipetting robots [143, 23, 149] and cloud laboratories

[106, 35, 157].

While virtually all programming languages provide the programmer with syntactic con-

structs to specify functions/procedure calls, prior work on programming language and

compiler design for programmable chemistry has glossed over the issue, either providing

support exclusively for functions that can be inlined [178] or managing everything dy-

namically with a runtime interpreter [239]. This chapter provides a thorough treatment

of how to implement functions statically in the context of one specific microfluidic tech-

nology that shares many principles with spatial computing architectures; this treatment

is general enough to support functions that cannot be inlined, such as recursive functions

87

and functions that are provided as pre-compiled binaries without source code or an

intermediate representation.

Supporting functions in this context does not create novel algorithmic challenges that

need to be solved, but involves a number of observations about how a system that

manipulates fluids, rather than bits, must behave. To the best of our knowledge, these

observations have not been disseminated previously. Just as an example, a chemical

program that calls a function may have defined fluidic variables that are not used by

the function but are live across the call; this necessitates the creation of a stack for

fluid storage which must be maintained on a microfluidic architecture that does not

have a clearly delineated memory subsystem or the possibility of off-chip storage. These

observations inform both the implementation of functions at the compiler level and the

extent to which a programmer can expect to write fluidic programs that make extensive

use of nested function calls.

This chapter makes the following contributions:

• It distinguishes the unique complexities involved in compiling and executing functions

on reconfigurable spatial architectures with extreme memory restrictions and possibly

requiring device support for externally-attached modules (i.e., heaters or sensors).

• It introduces a cyber-physical paradigm to model both data and fluidic values we call

a split-technology stack, enabling bookkeeping and control of live fluidic values outside

the scope of a function call during its execution.

• It provides solutions for static compilation of chemical languages containing function

calls from source code or library (pre-compiled) function specifications.

88

• It implements our solutions in an open-source compiler for DMFBs, and provide

back-end support for OpenDrop, an open-hardware DMFB device.

The remainder of this chapter is organized as follows: Section 5.2 briefly presents

the various technological issues we must overcome to support functions these devices.

Section 5.3 presents an overview of how to address various difficulties when compiling

functions onto DMFBs. Finally, we present proof-of-concept evaluation in Section 5.4

using both cycle-accurate DMFB simulation and by direct execution using the open-

hardware OpenDrop device before concluding the chapter in Section 5.5 with directions

for future work.

5.2 Technology Issues

A DMFB has considerable more in common with spatial computing architectures (e.g.,

FPGAs) than CPUs; even so, important technology differences persist, and they inform

relevant aspects of this work. Semiconductor-based computing systems naturally separate

the physical resources used for logic (transistors), data transport (wires), and on-chip

storage (flip-flops, register files, caches); in contrast, a DMFB employs (groups) of

electrodes for all operations, noting that operations such as sensing or heating nonetheless

require a droplet be held in-place on a specific electrode. Second, most computing systems

employ some form of external storage such as EEPROM, DRAM, hard disk, or flash

memory, with greater density (e.g., bits stored per unit area/volume) than on-chip

storage; in contrast, DMFBs presently do not have external storage1, and, even if they

did, there would be no density advantage to storing 1µL of fluid on- or off-chip.

1This may change as liquid-handling robots [143, 23, 149] evolve; to date, external storage with fluidic
read/write functionality has not been demonstrated.

89

5.3 Fluidic Functions

Functions are ubiquitous in modern programming languages. As languages for DMFBs

evolve, and programs grow in size and complexity, it makes sense to include functions as

a first-class syntactic construct. Our focus here is how a compiler targeting a DMFB can

implement functions; syntactic considerations and performance overhead are secondary

concerns.

Why Not Inline? BioScript’s syntax allows programmers to write non-recursive

functions, all of which were inlined by the compiler [178]. While aggressive inlining

can negatively impact instruction cache performance for CPUs [151], such concerns are

irrelevant to DMFBs. One justification against inlining is to support recursion. While

we are unaware of any fluidic algorithms that are naturally expressed recursively, we

prefer not to make decisions that restrict expressiveness of programs, given the ubiquity

of recursive programming in computing. A second justification is to support pre-compiled

binaries that can be linked (statically or dynamically) without providing direct access to

the source code or intermediate representation. While it is unclear if there is a practical

use case for pre-compiled binaries in microfluidic programming today, we prefer to eschew

engineering decisions that would preclude this possibility in the future.

90

5.3.1 Function Definition

A function f is a mapping f : Dp → Dq, where p, q ∈ Z≥0 and Dp and Dq are ordered

sets containing p and q droplets respectively2. Let Din = ⟨I1, I2, . . . Ip⟩ ∈ Dp be the set

of input droplets (parameters) and Dout = ⟨O1,O2, . . .Oq⟩ ∈ Dq be the set of output

droplets produced by f . To simplify our initial presentation of key concepts, we will

assume that function f only applies the five operations shown in Figure 2.4; we will

add support for specialized operations, such as heating, and I/O operations that access

reservoirs on the DMFB’s perimeters, later in Sections 5.3.6 and 5.3.7.

5.3.2 Function Placement

Figure 5.1: A compiled function f requires an m×n region Rf . When compiling a caller
of f , the placer reserves an unoccupied region on the M ×N DMFB for Rf to use.

A DMFB is defined to be anM×N electrode grid with I/O reservoirs on the perimeter. A

function f can be compiled onto an m×n rectangular sub-region, denoted Rf , such that

m ≤M and n ≤ N ; existing DMFB compilation algorithms mentioned in Section 5.2 can

be adapted for this task. When compiling the caller, the placer allocates an unoccupied

m× n sub-region of the DMFB and places Rf there (Fig. 5.1).

2Groups of droplets (e.g., arrays, structs, unions, etc.) can be handled analogously, but are omitted
for brevity.

91

Figure 5.2: A function’s virtual space is mapped to the chip’s physical space.

5.3.3 Coordinate Spaces

Function f can be compiled without knowing precisely where it will be placed on a

DMFB. Once compiled, f can be invoked at different call sites in the program and f can

be placed at a different physical location on the DMFB at each call site. To support

relocation, f is compiled using a virtual electrode coordinate space, whose origin and

dimensions are distinct from those of the physical electrode coordinate space corresponding

to a real-world DMFB target. Once f has been placed, each electrode activation in the

virtual electrode coordinate space must be translated to the physical electrode coordinate

space. As shown in Fig. 5.2, if Rf ’s origin is placed at coordinate (a, b), the electrode at

virtual coordinate (x, y) translates to physical coordinate (x+ a, y + b).

5.3.4 The Physical Function Prototype

Let Cin and Cout respectively denote the initial and final positions of the input parameter

droplets in Din and output droplets Dout. Cin and Cout are determined when f is

compiled, and typically will be locations on the perimeter of the m× n virtual electrode

92

(a)

(b)

(c)
Figure 5.3: (a) The locations of all input and output droplets within a function prototype
Sf ; (b) when Rf is determined, the translated virtual coordinates are used for routing
input droplets prior to invoking f ; (c) f routes all output droplets to virtual output
coordinates prior to terminating.

93

coordinate space. This information is provided as metadata, which we refer to as f ’s

Physical Function Prototype3: Sf = (m,n, p, q, Cin, Cout) (Fig. 5.3a). We will subsequently

augment the physical function prototype with additional metadata in Sections 5.3.6

and 5.3.7 as we relax some of our simplifying assumptions.

After placing Rf , the caller translates each virtual coordinate (xi, yi) ∈ Cin to physical

coordinate (xi + a, yi + b) and routes the corresponding droplet there (Fig. 5.3b). Once

all input droplets are routed, the caller cedes control to f . Prior to termination, f

must route each output droplet to virtual coordinate (xj , yj) ∈ Cout, which translates

to physical coordinate (xj + a, yj + b) (Fig. 5.3c). When f terminates, the caller knows

the coordinates of all output droplets, and can route them to appropriate locations for

subsequent processing.

5.3.5 Stack Management for Fluidic Variables

In traditional programming, variables that are live across a function called are pushed

onto a stack prior to function invocation, and popped from the stack when the function

terminates. The stack (Fig. 5.4a, right) is implemented in memory, and contains

bookkeeping information (e.g., return address, stack and frame pointers), stack-allocated

variables, along with variables that are live across the call. Each function only sees the

portion of the stack allocated to its frame.

In a fluidic program, droplets that are live across a call to function f must be stored on-

chip, and outside of the region Rf where f is placed, while any computational variables

3In traditional computer programming, a function’s prototype specifies its type signature. Fluidic
types [178] can and should be included in a fluidic function’s prototype, for example, to facilitate program
analyses, and type inference, but are not needed for function placement.

94

1 function foo(float, droplet);
2
3 main {
4 A = dispense ...
5 B = dispense ...
6
7 x = detect fluorescence on A
8 y = detect fluorescence on B
9

10 C = foo(x, A)
11 dispose C
12 }

(a) A traditional computing platform manages data variables using a stack.

(b) The fluid “B” must be stored on the droplet stack, i.e., any unused surface of the
DMFB outside of function foo’s region for execution.

Figure 5.4: (a) A simple chemical program that features dispense statements (for fluidic
values) and detect statements (for data values); data variables are stored on a traditional
stack. For interleaving fluidic and data variables, we introduce a split-technology stack,
where data variables are traditionally stored, and fluidic variables are stored on the
surface DMFB prior to invoking a function (b).

95

(a
)

(b
)

(c
)

(d
)

F
ig
u
re

5
.5
:
W

h
en

p
la
ci
n
g
R

f
fo
r
a
fu
n
ct
io
n
ca
ll
to
f
,
ex
is
ti
n
g
d
ro
p
le
ts

m
ay

in
te
rf
er
e
(a
).

In
o
rd
er

to
su
cc
es
sf
u
ll
y
p
la
ce
R

f
,
a
ll
in
te
rf
er
in
g

d
ro
p
le
ts

a
re

ro
u
te
d
to

th
e
d
ro
p
le
t
st
a
ck

o
u
ts
id
e
R

f
’s

re
g
io
n
(b
).

A
s
f
ex
ec
u
te
s
(p
o
ss
ib
ly

co
n
su
m
in
g
d
ro
p
le
ts

a
s
it
d
o
es

so
),
li
v
e
d
ro
p
le
ts

ac
ro
ss

th
e
ca
ll
ar
e
m
ai
n
ta
in
ed

in
th
e
d
ro
p
le
t
st
ac
k
(c
).

F
in
al
ly
,
as
f
re
tu
rn
s,

d
ro
p
le
ts

th
at

ar
e
ou

tp
u
t
b
y
f
ar
e
ro
u
te
d
to

th
ei
r
n
ex
t
lo
ca
ti
on

,
a
n
d
a
n
y
d
ro
p
le
ts

th
a
t
w
er
e
m
ov
ed

o
u
t
of

th
e
w
ay

to
p
la
ce
R

f
ar
e
re
tu
rn
ed

to
th
ei
r
or
ig
in
al

lo
ca
ti
on

s
(d
).

96

live across the call can be pushed onto the CPU’s stack. We refer to this paradigm —

where data values are maintained by a CPU controller and fluidic values are maintained

on the DMFB as split-technology stack (Fig. 5.4). The droplet stack (Fig. 5.4b) can be

implemented using any unused region outside of Rf ; it does not need to be contiguous

and droplets do not need to be stored in any specific order on-chip; this is to avoid

lengthy routing paths that may occur if the droplet stack was pre-allocated to a specific

region of the chip.

Let d /∈ Din be a droplet that is live at f ’s call site. The placer pushes d onto the droplet

stack by routing it to a position outside of Rf , as shown in Figs. 5.5a and 5.5b; this

ensures that d does not inadvertently mix with droplets created by or used locally by f

within Rf . If d resides outside of Rf , then the push operation is implicit, as routing is

unnecessary. As a performance optimization, pushing d can be performed concurrently

with input parameter droplet routing, as discussed in the preceding section. When

f terminates execution, the corresponding pop operation is implicit, as the callee has

immediate access to d wherever d resides.

5.3.6 External Devices

Additional care needs to be taken when compiling functions that feature operations such

as heating or optical detection that are performed by external devices that are located

at pre-specified locations on (or beneath) the DMFB surface. For brevity, we consider

heaters exclusively, recognizing that the same principle applies to other types of devices.

Heaters are often larger than one electrode; for example, OpenDrop offers a cartridge

featuring three 2× 1 heaters (Fig. 2.5b). To compile a function that features one or more

97

Figure 5.6: The virtual coordinates of placed heat operations within a function f ’s
prototype are specified when the function is compiled (left). When placing f , the placer
must orient and place Rf in the physical coordinate system such that Sf ’s virtually-
bound heat operations align with heaters in the physical coordinate system (right).

heating operations, Rf must contain at least one virtual heater, and, Rf must be placed

in such a manner that its virtual heater aligns to a physical heater on the DMFB.

Let X be the set of operations in a fluidic program. For a given coordinate system,

mapping P : X → N2 that specifies the placement of each operation, and mapping

H : N2 → B establishes the positions of the heaters, i.e., H(x, y) = 1 if the DMFB

features a heater at coordinate (x, y), and 0 otherwise). If h is a heating operation placed

at coordinate P(h) = (xh, yh), the placer must ensure that H(P(h)) = 1.

We define Hp and Pp for the physical coordinate system and Hv and Pv for the virtual

coordinate system Rf . When f is compiled prior to distribution, each heating operation

h must be placed at position Pv(h) = (xh, yh) satisfying Hv(Pv(h)) = 1 in the virtual

coordinate system. When a program that calls f is compiled, the placer must satisfy

the constraint Hp(Pp(h)) = 1 (Fig. 5.6). To accommodate this constraint, the physical

98

function prototype (Section 5.3.4) is extended to include the location of heaters within

the virtual coordinate system (Fig. 5.6, left); notation is omitted for brevity.

5.3.7 Droplet I/O

When function f is generated as a pre-compiled binary, the compiler cannot know the

precise locations of the physical I/O ports on the perimeter of the DMFB, and where Rf

will be placed on the DMFB relative to those I/O ports. This creates a number of subtle

challenges when compiling functions that perform I/O operations that require access to

the ports. When f is compiled offline, the compiler can select an appropriate location

on the perimeter of Rf for droplet entry and exit, and can compute routing paths from

the entry point to the droplet’s initial use point, and from the droplet’s final use point

to the exit respectively; the compiler cannot determine a routing pathway from/to the

appropriate I/O reservoir, nor can it know the precise latency of droplet transportation.

Fig. 5.8 illustrates the preceding issues: within f , the droplet routing pathway from

input coordinate I0 to output coordinate O0 within the virtual electrode coordinate

space is known, and can be translated to the physical electrode coordinate space, as

described in section Section 5.3.3. In contrast, the pathways from the input reservoir to

I0 and from O0 to the output reservoir are not known when f is compiled; they are only

known when a subsequent program that calls f is compiled.

The initial position of each input droplet and the final position of each output droplet

on the perimeter of Rf can be added to the physical function prototype Sf ; the simplest

option is to re-use the coordinates for input parameter and output droplets (Cin and

Cout, defined in Section 5.3.4), although there is no requirement to do so. Droplet routes

99

(a)

(b) (c)
Figure 5.7: (a) A legal placement of Rf requires enough room around Rf so as to avoid
inadvertent mixing of fluids within Rf and any routing of droplets external to Rf . (b)
Blocking a required reservoir results in failure to route, unless the reservoir has a direct
path to the appropriate input at Rf (c)

100

Figure 5.8: I/O droplets routed to/from a function f during execution require a coroutine
external to f ’s control; when droplets arrive at f ’s boundary, their control is ceded to f .

within Rf can be computed when the function is compiled; the routes between I/O

reservoirs and the initial/final position of each droplet, as per Sf , can only be determined

when the function that calls f is compiled.

Precisely how to implement the route between I/O reservoirs and the perimeter of Rf

is unclear. Clearly, the caller must ensure that the placement at the call site does not

block any of the required routes (Fig. 5.7). One possibility is to compile f with a stub

that represents the partial route, and have the caller complete the stub. Another is

to implement the route using a coroutine that executes concurrently with f (Fig. 5.8).

Neither the stub nor the coroutine mechanism would be exposed to the programmer,

as droplet routes are implicitly determined from dependencies between operations that

define and use droplets. We oped for the co-routine approach in our implementation.

It is important here to recognize that I/O operations within a function may depend on

control flow conditions that can only be resolved dynamically, so it is not possible, in

the general case, to statically determine precisely when I/O operations will be issued.

If the droplet route must satisfy timing constraints [134], then f can communicate these

constraints to the caller/compiler by including them as non-executable metadata with

101

the pre-compiled binary. Without loss of generality, consider an input droplet whose

maximum allowable routing time is T . Let tf be the time spent routing the droplet from

the perimeter of Rf to the location within Rf where the droplet will be used. Then the

compiler must be able to route the droplet from the input reservoir to the perimeter of

Rf within time T − tf ; otherwise compilation will fail.

An additional requirement is that Rf cannot be placed in a manner that blocks all

possible routing pathways between I/O droplets and the physical I/O reservoirs on the

perimeter of the chip. Figure 5.7a depicts a legally placed function in which there is a

pathway from an input reservoir to position I0 for the droplet on the perimeter of Rf .

Figure 5.7b shows an illegal placement, under which the droplet cannot route from the

I/O reservoir to position I0 without entering Rf . Figure 5.7c depicts a legal placement

solution in which Rf still abuts the input reservoir, but is rotated such that the only

pathway from the input to Rf is through position I0; this rotation approach works in

this specific case, but may not generalize when Rf becomes larger and if the placement

abuts multiple I/O reservoirs.

5.3.8 Calling Context and Multiple Function Versions

Function f may be called from multiple sites in a program. At each call site, number of

droplets stored in the on-chip call stack will be equal to the number of droplets live across

all function calls in the chain leading to the current call site. The size of the on-chip

call stack determines the maximum available on-chip area to place Rf . Allocating more

space to a function will benefit its performance because: (1) more space means that

more fluidic operations can be scheduled concurrently (i.e., operation-level parallelism);

102

F
ig
u
re

5.
9:

A
co
ll
ec
ti
on

of
p
re
-c
om

p
il
ed

ve
rs
io
n
s
of

a
gi
ve
n
fu
n
ct
io
n
;
la
rg
er

ve
rs
io
n
s
m
ay

h
av
e
la
te
n
cy

ad
va
n
ta
ge
s
(e
.g
.,
in
cr
ea
se
d
p
ar
al
le
li
sm

),
w
h
il
e
sm

al
le
r
ve
rs
io
n
s
a
re

ab
le

to
b
e
le
g
al
ly

p
la
ce
d
w
h
en

a
ca
ll
in
g
co
n
te
x
t
li
m
it
s
fe
as
ib
le

p
la
ce
m
en
t.

103

(2) prior work has shown that allocating more on-chip space to mixing operations can

reduce mixing latency [180, 240, 241, 133].

If a single version of a function is provided, then it should be small enough to satisfy

the placement constraint at all call sites in the program; otherwise, compilation will fail;

however, better performance can be achieved at each call site (assuming that f exhibits

ample parallelism) by compiling a unique version of f that optimally uses the space

available.

If f is provided as a pre-compiled binary, then the calling context is not known when f

is compiled. While compiling f to be as small as possible will maximize the likelihood

that programs that call f can compile successfully; however,f will perform suboptimally

at call sites where more than the minimum amount of space is available.

One solution is to pre-compile multiple versions of f with different area constraints,

i.e., with different values of m and n (Fig. 5.9); while enumerating every admissible

combination of m ≤M and n ≤ N may be prohibitive, providing a few different versions

can create relatively low-cost opportunities for the compiler to optimize performance

by invoking a call to the best-performing implementation of f that satisfies placement

constraints at each call site.

5.3.9 Recursion

Recursive function calls create additional challenges. We start with the simple case: tail

recursion.

104

1
f
u
n
c
t
i
o
n

f
o
o
(
a
,

b
)

{
2

a
b

=
m
i
x

a
w
i
t
h

b
3

c
=

s
p
l
i
t

a
b

i
n
t
o

2
4

d
r
a
i
n

c
[
0
]

5
f

=
d
e
t
e
c
t

f
l
u
o
r
e
s
c
e
n
c
e

o
n

c
[
1
]

6
i
f

(
f

>
=

.
.
.

)
{

7
r
e
t
u
r
n

c
[
0
]

8
}

9
d

=
d
i
s
p
e
n
s
e

.
.
.

1
0

r
e
t
u
r
n

f
o
o
(
c
[
0
]
,

d
)

1
1

}

(a
)

(b
)

F
ig
u
re

5.
10
:
(a
)
A

(t
ai
l)
re
cu
rs
iv
e
fu
n
ct
io
n
th
at

d
o
es

n
ot

in
cr
ea
se

th
e
si
ze

of
th
e
st
ac
k
;
su
ch

a
fu
n
ct
io
n
d
o
es

n
ot

p
os
e
an

y
th
re
at

to
re
so
u
rc
e

w
a
st
e.

S
et
-u
p
an

d
u
n
w
in
d
in
g
o
f
re
cu

rs
iv
e
ca
ll
s
ca
n
b
e
h
an

d
le
d
b
y
th
e
fu
n
ct
io
n
w
it
h
ou

t
in
ve
n
ti
on

fr
om

th
e
ca
ll
er

(b
).

105

Tail Recursion: We first consider tail recursive calls that do not increase the size of

the stack (e.g., Fig. 5.10). In this case, any legal placement of Rf will suffice, as all calls

to f will occupy the same region. As shown in Fig. 5.10b, prior to each recursive call, all

parameter droplets Din must be routed to their corresponding virtual coordinates Cin on

the perimeter of Rf ; and at each point where f may terminate, the compiler must route

the set of output droplets Dout to their corresponding virtual coordinates Cout on the

perimeter. Based on these assumptions, unwinding such a recursive call chain can be

handled without any intervention from the caller.

General Recursion: In the general case, recursive functions can be written that create

fluids that are live across each recursive call site, thereby increasing the size of the stack.

This means that each successive call will have less available area, and that the DMFB

will eventually run out of space after a statically-computable maximum call depth. Any

recursive call sequence that exceeds the maximum call depth will fail.

If source code or the intermediate representation is available, general recursion can

be implemented using an interpreter that performs Just-In-Time (JIT) compilation

(Fig. 5.11). At each recursive call site, the interpreter can JIT-compile the function using

fast-running SPR algorithms. The program terminates prior to completion if SPR fails

due to lack of space. If static compilation is preferred, the recursive calls can be inlined

up to the statically-computable maximum call depth, including termination criteria if

the maximum call depth is exceeded during execution.

106

F
ig
u
re

5
.1
1:

W
h
en

so
u
rc
e
is

av
a
il
ab

le
,
a
J
u
st
-I
n
-T

im
e
(J
IT

)
ap

p
ro
ac
h
ca
n
m
ai
n
ta
in

th
e
d
ro
p
le
t
st
ac
k
u
si
n
g
th
e
en
ti
re

D
M
F
B
.

107

1 function f(I0) {
2 d1 = dispense ...
3 d2 = dispense ...
4 d3 = dispense ...
5 d4 = dispense ...
6 if (...) {
7 // I0, d2, d3, d4 all alive
8 ... = f(d1)
9 }

10 ...
11 }

(a)

(b)
Figure 5.12: (a) Pseudocode for a recursive function in which 4 droplets live across
recursive calls; (b) when using pre-compiled recursive functions, we compile to a maximum
call depth K (K = 4, here), where droplets live across a recursive call to f (i+1) from f (i)

are stored within Rf (i) .

108

A pre-compiled binary implementation of a recursive function is somewhat more subtle.

Let K denote the maximum call depth. The compiler can generate a sequence of function

calls f (1), f (2), . . . , f (K), in which f (i) recursively calls f (i+1) with an appropriate decrease

in available space due to stack growth, i.e., Rf (1) > Rf (2) > . . . > Rf (K) (Fig. 5.12). The

compiler will need to augment f (K) with termination criteria to prevent recursive calls

beyond the maximum call depth. The precompiled binary would consist solely of f (1)

and its associated physical function prototype Sf (1) ; the subsequent recursive calls to

f (2), . . . , f (K) would be implementation choices that would not be exposed to the caller.

If desired, the compiler could generate multiple versions of f (1) with varying dimensions

m× n, and varying maximum call depths K, in accordance with the discussion in the

preceding section.

5.4 Evaluation

5.4.1 Implementation

We implemented the strategies discussed in the previous section within BioScript’s

compiler [178, 133, 134] and added syntactical constructs to BioScript’s grammar to

support loading pre-compiled libraries. We continue to inline (non-recursive) functions

where source code is available. We provided the compiler with an architecture specification

matching OpenDrop’s standard 8×14 cartridge with its four I/O reservoirs and 3 heating

regions as shown in Fig. 2.5b. As BioScript’s compiler does not support physical

execution (it only targets a simulator), we implemented a simple translator and execution

engine4 to serially communicate with OpenDrop. While OpenDrop provides real-time

capacitance measures that can be used for droplet tracking, volume estimation, and error

4Available at https://www.github.com/tlove004/MFSimToOpenDrop.

109

https://www.github.com/tlove004/MFSimToOpenDrop

1 function thermocycle3(sample, n_iter, temp1, time1, temp2,
time2, temp3, time3) {

2 repeat n_iter times {
3 heat sample at temp1 for time1
4 heat sample at temp2 for time2
5 heat sample at temp3 for time3
6 }
7 return sample
8 }

Figure 5.13: An example of a simple thermocycling function that accepts 3 time and
temperature pairs, in addition to a number of iterations to cycle. A droplet-replenishing
version (i.e., due to evaporation [104]) can be achieved by including a volume-sensing
operation that directs distilled water to be added to the sample as necessary.

detection/correction, we have not yet implemented these features as they are not needed

to support function calls.

We also ran each benchmark on BioScript’s cycle-accurate simulator using an abstract

DMFB with the same dimensions as OpenDrop. Some benchmarks require more I/O

than OpenDrop provides; these were evaluated using the simulator exclusively.

5.4.2 Benchmarks

To the best of our knowledge, prior benchmark programs for DMFBs were limited in scope

and did not utilize functions (e.g., see Refs [41, 178, 133, 134, 239]). We rewrote some of

these benchmarks to utilize functions, and also wrote several synthetic benchmarks that

were aimed specifically to elucidate the technical concepts presented in the preceding

sections. All of our benchmarks are specified using BioScript, and are available in

Appendix B.3.

When translating pre-existing benchmarks, we extracted sub-steps as functions that, in

our opinion, could reasonably generalize to other domains, and would represent candidates

for distribution as pre-compiled binaries. For example, we define a function for thermo-

cycling (Fig. 5.13, used in PCR benchmarks), a common sub-step in assays requiring

110

DNA replication, where a DNA sample’s temperature is cycled between cooler/warmer

temperatures for a user-specified number of iterations.

5.4.3 Setup

When possible, we target the OpenDrop device depicted in Fig. 2.5 using alternating

current of 240 V at 1000 Hz5. When targeting OpenDrop, our primary concern is

the fidelity of the specification (e.g., droplet transport, mixing, etc., occurring as ex-

pected) as opposed to implementation and evaluation of chemical or biological reactions.

Experiments were performed using inert input fluids6 rather than chemical reagents.

5.4.4 Discussion

We assess our approach by comparing the loading and executing of pre-compiled functions

against equivalent programs where the same functions are inlined, and, for recursive

functions, by measuring the maximum call depth K we can statically compile. Tables 5.1

and 5.2 list the results for results obtained using a cycle-accurate DMFB simulator.

Non-recursive For each non-recursive benchmark in Table 5.1, we report a direct

comparison of inlined functions against loading equivalent pre-compiled libraries listing

the total routing times (in ms) execution times (in s). We observe an average ∼2%

increase in total execution times7 over inlining when source is available, but note that

these results have no comparison when only a pre-compiled library is at hand. As pre-

compiled functions are pre-determined, the time spent routing (outside of functions) is

5As suggested by OpenDrop.
6The clear, red, and blue fluids optimized for OpenDrop, available here.
7Using the geometric mean over ratios.

111

http://www.gaudi.ch/OpenDrop/?p=548
https://gaudishop.ch/index.php/product/digital-liquid-5ml/

Table 5.1: Results comparing execution of inlined vs. pre-compiled non-recursive functions
on a cycle-accurate DMFB simulator

Total Time

Name Execution−Type Routing (ms) Execution (s)

Synth1† Inlined 1150 18.1
Pre-compiled 710 19.2

PCR [6]
Inlined 410 590.5

Pre-compiled 100 590.5

DRPCR [104]
Inlined 410 592.5

Pre-compiled 100 593.5

avg-diff : 66.76% -2.04%

Table 5.2: Results for compiling recursive functions, where recursive calls may generate
additional droplets; a droplet-generation factor (DF) and maximum depth before failure
K is reported for compiling to an 8× 14 electrode grid.

Name DF K

SynthTail† 0 ∞
SynthHead† 1 3

ProteinSplit† [221] 2 1

112

reduced by ∼66% on average, although the time spent routing is comparatively minimal

with respect to total execution times.

Recursive For the recursive benchmarks in Table 5.2, we report a droplet generating

factor DF (i.e., how many droplets are added to the droplet stack at a recursive call)

and maximal call depth K before failure. While benchmark SynthTail is able to execute

without fail to arbitrary call depth, the other two benchmarks unsurprisingly reach

maximum call depth quickly, as the 8 × 14 electrode grid quickly has its free regions

consumed. Execution and routing times are dependent upon the call depth; hence,

we omit their inclusion. Notably, we ran these benchmarks again after inlining K+1

recursive calls, and were also unable to compile at this depth; the restricted grid size

was untenable to find legal SPR results.

OpenDrop Benchmarks capable of executing on OpenDrop’s architecture are marked

with a †. For recursive functions, we statically compiled to the discovered maximum call

depth K. We were able to successfully compile electrode activations for all benchmarks

targeting OpenDrop, and used the translator/execution engine described in Section 5.4.1

to serially control the device.8 For control-decisions requiring sensory feedback, we simu-

late feedback data (using pseudo-random number generation within reasonable bounds)

as proof-of-concept modulo online monitoring equipment. All marked benchmarks suc-

8An example of execution is linked in Appendix B.3.

113

cessfully transported droplets as expected; as far as we are aware, this is the first time a

high-level language has been compiled for direct execution on a commercially-available

DMFB.

5.5 Conclusion

In this chapter, we presented important advancements for the programmability of

DMFBs, enabling scientists to disseminate experimental chemical protocols in the form

of parameterized functions. Despite unique challenges in dealing with physical fluids

when setting up and executing a function call, we show that static compilation is tenable,

preserving strong guarantees of success that are important when expensive reagents

are in use. Proof-of-concept results show that our methods are applicable to real-world

architectures available for use today. While there is room to investigate further application

of our methods (e.g., to inherently dynamic programming models like Puddle’s), we

believe the contributions presented herein enable scientists to accelerate the sharing

of repeatable chemical experimentation on DMFBs, and can assist in overcoming the

ongoing repeatability crisis.

114

Chapter 6

Conclusion

Programmable labs-on-a-chip (pLoCs) have promising benefits that could disrupt the

reproducibility crisis in the life sciences, while reducing costs, increasing safety, and

accelerating analytical results of biochemical assays. Despite the many promises that

pLoC devices offer, their unwieldy operation prevented them from being more widely

adopted. While languages and compilers for specifying and synthesizing assays have

reached a relative level of maturity, gaps between front and back-ends revealed that a

ready-to-adopt end-to-end workflow was out of reach. This part presented necessary

additions to the workflow to close these gaps, and demonstrated their utility by executing

assays on a readily available open source and open hardware pLoC. With identified gaps

closed, scientists have a more manageable path toward adopting these devices into their

workflows.

115

Part II

MediSyn: A Modular

Pharmaceutical Discovery and

Synthesis Framework

116

Chapter 7

Introduction

With few exceptions, the process of discovering and developing a new drug takes anywhere

from 10-15 years and costs upwards of $2.6 billion US [169]. Despite this overhead,

modern medicine has increased the duration and improved the quality of life around

the globe, and has given rise to a $500 billion US pharmaceutical enterprise. In spite

of this, nine of the ten leading causes of death in the US are directly related to disease

[30]. Moreover, new disease-causing pathogens continue to emerge and wreak havoc on

humanity, triggering years-long searches for new drugs.

In this part, we adopt aspects of inductive program synthesis to the domain of drug

discovery, where input/output examples form a specification of drugs operating on target

pathogens, and programs are string representations of a drug’s primary structure.

Consider the problem of inductive program synthesis, where the goal is to find a program

conforming to a particular semantic and/or syntactic form that satisfies a specification

117

given as input/output examples[107, 82, 188].1 Solutions typically rely on domain-specific

languages to constrain possible program spaces and employ various search strategies to

find a program satisfying a set of specifications.

Rather than considering candidates as satisfying the specification, we frame the goal as

a superoptimization task [200, 4, 196], where candidate programs are ranked, and the

result is a distribution of drugs of interest that can be further explored in a wet-lab

environment.

The rest of this part presents a new framework for the safe discovery and synthesis

of pharmaceutical drugs we call MediSyn. After reviewing preliminary background on

drug discovery and the various methods from superoptimization, program synthesis,

and language modeling we adopt in Chapter 8, Chapter 9 presents MediSyn’s modular

architecture. MediSyn provides a general-purpose superoptimizing search strategy

implemented using a Markov Chain Monte Carlo approach over a probabilistic context-

free grammar, leaving grammar specification, chemical synthesis, and evaluation routines

for users to define. As a proof-of-concept, Chapter 10 provides a prototype implementation

of MediSyn called PepSyn for the discovery of novel pharmaceutical peptides. PepSyn

introduces a domain-specific language called PepSketch for concise domain specification,

and a secondary process in the programming by example (PBE) paradigm we call PepGen

for generating a candidate domain from user-provided examples. An in silico technique for

estimating antimicrobial peptide activity is provided in order to drive the superoptimizing

search. Chapter 11 discusses results using the PepSyn implementation of MediSyn, with

focus on the expressiveness of the candidate spaces generated using both PepSketch

1This is in contrast to the corresponding machine learning task, where semantic/syntactic forms are
irrelevant to the solution.

118

and PepGen approaches, and the potential for significant cost savings achievable by

utilizing statistical inference during optimization. Finally, Chapter 12 discusses some

loosely related work in grammar induction for bioinformantics tasks as well as machine

learning approaches to drug discovery before concluding with directions for future work

in Chapter 13.

119

Chapter 8

Preliminaries

8.1 Drug Discovery and Development

The majority of the normative 10-15 year process of developing a drug before its sale

occurs at the beginning of the process, during discovery and development [169]. Figure 8.1

depicts an overview of the process: in the early stages, candidates are designed and tested

in controlled settings to determine mechanisms of action, dosage, potential toxicity, etc.

During this stage, pharmaceutical researchers typically employ high-throughput screening

to conduct millions of chemical experiments in parallel with the goal of finding candidate

compounds with interesting activity in relation to a target [29]. When interesting results

(hits) are identified, a process of optimization refines specific compounds (leads) for

further study. This process is both inefficient and costly, causing extended waits for

the creation of lifesaving new medicines, and significant chemical waste. The approach

presented in Chapters 9 and 10 posits that program synthesis techniques can efficiently

120

guide these processes, significantly reducing the cost and time associated with early drug

development stages.

8.1.1 Antimicrobial Peptides

PepSyn (Chapter 10) synthesizes candidate programs as synthetic peptides.1 A peptide

is a short linear chain of amino acids – small organic compounds formed primarily from

nitrogen, carbon, hydrogren, and oxygen. As opposed to larger chemical structures (e.g.,

proteins, small molecules, or macromolecules), peptides are relatively simple, featuring up

to around 50 amino acids, and lacking a stable 3D structure [48].2 A peptide’s primary

sequence is a string consisting of single-character representations of its constituent amino

acids (see Table 8.1). Antimicrobial peptides (AMPs) are a class of naturally occurring

peptides whose mechanism of action targets a cell’s membrane, leading to cell death [74],

and have been shown to evade pathogenic bacteria’s ability to develop resistance [90].

Moreover, while AMPs have been observed for their antimicrobial affect (hence the name),

recent research has shown they have broad-spectrum application (i.e., against viruses,

cancers, etc.) [166], and searches for synthetic AMPs (i.e., not naturally occurring)

are ongoing [164]. AMP’s chemical simplicity, robustness against drug-resistance, and

potential for broad application make them compelling candidates for new drugs.

1An expanded discussion of peptides and their physical synthesis is available in Appendix D.
2There is no consensus on the exact number of amino acids that differentiates a peptide from a protein

[225]; the peptide classification (even for chains reaching > 50 amino acids) is used herein for consistency.

121

F
ig
u
re

8.
1:

T
op

:
A

h
ig
h
-l
ev
el

ov
er
v
ie
w

of
th
e
d
ru
g
d
ev
el
op

m
en
t
p
ro
ce
ss
;
b
ot
to
m
:
an

ex
p
lo
d
ed

v
ie
w

of
th
e
d
is
co
ve
ry

p
h
as
e.

122

Table 8.1: The 21 proteinogenic amino acids found in the genetic code for eukaryotic
organisms (including humans), and their single-letter abbreviations, organized by classifi-
cation.

Hydrophilic (Σζ)
[+]Arginine R [+]Histidine H
[+]Lysine K
[-]Aspartic Acid D [-]Glutamic Acid E
[0]Serine S [0]Threonine T
[0]Asparagine N [0]Glutamine Q

Hydrophobic (ΣΦ)
Alanine A Valine V
Isoleucine I Leucine L
Methionine M Phenylalanine F
Tyrosine Y Tryptophan W

Other (ΣO)
Cysteine C Selenocysteine U
Glycine G Proline P

[+]: Positive [-]: Negative [0]: Uncharged

8.1.2 Drug Efficacy Evaluation

The process of discovering, optimizing, and determining dosage of hits relies on various

target-specific evaluation experiments. For example, in determining hits, a target (i.e.,

virus, bacterium, cancer cells, etc.) is typically exposed to a drug candidate to observe

its effect on the target.

A primary metric utilized when determining hits and the dosage of a candidate drug

against bacteria of interest is minimum inhibitory concentration (MIC) [228]. A drug’s

MIC against a target bacterium is the minimum concentration (typically expressed in

µg/mL) required for a drug to visibly inhibit the growth of the target. The procedure

of determining MIC in vitro involves subjecting a cultured target bacteria to varied

dilutions of the candidate drug [237]. Chapter 10 discusses the use of user-provided

input/output examples of peptides and their MICs in relation to target bacteria in order

to generate a cost function to optimize over, in addition to constraining the program

space in the PepGen approach presented therein.

123

8.1.3 Cost Considerations

Synthesizing and evaluating candidate drugs can be costly; for peptides, estimates range

from around $75-$600 per gram for small-scale operations [87, 27], with costs decreasing

as the bulk of product goes up [119]. Even with economies of scale, large pharmaceutical

companies, seeing flat revenues due to consistently high costs, are abandoning research

and development on pharmaceutical peptides [189]. We discuss cost estimates for fully

ex silico drug discovery using our methods in Chapter 11.

8.2 Superoptimization and Program Synthesis

Superoptimization tasks a code generator with automatically finding (near) optimal and

correct instructions for provided loop-free code. While the original formulation relied

on complete and exhaustive program enumeration ([148]), limiting the feasibility of the

technique’s application, subsequent work has expanded the scope (up to complete program

synthesis) through e.g., stochastic techniques [201, 4, 196] or aggregating hypotheses

[110, 224]. We take inspiration from Refs. [201, 4, 196] when implementing the optimizing

search process for PepSyn. The optimization process described in [201] aims to find an

optimized form of a provided loop-free sequence of instructions using a Markov Chain

Monte Carlo (MCMC) optimizing search. While superoptimization typically optimizes

over the length of a program, Chapter 10 provides a function that optimizes over a

peptide’s MIC against target pathogens. The MCMC implementation presented in

Chapter 9 closely resembles [196]’s approach, which, in a manner similar to [4], describes

a Metropolis-Hastings MCMC ([88]) technique on a prior distribution represented by a

probabilistic context-free-grammar (PCFG), and a jumping distribution on the parse tree

used to generate an expression from the PCFG. Ref. [71] provides further inspiration; it

124

reveals an annealing method for MCMC that provides faster mixing (convergence to a

steady-state) times than a stock MCMC approach, by dynamically adjusting exploration

and exploitation via a tempering variable attached to the acceptance ratio.3

Automated code synthesis — in the context of alleviating the difficulty in programming

a particular task for an end-user — has evolved from the relatively simple loop-free

code optimizers (with goals similar to the superoptimizers discussed above), to the

burgeoning field of program synthesis, where a user provides a specification of what a

program is supposed to do, a search method to explore program candidates, and some

form of evaluation for a candidate’s efficacy. Recent algorithmic breakthroughs has

allowed larger program spaces to be explored, with space-constraining techniques such

as the SKETCH paradigm [212], and aggregating data structures such as version space

algebras [162, 117, 209], e-graphs or finite tree automatons [110, 235, 172, 238], or the

recent equality-constrained tree graphs [115] provide efficient means of representing and

searching/validating exponential equivalent specifications. Methods of searching the

program space has seen equal attention, with powerful deductive top-down approaches

[82, 188], type-directed methods [66, 186, 182, 85, 161, 115], and stochastic techniques

[4, 122, 21, 61, 152] providing state-of-the-art results.

PepSyn borrows ideas from sketch- [212] and template-based [219] program synthesis

directly in the design of the PepSketch approach for PepSyn (Section 10.1.1). Refs.

[212, 219] rely on syntactic biasing in their candidate specifications, where the program

synthesis job is to find correct programs by filling in holes – program points that are

intentionally left unspecified. With PepSketch, we provide programmers a straightforward

3While simulated annealing is itself an adaptation of the Metropolis-Hastings MCMC algorithm, the
way MediSyn utilizes the tempering principle is not with the acceptance of samples, but as an adjustment
to the jumping distribution’s domain.

125

method to specify syntactic and semantic forms for correct peptide expressions, while

allowing the superoptimization process to fill in holes.

The PepGen approach, which generates a space of peptide candidates using input/output

examples (see Section 10.1.2) is inspired by the programming by example (PBE) paradigm

[82, 128, 60, 209, 160], where user intent is specified by the provided examples.

8.2.1 Probabilistic Context-Free Grammars

Enumeration of programs is a crucial element of the program synthesis paradigm;

statistical techniques relying on probabilistic models for suggesting programs with high

likelihood of satisfying specifications are gaining in popularity, as they have enabled

exponentially larger program spaces to be explored efficiently [122, 21, 61, 152, 15, 128].

Complete enumeration of the space of peptides is intractable (not to mention costly,

should physical synthesis be part of the loop); consequently, the specification a user

provides to PepSyn (either a PepSketch expression or through the PepGen UI) is

transformed into a probabilistic context-free grammar (PCFG) for generating peptide

candidates Sections 10.1.1 and 10.1.2. For the PepGen UI, the transformation process

relies on input/output examples for learning bias in the resulting PCFG, an approach

providing efficient state-of-the-art results [107, 122, 152, 182, 60, 85, 145, 161].

While the complexity of biological sequences include dependencies that would require

context-sensitive or even unrestricted grammars to fully capture, the most common

dependencies observed in peptides are limited nesting and/or branched dependencies, with

crossing (e.g., repetition, copying) dependencies only rarely occurring [203]. Although

crossing dependencies require the expressive power of at least context-sensitive grammars,

the expressive power of CFGs can model both the branched and nested dependencies

126

commonly occurring in peptide sequences, so their modelling power is sufficient for our

candidate space.

A CFG precisely describes how to derive syntactically legal strings in its language; a PCFG

extends this capability with probabilities assigned to production rules. The objective of

PepSyn is to derive drug candidates with a higher likelihood of pharmaceutical activity.

We therefore adopt a PCFG as a baseline representation of a candidate search space,

where the initial distribution of candidates the grammar derives corresponds to their

pharmaceutical activity. For well-understood domains, the probability distributions may

be known; however, in the general case, it is necessary to determine the probabilities

empirically from data.

Formally, a PCFG is a tuple G = (N , Σ, S, R, P), where N = {N1, . . . , Nn} is a set of

n nonterminal symbols, Σ is an alphabet (i.e., a set of terminals), S ∈ N is the start

symbol, R is a set of production rules mapping each nonterminal N i ∈ N to ji ≥ 1

sequences of terminals (and/or nonterminals) of the form N i −→ ρij , where ρ
i
j is the jth

right-hand-side production rule associated with N i, and P : R −→ (0, 1] is a function

mapping production rules to continuous probabilities such that:

∑
ρ=ρij

P(N i −→ ρ) = 1, ∀N i ∈ N

Given a CFG, the probabilities associated with production rules can be estimated from

unlabeled data using the inside-outside algorithm [13]:

P : (N i −→ ρij) −→
Count(N i −→ ρij)

Count(N i)
, ∀N i −→ ρij ∈ R

Alternatively, if a grammar is not provided, a treebank, i.e., a corpus of parse trees

(typically annotated with part-of-speech tags) [147], can be used to obtain a PCFG

127

by first extracting the underlying grammar (Fig. 8.2) before computing the maximum

likelihood of each rule. We generate a treebank in Section 10.1.2 from user-supplied

input/output examples for this purpose.

8.3 Word Embeddings and Semantic Clusters

In Section 10.1.2, we present a PBE-inspired approach to inducing a PCFG from example

peptides provided by a user. To do so, we rely on techniques that provide lexical and

relational semantic interpretation to generate a treebank for PCFG induction. Specifically,

we learn distributed representations of 3-mers — biological “words” consisting of 3 amino

acids — that embed pairwise similarity by proximity in the distributed space. These

representations are used to structurally tag unlabeled peptide sequences to form a

treebank for PCFG induction. We present a brief introduction here of the techniques we

adopt.

For the tasks of inferring lexical or relational semantics, researchers have by and large

abandoned statistical models in favor of neural networks, where previously complex or

manual laborious tasks (morphological segmentation, part-of-speech tagging, etc.) can be

inferred directly using unsupervised methods. A popular technique used for these tasks

is to construct word(sentence) embeddings from a neural network (word2vec, doc2vec,

fasttext) [154, 155, 156, 120, 26], which encode the semantics of similar words(sentences)

by a distributed representation of continuous vectors. The architecture of word2vec’s

skip-gram model is illustrated in Fig. 8.3a; given an input word, the network is optimized

for the classification of words within a windowed context. Figure 8.3b illustrates a

classic example of the semantic relationships that can be modeled using this approach for

128

(
S

(
N
P

(
A
r
t

T
h
e
)

(
N

l
i
n
g
u
i
s
t
)
)

(
V
P

(
V

s
a
w
)

(
N
P

(
N

b
i
o
l
o
g
i
s
t
s
)
)

(
P
P

(
P
r
e
p

w
i
t
h
)

(
N
P

(
A
r
t

a
)

(
N

m
i
c
r
o
s
c
o
p
e
)
)
)
)

)

(a
)

(b
)

S
::
=

N
P

V
P

N
P

::
=

N
|

A
rt

N
V
P

::
=

V
N
P

P
P

P
P

::
=

P
re
p
N
P

N
::
=

li
n
gu

is
t

|
b
io
lo
gi
st
s

|
m
ic
ro
sc
op

e
V

::
=

sa
w

P
re
p

::
=

w
it
h

A
rt

::
=

T
h
e

|
a

(c
)

F
ig
u
re

8
.2
:
A

tr
ee
b
a
n
k
co
n
si
st
s
o
f
a
la
rg
e
co
ll
ec
ti
o
n
o
f
a
n
n
o
ta
te
d
se
n
te
n
ce
s.

E
n
tr
ie
s
ca
n
b
e
m
a
rk
ed

w
it
h
e.
g
.,
le
x
ic
a
l,
m
o
rp
h
o
lo
g
ic
a
l,

a
n
d
/
o
r
se
m
a
n
ti
c
ta
g
s.

L
ef
t,
ex
a
m
p
le

o
f
a
ty
p
ic
a
l
tr
ee
b
a
n
k
en
tr
y
re
p
re
se
n
ta
ti
o
n
fo
r
a
n
a
m
b
ig
u
o
u
s
se
n
te
n
ce
.
It
s
p
h
ra
se

st
ru
ct
u
re

p
a
rs
e
tr
ee

(c
en
te
r)
—

w
h
ic
h
re
ve
al
s
th
at

th
e
b
io
lo
g
is
ts

in
q
u
es
ti
on

ar
e
la
u
gh

ab
ly

ti
n
y
—

co
rr
es
p
on

d
s
to

an
u
n
d
er
ly
in
g
gr
am

m
ar

(r
ig
h
t)
.

129

(a
)

(b
)

O
ri
g
in
a
l
S
eq
u
en
ce

(1
)
−→ A

(2
)
−→ B

(3
)
−→ C
D
E
F
G
H
I
J
K
..

S
p
li
tt
in
g
s

    1
)
A
B
C
,D
E
F
,G
H
I
,.
.

2
)
B
C
D
,E
F
G
,H

I
J
,.
.

3
)
C
D
E
,F
G
H
,I
J
K
,.
.

(c
)

F
ig
u
re

8
.3
:
D
is
tr
ib
u
te
d
re
p
re
se
n
ta
ti
o
n
s
o
f
w
o
rd
s
(w

o
rd

v
ec
to
rs
)
p
ro
v
id
e
st
ra
ig
h
tf
o
rw

a
rd

se
m
a
n
ti
c
si
m
il
a
ri
ty

a
n
a
ly
si
s.

(a
):

A
sk
ip
-g
ra
m

w
o
rd
2
v
ec

m
o
d
el

tr
a
in
s
a
sm

a
ll
,
fu
ll
y
co
n
n
ec
te
d
n
et
w
o
rk

to
le
a
rn

w
o
rd
s
in

th
e
co
n
te
x
t
o
f
a
n
in
p
u
t
fo
cu
s
w
o
rd
.
(b
):

A
cl
a
ss
ic

re
su
lt
o
f
th
e

w
or
d
2v
ec

ap
p
ro
ac
h
is

th
at

li
n
ea
r
re
gu

la
ri
ti
es

b
et
w
ee
n
w
or
d
s
ar
e
m
ai
n
ta
in
ed

in
th
e
ve
ct
or

sp
ac
e
[1
56

].
(c
):

T
h
e
P
ro
tV

ec
ap

p
ro
ac
h
sp
li
ts

ea
ch

d
is
cr
et
e
p
ri
m
ar
y
se
q
u
en

ce
in
to

3
se
q
u
en

ce
s
fr
om

ov
er
la
p
p
in
g
3-
gr
am

s
p
ri
or

to
tr
ai
n
in
g
th
e
w
or
d
2v
ec
-i
n
sp
ir
ed

m
o
d
el

[1
1]
.

130

natural languages: linear regularity of semantics capturing both royalty and gender of

the underlying representations [156]. Word vectors exist as points in the n-dimensional

space determined by the trained weights in the hidden layer of the network; in general,

semantically similar words appear near each other in the n-dimensional space, leading to

a natural utilization of partitioning methods to discover e.g., semantic clusters [94, 234]

and protein family classification [11, 171].

Refs. [11, 113, 173] take inspiration from the word2vec and related algorithms for

biological sequences, showing that the underlying physicochemical semantics can also be

characterized for biological sequence data. Ref. [11] defines a method to split peptide

sequences into smaller biological “sentences” by splitting each sequence into 3 sequences

of overlapping biological “words” of length three (3-mers) prior to training a skip-gram

network (Fig. 8.3c). We combine Ref. [11]’s approach to training word vectors for peptide

sequences with an unsupervised clustering method to generate a treebank of interest to

induce a PCFG for the PepGen approach in PepSyn (Section 10.1.2). Additional related

work is discussed in Chapter 12.

131

Chapter 9

Overview

MediSyn is a software framework for the safe discovery and synthesis of de novo pharma-

ceuticals. As shown in Figure 9.1, MediSyn provides a collection of interacting modules

for general-purpose use. PepSyn, a peptide-specific implementation within the MediSyn

framework, is presented in Chapter 10.

9.1 Modules

Front-end As the entry-point to the system, MediSyn’s front-end module deter-

mines a user interface that creates a candidate domain. A front-end module incorporates

domain-level knowledge regarding e.g., the specific class of drug a user wants to discover,

its structure, etc. While we provide a PCFG representation of a candidate domain (see

Section 9.2), different models can be specified.

132

F
ig
u
re

9
.1
:
S
im

p
li
fi
ed

d
ia
gr
am

of
co
m
p
on

en
t
st
ru
ct
u
re
s
an

d
b
as
ic

in
te
rf
ac
es

of
M
ed
iS
yn

.

133

Gen Although exact search methods may vary, a common sub-task in optimizing

search problems is generating candidates, and various methods are applicable to multiple

search techniques. The gen module’s init and generate methods accomplish this by

clearly defining the process for generating candidates from the candidate space, and

works together with optional filter module(s) to provide preferred candidates to the

core. The gen module has a strict dependency on the front-end module – namely, the

candidate space that the front-end generates is the underlying domain the gen module

uses for candidate generation. The init method defines how to sample directly from

the underlying candidate space, while the generate method defines how to jump from

one candidate to another in the candidate space. The search method defined by the core

(discussed next) may utilize one or both of these methods; e.g., a Frequentist-inspired

search may randomly sample independent and identically distributed candidates utilizing

the init method alone, whereas a Bayesian approach will define a jumping distribution

using the generate method.

Core Domain knowledge, intuition, or a stochastic choice may lead a user to utilize a

particular optimization strategy, be it domain-tailored or a black-box approach. The

core module provides a user the flexibility to determine the search method employed

while being agnostic to the underlying candidate domain. The interface for a core

module is intentionally sparse: a user must define the run method, and has access to

candidate generation from the gen module and synthesis/evaluation routines from the

back-end module. By separating the generation process from the search method, users can

incrementally modify the search process to experiment with different, related techniques.

For example, the provided Metropolis-Hastings MCMC approach discussed in Section 9.2

utilizes the jumping distribution defined by the gen module’s generate method, and

134

it is well known that the choice of jumping distribution can significantly impact an

MCMC algorithm’s convergence [73, 192]. Knowing this, users can utilize different gen

modules to implement different MCMC techniques; for example, including the concept

of momentum to the sampling technique, the jumping distribution can be modified to

resemble Hybrid Monte Carlo [56]. Alternatively, new search methods can utilize existing

candidate generation techniques where appropriate; e.g., in implementing or utilizing

a black-box evolutionary algorithm, users can reuse the candidate representation and

generation process to define mutation and/or crossover operations.

Filter The filter module allows the search to optionally reject syntactically legal

candidates from being synthesized and evaluated based on criteria specified by the user.

For example, the user may want to avoid synthesizing candidates with known or presumed

cytotoxic or hemolytic properties (e.g., see Section 10.2 and Fig. 10.1); likewise, the

user may want to filter candidates having a high likelihood of failure during synthesis to

reduce the likelihood of wasting costly chemical reagents [159]. The only requirement is

that the criteria for filtering be computational and decidable. MediSyn’s filter module

interface cooperates with a gen module in order to screen these undesirable candidates

prior to synthesis and evaluation.

Back-end Irrespective of the search method employed by the core, different problems

may require different evaluation methods. For example, chemically synthesizing and

evaluating candidates would require a human-in-the-loop or cyber-physical interface in

which computation (candidate proposals, optimization strategy) interacts directly with a

human-driven or automated-procedure to synthesize and characterize each candidate.

Moreover, different classes of molecular structure or pathogenic targets are likely to

135

require different synthesis and evaluation approaches. On the other hand, users desiring in

silico approximation of their objectives (as in Chapter 10) can forego chemical synthesis,

while benefiting from the separation of the search method from the objective function and

candidate evaluation methods. To abstract these relationships between searching and

evaluation, MediSyn’s back-end module implements the synthesize and evaluate

methods. The synthesize method returns an identifier to a synthesized candidate

upon successful synthesis,1 while evaluate returns a continuous value in R+. Together

with the core module, a back-end completes a feedback loop that allows ground truth

evaluations of candidates to inform the search process.

9.2 Generalized Core, Gen, and Back-end Modules

MediSyn provides a default candidate space representation of a PCFG (Section 8.3),

allowing for generalized reuse in varied domains, as well as core and gen modules

implementing a Markov Chain Monte Carlo (MCMC) superoptimization technique taking

inspiration from [196, 71]. To ensure a relatively good starting state, we assume that

the PCFG represents a prior probability distribution of drugs of interest where strings

in the given language having higher likelihood occur in local minima in the posterior

distribution; by weighting initial samples from the PCFG, we obviate the need for

significant burn-in. To sample from the PCFG, we perform a leftmost derivation, where

for each nonterminal N i encountered, we randomly choose the rule to apply relative to

its probability mapping in P , s.t. N i yields ρj with probability P(N i −→ ρj). We denote

such a yield from N i to ρj as N i =⇒ ρj . A complete derivation of sample s from S is

denoted S
∗

=⇒ s.

1A reserved error code is returned upon failure; which directs the core to ignore the candidate.

136

To initialize, gen.init performs weighted random sampling without replacement for

a given number n of initial samples
−→
Xt by deriving n strings from the PCFG, where

−→
Xt = {s ∈ Σ∗ : S ∗

=⇒ s}; note that, ∀s ∈
−→
Xt, P (s) > 0, as we are sampling directly

from the PCFG.

gen.generate selects proposal candidates
−→
X from Q(

−→
X |
−→
Y), where Q is a symmetric

jumping distribution that suggests
−→
X given the previous sample

−→
Y . To generate a new

candidate x ∈ X, we can randomly select a node P̂ = P =⇒ yp from the derivation

tree S
∗

=⇒ y ∈
−→
Y , and recompute a leftmost derivation from this node, inserting the

newly-parsed sub-tree in place of P̂ .

As mentioned in Section 8.2, we take inspiration from [71]’s simulated annealing adapta-

tion to MCMC to encourage exploration of areas of interest, but rather than applying

the annealing principle to the acceptance of candidates, our adaptation dynamically

adjusts the way we select node P̂ from the derivation tree. The chosen height of P̂ is

directly correlated with how much
−→
X differs from

−→
Y . As P̂ is selected randomly, we can

perform weighted sampling that favors nodes closer to the leaves of the expression in

proportion to the tempering variable.

Given a proposal candidate x ∈ X—where x has never been seen—the core calls the

synthesize and evaluate methods from the back-end to retrieve its efficacy; in the

case where the proposed candidate has been seen before, a stored result is returned; for

simplicity, we denote this procedure as f(x).

The technique in Algorithm 2 implements MediSyn’s provided MCMC core module.

After initializing score and
−→
B , variables used to keep track of the optimal set of candidates,

137

Algorithm 2 Population MCMC

1: procedure core.run(thresh, n, G, early)
2: t← 0
3: score← 0
4:

−→
B ← ∅

5:
−→
Xt ← gen.init()

6: while True do
7:

−→
X ′ ← gen.generate(

−→
Xt)

8:
−→
A ← {αi : αi = f(x′i)/f(x

′
t,i)} ∀x′i ∈

−→
X ′,∀xt,i ∈

−→
Xt

9: (score,
−→
B)← update best()

10: u← Uniform(0, 1)

11:
−−−→
Xt+1 ←

{
x′i, u ≤ αi

xt, u > αi
∀x′i ∈

−→
X ′,∀xt,i ∈

−→
Xt,∀αi ∈

−→
A

12: t← t+ 1
13: if ((score ≤ thresh or t > G) ∧ early) ∨ (score ≤ thresh ∧ t > G) then
14: break

return (score,
−→
B)

along with sampling a prior (
−→
Xt) as the starting point for the search, the core interfaces

with the gen and back-end modules for generating, synthesizing, and evaluating

proposal candidates. The update best routine keeps track of the best score and

optimal set of candidates. We continue searching for candidates until we have found

candidate(s) with a minimum desired fitness (thresh) and/or have run a minimum

number of iterations (G), where either condition will terminate the search if the supplied

early exit variable evaluates true.

138

Chapter 10

PepSyn

Here, we present PepSyn as a set of modules that collectively form a proof-of-concept

implementation of MediSyn using approaches from program synthesis for discovering

peptide pharmaceuticals. Figure 10.1 depicts a high-level overview of PepSyn’s operation:

the structure of prototypical drugs allows for generation of syntactically legal candidates

(Sections 10.1.1 and 10.1.2); a filtering step prunes undesirable or otherwise impractical

candidates prior to evaluation (Section 10.2); and, once obtained, the evaluation metric is

fed back into the generation step to drive the stochastic generation of the next candidates

(Section 10.3).

As a demonstration of MediSyn’s modularity, PepSyn implements two front-end

modules that generate a candidate space as a PCFG; these modules aim to be expressive

and palatable to practitioners who specialize in the chemical or biological sciences,

while varying in both complexity and scope. The first (Section 10.1.1) implements a

simple domain-specific language we call PepSketch for specifying the structure of peptide

139

F
ig
u
re

10
.1
:
P
ep
S
yn

im
p
le
m
en
ts

a
st
o
ch
as
ti
c
d
ru
g
d
is
co
ve
ry

p
ro
ce
ss

fo
r
p
ep

ti
d
e
d
ru
gs

u
ti
li
zi
n
g
th
e
M
ed
iS
yn

fr
am

ew
or
k
.
A

d
es
ir
ed

p
ep

ti
d
e

d
ru
g
’s

st
ru
ct
u
re

is
m
o
d
el
ed

a
s
a
P
C
F
G

u
si
n
g
a
n
a
p
p
ro
p
ri
a
te

fr
o
n
t-
en

d
;
ca
n
d
id
a
te

st
ru
ct
u
re
s
a
re

g
en

er
a
te
d
u
si
n
g
M
ed
iS
yn

’s
p
ro
v
id
ed

g
en

m
o
d
u
le

to
sa
m
p
le

fr
o
m

th
e
P
C
F
G
;
a
fi
lt
er

m
o
d
u
le

re
m
ov
es

p
ro
p
o
se
d
ca
n
d
id
a
te
s
th
a
t
a
re

in
fe
rr
ed

a
s
to
x
ic

o
r
u
n
li
k
el
y
to

b
e
p
o
ss
ib
le

to
(c
h
em

ic
a
ll
y
)
sy
n
th
es
iz
e,

a
n
d

M
IC

ev
a
lu
a
ti
o
n
o
f
th
e
u
n
fi
lt
er
ed

(p
re
fe
rr
ed

)
ca
n
d
id
a
te
s
is

co
m
p
u
te
d

to
p
ro
g
re
ss

M
ed
iS
yn

’s
p
ro
v
id
ed

im
p
le
m
en
ta
ti
on

of
a
n
o
p
ti
m
iz
in
g
M
C
M
C

se
ar
ch
.

140

PE ::= PepSketch Expression:
LE Ligand Expression

| LE where CB Category Binding(s)
LE ::= Ligand Expression:

σ σ ∈ Σ Amino Acid Residue
| LE LE Concatenation
| WS Wildcard Symbol
| (OE)? Optional Expression
| (LE|LE) Alternation
| [RE] Repeat Expression

OE ::= Optional Expression:
LE Ligand Expression

RE ::= Repeat Expression:
LE * Kleene-star

| LE + Kleene-plus
| LE i i ∈ Z Repeat Number

CB ::= Category Binding(s):
CB CB Concatenation

| WS in σ σ ⊆ Σ Wildcard Binding
WS ::= any ̸∈ Σ ∪ Σres Wildcard Symbol

Figure 10.2: PepSketch’s syntax.

sequences for any particular functional objective (e.g., antimicrobial, antiviral, anticancer,

etc.); the second (PepGen, Section 10.1.2) demonstrates an approach in the programming

by example (PBE) paradigm, whereby a selection of example antimicrobial peptides are

directly used to synthesize a candidate specification that the system optimizes over.

The subsequent subsections discuss their implementation and how they each converge

to a common representation of a PCFG to specify the space of candidates we wish to

optimize. We utilize the MCMC implementation in MediSyn’s provided core and gen

modules (Section 9.2), while the filter (Section 10.2) and back-end (Section 10.3)

modules are peptide-specific.

141

1 RGG(G|R)LCYCR##%C%CV(GR)? where
2 % in hydrophobic amino acids

Figure 10.3: A PepSketch which specifies the protegrin family of antimicrobial peptides

10.1 PepSyn Front-ends

10.1.1 PepSketch Front-end

PepSketch is a regex-like domain-specific-language that allows a user to succinctly express

a candidate space for peptide ligands as a template, using a sequence of known and

unknown amino acid residues and optional bindings of wildcards to particular sub-

alphabets in its language (Fig. 10.2). As shown in Table 8.1, the 21 amino acids used to

construct peptides are classified into groups based on various physicochemical properties;

we define PepSketch’s alphabet Σ to be these 21 unique amino acid characters along with

an empty string λ. Sub-alphabets are used to specify common subsets of amino acids:

Σ = Σζ ∪ ΣΦ ∪ ΣO ∪ λ, (10.1)

where Σζ ,ΣΦ, and ΣO are the sets of hydrophilic, hydrophobic, and all “other” amino

acids, respectively; further refinements (e.g., Σζ[+] for positively charged hydrophilic

amino acids) are defined for fine-tuned binding expressions. A set of reserved symbols

Σres = {(,),|,[,],*,+,?, i ∈ Z} are restricted from wildcard specification.

A user of PepSketch is assumed to possess an intimate understanding of a target’s

physicochemical properties, with a high level of confidence that a viable candidate will

have specific amino acids, groups, or particular properties of residues in the sequence at

specific locations, but is unsure of which amino acid(s) should occur at every location in

the peptide. The PepSketch depicted in Fig. 10.3, which specifies a subset of the protein

family of antimicrobial peptides [163], illustrates this idea: concrete residues occur inline

142

with wildcards representing a single amino acid substitution (i.e., non-repeating), where

the % wildcard is bound to the hydrophobic amino acid sub-alphabet (ΣΦ), and the #

wildcard is unbound (i.e., it can resolve to any σ ∈ Σ).

The module implementing the PepSketch language transforms a PepSketch ex-

pression into a PCFG with probabilities initialized uniformly across produc-

tions. For example, the protegrin PepSketch in Fig. 10.3 induces the PCFG

G = ({PE,G R,#,%, ?},Σ, PE,Rρ,Pρ), where Rρ is:

PE −→ RGGG RLCYCR##%C%CV?

G R −→ G

G R −→ R

−→ σ ∈ Σ

% −→ σϕ ∈ ΣΦ

? −→ GR

? −→ λ

and Pρ uniformly maps probabilities for each production based on the number of

productions associated with each nonterminal; e.g., Pρ(G R −→ G) = 0.5 (two production

rules associated with G R), and Pρ(% −→ x) = 0.125 ∀x ∈ ΣΦ (eight production rules

associated with %).

Fig. 10.4 presents a few of the formal transformation rules. The transformation judg-

ment for a ligand is ligand ▷N ,R,P where N is the nonterminal resulting from the

transformation of ligand , R is the set of generated production rules, and P is the

probability distribution for the rules. The rule Concat for concatenation transforms the

143

C
o
n
c
a
t li
g
a
n
d

1
▷
N

1
,R

1
,P

1
li
g
a
n
d

2
▷
N

2
,R

2
,P

2
N

fr
es
h
in

R
1
,R

2

li
g
a
n
d

1
li
g
a
n
d

2
▷
N
,R

1
∪
R

2
∪
{N

→
N

1
·N

2
},
P

1
∪
P

2
∪
{(
N

→
N

1
·N

2
)
7→

1
}

A
lt

li
g
a
n
d

1
▷
N

1
,R

1
,P

1
li
g
a
n
d

2
▷
N

2
,R

2
,P

2
N

fr
es
h
in

R
1
,R

2

li
g
a
n
d

1
|
li
g
a
n
d

2
▷
N
,R

1
∪
R

2
∪
{N

→
N

1
|N

→
N

2
},
P

1
∪
P

2
∪
{(
N

→
N

1
)
7→

0
.5

|(
N

→
N

2
)
7→

0
.5
}

W
il
d

w
il
d
ca

rd
▷
N

w
il
d
ca

rd
,∅
,∅

W
il
d
B
in
d

w
il
d
ca

rd
i
n
σ
▷
{N

w
il
d
ca

rd
→

σ
i
},
{(
N

w
il
d
ca

rd
→

σ
i
)
7→

1
/
|σ
|}

B
in
d li
g
a
n
d
▷
N
,R

1
,P

1
b
in

d
in

g
▷
R

2
,P

2

li
g
a
n
d

w
h
e
r
e

b
in

d
in

g
▷
N
,R

1
∪
R

2
,P

1
∪
P

2

F
ig
u
re

10
.4
:
P
ep
S
ke
tc
h
T
ra
n
sf
or
m
at
io
n
R
u
le
s

144

two ligands separately to obtain a nonterminal, set of productions and a probability

distribution for each. It then generates a fresh nonterminal and a production rule that

maps it to concatenation of the two nonterminals, and maps this single rule to the

probability one. The rule Alt, for alternation, is similar except that it generates two

rules, one for each of the two alternatives, and maps each to probability 0.5. Each

wildcard is unique; we use the nonterminal Nwildcard to represent a wildcard, as the

rule Wild shows.

Therefore, the transformation judgment for a binding is binding ▷ R,P where the

resulting nonterminal is implicitly Nwildcard . For a binding wildcard in σ, the rule

WildBind generates a rule for each member of σ, and distributes the probability equally

between them. The rule Bind transforms the binding and the ligand, and then aggregates

the resulting rules and distributions.

10.1.2 PepGen Front-end

Whereas PepSketch’s intended user base consists of scientists who have intimate insight

leading to a concise bounding on the candidate specification, others with less domain

expertise may wish to discover a new drug based on an aggregate knowledge of relevant

properties of existing drugs. To meet this need PepGen (Fig. 10.5) implements a text-

based user interface in the programming by example paradigm that infers a PCFG

from a corpus of peptides D, which the user selects from relations that we define on

a public-facing repository containing experimentally validated data on antimicrobial

activity in peptides.1 Each example peptide drug di ∈ D is a pair (si, xi), where si is

di’s amino acid string and xi ∈ R is its MIC value. PepGen constructs a PCFG that

1Data gathered from the Database of Antimicrobial Activity and Structure of Peptides (DBAASP)
[183].

145

generalizes the structural properties and relative antimicrobial activity of sequences

present in D. To do so, PepGen generates a treebank TD from D. Recall that a treebank

is a set of parse trees (see Section 8.3 and Fig. 8.2a) whose unique derivations form all

the productions of its corresponding CFG; derivations that occur in multiple parse trees

within the treebank do not generate redundant productions, but instead correlate to

the likelihood that a given parse will occur; our objective is to increase the likelihood of

parses that lead to superior antimicrobial activity relative to other parses. For each drug

di ∈ D, PepGen generates a set of parse trees, τdi ; TD is defined as their union:

TD =
⋃
di∈D

τdi (10.2)

The following discussion describes how to generate τdi for a single peptide di ∈ D

10.1.2.1 Augmentation

We first augment si into a set of semantically similar sequences, such that the number

of augmented sequences is proportional to di’s antimicrobial activity relative to all the

peptides in D. These augmented sequences encode learned physicochemical properties of

si using a word embedding space ∆, which is trained offline and encompasses our entire

database of antimicrobial peptides. Our approach is inspired by ProtVec [11], which

decomposes amino acid sequences into 3-mers (3-character subsequences; see Section 8.3)

and learns their semantic similarity as the proximity of points in a 100-dimensional

space. We train our model exclusively using peptides with experimentally validated

antimicrobial effects, with the goal of discovering semantic relationships between 3-mers

with antimicrobial function. Our training dataset consists of 14,271 primary sequences

of antimicrobial peptides ranging from 3 to 120 amino acids in length. As shown earlier

in Fig. 8.3c, we expand this dataset by splitting each peptide into 3 sets of 3-mers

146

F
ig
u
re

1
0
.5
:
P
ep
G
en

:
A

se
le
ct
io
n
o
f
a
n
ti
m
ic
ro
b
ia
l
p
ep

ti
d
es

o
r
a
g
ro
u
p
o
f
ta
rg
et
s
w
it
h
ex
p
er
im

en
ta
ll
y
va
li
d
a
te
d
su
sc
ep

ti
b
il
it
y
to

a
se
t
o
f

a
n
ti
m
ic
ro
b
ia
l
p
ep

ti
d
es

a
re

u
se
d
to

fo
rm

an
ap

p
ro
p
ri
at
e
co
rp
u
s
to

in
d
u
ce

a
ca
n
d
id
at
e
sp
ac
e
re
p
re
se
n
te
d
as

a
P
C
F
G
.

147

F
ig
u
re

1
0
.6
:
A

si
n
g
le

p
ep

ti
d
e
d
ru
g
d
i
=

(s
i,
x
i)

g
o
es

th
ro
u
g
h
a
u
g
m
en
ta
ti
o
n
a
n
d
tr
a
n
sf
o
rm

a
ti
o
n
.
A
ft
er

sp
li
tt
in
g
s i

in
to

n
o
n
-o
v
er
la
p
p
in
g

3-
m
er
s,

w
e
ge
n
er
at
e
a
gr
am

m
ar
G

d
i
b
y
as
so
ci
at
in
g
3-
m
er
s
fr
om

s i
w
it
h
th
ei
r
m

i-
n
ea
re
st

3-
m
er
s
in

a
w
or
d
em

b
ed

d
in
g
m
o
d
el
.
T
h
e
b
ol
st
er
ed

co
rp
u
s
t j

=
L
(G

d
i
)
is

th
en

tr
an

sf
or
m
ed

in
to

a
se
p
ar
at
e
gr
am

m
ar
G

t j
b
y
as
so
ci
at
in
g
k
-m

er
s
fr
om

ea
ch

t j
w
it
h
la
b
el
s
fo
u
n
d
in

a
cl
u
st
er
in
g
of

se
m
a
n
ti
ca
ll
y
re
la
te
d
k
-m

er
s.

P
ar
se

tr
ee
s
fo
r
ea
ch

t j
ar
e
ge
n
er
at
ed

u
si
n
g
G

t j
,
p
ro
v
id
in
g
a
tr
ee
b
an

k
fo
r
P
C
F
G

in
fe
re
n
ce

[1
3,

14
7]
.

148

Figure 10.7: Left: 100-dimensional points from a word embedding model are projected
onto a 2D space using parametric t-SNE, which embeds a high-dimensional dataset
in a latent space of lower dimension in a way that maintains local pairwise distances
between data points [232]. Right: Another word embedding space is similarly projected
to 2D-dimensions; a partitioning method is used to determine semantic clusters for
generating a grammar from a set of unlabeled peptides.

prior to training, yielding 8,526 unique 3-mers appearing in 42,813 distinct sequences.

The resulting 100-dimensional embedding space, projected on 2-dimensions in Fig. 10.7,

captures the semantic similarity of 3-mers that occur in close proximity in our model.

Let si = σ1σ2 . . . σni . If the length ni of si is not divisible by 3, we append one or

two ‘X’ characters, which represent amino acids that do not alter its function [22]; this

ensures that xi can be fully decomposed into a sequence of non-overlapping 3-mers s
(3)
i =

(σ
(3)
1 , σ

(3)
2 , . . . , σ

(3)
ni/3

), where σ
(3)
1 = σ1σ2σ3, σ

(3)
2 = σ4σ5σ6, ..., σ

(3)
ni/3

= σni−2σni−1σni .

For a positive integermi, which is uniquely computed for di (details below), let δ(mi, σ
(3)
j)

be the set of mi-nearest 3-mers to σ
(3)
j in ∆; by convention, we assume that σ

(3)
j ∈

δ(mi, σ
(3)
j), but there is no guarantee that any of other 3-mers in δ(mi, σ

(3)
j) will also be

constituent 3-mers of s
(3)
i . We denote an arbitrarily selected 3-mer from δ(mi, σ

(3)
j) as

σ
(3)
k = σk1σk2σk3 , which has no ordinal relation to the 3-mers in s

(3)
i or amino acids in si.

149

An MCMC search could perturb si by replacing a constituent 3-mer σ
(3)
j ∈ s

(3)
i with a

randomly selected 3-mer σ
(3)
k ∈ δ(mi, σ

(3)
j). This perturbation would minimally impact

the biological function of the resulting peptide due to the close proximity of σ
(3)
j to σ

(3)
k in

the embedding space ∆; at the same time, the perturbation could improve antimicrobial

activity, i.e., if the resulting peptide had a lower MIC.

We define the augmentation of di as a context free grammar Gdi(Ndi ,Σ, S,Rdi). We

associate a non-terminal N (3)
j with each 3-mer σ

(3)
j ∈ s

(3)
i . Then the set of non-terminals

is

Ndi = S ∪
ni/3⋃
j=1

N (3)
j . (10.3)

We define a top-level production R(3)
0 = S → N (3)

1 N
(3)
2 . . .N (3)

ni/3
, and a set of productions

R(3)
j with each 3-mer σ

(3)
j ∈ x

(3)
i :

R(3)
j =

⋃
σ
(3)
k ∈δ(mi,σ

(3)
j)

N (3)
j → σk1σk2σk3 (10.4)

Then the set of productions is:

Rdi =

ni/3⋃
j=0

R(3)
j (10.5)

We enumerate all the strings in Gdi ’s language L(Gdi), yielding the desired set of

augmented sequences.

Our description of augmentation necessitates one final detail: how to empirically choose

an appropriate value of mi; we make this decision using a min-max scaling function [102],

adjusted for the length of each di ∈ D. Let A = [amin, amax] be a bound range of scaled

MIC activity determined empirically from D as follows:

amin = min
(si,xi)∈D

{
1

xi

}
(10.6)

amax = max
(si,xi)∈D

{
1

xi

}
(10.7)

150

We also define a target integer range B = [bmin, bmax] to bound the number of augmented

sequences each di ∈ D will produce. Our procedure for determining mi guarantees that

bmin ≤ (mi)
ni/3 ≤ bmax. The lower bound, bmin ≥ 2, is a constant value provided by the

user.2 Let µD and σD be the arithmetic mean and standard deviation3 of the lengths of

the amino acid sequences in D. Then

bmax = 10⌈
1
3
(µD+1.5σD) log(bmin)⌉, (10.8)

For a given drug di = (si, xi) ∈ D, with ni = |si| the value of m is then computed by

scaling function:

mi =

⌊
ni/3

√
bmin +

(
1

xi
− amin

)
bmax − bmin

amax − amin

⌋
. (10.9)

10.1.2.2 Semantics-encoding Transformation

Augmentation, described in the previous section, transforms a single amino acid sequence

si of length ni = |si| into a language L(Gdi) containing (mi)
ni/3 length-ni amino acid

sequences. We next transform each sequence tj ∈ L(Gdi) into a set of tagged parse trees

τtj , and finally form τdi as their union:

τdi =
⋃

tj∈L(Gdi
)

τtj (10.10)

To do so, we semantically tag subsequences of each amino acid sequence ti ∈ L(Gdi)

in a clustering model Ψ that encodes semantic relationships among arbitrary-length

subsequences,4 in contrast to ProtVec [11], which exclusively encodes a space of 3-mers

(Fig. 8.3c). To this end, we train a secondary model, denoted ProtVec(3), in which we

2We use bmin = 2 for our experiments.
3As a minor abuse of notation, we note that we have used σ previously to represent terminal characters

in amino acid strings; in this one instance we re-use σ as the standard deviation, which is standard in
statistical literature.

4Our ProtVec-inspired model, ProtVec(k), is detailed in the Appendix E.

151

split the original peptide string si into 1-, 2-, and 3-mers, yielding an input vocabulary

of 8,986 entries appearing in 85,626 unique sequences. After fitting ProtVec(3), we

project the 100-dimensional embedded vectors onto 2 dimensions, and partition the space

into semantically-related clusters [227] using an efficient k-means algorithm [53]. These

cluster labels are used when transforming an augmented corpus of peptide drugs into a

treebank of interest for PCFG induction (Section 8.3).

For each amino acid sequence tj = σ1σ2 . . . σni ∈ L(Gdi), let t
(1)
j , t

(2)
j , and t

(3)
j denote

the decomposition of tj into respective sequences of 1-mers, 2-mers, and 3-mers as follows:

t
(1)
j =

(
σ
(1)
1 , σ

(1)
2 , . . . , σ

(1)
ni

)
, σ

(1)
k = σk, 1 ≤ k ≤ ni; (10.11)

t
(2)
j =

(
σ
(2)
1 , σ

(2)
2 , . . . , σ

(2)
ni−1

)
, σ

(2)
k = σkσk+1, 1 ≤ k ≤ ni − 1; (10.12)

and t
(3)
j is defined analogously to s

(3)
i in the preceding subsection. We note that we

allow over-lapping of 2-mers in Eq. (10.12) as a prudent introduction of ambiguity in the

resulting grammar,5 and to negate the need for additional padding of ‘X’s when |tj | is

not divisible by 6.

Let ψ
(
σ
(ℓ)
k

)
be the label of the cluster that Ψ assigns to σ

(ℓ)
k in the ProtVec(3) space.

We define the set of all parse trees using a context free grammar Gtj(Ntj ,Σ, S,Rtj). We

associate a non-terminal with each unique label ψ
(
σ
(ℓ)
k

)
. Then the set of non-terminals

is:

Ntj = S ∪
ni⋃
k=1

ψ
(
σ
(1)
k

)
∪

ni−1⋃
k=1

ψ
(
σ
(2)
k

)
∪

ni/3⋃
k=1

ψ
(
σ
(3)
k

)
(10.13)

5Ambiguity works in our favor, as it reflects the possibility to perturb alternative structures in a
resulting peptide sequence for greater exploration [54].

152

We define a top-level productionRS = S → R(3)
1 R

(3)
2 . . .R(3)

n/3; we then define productions

R(3)
k , R(2)

k , and R(1)
k as follows:

R(3)
k = ψ

(
σ
(3)
k

)
→ ψ

(
σ
(2)
3k−2

)
ψ
(
σ
(1)
3k

)
| ψ
(
σ
(1)
3k−2

)
ψ
(
σ
(2)
3k−1

)
(10.14)

R(2)
k = ψ

(
σ
(2)
k

)
→ ψ

(
σ
(1)
k

)
ψ
(
σ
(1)
k+1

)
(10.15)

R(1)
k = ψ

(
σ
(1)
k

)
→ σk (10.16)

The complete set of productions is therefore:

Rtj = RS ∪
ni⋃
k=1

R(1)
k ∪

ni−1⋃
k=1

R(2)
k ∪

ni/3⋃
k=1

R(3)
k (10.17)

Intuitively, this grammar allows for the perturbation of any peptide tj ∈ L(Gdi) by

randomly selecting a 1-, 2-, or 3-mer and replacing it with another 1-, 2-, or 3-mer that

is similar in terms of the classification labels in embedding model Ψ; due to the similar

relation, the biological function of the peptide is unlikely to radically change, while the

possibility exists that the peptide resulting from the perturbation has a lower MIC.

We generate parse trees τtj using an Early parser [58]; Eqs. (10.2) and (10.10) then

complete the generation of TD. Finally, we use the inside-outside algorithm on TD’s

underlying grammar to generate the PCFG of interest [13, 147].

While the augmentation step bolsters the corpus so that semantically similar sequences

to superior drugs appear more often, leading to an increased likelihood that a desired

semantic form occurs in the corpus, the transformation into parse trees provides rules

that specify an underlying grammar for drugs of interest from the provided examples.

153

10.2 Peptide Filter

The gen module provided by MediSyn interfaces with an optional filter module

which can be utilized to prevent synthesis and evaluation of undesirable candidates. For

PepSyn, we implemented a simple inference model that either accepts or rejects each

candidate based on inferred cytotoxicity [84].

Certain peptide sequences may have properties that cause them to be prohibitively

difficult to (chemically) synthesize or may have toxic effects; we filter out peptide

candidates that fall below thresholds listed in [159]. For example, Fig. 10.1 depicts a

syntactic specification that could result in proposals being generated that are of the family

of neurotoxic “conotoxins,” one of the most toxic substances known to man that is subject

to the same government regulations as Anthrax and Ebola Virus [31]. Furthermore, the

candidate structure’s two unbound holes provide opportunities to propose candidates

that would be difficult to synthesize. Of the proposal candidates depicted in Fig. 10.1, the

candidate CCNPACGRNFSC conforms to a conotoxin, while CCNPCCGCCCNFSC contains

a high ratio of cysteine amino acids, increasing its likelihood of instability [159]. We filter

these candidates out before the gen module provides its list of the remaining preferred

candidates to the core module.

10.3 Back-end

The back-end module we implement for PepSyn implements in silico evaluation. While

MediSyn’s back-end module is capable of completing a cyber-physical feedback loop

to control a physical apparatus that synthesizes and evaluates proposed candidates

(Chapter 9), our evaluation here is limited to a purely computational approach. PepSyn’s

154

back-end module implements the synthesize method by returning a unique identifier

(to simulate successful synthesis), and estimates each candidate’s MIC in silico using the

evaluate method, discussed next.

10.3.1 MIC Estimation

With peptides, form follows function, and sequence alignment provides a reasonable

approximation of biologically related forms; hence, one can expect peptides having

significant sequence similarity to also have similar antimicrobial function [10, 9]. The

evaluate method implemented by PepSyn’s back-end module infers a point esti-

mate of a candidate peptide’s minimum inhibitory concentration (MIC) assuming a

statistical model where peptides that have significant sequence similarity also have

similar antimicrobial function. Let V be the user-provided specification of peptides with

experimentally validated MICs, where each v ∈ V = (vseq, vmic)
6 We estimate the MIC

cmic of a candidate c utilizing sequence alignments of c against each v ∈ V . Shown

in Eq. (10.18), cmic is computed as the geometric mean of the ratio of vmic and the

similarity of vseq with c for all v ∈ V :

cmic =

(∏
v∈V

vmic

norm alignvseq(c)

) 1
|V |

, (10.18)

where norm alignvseq is a pairwise sequence alignment function associated with vseq that

computes a normalized sequence similarity score against the candidate c. We normalize

raw alignments due to interpretation difficulties in the presence of e.g., varied lengths

or scoring parameters. The alignment in Fig. 10.8 illustrates the issue: a 100% match

with one alignment scores the same as an alignment where 1/3 of the amino residues

are different or missing from the candidate. To compute a raw alignment score, we use

6When using PepGen, V = D; when using PepSketch, the user must load V directly. We denote the
pair as (vseq, vmic) in lieu of (si, xi) for clarity that V is not necessarily equal to D.

155

Figure 10.8: Difficulty of interpreting sequence alignment similarity scores: due to varied
lengths and scoring parameters, sequence alignment scores must be normalized to provide
consistent interpretation.

the Smith-Waterman local alignment algorithm [211] with a point accepted mutation

(PAM) substitution matrix — a scoring matrix that directly corresponds to evolutionary

mutations in peptide sequences, relating the likelihood of replacing a single amino acid

at each point with any other amino acid [45]. Let raw(vseq, c) return a raw alignment

score. In order to normalize similarity scores, each vseq ∈ V has its own min-max

norm alignvseq function (Eq. (10.19)) where the max — corresponding to an exact match

— is the result of aligning vseq with vseq, and the min — corresponding to any least

biologically-related peptide of equal length — is computed as w ∗ |vseq|, where w is the

penalty in the PAM matrix for substituting a wildcard (i.e., an unspecified amino acid

at the given position),7 i.e.,

norm alignvseq = λvseq.λc.
raw(vseq, c)− w ∗ |vseq|
raw(vseq, vseq)− w ∗ |vseq|

(10.19)

After evaluating cmic using our normalized alignments, the result is fed back to MediSyn’s

provides core module to inform MCMC acceptance.

7In practice, we specify w = −8 in the PAM matrix.

156

Chapter 11

Evaluation

Our stated goals for MediSyn is to

1. automate the discovery process

2. reduce that normative costs necessary for discovering viable drug candidates

We assess goal 1 by (a) characterizing the candidate spaces (i.e., PCFGs) that PepSyn’s

PepSketch and PepGen front-ends generate and (b) observing acceptance rates and mixing

times for MediSyn’s MCMC implementation. If a bespoke PepSketch and a corresponding

corpus selection in PepGen are able to generalize search spaces corresponding to drugs

with known activity, then PepSyn is able to automate the generation of good priors

distributions. If MediSyn’s MCMC implementation converges to a stable distribution,

then we can conclude that MediSyn is able to automate the optimizing search over the

provided candidate space. We assess goal 2 by way of extrapolation; i.e., given the

157

observations from (a) and (b), we estimate ranges of costs associated with each search if

the back-end were to rely on physically synthesizing and evaluating each candidate.

The remainder of this section details our choice of benchmarks (Section 11.1) and

evaluation methodologies (Section 11.2) prior to reporting and discussing results in

Sections 11.3 and 11.4.

11.1 Benchmarks

Table 11.1 characterizes a set of benchmark pairs used to evaluate goals 1 and 2. For each

benchmark, we provide a numbered identifier of the form #FrontEnd, where FrontEnd

is either PS (for PepSketch) or PG (for PepGen), and a short description of what the

benchmark entails.

Table 11.1: Benchmarks

ID Description

1PS These aim to emulate the protegrin family of peptides, a family of short peptides
(typically 16-18 amino acids) with antimicrobial and antiviral applications [163].1PG

2PS We target the ATCC 25922 strain of e. coli, a standard used for testing
AMPs, with these benchmarks [175].2PG

3PS Coronaviruses, a family of crown-shaped microbes that have received a lot of
attention as of late, are targeted by these benchmarks [124].3PG

4PS Distinctin, a family of AMPs found in tree frogs [43, 17].
4PG

5PS This pair of benchmarks combines emulation of protegrin (as in the first pair
of benchmarks) while focusing on targeting the ATCC 25922 strain of e. coli.5PG

11.2 Methods

We utilize each pair of benchmarks to characterize each front-end’s ability to generate a

PCFG. For each benchmark, we manually create PepSketch expressions that generalize

the antimicrobial peptides associated with the goal; e.g., the PepSketch from Fig. 10.3

158

aims to emulate protegrin for 1PS . For PepGen versions of each benchmark, we query

each drug/target name in the descriptions as described in Section 10.1.2. Evaluation of

each benchmark pair uses an identical set of peptides with known antimicrobial activity,

leading to meaningful direct comparisons. We assess each of goals 1 and 2 by answering

the following questions:

Q1. Is PepSketch/PepGen able to generalize a candidate search space? How expressive

are the languages induced by PepSketch/PepGen?

Q2. Does the MCMC approach described in Chapter 9 work on the induced grammars

from PepSyn? Can it achieve good mixing? If so, how many candidates must be

evaluated prior to converging to a stable distribution?

Q3. What approximate costs are necessary to chemically synthesize candidates before

the posterior converges?

11.3 Results

Results for assessing goal 1 for each benchmark are listed in Tables 11.2 and 11.3.

Table 11.2 reports details of the probabilistic grammar GP and its language L(GP) that

are induced through each method; we report:

• The number of terminal symbols |Σ|, non-terminal symbols |N |, and rules |R| in

GP .

• The size of the search space |L(GP)|, i.e., the number of peptides L(GP) specifies.

• The average length avg |c| sampled candidates in L(GP).

159

• The number of holes/terms used in describing the benchmark. For PepSketch, we

use the term holes to refer to a position in the sequence specified as an optional,

repeat, or wildcard expression. For PepGen, we use terms to refer to the number of

search terms used to select D.

Table 11.3 reports details regarding the MCMC optimization search provided by MediSyn.

We report acceptance rate α, mixing time Mix, the average length of a sampled candidate

avg |c|, and approximations of cost requirements if evaluations were to occur ex silico.

11.4 Discussion

Table 11.2 helps us answer Q1; by taking the geometric mean of each feature (for

each front-end), we can find the average difference—denoted avg-diff—between the

approaches. We find that a PepSketch expression has, on average, 585.27 fewer terminals,

21.02 fewer non-terminals, and 14,179.49 fewer productions rules than PepGen, leading to

grammars that are significantly more concise, and spaces that on average have 1.07E+40

fewer candidates. Even so, the average size of candidate lengths are similar, where a

PepGen candidate is only ∼4 more amino acids than one from PepSketch. While PepGen

grammars are objectively more expressive, they come from significantly less user-input:

we note that there are on average 13.55 more holes in PepSketch expressions than the

number of terms we needed to select to perform the same benchmarks. PepSketch does

not generate a treebank; on average, it’s transformation into L(GP) takes ∼43 fewer

minutes than PepGen’s.

160

T
ab

le
1
1.
2:

C
h
ar
ac
te
ri
st
ic
s
of

th
e
P
C
F
G
s
th
at

P
ep
S
yn

’s
tw

o
fr
on

t-
en

d
s
cr
ea
te
.

ID
|Σ
|

|N
|

|R
|

|L
(G

P
)|

a
v
g
|c
|

H
o
le
s
/

T
e
rm

s
T
im

e
T
o
G
e
n
e
ra

te
(m

m
:s
s.
m
s)

L
† G

d
i

T
† D

L
(G

P
)

1
P
S

2
3

5
3
5

1.
24

E
+
05

17
5

00
:0
0
.0
63

1 P
G

2
6
5

3
8

1
23

47
3.
77

E
+
18

1
7

1
0
0:
00

.4
25

01
:1
7.
63

7
0
0:
18

.5
9
2

2
P
S

2
3

1
2

4
3

4.
96

E
+
05

18
12

0
0:
00

.0
8
8

2 P
G

44
27

3
9

2
24

3
78

1.
00

E
+
85

36
1

0
0:
32

.3
5
3

0
4:
05

.9
74

04
:5
5.
66

7
3
P
S

23
2
2

7
1

1.
53

E
+
12

49
22

0
0
:0
0.
19

6
3 P

G
7
15

3
8

9
15

4.
8
4E

+
52

51
1

0
0:
00

.0
30

00
:3
7.
7
68

0
0:
1
4.
86

4
4
P
S

23
2
0

7
3

2.
46

E
+
16

28
20

0
0
:0
0.
07

6
4 P

G
1
66

3
0

16
6
39

7
3.
2
7E

+
19

30
1

0
0:
10

.1
73

01
:4
5.
6
45

0
2:
0
8.
21

2
5
P
S

23
2
6

8
5

4.
92

E
+
16

22
26

0
0
:0
0.
06

7
5 P

G
5
98

3
9

1
3
87

2.
3
5E

+
24

20
2

0
0:
00

.5
09

00
:3
7.
8
51

0
0:
1
5.
18

0

a
v
g
-d
iff

‡
5
8
5
.2
7

2
1
.9
2

1
4
,1
7
9
.4
9

1
.0
7
E
+
4
0

3
.7
5

-1
3
.5
5

0
0
:4
3
.5
9
2

†
-
re
su
lt
s
sp

ec
ifi
c
to

P
ep
G
en

‡
-
d
iff
er
en

ce
o
f
g
eo
m
et
ri
c
m
ea
n
s
o
f
ea
ch

fe
a
tu
re

fo
r
ea
ch

fr
o
n
t-
en

d

161

F
ig
u
re

1
1
.1
:
T
ra
ce

p
lo
ts
,
d
is
tr
ib
u
ti
o
n
o
f
o
b
se
rv
a
ti
o
n
s,

a
n
d
a
u
to
co
rr
el
a
ti
o
n
(l
a
g
)
p
lo
ts

fo
r
th
e
d
is
ti
n
ct
in

b
en
ch
m
a
rk

(I
D

4
);
m
ix
in
g
fo
r
th
e

P
ep
G
en

(r
ig
h
t)

te
ch
n
iq
u
e
su
gg

es
ts

su
p
er
io
r
st
ab

il
it
y
of

th
e
d
is
tr
ib
u
ti
on

in
th
is

b
en

ch
m
ar
k
.

162

Table 11.3: The acceptance rate (α), time to converge to a posterior distribution (Mix),
average length of a peptide candidate avg |c|, and approximate costs required to perform
experimentation ex silico.

ID α† Mix†,‡ avg |c| ∼Cost

Lower Upper

1PS 92.95% 0 17 $3,188 $42,500
1PG 92.19% 250 17 $31,875 $425,000
2PS 96.34% 0 18 $3,375 $45,000
2PG 97.66% 200 36 $54,000 $720,000
3PS 97.76% 0 49 $9,188 $122,500
3PG 95.09% 250 51 $95,625 $1,275,000
4PS 97.58% 0 28 $5,250 $70,000
4PG 96.07% 0 30 $5,625 $75,000
5PS 97.22% 50 22 $8,250 $110,000
5PG 94.89% 250 20 $37,500 $500,000
† - avg. of 10 independent chains, ‡ - nearest 50

Q2 is resolved with Table 11.3; MediSyn’s provided MCMC technique shows high

acceptance rates of proposal candidates; this either indicates that the jumping distribution

does not provide for significant exploration, or that the acceptance ratio often evaluates

close to 1 even when jumps are distant. As a jump can be selected as high up as the start

symbol in the parse tree, any candidate in the grammar is a possible proposal; this may

indicate that the grammars we generate distribute candidates with high likelihood of

correlation w.r.t. their antimicrobial activity. Observed mix times (using trace plots, e.g.,

Fig. 11.1) are insightful: the PepSketch approach began its search within the posterior

for all but one benchmark. The PepGen approach required 200 iterations prior to

convergence on average.

Table 11.3 provides low and high estimates of costs to answer Q3: we associate a cost-

per-amino acid based on typical reporting (Section 8.1.3). For benchmarks requiring zero

burn-in, we assume a search of at least 25 candidates. Using a low bound of $7.50 and high

bound of $100, PepSketch averages (by the geometric mean) between ∼$5, 000-$70, 000,

while PepGen averages between ∼$32, 000-$430, 000. While PepSketch’s propensity

163

to begin in its target distribution provides potential cost savings over PepGen, the

boundaries for PepGen’s approximate costs are troublesome in the light of the estimated

$2.6 billion that is typical for drug discovery [169].

There are several threats to the validity of our results. Namely, high acceptance rates

during MCMC could indicate lack of exploration. Moreover, our evaluation metric

(Section 10.3) uses in silico point approximations that may not correlate to physical

evaluations. Finally, the cost approximations we provide, while given a range of upper

and lower bounds to err on the side of caution, do not account for e.g., personnel,

equipment/machinery, etc., that may be typical for pharmaceutical corporations.

164

Chapter 12

Related

In addition to the relevant material in program synthesis and superoptimization this

work takes inspiration from presented in Chapter 8, there is a breadth of literature in

the context of bioinformantics (for PCFG induction) and machine learning (for drug

discovery).

Grammar Induction for Protein Modeling: Several efforts in inducing PCFGs

for modelling protein sequences for various purposes have been proposed [202, 57, 229]

[202] utilizes an n-gram Bayesian classifier to annotate non-terminals with classification

results while inducing a (non-probabilistic) context-free grammar from a corpus of frog

antimicrobial peptides. Their CFG rules are modified with probabilities correlating to

the cardinality of discovered clusters. [57] estimates the probabilities for rules on an

underlying (non-probabilistic) CFG in a way similar to [181], in which parentheses are

used to denote semantically related structures in otherwise unlabeled corpora to estimate

a PCFG using the inside-outside algorithm [13]. [57] utilizes computationally derived

165

rules for protein contact map constraints as a proxy to [181]’s parenthetical annotations,

which model sequences in a given protein that are likely to have close spatial proximity in

their folding. Our PepGen approach accomplishes the similar goal of finding semantically

similar motifs, but our weighting of rules is accomplished through augmentation using

perturbations of nearest-neighbor 3-mers in the trained word embedding vector space.

Machine Learning Approaches to Drug Discovery: There has been a significant

effort in applying machine learning (ML) to the task of drug discovery over the past

several decades, well beyond the scope of what is reasonable to cover here, ranging

from simple models (e.g., SVM’s [132], decision trees [144], and linear regressors [89])

to more complex deep-learning approaches [36],1 and several pharmaceutical companies

are approaching drug discovery directly with ML [193, 165, 116, 44, 247, 252] A recent

review ([59]) discusses the latest advancements and their shortcomings, including a lack of

transparency (i.e., the ability to interpret resulting models) and the requirement for large

(typically labeled) datasets. Emerging techniques that might overcome these limitations

are highlighted, including applying recommendation systems (for semi-interpretable

results) [214] and transfer learning (for learning from small datasets) [244, 83, 204]. In

contrast, our approach mitigates these concerns by design — formal grammars lead to

direct interpretation, and user-supplied specifications to optimize over can be few. The

most direct relation to our approach is in the design of PepGen, where we use data

augmentation to overcome issues with smaller datasets.

1Excellent reviews are regularly published, cataloging efforts in this domain [231, 36, 59, 118, 132, 248].

166

Chapter 13

Conclusion

This part presented MediSyn, a framework that aims to reduce the high costs and

time associated with drug discovery and development by automating the early phases

using techniques originally developed for superoptimization of program specifications in

program synthesis. The modular architecture of MediSyn provides for straightforward

extension and specialization for de novo discovery of viable drugs of differing types.

MediSyn’s utility was demonstrated with PepSyn, a proof-of-concept implementation

for pharmaceutical peptides, featuring a domain-specific-language front-end that allows

researchers to succinctly specify a candidate space we call PepSketch and a secondary

front-end that induces a search space based on a selection of known pharmaceutical

peptides. Evaluation shows that MediSyn’s Markov Chain Monte Carlo technique

achieves good mixing on the distributions of peptide drugs provided by PepSyn, typically

with little need for burn-in. The contributions provide a hopeful path forward for life

scientists to adopt emerging technologies in their workflows, and have the potential to

disrupt the $500 billion US pharmaceutical industry. Future work for MediSyn should

167

investigate novel back-end techniques that complete a cyber-physical feedback loop,

where physical candidate evaluation replaces (or augments) in silico inference, implement

specifications for new domains (e.g., small molecules, D/RNA-based drugs, etc.), and

investigate different synthesis and/or enumeration techniques.

168

Conclusion

Life scientists are in need of disruptive tools to improve the efficiency, costs, and

reproducibility of their important work.

In Part I, this dissertation addressed ways in which these problems could be solved for

biological and chemical scientists who utilize or otherwise rely on analytical biochemical

assays that can be automated, miniaturized, and accelerated using programmable

laboratories-on-a-chip (pLoCs), but are currently performed at the benchtop. It presented

practical solutions to gaps in the end-to-end workflow of programming, compiling, and

executing assays on commercially-available pLoCs.

Part II presented the modular MediSyn framework as a solution to reduce the high costs

and time associated with drug discovery and development, and demonstrated its nascent

utility with PepSyn, a proof-of-concept peptide-specific implementation of MediSyn.

These contributions provide a practical path forward for life scientists to adopt emerging

technologies in their workflows, and have the potential to disrupt the $500 billion US

pharmaceutical industry with faster and cheaper solutions for discovering and developing

life-saving drugs.

169

Appendix A

Mix Module Resizing Example

We provide a simple mixing tree as an example of our resizing heuristic (Fig. A.1). The

assay uses the time t specified for a 2 × 2 mixer. The assay, converted into its fluidic

dependency graph (shown as a directed acyclic graph (DAG)) (Fig. A.2a), has a width

of 4. The following discussion details how we find the width.

1 /* dispense a, b, c, d, e, f, g, h */
2 ab = mix a with b for 10s
3 cd = mix c with d for 10s
4 ef = mix e with f for 10s
5 gh = mix g with h for 10s
6 abcd = mix ab with cd for 10s
7 efgh = mix ef with gh for 10s
8 abcdefgh = mix abcd with efgh for 10s
9 drain abcdefg

Figure A.1: A Synthetic Assay: the specification given as a BioScript protocol. Default
mixing times are given by the scientist, typically based on a 2 × 2 module’s latency
(Table 2.2)

From visual inspection, the DAG in Fig. A.2a can clearly parallelize four instructions

(nodes 1, 2, 3, and 4). While this is clear in this case through visual inspection, for any

arbitrary assay it is not so. By finding a maximum antichain of the DAG of width w,

we reveal an upper limit on instruction level parallelism for a given assay. Figure A.2c

170

depicts a maximum matching on the bipartite graph derived from the DAG in Fig. A.2a.

From this matching, we partition the DAG into the chains shown in Fig. A.2b from

which we find w = 4.

(a)

(b) (c)
Figure A.2: The dependency graph and derived bipartite graph for the Assay
in Figure A.1: The dependency graph (a) has a width w = 4, corresponding to a
maximum number of 4 parallel operations. To find the maximum number of parallel
operations, we find a maximum matching on the dependency graph’s derived bipartite
graph (c), and use this to partition the DAG into a set of w chains (b)

Figure A.3 shows the number of work modules the scheduler allocates for different

module sizes given an architecture of 8 × 12. We can fit three of the various 2 × y

modules (Figs. A.3a to A.3c), or four 1× 4 modules (Fig. A.3d). Given this architecture,

Algorithm 1 returns the 1× 4 module; maximizing operation-level parallelism within the

block.

171

Prior to resizing, the scheduled time to execute this assay is 40 seconds, noting only three

operations can be performed in parallel with the given size and any I/O latencies are

amortized away. After resizing, each mix operation’s latency is reduced to 10×4.6/9.95 ≈

4.62 seconds. The total rescheduled time is then ≈ 13.87 seconds, ignoring I/O latencies1.

This example highlights the difficulty of finding an optimal size for a mix module. In

this case, an optimal choice would be to use three 2× 4 modules rather than four 1× 4

modules, as the 2×4 modules would reduce the schedule to ≈ 11.66 seconds, ignoring I/O

latencies. While true in this particular case, it does not generalize. Specifically, assays

do not always have the binary tree structure as given in Fig. A.2a, and typically have

varying amounts of operation-level parallelism at different depths. As the parallelism in

Fig. A.2a monotonically decreases with its depth, the benefits of exploiting the maximum

parallelism is restricted, whereas an arbitrary assay may have significant gains through

increased parallelism throughout.

1This is a simplification. In reality, I/O operations take time, which we allocate for during scheduling.
For example, this particular assay is scheduled for 17 seconds to account for I/O latencies

172

0 1 2 3 4 5 6 7

1 IR IR IR IR
2 IR IR
3 IR IR
4 IR IR IR IR
5 IR IR
6 IR IR
7 IR IR IR IR
8 IR IR
9 IR IR
10 IR IR IR IR
11

(a) 2× 2 - 3 modules

0 1 2 3 4 5 6 7

1 IR IR IR IR IR
2 IR IR
3 IR IR
4 IR IR IR IR IR
5 IR IR
6 IR IR
7 IR IR IR IR IR
8 IR IR
9 IR IR
10 IR IR IR IR IR
11

(b) 2× 3 - 3 modules
0 1 2 3 4 5 6 7

1 IR IR IR IR IR IR
2 IR IR
3 IR IR
4 IR IR IR IR IR IR
5 IR IR
6 IR IR
7 IR IR IR IR IR IR
8 IR IR
9 IR IR
10 IR IR IR IR IR IR
11

(c) 2× 4 - 3 modules

0 1 2 3 4 5 6 7

1 IR IR IR IR IR IR
2 IR IR
3 IR IR IR IR IR IR
4 IR IR
5 IR IR IR IR IR IR
6 IR IR
7 IR IR IR IR IR IR
8 IR IR
9 IR IR IR IR IR IR
10

11

(d) 1× 4 - 4 modules
Figure A.3: Given an 8 × 12 chip, the scheduler will allocate as many work modules
as will fit for a given size, with room left for droplet routing. Cells marked “IR” form
an interference region around work modules, in which droplets cannot be routed. The
scheduler ensures that work modules provide enough room for vertical routing streets (
in the case where we have more than a single column of work modules), as well as an
IR-free perimeter for I/O routing.

173

Appendix B

Benchmarks

B.1 Benchmarks for Chapter 4

Listings for each of the benchmarks used in Chapter 3 follow. While many of these are

available in [178, 41]’s supplemental materials, they have all been updated to match

syntax updates in BioScript.

B.1.1 Benches from [178]

Listing B.1: BroadSpectrumOpiate ([12, 108, 146]).

1 module fluorescence
2
3 manifest Anti_Morphine
4 manifest Anti_Oxy
5 manifest Anti_Fentanyl
6 manifest Anti_Ciprofloxcin
7 manifest Anti_Heroin
8 manifest UrineSample
9

10 instructions:
11
12 us1 = dispense 10 units of UrineSample
13 us2 = dispense 10 units of UrineSample
14 us3 = dispense 10 units of UrineSample
15 us4 = dispense 10 units of UrineSample
16 us5 = dispense 10 units of UrineSample
17

174

18 aa = dispense 10 units of Anti_Morphine
19 a = mix us1 with aa
20 bb = dispense 10 units of Anti_Oxy
21 b = mix us2 with bb
22 cc = dispense 10 units of Anti_Fentanyl
23 c = mix us3 with cc
24 dd = dispense 10 units of Anti_Ciprofloxcin
25 d = mix us4 with dd
26 ee = dispense 10 units of Anti_Heroin
27 e = mix us5 with ee
28
29 MorphineReading = detect fluorescence on a for 5s
30 OxyReading = detect fluorescence on b for 5s
31 FentanylReading = detect fluorescence on c for 5s
32 CiproReading = detect fluorescence on d for 5s
33 HeroinReading = detect fluorescence on e for 5s
34
35 dispose a
36 dispose b
37 dispose c
38 dispose d
39 dispose e

Listing B.2: CancerDetection ([210]).

Listing B.3: Ciprofloxacin ([108]).

1 module fluorescence
2
3 manifest ciprofloxacin_enzyme
4 manifest distilled_water
5 manifest ciprofloxacin_conjugate
6 manifest tmb_substrate
7 manifest urinesample
8 manifest stop_reagent
9

10 instructions:
11
12 us = dispense 20 units of urinesample
13 cfc = dispense ciprofloxacin_conjugate
14 cfe = dispense ciprofloxacin_enzyme
15
16 a = mix us with cfe
17 b = mix cfc with a for 60s
18 heat b at 23c for 60m
19 dispose b
20
21 repeat 5 times {
22 water = dispense 250 units of distilled_water
23 cfe = dispense ciprofloxacin_enzyme
24 temp = mix water with cfe for 45s
25 dispose temp
26 }
27 tmb = dispense 50 units of tmb_substrate
28 cfe = dispense ciprofloxacin_enzyme
29
30 d = mix tmb with cfe

175

31 heat d at 25c for 30m
32
33 cfe = dispense ciprofloxacin_enzyme
34 stop = dispense 100 units of stop_reagent
35 e = mix cfe with stop for 60s
36
37 urine_reading = detect fluorescence on e for 5m
38 dispose d
39 dispose e

Listing B.4: Diazepam ([91]).

1 module fluorescence
2
3 manifest diazepam_enzyme
4 manifest urinesample
5 manifest diazepam_antibody
6 manifest distilled_water
7 manifest stop_reagent
8 manifest hrp_conjugate
9 manifest tmb_substrate

10
11 instructions:
12
13 urine = dispense 50 units of urinesample
14 dpe = dispense diazepam_enzyme
15 a = mix urine with dpe for 60s
16 anti = dispense 100 units diazepam_antibody
17 b = mix a with anti for 60s
18 heat b at 23c for 30m
19 dispose b
20
21 repeat 3 times {
22 water = dispense 250 units of distilled_water
23 dpe = dispense diazepam_enzyme
24 a = mix water with dpe for 45s
25 dispose a
26 }
27
28 hrpc = dispense 150 units of hrp_conjugate
29 dpe = dispense diazepam_enzyme
30 cc = mix hrpc with dpe
31 heat cc at 23c for 15m
32 dispose cc
33
34 repeat 3 times {
35 water = dispense 250 units of distilled_water
36 dpe = dispense diazepam_enzyme
37 a = mix water with dpe for 45s
38 dispose a
39 }
40
41 tmb = dispense 100 units of tmb_substrate
42 dpe = dispense diazepam_enzyme
43 d = mix tmb with dpe
44 heat d at 23c for 15m
45
46 stop = dispense 100 units of stop_reagent
47

176

48 reagent = mix d with stop for 60s
49 Negative_Reading = detect fluorescence on reagent for 30m
50 dispose reagent

Listing B.5: Dilution ([91]).

1 manifest substance_a
2 manifest substance_b
3 manifest substance_c
4 manifest dilutant1
5 manifest dilutant2
6 manifest dilutant3
7
8 instructions:
9

10 sa = dispense 10 units of substance_a
11 d1 = dispense 1 units of dilutant1
12
13 first_dilute = mix sa with d1
14 x = split first_dilute into 2
15
16 dispose x[0]
17
18 d2 = dispense 1 units of dilutant2
19
20 second_dilute = mix x[1] with d2
21 y = split second_dilute into 2
22 dispose y[0]
23
24 d3 = dispense 1 units of dilutant3
25
26 third_dilute = mix y[1] with d3
27 z = split third_dilute into 2
28 dispose z[0]
29
30 sb = dispense 10 units of substance_b
31 sc = dispense 10 units of substance_c
32
33 fourth_dilute = mix sb with sc
34 a = split fourth_dilute into 2
35 dispose a[0]
36
37 final_dilute = mix z[1] with a[1]
38 b = split final_dilute into 2
39 dispose b[0]
40 dispose b[1]

Listing B.6: Fentanyl et al. ([146]); several enzyme-linked-immunosorbent assay (ELISA)
variants exist, all following the same structure.

1 module fluorescence
2
3 manifest antigen
4 manifest urine_sample
5 manifest fentanyl_conjugate
6 manifest tmb_substrate
7 manifest distilled_water
8 manifest stop_reagent

177

9
10 instructions:
11
12 aa = dispense 20 units of urine_sample
13 aaa = dispense antigen
14 a = mix aa with aaa
15 bb = dispense 100 units of fentanyl_conjugate
16 b = mix bb with a for 60s
17 heat b at 23c for 60m
18 dispose b
19
20 repeat 6 times {
21 zz = dispense 350 units of distilled_water
22 z = mix zz with a for 45s
23 dispose z
24 }
25
26 aaaa = dispense 100 units of tmb_substrate
27 a = mix aaaa with a
28 heat a at 23c for 30m
29
30 aaaaa = dispense 100 units of stop_reagent
31 a = mix a with aaaaa for 60s
32 negative_reading = detect fluorescence on a for 30m
33 dispose a

Listing B.7: FullMorphine ([91]).

1 module fluorescence
2
3 manifest Antigen1
4 manifest Antigen2
5 manifest Antigen3
6 manifest morphine_conjugate
7 manifest negative_standard
8 manifest diluted_sample
9 manifest positive_standard

10 manifest distilled_water
11 manifest tmb_substrate
12 manifest stop_reagent
13
14 instructions:
15 d = dispense 20 units of negative_standard
16 e = dispense Antigen1
17 a = mix d with e
18 f = dispense 20 units of positive_standard
19 g = dispense Antigen2
20 b = mix f with g
21 h = dispense 20 units of diluted_sample
22 i = dispense Antigen3
23 cc = mix h with i
24
25 dd = dispense 100 units of morphine_conjugate
26 a = mix dd with a for 60s
27 ff = dispense 100 units of morphine_conjugate
28 b = mix ff with b for 60s
29 hh = dispense 100 units of morphine_conjugate
30 cc = mix hh with cc for 60s
31

178

32 heat a at 23c for 60m
33 heat b at 23c for 60m
34 heat cc at 23c for 60m
35
36 dispose a
37 dispose b
38 dispose cc
39
40 repeat 6 times {
41 j = dispense 350 units of distilled_water
42 k = dispense Antigen1
43 aa = mix j with k for 45s
44 l = dispense 350 units of distilled_water
45 m = dispense Antigen2
46 bb = mix l with m for 45s
47 n = dispense 350 units of distilled_water
48 o = dispense Antigen3
49 cc = mix n with o for 45s
50
51 dispose aa
52 dispose bb
53 dispose cc
54 }
55
56 jj = dispense 100 units of tmb_substrate
57 kk = dispense Antigen1
58 aa = mix jj with kk
59 ll = dispense 100 units of tmb_substrate
60 mm = dispense Antigen2
61 bb = mix ll with mm
62 nn = dispense 100 units of tmb_substrate
63 oo = dispense Antigen3
64 cc = mix nn with oo
65
66 heat aa at 23c for 30m
67 heat bb at 23c for 30m
68 heat cc at 23c for 30m
69
70 p = dispense stop_reagent
71 aa = mix p with 100 units of aa for 60s
72 q = dispense stop_reagent
73 bb = mix q with 100 units of bb for 60s
74 r = dispense stop_reagent
75 cc = mix r with 100 units of cc for 60s
76
77 negative_reading = detect fluorescence on aa for 30m
78 positive_reading = detect fluorescence on bb for 30m
79 sample_reading = detect fluorescence on cc for 30m
80
81 dispose aa
82 dispose bb
83 dispose cc

Listing B.8: GlucoseDetection ([6]).

1 module fluorescence
2
3 manifest reagent
4 manifest glucose

179

5 manifest distilled_water
6 manifest Sample
7
8 instructions:
9

10 aa = dispense 10 units of glucose
11 bb = dispense 10 units of reagent
12 result1 = mix aa with bb for 10s
13 reading1 = detect fluorescence on result1 for 30s
14 aaa = dispense 10 units of distilled_water
15 bbb = dispense 10 units of reagent
16 a = mix aaa with bbb for 30s
17 dispose a
18
19 cc = dispense 10 units of glucose
20 dd = dispense 20 units of reagent
21 result2 = mix cc with dd for 10s
22 reading2 = detect fluorescence on result2 for 30s
23 ccc = dispense 10 units of distilled_water
24 ddd = dispense 10 units of reagent
25 a = mix ccc with ddd for 30s
26 dispose a
27
28 ee = dispense 10 units of glucose
29 ff = dispense 40 units of reagent
30 result3 = mix ee with ff for 10s
31 reading3 = detect fluorescence on result3 for 30s
32 eee = dispense 10 units of distilled_water
33 fff = dispense 10 units of reagent
34 a = mix eee with fff for 30s
35 dispose a
36
37 gg = dispense 10 units of glucose
38 hh = dispense 80 units of reagent
39 result4 = mix gg with hh for 10s
40 reading4 = detect fluorescence on result4 for 30s
41 ggg = dispense 10 units of distilled_water
42 hhh = dispense 10 units of reagent
43 a = mix ggg with hhh for 30s
44 dispose a
45
46 ii = dispense 10 units of glucose
47 jj = dispense 10 units of reagent
48 result5 = mix ii with jj for 10s
49 reading5 = detect fluorescence on result5 for 30s
50 iii = dispense 10 units of distilled_water
51 jjj = dispense 10 units of reagent
52 a = mix iii with jjj for 30s
53
54 dispose a
55 dispose result1
56 dispose result2
57 dispose result3
58 dispose result4
59 dispose result5

Listing B.9: ImageProbeSynth ([6]).

1 manifest ion_exchange_beads

180

2 manifest fluoride_ions_f
3 manifest mecn_solution
4 manifest hydrochloric_acid
5
6 instructions:
7
8 ieb = dispense 10 units of ion_exchange_beads
9 fif = dispense 10 units of fluoride_ions_f

10
11 aa = mix ieb with fif for 30s
12
13 heat aa at 100c for 30s
14 heat aa at 120c for 30s
15 heat aa at 135c for 3m
16
17 ms = dispense 10 units of mecn_solution
18 bb = mix aa with ms for 30s
19
20 heat bb at 100c for 30s
21 heat bb at 120c for 50s
22
23 hcl = dispense 10 units of hydrochloric_acid
24
25 cc = mix bb with hcl for 60s
26 heat cc at 60c for 60s
27
28 dispose cc

B.1.2 Benches from [41]

Listing B.10: OpiateDetection, adapted from ([12, 146, 108, 158]); the various versions
listed refer to control-decisions made at (simulated) runtime.

1 module fluorescence
2
3 manifest Anti_Morphine
4 manifest Anti_Oxy
5 manifest Anti_Fentanyl
6 manifest Anti_Ciprofloxcin
7 manifest Anti_Heroin
8 manifest UrineSample
9 manifest DistilledWater

10 manifest TMBSubstrate
11 manifest StopReagent
12
13 stationary HeroinEnzyme
14 manifest HeroinConjugate
15 stationary CiproEnzyme
16 manifest CiproConjugate
17 stationary OxyEnzyme
18 manifest OxyConjugate
19 stationary FentanylEnzyme
20 manifest FentanylConjugate
21
22 instructions:
23
24 // BroadSpectrumOpiate panel

181

25 us1 = dispense 10 units of UrineSample
26 us2 = dispense 10 units of UrineSample
27 us3 = dispense 10 units of UrineSample
28 us4 = dispense 10 units of UrineSample
29 us5 = dispense 10 units of UrineSample
30
31 aa = dispense 10 units of Anti_Morphine
32 a = mix us1 with aa
33 bb = dispense 10 units of Anti_Oxy
34 b = mix us2 with bb
35 cc = dispense 10 units of Anti_Fentanyl
36 c = mix us3 with cc
37 dd = dispense 10 units of Anti_Ciprofloxcin
38 d = mix us4 with dd
39 ee = dispense 10 units of Anti_Heroin
40 e = mix us5 with ee
41
42 MorphineReading = detect fluorescence on a for 5s
43 OxyReading = detect fluorescence on b for 5s
44 FentanylReading = detect fluorescence on c for 5s
45 CiproReading = detect fluorescence on d for 5s
46 HeroinReading = detect fluorescence on e for 5s
47
48 dispose a
49 dispose b
50 dispose c
51 dispose d
52 dispose e
53
54 // true branch
55 if (MorphineReading >= 0.75 or OxyReading >= 0.75 or FentanylReading >= 0

.75 or CiproReading >= 0.75 or HeroinReading >= 0.75) {
56 hs = mix 20 units of UrineSample with 100 units of HeroinConjugate at

HeroinEnzyme for 1m
57 cs = mix 20 units of UrineSample with 100 units of CiproConjugate at

CiproEnzyme for 1m
58
59 heat hs at 23c for 60m
60 heat ms at 23c for 60m
61
62 dispose hs
63 dispose ms
64
65 // wash enzymes
66 repeat 6 times {
67 wash[2] = dispense 350 units of DistilledWater
68 send wash[0] to HeroinEnzyme for 45s
69 send wash[1] to CiproEnzyme for 45s
70 drain wash
71 }
72
73 tmb1 = dispense 100 units of TMBSubstrate
74 tmb2 = dispense 50 units of TMBSubstrate
75
76 send tmb1 to HeroinEnzyme
77 send tmb2 to CiproEnzyme
78
79 heat tmb1 at 23c for 30m
80 heat tmb2 at 23c for 30m
81

182

82 stop1 = mix 100 units of StopReagent with tmb1 for 60s
83 stop2 = mix 100 units of StopReagent with tmb2 for 60s
84
85 FinalHeroinReading = detect fluorescence on stop1 for 30m
86 FinalCiproReading = detect fluorescence on stop2 for 5m
87
88 drain stop1
89 drain stop2
90
91 // if both false run oxy
92 if (FinalHeroinReading <= 0.75 and FinalCiproReading <= 0.75) {
93 os = mix 20 units of UrineSample with 100 units of OxyConjugate

at OxyEnzyme for 1m
94
95 heat os at 23c for 60m
96
97 drain os
98
99 // wash

100 repeat 6 times {
101 wash = dispense 350 units of DistilledWater
102 send wash to OxyEnzyme for 45s
103 drain wash
104 }
105
106 tmb = dispense 100 units of TMBSubstrate
107
108 send tmb to OxyEnzyme
109
110 heat tmb at 23c for 30m
111
112 stop = mix tmb with 100 units of StopReagent for 1m
113
114 FinalOxyReading = detect fluorescence on stop for 30m
115
116 drain stop
117 }
118 } // else
119 else {
120 fs = mix 20 units of UrineSample with 100 units of FentanylConjugate

at FentanylEnzyme for 1m
121 os = mix 20 units of UrineSample with 100 units of OxyConjugate at

OxyEnzyme for 1m
122
123 heat fs at 23c for 60m
124 heat os at 23c for 60m
125
126 drain fs
127 drain os
128
129 // wash enzymes
130 repeat 6 times {
131 wash[2] = dispense 350 units of DistilledWater
132 send wash[0] to FentanylEnzyme for 45s
133 send wash[1] to OxyEnzyme for 45s
134 drain wash
135 }
136
137 tmb1 = dispense 100 units of TMBSubstrate
138 tmb2 = dispense 50 units of TMBSubstrate

183

139
140 send tmb1 to FentanylEnzyme
141 send tmb2 to OxyEnzyme
142
143 heat tmb1 at 23c for 30m
144 heat tmb2 at 23c for 30m
145
146 stop1 = mix 100 units of StopReagent with tmb1 for 60s
147 stop2 = mix 100 units of StopReagent with tmb2 for 60s
148
149 FinalFentanylReading = detect fluorescence on stop1 for 30m
150 FinalOxyReading = detect fluorescence on stop2 for 5m
151
152 drain stop1
153 drain stop2
154 }

Listing B.11: PCRDropletReplacement ([104]).

1 module weight
2 manifest PCRMasterMix
3 manifest Template
4
5 instructions:
6
7 a = dispense 50 units of PCRMasterMix
8 b = dispense 50 units of Template
9 PCRMix = mix a with b for 1s

10
11 repeat 5 times {
12 heat PCRMix at 95c for 20s
13 volumeWeight = detect weight on PCRMix
14
15 if (volumeWeight <= 50) {
16 c = dispense 25 units of PCRMasterMix
17 d = dispense 25 units of Template
18 replacement = mix c with d for 5s
19 heat replacement at 95c for 45s
20 PCRMix = mix PCRMix with replacement for 5s
21 }
22
23 heat PCRMix at 68c for 30s
24 heat PCRMix at 95c for 45s
25 }
26
27 heat PCRMix at 68c for 5m
28 dispose PCRMix

Listing B.12: ProbabilisticPCR ([137]).

1 module fluorescence
2 manifest Buffer
3 manifest PCRMix
4
5 instructions:
6 a = dispense 10 units of PCRMix
7 b = dispense 10 units of Buffer
8 PCR_Master_Mix = mix a with b

184

9
10 heat PCR_Master_Mix at 94c for 2m
11
12 repeat 5 times {
13 heat PCR_Master_Mix at 94c for 20s
14 heat PCR_Master_Mix at 50c for 40s
15 }
16
17 DNA_Sensor = detect fluorescence on PCR_Master_Mix for 30s
18
19 if (DNA_Sensor <= 80) {
20 dispose PCR_Master_Mix
21 }
22
23 repeat 4 times {
24 heat PCR_Master_Mix at 94c for 20s
25 heat PCR_Master_Mix at 50c for 40s
26 }
27
28 heat PCR_Master_Mix at 70c for 60s
29 dispose PCR_Master_Mix
30
31 d = dispense 10 units of PCRMix
32 e = dispense 10 units of Buffer
33 f = mix e with d
34 dispose f

Listing B.13: PCR ([6]).

1 module fluorescence
2 manifest pcr_mixture
3
4 instructions:
5
6 a = dispense pcr_mixture
7
8 heat a at 95c for 5s
9

10 repeat 20 times {
11 heat a at 53c for 15s
12 heat a at 72c for 10s
13 }
14
15 x = detect fluorescence on a for 3m
16
17 dispose a

B.2 Benchmarks for Chapter 3

Listings for each of the benchmarks used in Chapter 3 follow; DAG images and code

representations are available here.

185

https://drive.google.com/drive/folders/1dIjU86SGAqRH-KZ7RxJ2tYS_ewM1oepS

B.2.1 SLE-only

Recall that all SLE-only benchmarks set ∆ = 0 as an assumption that a lack of explicit

pause-points in the original assay indicates that reagents may be volatile. In each of the

following, @use.in 0 is used to set the ∆ appropriately.

Listing B.14: Fentanyl Enzyme-linked-immunosorbent assay (ELISA) with immediate
use constraints, adapted from [146]. A similar routine is used for detecting various
opiates.

1 module fluorescence
2
3 stationary antigen // antigen is baked onto the top dmfb plate
4 manifest urine_sample
5 manifest fentanyl_conjugate
6 manifest tmb_substrate
7 manifest distilled_water
8 manifest stop_reagent
9

10 instructions:
11 @use.in 0s
12 sample = mix 20 units of urine_sample on antigen for 15s
13 @use.in 0s
14 reagent = mix 100 units of fentanyl_conjugate on antigen for 35s
15 @use.in 0s
16 mixture = mix sample with reagent for 20s
17
18 @use.in 0s
19 heat mixture at 23c for 20m
20 dispose mixture
21
22 repeat 6 times {
23 wash = mix 350 units of distilled_water on antigen for 10m
24 dispose wash
25 }
26
27 @use.in 0s
28 substrate = mix 100 units of tmb_substrate on antigen for 30s
29 @use.in 0s
30 heat substrate at 23c for 25m
31
32 @use.in 0s
33 stop = mix 100 units of stop_reagent on antigen for 10s
34 stop = mix stop with substrate for 16m
35 dispose stop
36
37 negative_reading = detect fluorescence on antigen for 30m

Listing B.15: Basic thermocycling PCR assay for DNA replication; pcr master is sensitive
to temperature – we assume no time for storing droplets; adapted from [6].

1 module fluorescence
2 manifest template
3 manifest pcr_master

186

4 manifest forward_primer
5 manifest reverse_primer
6
7 instructions:
8 @use.in 0s
9 pcr_mix = mix 10 units of pcr_master with 10 units of template for 5s

10
11 /* warm up pcr_mix */
12 @use.in 0s
13 heat pcr_mix at 95c for 5s
14
15 @use.in 0s
16 primer_mix = mix 10 units of forward_primer with 10 units of

reverse_primer for 5s
17
18 @use.in 0s
19 sample = mix pcr_mix with primer_mix for 5s
20
21 // this repeat block is inlined
22 repeat 20 times {
23 @use.in 0s
24 heat sample at 53c for 15s
25 @use.in 0s
26 heat sample at 72c for 10s
27 }
28
29 x = detect fluorescence on sample for 3m
30
31 dispose sample

B.2.1.1 Multiplexed

Each of the following benchmarks stress the scheduler’s ability to deal with multiple

parallel operations with timing constraints.

Listing B.16: Multiplexed PCR with four targets within a single template.

1 module fluorescence
2 manifest template
3 manifest ftp1, ftp2, ftp3, ftp4 // forward target primer 1, 2, 3, 4
4 manifest rtp1, rtp2, rtp3, rtp4 // reverse target primer 1, 2, 3, 4
5 manifest pcr_master_mix
6
7 instructions:
8
9 // sample preparations

10 p1_mix = mix 1 units of ftp1 with 1 units of rtp1 for 5s
11 p2_mix = mix 1 units of ftp2 with 1 units of rtp2 for 5s
12 p3_mix = mix 1 units of ftp3 with 1 units of rtp3 for 5s
13 p4_mix = mix 1 units of ftp4 with 1 units of rtp4 for 5s
14
15 @use.in 0s
16 pcr_mix = mix 10 units of template with 4 units of pcr_master_mix for 10s
17
18 // without use.in constraints, these could sit dormant

187

19 samples = split pcr_mix into 4
20
21 @use.in 0s
22 target1 = mix samples[0] with p1_mix for 5s
23 @use.in 0s
24 target2 = mix samples[1] with p2_mix for 5s
25 @use.in 0s
26 target3 = mix samples[2] with p3_mix for 5s
27 @use.in 0s
28 target4 = mix samples[3] with p4_mix for 5s
29
30 //initialization (necessary for hot-start polymerases)
31 @use.in 0s
32 heat target1 at 95c for 45s
33 @use.in 0s
34 heat target2 at 95c for 45s
35 @use.in 0s
36 heat target3 at 95c for 45s
37 @use.in 0s
38 heat target4 at 95c for 45s
39
40 //thermocycling, typically 20-50 times
41 repeat 3 times {
42 // denature
43 @use.in 0s
44 heat target1 at 98c for 15s
45 @use.in 0s
46 heat target2 at 98c for 15s
47 @use.in 0s
48 heat target3 at 98c for 15s
49 @use.in 0s
50 heat target4 at 98c for 15s
51
52 //anneal
53 @use.in 0s
54 heat target1 at 50c for 30s
55 @use.in 0s
56 heat target2 at 50c for 30s
57 @use.in 0s
58 heat target3 at 50c for 30s
59 @use.in 0s
60 heat target4 at 50c for 30s
61
62 //elongation/extension
63 @use.in 0s
64 heat target1 at 74c for 3m
65 @use.in 0s
66 heat target2 at 74c for 3m
67 @use.in 0s
68 heat target3 at 74c for 3m
69 @use.in 0s
70 heat target4 at 74c for 3m
71 }
72
73 //final elongation
74 @use.in 0s
75 heat target1 at 70c for 5m
76 @use.in 0s
77 heat target2 at 70c for 5m
78 @use.in 0s

188

79 heat target3 at 70c for 5m
80 @use.in 0s
81 heat target4 at 70c for 5m
82
83 dispose target1
84 dispose target2
85 dispose target3
86 dispose target4

Multiplexed InVitro Colorimetric Detection Listings B.17 and B.18 show the

general layout for this group of benchmarks adapted from [221], which combines various

colorimetric detection assays (from [218]) into a multiplexed sequencing model for

collections of samples and reagents. Listing B.19 shows a Python script we used to

generate these multiplexed BioScript protocols.

Listing B.17: Multiplexed InVitro with 2 samples and 2 reagents, adapted from [221].

1 module sensor
2 manifest Plasma
3 manifest Serum
4 manifest Glucose
5 manifest Lactate
6
7 instructions:
8 @use.in 0s
9 mix1 = mix 10 units of Plasma with 10 units of Glucose for 5s

10 det1 = detect sensor on mix1 for 5s
11 dispose mix1
12
13 @use.in 0s
14 mix2 = mix 10 units of Plasma with 10 units of Lactate for 5s
15 det2 = detect sensor on mix2 for 5s
16 dispose mix2
17
18 @use.in 0s
19 mix3 = mix 10 units of Serum with 10 units of Glucose for 5s
20 det3 = detect sensor on mix3 for 5s
21 dispose mix3
22
23 @use.in 0s
24 mix4 = mix 10 units of Serum with 10 units of Lactate for 5s
25 det4 = detect sensor on mix4 for 5s
26 dispose mix4

Listing B.18: Multiplexed InVitro with 2 samples and 3 reagents, adapted from [221].

1 module sensor
2 manifest Plasma
3 manifest Serum
4 manifest Glucose

189

5 manifest Lactate
6 manifest Pyruvate
7
8 instructions:
9 @use.in 0s

10 mix1 = mix 10 units of Plasma with 10 units of Glucose for 5s
11 det1 = detect sensor on mix1 for 5s
12 dispose mix1
13
14 @use.in 0s
15 mix2 = mix 10 units of Plasma with 10 units of Lactate for 5s
16 det2 = detect sensor on mix2 for 5s
17 dispose mix2
18
19 @use.in 0s
20 mix3 = mix 10 units of Plasma with 10 units of Pyruvate for 5s
21 det3 = detect sensor on mix3 for 5s
22 dispose mix3
23
24 @use.in 0s
25 mix4 = mix 10 units of Serum with 10 units of Glucose for 5s
26 det4 = detect sensor on mix4 for 5s
27 dispose mix4
28
29 @use.in 0s
30 mix5 = mix 10 units of Serum with 10 units of Lactate for 5s
31 det5 = detect sensor on mix5 for 5s
32 dispose mix5
33
34 @use.in 0s
35 mix6 = mix 10 units of Serum with 10 units of Pyruvate for 5s
36 det6 = detect sensor on mix6 for 5s
37 dispose mix6

Listing B.19: Python script for generating multiplexed InVitro diagnostics.

1 samples = ["Plasma", "Serum", "Saliva", "Urine"]
2 reagents = ["Glucose", "Lactate", "Pyruvate", "Glutamate"]
3 # choose how many samples and reagents
4 s = 3
5 r = 4
6 usein = True
7 n = 0
8
9 with open("output/InVitro_{}s_{}r.bs".format(s, r), mode='w') as file:

10 file.write("\nmodule sensor")
11
12 for i in range(1, s+1):
13 file.write("\nmanifest {}".format(samples[i-1]))
14
15 for i in range(1, r+1):
16 file.write("\nmanifest {}".format(reagents[i-1]))
17
18 file.write("\n\ninstructions:")
19
20 count = 1
21 for i in range(1, s+1):
22 for j in range(1, r+1):
23 if usein:

190

24 file.write("\n@use.in {}s".format(n))
25 file.write("\nmix{} = mix 10 units of {} with 10 units of {}

for 5s".format(count, samples[i-1], reagents[j-1]))
26 file.write("\ndet{} = detect sensor on mix{} for 5s".format(

count, count))
27 file.write("\ndispose mix{}\n".format(count))
28 count += 1

B.2.1.2 Split-Dilutes

The ProteinSplit variants are sequencing assays with high fan-out; as with the InVitro

benchmarks, this group is derived from [221], and use a serial-dilution method ([62])

to construct diluting Bradford reactions ([218]). Listings B.20 and B.21 provide the

first two benchmarks of this type, while Listing B.22 gives a Python script we use to

generate these benchmarks.

Listing B.20: ProteinSplit1 dilution assay, adapted from [221].

1 module sensor
2 manifest DsS //sample
3 manifest DsB //buffer
4 manifest DsR //reagent
5
6 instructions:
7 @use.in 0s
8 mix1 = mix 10 units of DsS with 10 units of DsB for 3s
9 slt1 = split mix1 into 2

10
11 // path 1
12 @use.in 0s
13 mix2 = mix slt1[0] with 10 units of DsB for 3s
14 @use.in 0s
15 mix3 = mix mix2 with 10 units of DsB for 3s
16 @use.in 0s
17 mix4 = mix mix3 with 10 units of DsB for 3s
18 @use.in 0s
19 mix5 = mix mix4 with 10 units of DsB for 3s
20 @use.in 0s
21 mix6 = mix mix5 with 10 units of DsR for 3s
22 det1 = detect sensor on mix6 for 30s
23 dispose mix6
24
25 // path 2
26 @use.in 0s
27 mix7 = mix slt1[1] with 10 units of DsB for 3s
28 @use.in 0s
29 mix8 = mix mix7 with 10 units of DsB for 3s
30 @use.in 0s
31 mix9 = mix mix8 with 10 units of DsB for 3s
32 @use.in 0s

191

33 mix10 = mix mix9 with 10 units of DsB for 3s
34 @use.in 0s
35 mix11 = mix mix10 with 10 units of DsR for 3s
36 det2 = detect sensor on mix11 for 30s
37 dispose mix11

Listing B.21: ProteinSplit2 dilution assay, adapted from [221].

1 module sensor
2 manifest DsS //sample
3 manifest DsB //buffer
4 manifest DsR //reagent
5
6 instructions:
7 @use.in 0s
8 mix1 = mix 10 units of DsS with 10 units of DsB for 3s
9 slt1 = split mix1 into 2

10
11 @use.in 0s
12 mix2 = mix slt1[0] with 10 units of DsB for 3s
13 slt2 = split mix2 into 2
14
15 @use.in 0s
16 mix3 = mix slt1[1] with 10 units of DsB for 3s
17 slt3 = split mix3 into 2
18
19 // path 1
20 @use.in 0s
21 mix4 = mix slt2[0] with 10 units of DsB for 3s
22 @use.in 0s
23 mix5 = mix mix4 with 10 units of DsB for 3s
24 @use.in 0s
25 mix6 = mix mix5 with 10 units of DsB for 3s
26 @use.in 0s
27 mix7 = mix mix6 with 10 units of DsB for 3s
28 @use.in 0s
29 mix8 = mix mix7 with 10 units of DsR for 3s
30 det1 = detect sensor on mix8 for 30s
31 dispose mix8
32
33 // path 2
34 @use.in 0s
35 mix9 = mix slt2[1] with 10 units of DsB for 3s
36 @use.in 0s
37 mix10 = mix mix9 with 10 units of DsB for 3s
38 @use.in 0s
39 mix11 = mix mix10 with 10 units of DsB for 3s
40 @use.in 0s
41 mix12 = mix mix11 with 10 units of DsB for 3s
42 @use.in 0s
43 mix13 = mix mix12 with 10 units of DsR for 3s
44 det2 = detect sensor on mix13 for 30s
45 dispose mix13
46
47 // path 3
48 @use.in 0s
49 mix14 = mix slt3[0] with 10 units of DsB for 3s
50 @use.in 0s
51 mix15 = mix mix14 with 10 units of DsB for 3s

192

52 @use.in 0s
53 mix16 = mix mix15 with 10 units of DsB for 3s
54 @use.in 0s
55 mix17 = mix mix16 with 10 units of DsB for 3s
56 @use.in 0s
57 mix18 = mix mix17 with 10 units of DsR for 3s
58 det3 = detect sensor on mix18 for 30s
59 dispose mix18
60
61 // path 4
62 @use.in 0s
63 mix19 = mix slt3[1] with 10 units of DsB for 3s
64 @use.in 0s
65 mix20 = mix mix19 with 10 units of DsB for 3s
66 @use.in 0s
67 mix21 = mix mix20 with 10 units of DsB for 3s
68 @use.in 0s
69 mix22 = mix mix21 with 10 units of DsB for 3s
70 @use.in 0s
71 mix23 = mix mix22 with 10 units of DsR for 3s
72 det4 = detect sensor on mix23 for 30s
73 dispose mix23

Listing B.22: Python script for generating protein dilution benchmarks.

1 import math
2 # num = 2ˆexp (eg. proteinsplit 2 gets exp = 2 for 4 dilution samples)
3 # this gives us a concentration factor diluting the protein sample
4 exp = 6
5 num = 2 ** exp
6 usein = True
7 n = 0
8
9 with open("output/ProteinSplit_{}.bs".format(exp), mode='w') as file:

10 file.write("\nmodule sensor")
11 file.write("\nmanifest DsS //sample")
12 file.write("\nmanifest DsB //buffer")
13 file.write("\nmanifest DsR //reagent\n")
14
15 file.write("\ninstructions:")
16 if usein:
17 file.write("\n@use.in {}s".format(n))
18 file.write("\nmix1 = mix 10 units of DsS with 10 units of DsB for 3s

")
19 file.write("\nslt1 = split mix1 into 2")
20
21 for i in range(2, num):
22 file.write("\n")
23 if usein:
24 file.write("\n@use.in {}s".format(n))
25 file.write("\nmix{} = mix slt{}[{}] with 10 units of DsB for 3s"

.format(i, math.floor(i / 2), 0 if i % 2 == 0 else 1))
26 file.write("\nslt{} = split mix{} into 2".format(i, i))
27
28 for i in range(0, num):
29 j = num+i*5
30 file.write("\n\n// path {}".format(i+1))
31 if usein:
32 file.write("\n@use.in {}s".format(n))

193

33 file.write("\nmix{} = mix slt{}[{}] with 10 units of DsB for 3s"
.format(j, math.floor((num+i)/2), 0 if j % 2 == 0 else 1))

34 if usein:
35 file.write("\n@use.in {}s".format(n))
36
37 file.write("\nmix{} = mix mix{} with 10 units of DsB for 3s"

.format(j+1, j))
38 if usein:
39 file.write("\n@use.in {}s".format(n))
40
41 file.write("\nmix{} = mix mix{} with 10 units of DsB for 3s"

.format(j+2, j+1))
42 if usein:
43 file.write("\n@use.in {}s".format(n))
44
45 file.write("\nmix{} = mix mix{} with 10 units of DsB for 3s"

.format(j+3, j+2))
46 if usein:
47 file.write("\n@use.in {}s".format(n))
48
49 file.write("\nmix{} = mix mix{} with 10 units of DsR for 3s"

.format(j+4, j+3))
50 file.write("\ndet{} = detect sensor on mix{} for 30s".format(i+1,

j+4))
51 file.write("\ndispose mix{}".format(j+4))
52 file.write("\n")

B.2.2 Mixed

The benchmarks listed as “Mixed” in Table 3.5 combine the various timing constraints

introduced in Chapter 3. These were derived for the express purpose of stressing the

scheduler, and do not correspond to any meaningful biochemical reactions.

Listing B.23: all six

1 module sensor
2 manifest a
3 manifest b
4 manifest c
5 manifest d
6 manifest e
7
8 instructions:
9

10 @use.in 30s
11 ab = mix 1 units of a with 1 units of b for 15s
12 @finish.at 37s
13 cd = mix 1 units of c with 1 units of d for 10s
14
15 t_e = dispense 2 units of e
16 temp_e = split t_e into 2
17
18 @finish.in 15s

194

19 heat temp_e[0] at 30c for 15s
20
21 @finish.after 10s
22 heat cd at 90c for 35s
23
24 @use.at 5s
25 cde = mix cd with temp_e[0] for 5s
26
27 @use.after 5s
28 abcde = mix ab with cde for 10s
29
30 abcde = mix abcde with temp_e[1] for 5s
31
32 result = detect sensor on abcde for 5s
33
34 dispose abcde

Listing B.24: all six 2

1 module sensor
2
3 manifest a
4 manifest b
5 manifest c
6 manifest d
7 manifest e
8
9 instructions:

10 temp_a = dispense 10 units of a
11
12 // droplet given time to cool before mixing with b
13 @use.after 60s
14 heat temp_a at 80c for 30s //edge to 22
15
16 // droplet must be measured exactly 25s after mixing
17 @use.at 25s
18 cd = mix 10 units of c with 10 units of d for 10s //edge to 24
19
20 //volatile reaction needs to be mixed with cd within 30s
21 @finish.in 30s
22 ab = mix temp_a with 10 units of b for 10s // edge to 28
23
24 x = detect sensor on cd for 15s // edge to 28
25
26 // want to start measuring changes after adding ab within 10s
27 @use.in 10s
28 abcd = mix ab with cd for 10s // edge to 30
29
30 y = detect sensor on abcd for 15s //edge to 34
31
32 // final mixture needs to sit after mixing before detection
33 @finish.after 60s
34 abcde = mix abcd with 10 units of e for 10s //edge to 36
35
36 z = detect sensor on abcde for 10s //edge to 40
37
38 // after cooling mixture, must collect sample at precise time
39 @finish.at 10s
40 heat abcde at 10c for 30s

195

41
42 dispose abcde

Listing B.25: all eq

1 manifest a
2 manifest b
3 manifest c
4 manifest d
5 manifest e
6 manifest f
7
8 instructions:
9

10 @finish.at 10s
11 tab = mix 2 units of a with 2 units of b
12 ab = split tab into 4
13
14 @use.at 0s
15 heat ab[0] at 10c for 10s
16
17 @use.at 2s
18 abc = mix ab[1] with 1 units of c for 10s
19
20 @finish.at 5s
21 abc = mix abc with ab[0] for 10s
22
23 @use.at 10s
24 abd = mix ab[2] with 1 units of d for 4s
25
26 @finish.at 14s
27 abe = mix ab[3] with 1 units of e for 10s
28
29 tf = dispense 1 units of f
30
31 @use.at 20s
32 heat tf at 10c for 10s
33
34 @finish.at 10s
35 abcd = mix abc with abd for 5s
36
37 @use.at 10s
38 abef = mix abe with tf for 10s
39
40 abcdef = mix abcd with abef for 5s
41
42 dispose abcdef

Listing B.26: all finish

1 manifest a
2 manifest b
3 manifest c
4 manifest d
5
6 instructions:
7
8 @finish.in 30s

196

9 ab = mix 1 units of a with 1 units of b for 10s
10
11 tc = dispense 1 units of c
12 @finish.at 15s
13 heat tc at 10c for 5s
14
15 @finish.after 15s
16 cd = mix tc with 1 units of d for 13s
17
18 abcd = mix ab with cd for 13s
19 dispose abcd

Listing B.27: all start

1 manifest a
2 manifest b
3 manifest c
4 manifest d
5
6 instructions:
7
8 @use.in 30s
9 ab = mix 1 units of a with 1 units of b for 10s

10
11 tc = dispense 1 units of c
12 @use.at 15s
13 heat tc at 10c for 5s
14
15 @use.after 15s
16 cd = mix tc with 1 units of d for 13s
17
18 abcd = mix ab with cd for 13s
19 dispose abcd

Listing B.28: infeasible

1 manifest a
2 manifest b
3
4 instructions:
5
6 @finish.in 5s
7 ab = mix 1 units of a with 1 units of b
8
9 heat ab at 10c for 6s

10
11 dispose ab

197

B.3 Benchmarks for Chapter 5

As we describe all benchmarks, clearly code is available for each of these; however, when

compiling, we first compile all function specifications and save their library representation,

then load the library when compiling the main function (in BioScript , these are operations

following the instructions: tokens).

Listing B.29: Synth1

1 // imports
2 import bar from my_lib
3 /* bar is defined as:
4 * function bar(C, D) {
5 * ab = mix C with D for 2s
6 * x = detect weight on ab for 1s
7 * if (x <= 0.5) {
8 * heat ab at 10c for 1s
9 * }

10 * return ab
11 * }
12 */
13
14 // substances
15 module weight
16 manifest A
17 manifest B
18
19 functions:
20 function foo(x) {
21 b = dispense B
22 heat x at 10c for 2s
23 heat b at 10c for 2s
24 Y = bar(x, b)
25 heat Y at 10c for 1s
26 Y = split Y into 2
27 drain Y[0]
28 return Y[1]
29 }
30
31 instructions:
32 a = dispense A
33 bb = dispense B
34 heat a at 10c for 1s
35 heat bb at 10c for 1s // live across call to foo
36 a = foo(a)
37 if (9 < 10) {
38 b = dispense B
39 a = mix a with b for 2s
40 }
41 heat a at 10c for 1s
42 heat bb at 10c for 1s
43 dispose a

198

44 dispose bb

Listing B.30: PCR

1 // Basic pcr assay with thermocycling
2 import * from pcr
3 /*
4 pcr contains:
5 function thermocycle(sample) {
6 repeat 25 times {
7 heat sample at 95c for 3m
8 heat sample at 53c for 30s
9 heat sample at 72c for 20s

10 }
11 return sample
12 }
13 and
14 function pcr(sample, primers) {
15 master_mix = dispense pcr_master_mix
16 sample = mix sample with master_mix
17 heat sample at 95c for 1m
18 sample = mix sample with primers
19
20 sample = thermocycle(sample)
21
22 heat sample at 53c for 20s
23
24 return sample
25 }
26 */
27
28 module fluor
29 module volume
30 manifest pcr_master_mix
31 manifest template
32 manifest primers
33
34 instructions:
35
36 sample = dispense template
37 prim = dispense primers
38 result = pcr(sample, prim)
39
40 x = detect fluor on result
41
42 drain result

Listing B.31: DRPCR

1 // Basic pcr assay with thermocycling
2 import * from pcr
3 /*
4 pcr contains:
5 function thermocycle_drop_replace(sample) {
6 repeat 25 times {
7 heat sample at 95c for 3m
8 x = detect volume on sample
9 if (x <= 1) {

199

10 repl = dispense pcr_master_mix // water could be used, but
not enough reservoirs for opendrop

11 sample = mix sample with repl
12 }
13 heat sample at 53c for 30s
14 heat sample at 72c for 20s
15 }
16 return sample
17 }
18 and
19 function pcr_drop_replace(sample, primers) {
20 master_mix = dispense pcr_master_mix
21 sample = mix sample with master_mix
22 heat sample at 95c for 1m
23 sample = mix sample with primers
24
25 sample = thermocycle_drop_replace(sample)
26
27 heat sample at 53c for 20s
28
29 return sample
30 }
31 */
32
33 module fluor
34 module volume
35 manifest pcr_master_mix
36 manifest template
37 manifest primers
38
39 instructions:
40
41 sample = dispense template
42 prim = dispense primers
43 result = pcr_drop_replace(sample, prim)
44
45 x = detect fluor on result
46
47 drain result

Listing B.32: SynthTail

1 // imports
2 import tail from my_lib
3 /* tail is defines as:
4 * function tail(a) {
5 * heat a at 10c for 1s
6 * x = detect sensor on a
7 * if (x <= 0.5) {
8 * a = tail(a)
9 * }

10 * return a
11 * }
12 */
13
14 module sensor
15 manifest A
16
17 instructions:

200

18 a = dispense A
19 a = tail(a)
20 drain a

Listing B.33: SynthHead

1 import head from my_lib
2 /* head is defined as
3 * function head(a) {
4 * heat a at 10c
5 * x = detect sensor on a
6 * if (x <= 0.5) {
7 * a2 = dispense
8 * a2 = foo(a2)
9 * a = mix a with a2

10 * }
11 * return a
12 * }
13 */
14
15 module sensor
16 manifest A
17
18 instructions:
19 a = dispense A
20 a = head(a)
21 drain a

Listing B.34: ProteinSplit, adapted from [221].

1 /*
2 * Function recursively builds split trees for diluting samples
3 */
4 module sensor
5 manifest DsS
6 manifest DsB
7 manifest DsR
8
9 functions:

10 function dilute_and_detect(sample) {
11 // as sample is array of 2 droplets, could use SIMD instructions
12 repeat 4 times {
13 buffer[2] = dispense 1 units of DsB
14 sample[0] = mix sample[0] with buffer[0] for 3s
15 sample[1] = mix sample[1] with buffer[1] for 3s
16 }
17 reagent[2] = dispense 1 units of DsR
18 // example SIMD mix
19 final = mix sample with reagent for 3s
20 // SIMD detect
21 result = detect sensor on final for 30s
22 drain final
23 return result
24 }
25
26 function split_recurse(exp, samples) {
27 if (exp == 1) {
28 return dilute_and_detect(samples)

201

29 }
30
31 // sample is array of 2 droplets, we access each in turn for

recursive calls
32 buffer = dispense DsB
33 pre_dilute = mix samples[0] with buffer for 3s
34 pre_dilutes = split pre_dilute into 2
35 res1 = split_recurse(exp-1, pre_dilutes)
36
37 buffer = dispense DsB
38 pre_dilute = mix samples[1] with buffer for 3s
39 pre_dilutes = split pre_dilute into 2
40 res2 = split_recurse(exp-1, pre_dilutes)
41
42 return res1
43 }
44
45 function protein_split(exp) {
46 sample = dispense 2 units of DsS
47 buffer = dispense 2 units of DsB
48 mixture = mix sample with buffer for 3s
49 paths = split mixture into 2
50 return split_recurse(exp, paths)
51 }
52
53 instructions:
54
55 // example calls
56 dilution_factor_1 = protein_split(1)
57 dilution_factor_2 = protein_split(2)

B.4 OpenDrop Demos

Videos demoing execution of compiled BioScript programs on OpenDrop are available

here.

202

https://drive.google.com/drive/folders/1eqc83ZAVO0M-bz4Sf2MUsfzIJPws8N_B

Appendix C

Pseudocode for Relative Interval

Scheduling

Relative Interval Scheduling (Section 3.4.1) is summarized in Algorithm 3. While

the procedure is relatively straightforward, partial pseudocode is provided for parsing

time constraints in phase 1 (Algorithm 5), for expanding storage windows in phase 2

(Algorithm 6), and for retrieving violations on the forest (Algorithm 4).

Algorithm 3 Relative Interval Scheduling

1: procedure Schedule(Architecture A, DAG G)
2: ParseTimeConstraints(G) ▷ aborts if infeasible
3: forest ← CreateForest(G)
4: violations ← GetViolations(forest, A) ▷ fails if not enough modules
5: while violations ̸= ∅ do
6: ExpandStorageWindow(G, violations) ▷ fails if no progress
7: forest ← CreateForest(G)
8: violations ← GetViolations(forest, A)

9: return Ω(G)

203

Algorithm 4 Discovering Resource Violations in a Relative Interval Forest

1: function GetViolations(Set of Relative Interval Forests F, Architecture A)
2: violations ← ∅
3: maxHeats ← number of heats in A
4: maxDetects ← number of sensors in A
5: maxModules ← number of modules in A
6: maxInputsOf ← number of inputs of each type in A
7: max ← (heats : maxHeats), (detects : maxDetects), ...
8: for time from lowest(F) to highest(F) do
9: for type in [heats, detects, modules, inputs] do

10: if F.overlaps(time, type) ≥ max[type] then
11: if type is modules then
12: Fail(R) ▷ cannot overcome this

13: duration ← duration of violation
14: violations.insert([type, duration, set of overlapping ops])

15: return violations

Algorithm 5 Parsing Time Constraints (Phase 1)

1: procedure ParseTimeConstraints(DAG G)
2: for child ∈ reverse(G) do
3: for parent ∈ parents(child) do
4: if isConstrained(parent) then
5: clat ← child.latency
6: dur ← parent.constrDuration
7: newStore ← StorageNode
8: switch parent.constrType do
9: case SGE

10: newStore.window ← Window(+inf)

11: case SEQ
12: newStore.latency ← dur
13: G.insertStoreBetween(newStore, parent, child)
14: break
15: case SLE
16: parent.window ← Window(dur)
17: break
18: case FGE
19: newStore.window ← Window(+inf)

20: case FEQ
21: if dur - clat < 0 then
22: Abort(infeasible)

23: newStore.latency ← dur - clat
24: G.insertStoreBetween(newStore, parent, child)
25: break
26: case FLE
27: if dur - clat < 0 then
28: Abort(infeasible)

29: parent.window ← Window(dur - clat)
30: break
31: else
32: parent.window ← Window(+inf)

33: EqualizePaths(G) ▷ ommitted

204

Algorithm 6 Satisfy a Resource Violation

1: procedure ExpandStorageWindow(DAG G, Set of Violations V)
2: for violation in V do
3: dur ← violation.duration
4: for pair of ops u, v in violation.overlappingOps do
5: switch path relationship between pathu and pathv do
6: case pathu and pathv converge at w
7: if Storage windows exist between u and w with combined durations ≥ dur

then
8: expanded ← 0
9: for window ω between u and w do

10: if expanded = dur then
11: break
12: expand ω by ∆ = min{dur − expanded, ω.size}
13: expanded ← expanded + ∆

14: return
15: case pathu and pathv diverge from w
16: . . .
17: case pathu and pathv diverge from y and converge at z
18: . . .
19: case pathu and pathv neither converge nor diverge
20: . . .
21: Fail(—V—) ▷ did not make any progress

205

Appendix D

Overview of Peptide Synthesis

PepSyn, a proof-of-concept implementation of the MediSyn framework presented in

Chapter 10, generates candidate antimicrobial peptides. Here, we provide additional

detail to what peptides are and the process for chemically synthesizing them — a step

that would be necessary to fully-automate the discovery process. A peptide is a short

linear chain of bonded amino acids. As opposed to larger chemical structures (e.g.,

proteins, small molecules, or macromolecules), peptides are relatively simple, featuring

up to around 50 amino acids, and lacking a stable 3D structure [48]. The synthesis of

peptides involves chemically coupling amino acids sequentially through peptide bonds.

As shown in Fig. D.1b, an amino acid is composed of a carboxyl group (-COOH), amino

group (-NH2), and a unique side chain (R group) between. A protecting group (PG)

is typically added to the amino group of amino-acids to prevent unintended chemical

reactions; as such, a protected amino acid must be deprotected during synthesis to allow

coupling. Coupling of amino acids is achieved via peptide bonds, which occurs when the

carboxyl group of one amino acid is coupled with the amino group of another through a

206

condensation reaction, leaving a byproduct of a water molecule. Figure D.1a shows the

chemical structures of the 21 amino acids that naturally occur in humans, with expanded

forms of the side chains.

Solid-phase peptide synthesis is the de facto standard for producing synthetic peptides

[34, 19]. Figure D.2 depicts the process: a solid resin bead support forms a substrate

onto which protected amino acids are sequentially deprotected and then coupled through

peptide bonds; in order to facilitate coupling, protected amino acids are first deprotected

to expose the amino groups; as each new amino acid is coupled to the nascent peptide,

condensed water is rinsed away; when complete, a cleavage reagent separates the peptide

from the resin bead.

Certain properties of the growing peptide (e.g., hydrophobicity and amino acid com-

position) can negatively affect successful synthesis, leading to truncation, deletion, or

other anomalies in the end result [159]. For this reason, Section 10.2 implements a

mechanism to enable PepSyn to filter candidates from the search that are likely to fail

during synthesis.

1“Molecular structures of the 21 proteinogenic amino acids” by Dan Cojocari is licensed under CC
BY-SA 3.0.

207

https://commons.wikimedia.org/wiki/File:Molecular_structures_of_the_21_proteinogenic_amino_acids.svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en

(a
)

(b
)

F
ig
u
re

D
.1
:
L
ef
t:

C
h
em

ic
a
l
st
ru
ct
u
re
s
a
n
d
si
n
g
le
-l
et
te
r
a
b
b
re
v
ia
ti
o
n
s
fo
r
th
e
2
1
p
ro
te
in
o
g
en

ic
a
m
in
o
a
ci
d
s
fo
u
n
d
in

th
e
g
en

et
ic

co
d
e
fo
r

eu
ka
ry
o
ti
c
o
rg
a
n
is
m
s
(i
n
cl
u
d
in
g
h
u
m
a
n
s)
.1

R
ig
h
t:

A
p
ro
to
ty
p
ic
a
l
a
m
in
o
-a
ci
d
(t
o
p
)
a
n
d
th
e
sa
m
e
a
m
in
o
-a
ci
d
w
it
h
a
p
ro
te
ct
io
n
gr
o
u
p
(P

G
)

g
u
a
rd
in
g
it
s
a
m
in
o
-g
ro
u
p
.
T
h
es
e
sk
el
et
a
l
st
ru
ct
u
re
s
o
m
it

u
n
d
er
ly
in
g
ca
rb
o
n
a
to
m
s
(w

h
er
e
li
n
e
se
g
m
en
ts

co
n
n
ec
t)
;
th
e
ca
rb
ox

y
l
g
ro
u
p

(-
C
O
O
H
)
is

to
w
ar
d
th
e
to
p
of

ea
ch

d
ep

ic
ti
on

,
w
h
il
e
th
e
si
d
e
ch
ai
n
(R

-g
ro
u
p
)
is

d
ep

ic
te
d
w
it
h
a
w
ed

ge
d
co
n
n
ec
ti
on

.

208

F
ig
u
re

D
.2
:
S
ol
id
-p
h
as
e
p
ep
ti
d
e
sy
n
th
es
is

se
q
u
en
ti
al
ly

co
u
p
le
s
in
d
iv
id
u
al

am
in
o
ac
id
s
at
op

a
re
si
n
b
ea
d
su
b
st
ra
te
.
A

p
ro
te
ct
in
g
gr
ou

p
(P

G
)

m
u
st

b
e
re
m
ov
ed

b
et
w
ee
n
ea
ch

co
u
p
li
n
g
,
an

d
a
fi
n
al

cl
ea
v
in
g
re
ag

en
t
re
m
ov
es

th
e
fi
n
is
h
ed

p
ep

ti
d
e
fr
om

th
e
re
si
n
b
ea
d
.

209

Appendix E

BioV ec(k)

An expanded continuous distributed representation for biological

sequences

Original Sequence

(1)−→A (2)−→B (3)−→CDEFGHIJK..
Splittings

1) ABC,DEF,GHI, ..

2) BCD,EFG,HIJ, ..

3) CDE,FGH, IJK, ..

Figure E.1: ProtVec’s approach to representing a single peptide is to decompose the
peptide into 3 “splittings” made up of the original peptide’s overlapping 3-mers [11].

The original ProtV ec model described by [11] is a specific instance of a so-called gener-

alized BioV ec model for biological sequence data tailored for peptides. [11]’s ProtV ec

technique decomposed each peptide in their training corpus as 3 “sentences” composed

of overlapping 3-mers as illustrated in Fig. E.1. Figure E.2 depicts how our ProtV ec(3)

model used for training the clustering model Ψ expands the pre-processing step: after

210

Original Sequence

(1)−→ABC (2)−→DEF (3)−→GHI (4)−→J KL..
Split-Partitions

1)



A,B,C,D,E, F

AB,C,D,E, F

A,BC,D,E, F

...

ABC,D,E, F

...

ABC,DE,F

...

ABC,DEF

2)



D,E, F,G,H, I

DE,F,G,H, I

D,EF,G,H, I

...

DEF,G,H, I

...

DEF,GH, I

...

DEF,GHI

3)



G,H, I, J,K,L

GH, I, J,K,L

G,HI, J,K,L

...

GHI, J,K,L . . .

...

GHI, JK,L

...

GHI, JKL

Figure E.2: A ProtV ec(3) model, in addition to a generalization of “splittings” used in
[11]’s ProtV ec model, represents each peptide by splitting it into segments of (up to)
length 2 ∗ 3 = 6, where each segment begins at a σi with i (mod 3) = 0, and decomposes
each segment into all possible (in order) partitions of 1-, 2-, and 3-mers.

splitting peptides into segments of (up to) length 6 = 3 ∗ 2, each segment is decomposed

into biological “sentences” using all partitions of 1-, 2-, and 3-mers from the segment.1

For the PepGen front-end module to PepSyn, the trained model provides proximity

relations between the vocabulary of all constituent 1-, 2-, and 3-mers in the peptide

corpus D; whereas [11]’s model only provides proximity between 3-mers.

We describe a generalization for continuous distributed representations of biological

sequence data consisting of biological words of up to length k ∈ N1 we call BioV ec(k). In

general, a BioV ec(k) model pre-processes its input in a manner similar to the methods

shown in Figs. E.1 and E.2; given an integer k, input instances are decomposed into:

a single sentence of all 1-mers, 2 sentences of overlapping 2-mers, . . . , and k sentences

of overlapping k-mers. Additionally, we decompose each input into segments of (up to)

length 2 ∗ k, where each segment begins at a σi such that i (mod k) = 0. Segmented

1Note: Fig. E.2 omits the depiction where we still include 3 sequences of overlapping 3-mers from the
original sequence as in Fig. E.1, in addition to overlapping 1-, and 2-mers.

211

regions are partitioned into all (in order) combinations of 1-, 2, . . . , and k-mers within

the segment. Without loss of generality, the overlap between two ordered segments s1

and s2 ensures that the last k-mer in s1 is the first k-mer in s2, so that the generated

training sentences of all partitions of 1-, 2-, . . . , and k-mers from the original sequence

are represented by windows of (up to) k words.

E.1 Number of sentences a BioV ec(k) model processes from

a single input instance

Given an input s = σ1σ2 . . . σ|s| of length |s|, the pre-processing step generates:
k∑

i=1

i (E.1)

sentences directly from the original input, using overlapping i-mers in a manner similar

to [11] (see Fig. E.1 for 3-mers). We say a sentence is composed of at least 2 words,

restricting k ≤ |s|+1
3 for a given input s.

Additionally, s is split into n segments (s1, s2, . . . , sn), where

n =


|s|/k − 1 if |s| (mod 3) = 0

⌊|s|/k⌋ otherwise

(E.2)

and — when |s| (mod k) = 0 — the length of each segment is 2 ∗ k, or — when |s|

(mod k) ̸= 0 — the length of the first n− 1 segments is 2 ∗ k, and the length of the nth

segment is k + |s| (mod k).

For each segment si of length j = |si|, we generate sentences using all in-order partitions

of 1-, 2-, . . . , and k-mers from si. The number of sentences count(si) generated for si

corresponds to F
(k)
j , the generalized form of the jth Fibonacci term of order k (that is,

count(si) ≡ F
(k)
j), whereby the jth term is the sum of the previous k terms [69]. [55]

212

provides a simplified formula for finding the jth term of a Fibonacci sequence of order k:

F
(k)
j =

k∑
i=1

αi − 1

2 + (k + 1)(αi − 2)
αj
i (E.3)

where αi are the roots of xk − xk−1 − · · · − 1 = 0.2 [216] gives the roots for 1 ≤ k ≤ 10.

Then, the total number of sentences generated for s is

count(s) =
k∑

i=1

i +
∑

j=|si|,1≤i≤n

F
(k)
j (E.4)

E.2 Number of sentences in the training corpus for Pep-

Gen ’s ProtV ec(3) model

Our ProtV ec(3) model produces sentences from a given sequence that follows the so-called

tribonacci terms, the Fibonacci terms of order 3; for the jth term, using [55]’s notation

and simplifying, we have:

F
(3)
j =

3∑
i=1

αi − 1

4αi − 6
αj
i (E.5)

where

α1 =
1

3

(
3

√
19 + 3

√
33 +

3

√
19− 3

√
33 + 1

)
α2 =

1

6

(
2− 3

√
19 + 3

√
33− 3

√
19− 3

√
33 +

√
3

(
3

√
19 + 3

√
33− 3

√
19− 3

√
33

)
i

)
, and

α3 = α2 (i.e., the complex conjugate of α2)

are the roots of x2 − x − 1 = 0 given by [215]. Then, for our training corpus of

C = {s1, . . . , s14,271} primary peptide sequences, the total number of sentences generated

for training our ProtV ec(3) model is

2[55] defines F k
1 = 1, where we start with F k

1 = 0 and F k
2 = 1; hence, the exponential term in Eq. (E.3)

is to j, rather than [55]’s j − 1.

213

∑
s∈C

count(s) (E.6)

which in practice amounted to 6, 476, 896 unique sentences made up of a vocabulary of

8, 986 unique 1-, 2-, and 3-mers.

214

Bibliography

[1] Mirela Alistar and Urs Gaudenz. Opendrop: An integrated do-it-yourself platform
for personal use of biochips. Bioengineering, 4(2):45, 2017.

[2] Mirela Alistar and Paul Pop. Synthesis of biochemical applications on digital
microfluidic biochips with operation execution time variability. Integration, 51:158–
168, 2015.

[3] Mirela Alistar, Paul Pop, and Jan Madsen. Synthesis of application-specific
fault-tolerant digital microfluidic biochip architectures. IEEE Trans. on CAD of
Integrated Circuits and Systems, 35(5):764–777, 2016.

[4] Rajeev Alur, Rastislav Bod́ık, Garvit Juniwal, Milo M. K. Martin, Mukund
Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Emina
Torlak, and Abhishek Udupa. Syntax-guided synthesis. In Formal Methods in
Computer-Aided Design, FMCAD 2013, Portland, OR, USA, October 20-23, 2013,
pages 1–8, Portland, OR, USA, 2013. IEEE.

[5] Ahmed M. Amin, Raviraj Thakur, Seth Madren, Han-Sheng Chuang, Mithuna
Thottethodi, T. N. Vijaykumar, Steven T. Wereley, and Stephen C. Jacobson.
Software-programmable continuous-flow multi-purpose lab-on-a-chip. Microfluid
Nanofluidics, 15(5):647–659, Nov 2013.

[6] Ahmed M. Amin, Mithuna Thottethodi, T. N. Vijaykumar, Steven Wereley, and
Stephen C. Jacobson. Aquacore: a programmable architecture for microfluidics.
In Dean M. Tullsen and Brad Calder, editors, 34th International Symposium on
Computer Architecture (ISCA 2007), June 9-13, 2007, San Diego, California, USA,
pages 254–265, New York, NY, USA, 2007. ACM.

[7] Scott C. Ananian and Arthur C. Smith. The Static Single Information Form. PhD
thesis, Massachusetts Institue of Technology, 1999.

[8] Vaishnavi Ananthanarayanan and William Thies. Biocoder: A programming
language for standardizing and automating biology protocols. Journal of Biological
Engineering, 4, NOV 2010.

215

[9] Christian B Anfinsen. Principles that govern the folding of protein chains. Science,
181(4096):223–230, 1973.

[10] Christian B Anfinsen, Edgar Haber, Michael Sela, and FH White Jr. The kinetics
of formation of native ribonuclease during oxidation of the reduced polypeptide
chain. Proceedings of the National Academy of Sciences of the United States of
America, 47(9):1309, 1961.

[11] Ehsaneddin Asgari and Mohammad RK Mofrad. Continuous distributed repre-
sentation of biological sequences for deep proteomics and genomics. PloS one,
10(11):e0141287, 2015.

[12] Ronald C Backer, Joseph R Monforte, and Alphonse Poklis. Evaluation of the
dri® oxycodone immunoassay for the detection of oxycodone in urine. Journal of
analytical toxicology, 29(7):675–677, 2005.

[13] James K Baker. Trainable grammars for speech recognition. The Journal of the
Acoustical Society of America, 65(S1):S132–S132, 1979.

[14] Monya Baker. 1,500 scientists lift the lid on reproducibility. Nature News,
533(7604):452, 2016.

[15] Shraddha Barke, Hila Peleg, and Nadia Polikarpova. Just-in-time learning for
bottom-up enumerative synthesis. Proceedings of the ACM on Programming
Languages, 4(OOPSLA):1–29, 2020.

[16] Amar S. Basu. Droplet morphometry and velocimetry (dmv): a video processing
software for time-resolved, label-free tracking of droplet parameters. Lab Chip,
13:1892–1901, 2013.

[17] Cesar VF Batista, Andrea Scaloni, Daniel J Rigden, Lindomar R Silva, Adela Ro-
drigues Romero, Rina Dukor, Antonio Sebben, Fabio Talamo, and Carlos Bloch. A
novel heterodimeric antimicrobial peptide from the tree-frog phyllomedusa distincta.
FEBS letters, 494(1-2):85–89, 2001.

[18] Kia Bazargan, Ryan Kastner, and Majid Sarrafzadeh. Fast template placement for
reconfigurable computing systems. IEEE Design & Test of Computers, 17:68–83,
2000.

[19] Raymond Behrendt, Peter White, and John Offer. Advances in fmoc solid-phase
peptide synthesis. Journal of Peptide Science, 22(1):4–27, 2016.

[20] Biddut Bhattacharjee and Homayoun Najjaran. Droplet sensing by measuring the
capacitance between coplanar electrodes in a digital microfluidic system. Lab Chip,
12:4416–4423, 2012.

[21] Pavol Bielik, Veselin Raychev, and Martin T. Vechev. PHOG: probabilistic model
for code. In Maria-Florina Balcan and Kilian Q. Weinberger, editors, Proceedings
of the 33nd International Conference on Machine Learning, ICML 2016, New York

216

City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop and Conference
Proceedings, pages 2933–2942, New York City, NY, USA, 2016. JMLR.org.

[22] H Bielka, N Sharon, and E. C. Webb. Nomenclature and symbolism for amino
acids and peptides. Pure and Applied Chemistry, 56:617–619, 1984.

[23] Robert Bogue. Robots in the laboratory: a review of applications. Industrial Robot:
An International Journal, 2012.

[24] Karl-Friedrich Böhringer. Modeling and controlling parallel tasks in droplet-based
microfluidic systems. IEEE Trans. on CAD of Integrated Circuits and Systems,
25(2):334–344, 2006.

[25] Benoit Boissinot, Philip Brisk, Alain Darte, and Fabrice Rastello. SSI properties
revisited. ACM Trans. Embedded Comput. Syst., 11(S1):21, 2012.

[26] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching
word vectors with subword information. Transactions of the Association for
Computational Linguistics, 5:135–146, 2017.

[27] Brian L Bray. Large-scale manufacture of peptide therapeutics by chemical synthesis.
Nature Reviews Drug Discovery, 2(7):587–593, 2003.

[28] Preston Briggs, Keith D Cooper, and Linda Torczon. Improvements to graph
coloring register allocation. ACM Transactions on Programming Languages and
Systems (TOPLAS), 16(3):428–455, 1994.

[29] James R Broach and Jeremy Thorner. High-throughput screening for drug discovery.
Nature, 384(6604 Suppl):14–16, 1996.

[30] CDC. Leading causes of death, 2022.

[31] CDC. Select agents and toxins list. federal select agent program, 2022.

[32] Gregory J. Chaitin. Register allocation & spilling via graph coloring. In John R.
White and Frances E. Allen, editors, Proceedings of the SIGPLAN ’82 Symposium
on Compiler Construction, Boston, Massachusetts, USA, June 23-25, 1982, pages
98–105, Boston, MA, 1982. ACM.

[33] Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E.
Hopkins, and Peter W. Markstein. Register allocation via coloring. Comput. Lang.,
6(1):47–57, 1981.

[34] WCWPD Chan and Peter White. Fmoc solid phase peptide synthesis: a practical
approach, volume 222. OUP Oxford, 1999.

[35] Erika Check Hayden. The automated lab. Nature, 516(7529):131–132, 2014.

217

[36] Hongming Chen, Ola Engkvist, Yinhai Wang, Marcus Olivecrona, and Thomas
Blaschke. The rise of deep learning in drug discovery. Drug discovery today,
23(6):1241–1250, 2018.

[37] Ying-Han Chen, Chung-Lun Hsu, Li-Chen Tsai, Tsung-Wei Huang, and Tsung-Yi
Ho. A reliability-oriented placement algorithm for reconfigurable digital microfluidic
biochips using 3-d deferred decision making technique. IEEE Trans. on CAD of
Integrated Circuits and Systems, 32(8):1151–1162, 2013.

[38] Minsik Cho and David Z. Pan. A high-performance droplet routing algorithm
for digital microfluidic biochips. IEEE Trans. on CAD of Integrated Circuits and
Systems, 27(10):1714–1724, 2008.

[39] Peter Cooreman, Ronald Thoelen, Jean Manca, M. vandeVen, V. Vermeeren,
L. Michiels, M. Ameloot, and P. Wagner. Impedimetric immunosensors based on
the conjugated polymer ppv. Biosens. Bioelectron., 20:2151–2156, 2005.

[40] Christopher Curtis and Philip Brisk. Simulation of feedback-driven pcr assays on a
2d electrowetting array using a domain-specific high-level biological programming
language. Microelectronic Engineering, 148:110–116, 2015.

[41] Christopher Curtis, Daniel T. Grissom, and Philip Brisk. A compiler for cyber-
physical digital microfluidic biochips. In Jens Knoop, Markus Schordan, Teresa
Johnson, and Michael F. P. O’Boyle, editors, Proceedings of the 2018 International
Symposium on Code Generation and Optimization, CGO 2018, Vösendorf / Vienna,
Austria, February 24-28, 2018, pages 365–377, New York, NY, USA, 2018. ACM.

[42] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. Efficiently computing static single assignment form and the control
dependence graph. ACM Trans. Program. Lang. Syst., 13(4):451–490, 1991.

[43] Mauro Dalla Serra, Oscar Cirioni, Rosa Maria Vitale, Giovanni Renzone, Manuela
Coraiola, Andrea Giacometti, Cristina Potrich, Elisa Baroni, Graziano Guella,
Marina Sanseverino, et al. Structural features of distinctin affecting peptide
biological and biochemical properties. Biochemistry, 47(30):7888–7899, 2008.

[44] Michael Davies, Rhys DO Jones, Ken Grime, Rasmus Jansson-Löfmark, Adrian J
Fretland, Susanne Winiwarter, Paul Morgan, and Dermot F McGinnity. Improving
the accuracy of predicted human pharmacokinetics: lessons learned from the
astrazeneca drug pipeline over two decades. Trends in pharmacological sciences,
41(6):390–408, 2020.

[45] Margaret O Dayhoff, RV Eck, and CM Park. A model of evolutionary change in
proteins. Atlas of protein sequence and structure, 5(88-99):88–99, 1972.

[46] Kalyanmoy Deb and Himanshu Jain. An evolutionary many-objective optimization
algorithm using reference-point-based nondominated sorting approach, part i:
Solving problems with box constraints. IEEE Trans. Evolutionary Computation,
18(4):577–601, 2014.

218

[47] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A fast
and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Transactions on
Evolutionary Computation, 6(2):182–197, Apr 2002.

[48] Lei Diao and Bernd Meibohm. Pharmacokinetics and pharmacokinetic–
pharmacodynamic correlations of therapeutic peptides. Clinical pharmacokinetics,
52(10):855–868, 2013.

[49] R. P. Dilworth. A decomposition theorem for partially ordered sets. Annals of
Mathematics, 51(1):161–166, 1950.

[50] Joseph A DiMasi, Henry G Grabowski, and Ronald W Hansen. Innovation in the
pharmaceutical industry: new estimates of r&d costs. Journal of health economics,
47:20–33, 2016.

[51] Huijiang Ding, Saman Sadeghi, Gaurav J Shah, Supin Chen, Pei Yuin Keng,
R Michael van Dam, et al. Accurate dispensing of volatile reagents on demand for
chemical reactions in ewod chips. Lab on a Chip, 12(18):3331–3340, 2012.

[52] Jie Ding, Krishnendu Chakrabarty, and Richard B. Fair. Scheduling of microfluidic
operations for reconfigurabletwo-dimensional electrowetting arrays. IEEE Trans.
on CAD of Integrated Circuits and Systems, 20(12):1463–1468, 2001.

[53] Yufei Ding, Yue Zhao, Xipeng Shen, Madanlal Musuvathi, and Todd Mytkowicz.
Yinyang k-means: A drop-in replacement of the classic k-means with consistent
speedup. In Francis R. Bach and David M. Blei, editors, Proceedings of the 32nd
International Conference on Machine Learning, ICML 2015, Lille, France, 6-11
July 2015, volume 37 of JMLR Workshop and Conference Proceedings, pages
579–587, Lille, France, 2015. JMLR.org.

[54] Shan Dong and David B Searls. Gene structure prediction by linguistic methods.
Genomics, 23(3):540–551, 1994.

[55] Gregory PB Dresden and Zhaohui Du. A simplified binet formula for k-generalized
fibonacci numbers. J. Integer Seq., 17(4):14–4, 2014.

[56] Simon Duane, Anthony D Kennedy, Brian J Pendleton, and Duncan Roweth.
Hybrid monte carlo. Physics letters B, 195(2):216–222, 1987.

[57] Witold Dyrka, Mateusz Pyzik, François Coste, and Hugo Talibart. Estimating
probabilistic context-free grammars for proteins using contact map constraints.
PeerJ, 7:e6559, 2019.

[58] Jay Earley. An efficient context-free parsing algorithm. Communications of the
ACM, 13(2):94–102, 1970.

[59] Moe Elbadawi, Simon Gaisford, and Abdul W Basit. Advanced machine-learning
techniques in drug discovery. Drug Discovery Today, 26(3):769–777, 2021.

219

[60] Kevin Ellis and Sumit Gulwani. Learning to learn programs from examples:
Going beyond program structure. In Carles Sierra, editor, Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017,
Melbourne, Australia, August 19-25, 2017, pages 1638–1645, Melbourne, Australia,
2017. ijcai.org.

[61] Kevin Ellis, Armando Solar-Lezama, and Joshua B. Tenenbaum. Unsupervised
learning by program synthesis. In Corinna Cortes, Neil D. Lawrence, Daniel D. Lee,
Masashi Sugiyama, and Roman Garnett, editors, Advances in Neural Information
Processing Systems 28: Annual Conference on Neural Information Processing
Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pages 973–981,
Montreal, Quebec, Canada, 2015. MIT Press.

[62] RB Fair, V Srinivasan, H Ren, P Paik, VK Pamula, and MG Pollack. Electrowetting-
based on-chip sample processing for integrated microfluidics. In IEEE International
Electron Devices Meeting 2003, pages 32–5. IEEE, 2003.

[63] Luis M. Fidalgo and Sebastian J. Maerkl. A software-programmable microfluidic
device for automated biology. Lab Chip, 11(9):1612–1619, May 2011.

[64] Philip J. Fleming and John J. Wallace. How not to lie with statistics: The correct
way to summarize benchmark results. Commun. ACM, 29(3):218–221, 1986.

[65] Ryan Fobel, Christian Fobel, and Aaron R. Wheeler. Dropbot: An open-source
digital microfluidic control system with precise control of electrostatic driving force
and instantaneous drop velocity measurement. Applied Physics Letters, 102(19),
2013.

[66] Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve Zdancewic.
Example-directed synthesis: a type-theoretic interpretation. ACM Sigplan Notices,
51(1):802–815, 2016.

[67] Michal Galdzicki, Kevin P Clancy, Ernst Oberortner, Matthew Pocock, Jacqueline Y
Quinn, Cesar A Rodriguez, Nicholas Roehner, Mandy L Wilson, Laura Adam,
J Christopher Anderson, et al. The synthetic biology open language (sbol) provides
a community standard for communicating designs in synthetic biology. Nature
biotechnology, 32(6):545–550, 2014.

[68] Jie Gao, Xianming Liu, Tianlan Chen, Pui-In Mak, Yuguang Du, Mang-I Vai,
Bingcheng Lin, and Rui P. Martins. An intelligent digital microfluidic system with
fuzzy-enhanced feedback for multi-droplet manipulation. Lab Chip, 13:443–451,
2013.

[69] Martin Gardner. The 2nd Scientific American book of mathematical puzzles &
diversions, page 101. University of Chicago Press, 1987.

[70] Lal George and Andrew W. Appel. Iterated register coalescing. Proceedings of the
23rd ACM SIGPLAN-SIGACT symposium on Principles of programming languages
- POPL ’96, 18(3):208–218, 1996.

220

[71] Charles J Geyer and Elizabeth A Thompson. Annealing markov chain monte
carlo with applications to ancestral inference. Journal of the American Statistical
Association, 90(431):909–920, 1995.

[72] Georges G. E. Gielen, editor. Proceedings of the Conference on Design, Automation
and Test in Europe, DATE 2006, Munich, Germany, March 6-10, 2006. European
Design and Automation Association, Leuven, Belgium, 2006.

[73] Walter R Gilks, Sylvia Richardson, and David Spiegelhalter. Markov chain Monte
Carlo in practice. CRC press, 1995.

[74] Andrea Giuliani, Giovanna Pirri, and Silvia Nicoletto. Antimicrobial peptides: an
overview of a promising class of therapeutics. Open Life Sciences, 2(1):1–33, 2007.

[75] Jian Gong and Chang-Jin Kim. Direct-referencing two-dimensional-array digital
microfluidics using multilayer printed circuit board. J. Microelectromech. Syst.,
17:257–264, 2008.

[76] Jian Gong and CJ. Kim. All-electronic droplet generation on-chip with real-time
feedback control for ewod digital microfluidics. Lab Chip, 8:898–906, 2008.

[77] Daniel Grissom and Philip Brisk. Fast online synthesis of generally programmable
digital microfluidic biochips. In Proceedings of the Eighth IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System Synthesis,
CODES+ISSS ’12, pages 413–422, New York, NY, USA, 2012. ACM.

[78] Daniel Grissom and Philip Brisk. Fast online synthesis of digital microfluidic
biochips. IEEE Trans. on CAD of Integrated Circuits and Systems, 33(3):356–369,
2014.

[79] Daniel Grissom, Christopher Curtis, Skyler Windh, Calvin Phung, Navin Kumar,
Zachary Zimmerman, O‘Neal Kenneth, Jeffrey McDaniel, Nick Liao, and Philip
Brisk. An open-source compiler and pcb synthesis tool for digital microfluidic
biochips. Integration, the VLSI Journal, 51:169–193, 2015.

[80] Daniel T. Grissom and Philip Brisk. Path scheduling on digital microfluidic biochips.
In Patrick Groeneveld, Donatella Sciuto, and Soha Hassoun, editors, The 49th
Annual Design Automation Conference 2012, DAC ’12, San Francisco, CA, USA,
June 3-7, 2012, pages 26–35, New York, NY, USA, 2012. ACM.

[81] Daniel T. Grissom, Christopher Curtis, and Philip Brisk. Interpreting assays with
control flow on digital microfluidic biochips. JETC, 10(3):24:1–24:30, 2014.

[82] Sumit Gulwani. Automating string processing in spreadsheets using input-output
examples. ACM Sigplan Notices, 46(1):317–330, 2011.

[83] Anvita Gupta, Alex T Müller, Berend JH Huisman, Jens A Fuchs, Petra Schneider,
and Gisbert Schneider. Generative recurrent networks for de novo drug design.
Molecular informatics, 37(1-2):1700111, 2018.

221

[84] Sudheer Gupta, Pallavi Kapoor, Kumardeep Chaudhary, Ankur Gautam, Rahul
Kumar, Open Source Drug Discovery Consortium, and Gajendra PS Raghava.
In silico approach for predicting toxicity of peptides and proteins. PloS one,
8(9):e73957, 2013.

[85] Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. Complete com-
pletion using types and weights. In Hans-Juergen Boehm and Cormac Flanagan,
editors, ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, pages 27–38, Seattle,
WA, USA, 2013. ACM.

[86] Ben. Hadwen, G. R. Broder, D. Morganti, A. Jacobs, C. Brown, J. R. Hector,
Y. Kubota, and H. Morgan. Programmable large area digital microfluidic array
with integrated droplet sensing for bioassays. Lab Chip, 12(18):3305–3313, Sep
2012.

[87] Robert EW Hancock and Hans-Georg Sahl. Antimicrobial and host-defense peptides
as new anti-infective therapeutic strategies. Nature biotechnology, 24(12):1551–1557,
2006.

[88] W Keith Hastings. Monte carlo sampling methods using markov chains and their
applications. BIOMETRIKA, 57(1):97–&, 1970.

[89] Mark Hewitt, Mark TD Cronin, Steven J Enoch, Judith C Madden, David W
Roberts, and John C Dearden. In silico prediction of aqueous solubility: the
solubility challenge. Journal of chemical information and modeling, 49(11):2572–
2587, 2009.

[90] Alison H Holmes, Luke SP Moore, Arnfinn Sundsfjord, Martin Steinbakk, Sadie
Regmi, Abhilasha Karkey, Philippe J Guerin, and Laura JV Piddock. Under-
standing the mechanisms and drivers of antimicrobial resistance. The Lancet,
387(10014):176–187, 2016.

[91] Peter Hornbeck. Enzyme-linked immunosorbent assays. Current protocols in
immunology, pages 2–1, 1991.

[92] Yi-Ling Hsieh, Tsung-Yi Ho, and Krishnendu Chakrabarty. Biochip synthesis and
dynamic error recovery for sample preparation using digital microfluidics. IEEE
Trans. on CAD of Integrated Circuits and Systems, 33(2):183–196, 2014.

[93] Kai Hu, Bang-Ning Hsu, Andrew Madison, Krishnendu Chakrabarty, and Richard B.
Fair. Fault detection, real-time error recovery, and experimental demonstration
for digital microfluidic biochips. In Enrico Macii, editor, Design, Automation and
Test in Europe, DATE 13, Grenoble, France, March 18-22, 2013, pages 559–564.
EDA Consortium San Jose, CA, USA / ACM DL, 2013.

[94] Eric H Huang, Richard Socher, Christopher D Manning, and Andrew Y Ng.
Improving word representations via global context and multiple word prototypes.

222

In Proceedings of the 50th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 873–882, 2012.

[95] Tsung-Wei Huang and Tsung-Yi Ho. A fast routability- and performance-driven
droplet routing algorithm for digital microfluidic biochips. In 27th International
Conference on Computer Design, ICCD 2009, Lake Tahoe, CA, USA, October 4-7,
2009, pages 445–450, New York, NY, USA, 2009. IEEE Computer Society.

[96] Tsung-Wei Huang, Chun-Hsien Lin, and Tsung-Yi Ho. A contamination aware
droplet routing algorithm for the synthesis of digital microfluidic biochips. IEEE
Trans. on CAD of Integrated Circuits and Systems, 29(11):1682–1695, 2010.

[97] Tsung-Wei Huang, Chun-Hsien Lin, and Tsung-Yi Ho. A contamination aware
droplet routing algorithm for the synthesis of digital microfluidic biochips. IEEE
Trans. on CAD of Integrated Circuits and Systems, 29(11):1682–1695, 2010.

[98] Mohamed Ibrahim and Krishnendu Chakrabarty. Efficient error recovery in cyber-
physical digital-microfluidic biochips. IEEE Trans. Multi-Scale Computing Systems,
1(1):46–58, 2015.

[99] Mohamed Ibrahim and Krishnendu Chakrabarty. Error recovery in digital microflu-
idics for personalized medicine. In Wolfgang Nebel and David Atienza, editors,
Proceedings of the 2015 Design, Automation & Test in Europe Conference & Ex-
hibition, DATE 2015, Grenoble, France, March 9-13, 2015, pages 247–252, New
York, NY, USA, 2015. ACM.

[100] Mohamed Ibrahim, Krishnendu Chakrabarty, and Kristin Scott. Synthesis of
cyberphysical digital-microfluidic biochips for real-time quantitative analysis. IEEE
Trans. on CAD of Integrated Circuits and Systems, 36(5):733–746, 2017.

[101] Hisao Ishibuchi, Yuji Sakane, Noritaka Tsukamoto, and Yusuke Nojima. Evolution-
ary many-objective optimization by NSGA-II and MOEA/D with large populations.
In Proceedings of the IEEE International Conference on Systems, Man and Cyber-
netics, San Antonio, TX, USA, 11-14 October 2009, pages 1758–1763, New York,
NY, USA, 2009. IEEE.

[102] Anil Jain, Karthik Nandakumar, and Arun Ross. Score normalization in multimodal
biometric systems. Pattern recognition, 38(12):2270–2285, 2005.

[103] Christopher Jaress, Philip Brisk, and Daniel T. Grissom. Rapid online fault
recovery for cyber-physical digital microfluidic biochips. In 33rd IEEE VLSI Test
Symposium, VTS 2015, Napa, CA, USA, April 27-29, 2015, pages 1–6, New York,
NY, USA, 2015. IEEE Computer Society.

[104] Mais J. Jebrail, Ronald F. Renzi, Anupama Sinha, Jim Van De Vreugde, Carmen
Gondhalekar, Cesar Ambriz, Robert J. Meagher, and Steven S. Branda. A solvent
replenishment solution for managing evaporation of biochemical reactions in air-
matrix digital microfluidics devices. Lab Chip, 15:151–158, 2015.

223

[105] Erik C. Jensen, Bharath P. Bhat, and Richard A. Mathies. A digital microflu-
idic platform for the automation of quantitative biomolecular assays. Lab Chip,
10(6):685–691, Mar 2010.

[106] Mathew M Jessop-Fabre and Nikolaus Sonnenschein. Improving reproducibility in
synthetic biology. Frontiers in bioengineering and biotechnology, 7:18, 2019.

[107] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. Oracle-guided
component-based program synthesis. In Jeff Kramer, Judith Bishop, Premkumar T.
Devanbu, and Sebastián Uchitel, editors, Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 1, ICSE 2010, Cape
Town, South Africa, 1-8 May 2010, pages 215–224, Cape Town, South Africa, 2010.
ACM.

[108] Yousheng Jiang, Xuanyun Huang, Kun Hu, Wenjuan Yu, Xianle Yang, and Liqun
Lv. Production and characterization of monoclonal antibodies against small hapten-
ciprofloxacin. African Journal of Biotechnology, 10(65):14342–14347, 2011.

[109] Jinpyo Park and Soo-Mook Moon. Optimistic register coalescing. Proceedings. 1998
International Conference on Parallel Architectures and Compilation Techniques
(Cat. No.98EX192), 26(4):196–204, 2004.

[110] Rajeev Joshi, Greg Nelson, and Keith Randall. Denali: A goal-directed superopti-
mizer. ACM SIGPLAN Notices, 37(5):304–314, 2002.

[111] Oliver Keszöcze, Robert Wille, Krishnendu Chakrabarty, and Rolf Drechsler. A
general and exact routing methodology for digital microfluidic biochips. In Diana
Marculescu and Frank Liu, editors, Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design, ICCAD 2015, Austin, TX, USA, November
2-6, 2015, pages 874–881, New York, NY, USA, 2015. IEEE.

[112] Oliver Keszöcze, Robert Wille, and Rolf Drechsler. Exact routing for digital
microfluidic biochips with temporary blockages. In Yao-Wen Chang, editor, The
IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2014,
San Jose, CA, USA, November 3-6, 2014, pages 405–410, New York, NY, USA,
2014. IEEE.

[113] Dhananjay Kimothi, Akshay Soni, Pravesh Biyani, and James M Hogan. Distributed
representations for biological sequence analysis. arXiv preprint arXiv:1608.05949,
2016.

[114] Eric Klavins. Aquarium, your protocols will be assimilated. http://klavinslab.
org/aquarium.html, 2014. Accessed: 2017-11-13.

[115] James Koppel, Zheng Guo, Edsko de Vries, Armando Solar-Lezama, and Nadia
Polikarpova. Searching entangled program spaces, 2022.

[116] Panagiotis-Christos Kotsias, Josep Arús-Pous, Hongming Chen, Ola Engkvist,
Christian Tyrchan, and Esben Jannik Bjerrum. Direct steering of de novo molecular

224

http://klavinslab.org/aquarium.html
http://klavinslab.org/aquarium.html

generation with descriptor conditional recurrent neural networks. Nature Machine
Intelligence, 2(5):254–265, 2020.

[117] Tessa A. Lau, Pedro M. Domingos, and Daniel S. Weld. Version space algebra
and its application to programming by demonstration. In Pat Langley, editor,
Proceedings of the Seventeenth International Conference on Machine Learning
(ICML 2000), Stanford University, Stanford, CA, USA, June 29 - July 2, 2000,
pages 527–534, Stanford, CA, USA, 2000. Morgan Kaufmann.

[118] Antonio Lavecchia. Machine-learning approaches in drug discovery: methods and
applications. Drug discovery today, 20(3):318–331, 2015.

[119] Rodney Lax. The future of peptide development in the pharmaceutical industry.
PharManufacturing: The international peptide review, 2:10–15, 2010.

[120] Quoc Le and Tomas Mikolov. Distributed representations of sentences and docu-
ments. In International conference on machine learning, pages 1188–1196. PMLR,
2014.

[121] Thomas Lederer, Stefan Clara, Bernhard Jakoby, and Wolfgang Hilber. Integration
of impedance spectroscopy sensors in a digital microfluidic platform. Microsystem
Technologies, 18(7):1163–1180, Aug 2012.

[122] Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. Accelerating search-based
program synthesis using learned probabilistic models. ACM SIGPLAN Notices,
53(4):436–449, 2018.

[123] Allen Leung and Lal George. A New MLRISC Register Allocator, 1998.

[124] Guangdi Li and Erik De Clercq. Therapeutic options for the 2019 novel coronavirus
(2019-ncov). Nature reviews Drug discovery, 19(3):149–150, 2020.

[125] Yiyan Li, Hongzhong Li, and R. Jacob Baker. Volume and concentration identifica-
tion by using an electrowetting on dielectric device. In 2014 IEEE Dallas Circuits
and Systems Conference (DCAS), pages 1–4, 2014.

[126] Yiyan Li, Hongzhong Li, and R. Jacob Baker. A low-cost and high-resolution
droplet position detector for an intelligent electrowetting on dielectric device.
Journal of Laboratory Automation, 20(6):663–669, 2015. PMID: 25609255.

[127] Zipeng Li, Kelvin Yi-Tse Lai, John McCrone, Po-Hsien Yu, Krishnendu
Chakrabarty, Miroslav Pajic, Tsung-Yi Ho, and Chen-Yi Lee. Efficient and
adaptive error recovery in a micro-electrode-dot-array digital microfluidic biochip.
IEEE Trans. on CAD of Integrated Circuits and Systems, 37(3):601–614, 2018.

[128] Percy Liang, Michael I. Jordan, and Dan Klein. Learning programs: A hierarchi-
cal bayesian approach. In Johannes Fürnkranz and Thorsten Joachims, editors,
Proceedings of the 27th International Conference on Machine Learning (ICML-10),
June 21-24, 2010, Haifa, Israel, pages 639–646, Haifa, Israel, 2010. Omnipress.

225

[129] Chen Liao and Shiyan Hu. Multiscale variation-aware techniques for high-
performance digital microfluidic lab-on-a-chip component placement. IEEE Trans
Nanobioscience, 10(1):51–58, Mar 2011.

[130] Gabriel Lippmann. Relations entre les phénomènes électriques et capillaires. PhD
thesis, Gauthier-Villars Paris, France:, 1875.

[131] Chia-Hung Liu, Kuang-Cheng Liu, and Juinn-Dar Huang. Latency-optimization
synthesis with module selection for digital microfluidic biochips. In Norbert
Schuhmann, Kaijian Shi, and Nagi Naganathan, editors, 2013 IEEE International
SOC Conference, Erlangen, Germany, September 4-6, 2013, pages 159–164, New
York, NY, USA, 2013. IEEE.

[132] Yu-Chen Lo, Stefano E Rensi, Wen Torng, and Russ B Altman. Machine learning
in chemoinformatics and drug discovery. Drug discovery today, 23(8):1538–1546,
2018.

[133] Tyson Loveless, Jason Ott, and Philip Brisk. A performance-optimizing compiler
for cyber-physical digital microfluidic biochips. In CGO ’20: 18th ACM/IEEE
International Symposium on Code Generation and Optimization, pages 171–184.
ACM, 2020.

[134] Tyson Loveless, Jason Ott, and Philip Brisk. Time-and resource-constrained
scheduling for digital microfluidic biochips. In Proceedings of the ACM/IEEE 12th
International Conference on Cyber-Physical Systems, pages 198–208, 2021.

[135] L. Luan, R.D. Evans, N.M. Jokerst, and R.B. Fair. Integrated optical sensor in a
digital microfluidic platform. IEEE Sensors, 8:628–635, 2008.

[136] Lin Luan, Matthew W Royal, Randall Evans, Richard B Fair, and Nan M Jokerst.
Chip scale optical microresonator sensors integrated with embedded thin film
photodetectors on electrowetting digital microfluidics platforms. IEEE Sensors
Journal, 12(6):1794–1800, 2012.

[137] Yan Luo, Bhargab B. Bhattacharya, Tsung-Yi Ho, and Krishnendu Chakrabarty.
Design and optimization of a cyberphysical digital-microfluidic biochip for the
polymerase chain reaction. IEEE Trans. on CAD of Integrated Circuits and Systems,
34(1):29–42, 2015.

[138] Yan Luo, Krishnendu Chakrabarty, and Tsung-Yi Ho. Error recovery in cyber-
physical digital microfluidic biochips. IEEE Trans. on CAD of Integrated Circuits
and Systems, 32(1):59–72, 2013.

[139] Yan Luo, Krishnendu Chakrabarty, and Tsung-Yi Ho. Real-time error recovery
in cyberphysical digital-microfluidic biochips using a compact dictionary. IEEE
Trans. on CAD of Integrated Circuits and Systems, 32(12):1839–1852, 2013.

[140] J Ross Macdonald and E Barsoukov. Impedance spectroscopy: theory, experiment,
and applications. History, 1(8):1–13, 2005.

226

[141] Elena Maftei, Paul Pop, and Jan Madsen. Tabu search-based synthesis of digital
microfluidic biochips with dynamically reconfigurable non-rectangular devices.
Design Autom. for Emb. Sys., 14(3):287–307, 2010.

[142] Elena Maftei, Paul Pop, and Jan Madsen. Module-based synthesis of digital
microfluidic biochips with droplet-aware operation execution. JETC, 9(1):2, 2013.

[143] Venkata RR Malapaka, Albert A Barrese III, and Brian C Tripp. High-throughput
screening for antimicrobial compounds using a 96-well format bacterial motility
absorbance assay. SLAS Discovery, 12(6):849–854, 2007.

[144] Polina Mamoshina, Marina Volosnikova, Ivan V Ozerov, Evgeny Putin, Ekaterina
Skibina, Franco Cortese, and Alex Zhavoronkov. Machine learning on human
muscle transcriptomic data for biomarker discovery and tissue-specific drug target
identification. Frontiers in genetics, 9:242, 2018.

[145] David Mandelin, Lin Xu, Rastislav Bod́ık, and Doug Kimelman. Jungloid mining:
helping to navigate the api jungle. ACM Sigplan Notices, 40(6):48–61, 2005.

[146] Chi-Liang Mao, Keith D Zientek, Patrick T Colahan, Mei-Yueh Kuo, Chi-Ho
Liu, Kuo-Ming Lee, and Chi-Chung Chou. Development of an enzyme-linked
immunosorbent assay for fentanyl and applications of fentanyl antibody-coated
nanoparticles for sample preparation. Journal of pharmaceutical and biomedical
analysis, 41(4):1332–1341, 2006.

[147] Mary Ann Marcinkiewicz. Building a large annotated corpus of english: The penn
treebank. Using Large Corpora, page 273, 1994.

[148] Henry Massalin. Superoptimizer: a look at the smallest program. ACM SIGARCH
Computer Architecture News, 15(5):122–126, 1987.

[149] Mike May. A diy approach to automating your lab. Nature, 569(7754):587–589,
2019.

[150] Jeffrey McDaniel, Christopher Curtis, and Philip Brisk. Automatic synthesis of
microfluidic large scale integration chips from a domain-specific language. 2013
IEEE Biomedical Circuits and Systems Conference, BioCAS 2013, pages 101–104,
2013.

[151] Scott McFarling. Procedure merging with instruction caches. In David S. Wise,
editor, Proceedings of the ACM SIGPLAN’91 Conference on Programming Language
Design and Implementation (PLDI), Toronto, Ontario, Canada, June 26-28, 1991,
pages 71–79. ACM, 1991.

[152] Aditya Krishna Menon, Omer Tamuz, Sumit Gulwani, Butler W. Lampson, and
Adam Kalai. A machine learning framework for programming by example. In
Proceedings of the 30th International Conference on Machine Learning, ICML
2013, Atlanta, GA, USA, 16-21 June 2013, volume 28 of JMLR Workshop and
Conference Proceedings, pages 187–195, Atlanta, GA, USA, 2013. JMLR.org.

227

[153] Giovanni De Micheli. Synthesis and optimization of digital circuits. McGraw-Hill
Higher Education, Columbus, OH, 1994.

[154] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[155] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-
tributed representations of words and phrases and their compositionality. Advances
in neural information processing systems, 26, 2013.

[156] Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in
continuous space word representations. In Proceedings of the 2013 conference of
the north american chapter of the association for computational linguistics: Human
language technologies, pages 746–751, 2013.

[157] Ben Miles and Peter L Lee. Achieving reproducibility and closed-loop automa-
tion in biological experimentation with an iot-enabled lab of the future. SLAS
TECHNOLOGY: Translating Life Sciences Innovation, 23(5):432–439, 2018.

[158] Elizabeth MMiller, Alphonsus HC Ng, Uvaraj Uddayasankar, and Aaron RWheeler.
A digital microfluidic approach to heterogeneous immunoassays. Analytical and
bioanalytical chemistry, 399(1):337–345, 2011.

[159] MilliporeSigma. Designing peptides, 2022.

[160] Anders Miltner, Sumit Gulwani, Vu Le, Alan Leung, Arjun Radhakrishna, Gustavo
Soares, Ashish Tiwari, and Abhishek Udupa. On the fly synthesis of edit suggestions.
Proceedings of the ACM on Programming Languages, 3(OOPSLA):1–29, 2019.

[161] Alon Mishne, Sharon Shoham, and Eran Yahav. Typestate-based semantic code
search over partial programs. In Gary T. Leavens and Matthew B. Dwyer, editors,
Proceedings of the 27th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2012, part of
SPLASH 2012, Tucson, AZ, USA, October 21-25, 2012, pages 997–1016, Tuscon,
AZ, USA, 2012. ACM.

[162] Tom M Mitchell. Generalization as search. Artificial intelligence, 18(2):203–226,
1982.

[163] Kenneth T Miyasaki, R Iofel, and RI Lehrer. Sensitivity of periodontal pathogens
to the bactericidal activity of synthetic protegrins, antibiotic peptides derived from
porcine leukocytes. Journal of dental research, 76(8):1453–1459, 1997.

[164] Mohamed F Mohamed, Ahmed Abdelkhalek, and Mohamed N Seleem. Evalua-
tion of short synthetic antimicrobial peptides for treatment of drug-resistant and
intracellular staphylococcus aureus. Scientific reports, 6(1):1–14, 2016.

228

[165] Floriane Montanari, Lara Kuhnke, Antonius Ter Laak, and Djork-Arné Clevert.
Modeling physico-chemical admet endpoints with multitask graph convolutional
networks. Molecules, 25(1):44, 2019.

[166] Neeloffer Mookherjee, Marilyn A Anderson, Henk P Haagsman, and Donald J
Davidson. Antimicrobial host defence peptides: functions and clinical potential.
Nature reviews Drug discovery, 19(5):311–332, 2020.

[167] Hyejin Moon, Sung Kwon. Cho, Robin L. Garrell, and Chang-Jin Kim. Low voltage
electrowetting-on-dielectric. J. Appl. Phys., 92:4080–4087, 2002.

[168] Frieder Mugele and Jeanchristophe Baret. Electrowetting: from basics to applica-
tions. Journal of Physics: Condensed Matter, 17:R705–R774, 2005.

[169] Asher Mullard. New drugs cost us $2.6 billion to develop. Nature reviews. Drug
discovery, 13(12):877, 2014.

[170] Miguel Angel Murran and Homayoun Najjaran. Capacitance-based droplet position
estimator for digital microfluidic devices. Lab Chip, 12:2053–2059, 2012.

[171] Ananthan Nambiar, Maeve Heflin, Simon Liu, Sergei Maslov, Mark Hopkins, and
Anna Ritz. Transforming the language of life: Transformer neural networks for
protein prediction tasks. In Proceedings of the 11th ACM International Conference
on Bioinformatics, Computational Biology and Health Informatics, pages 1–8, 2020.

[172] Chandrakana Nandi, Max Willsey, Adam Anderson, James R. Wilcox, Eva
Darulova, Dan Grossman, and Zachary Tatlock. Synthesizing structured CAD mod-
els with equality saturation and inverse transformations. In Alastair F. Donaldson
and Emina Torlak, editors, Proceedings of the 41st ACM SIGPLAN International
Conference on Programming Language Design and Implementation, PLDI 2020,
London, UK, June 15-20, 2020, pages 31–44, London, UK, 2020. ACM.

[173] Patrick Ng. dna2vec: Consistent vector representations of variable-length k-mers.
arXiv preprint arXiv:1701.06279, 2017.

[174] Joo Hyon Noh, Jiyong Noh, Eric Kreit, Jason Heikenfeld, and Philip D. Rack.
Toward active-matrix lab-on-a-chip: programmable electrofluidic control enabled
by arrayed oxide thin film transistors. Lab Chip, 12(2):353–360, Jan 2012.

[175] The European Committee on Antimicrobial Susceptibility Testing. Routine and
extended internal quality control for mic determination and disk diffusion as
recommended by eucast, version 12.0, 2022.

[176] Kenneth O’Neal, Daniel T. Grissom, and Philip Brisk. Force-directed list scheduling
for digital microfluidic biochips. In Srinivas Katkoori, Matthew R. Guthaus,
Ayse Kivilcim Coskun, Andreas Burg, and Ricardo Reis, editors, 20th IEEE/IFIP
International Conference on VLSI and System-on-Chip, VLSI-SoC 2012, Santa
Cruz, CA, USA, October 7-10, 2012, pages 7–11, New York, NY, USA, 2012. IEEE.

229

[177] Kenneth O’Neal, Daniel T. Grissom, and Philip Brisk. Resource-constrained
scheduling for digital microfluidic biochips. JETC, 14(1):7:1–7:26, 2018.

[178] Jason Ott, Tyson Loveless, Chris Curtis, Mohsen Lesani, and Philip Brisk. Bioscript:
programming safe chemistry on laboratories-on-a-chip. Proceedings of the ACM on
Programming Languages, 2(OOPSLA):128, 2018.

[179] Phil Paik, Vamsee K Pamula, and Richard B Fair. Rapid droplet mixers for digital
microfluidic systems. Lab on a Chip, 3(4):253–259, 2003.

[180] Phil Paik, Vamsee K. Pamula, and Richard B. Fair. Rapid droplet mixers for
digital microfluidic systems. Lab Chip, 3:253–259, 2003.

[181] Fernando Pereira and Yves Schabes. Inside-outside reestimation from partially
bracketed corpora. In 30th Annual Meeting of the Association for Computational
Linguistics, pages 128–135, 1992.

[182] Daniel Perelman, Sumit Gulwani, Thomas Ball, and Dan Grossman. Type-directed
completion of partial expressions. In Jan Vitek, Haibo Lin, and Frank Tip, editors,
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’12, Beijing, China - June 11 - 16, 2012, pages 275–286, Beijing, China,
2012. ACM.

[183] Malak Pirtskhalava, Anthony A Amstrong, Maia Grigolava, Mindia Chubinidze,
Evgenia Alimbarashvili, Boris Vishnepolsky, Andrei Gabrielian, Alex Rosenthal,
Darrell E Hurt, and Michael Tartakovsky. Dbaasp v3: database of antimicrobial/-
cytotoxic activity and structure of peptides as a resource for development of new
therapeutics. Nucleic acids research, 49(D1):D288–D297, 2021.

[184] Sudip Poddar, Sarmishtha Ghoshal, Krishnendu Chakrabarty, and Bhargab B.
Bhattacharya. Error-correcting sample preparation with cyberphysical digital
microfluidic lab-on-chip. ACM Trans. Design Autom. Electr. Syst., 22(1):2:1–2:29,
2016.

[185] Massimiliano Poletto and Vivek Sarkar. Linear scan register allocation. ACM
Trans. Program. Lang. Syst., 21(5):895–913, 1999.

[186] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. Program synthesis
from polymorphic refinement types. ACM SIGPLAN Notices, 51(6):522–538, 2016.

[187] Michael G. Pollack, Alexander D. Shenderov, and Richard B. Fair. Electrowetting-
based actuation of droplets for integrated microfluidics. Lab on a Chip, 2(2):96–101,
2002.

[188] Oleksandr Polozov and Sumit Gulwani. Flashmeta: a framework for inductive
program synthesis. In Jonathan Aldrich and Patrick Eugster, editors, Proceedings
of the 2015 ACM SIGPLAN International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA 2015, part of SPLASH

230

2015, Pittsburgh, PA, USA, October 25-30, 2015, pages 107–126, Pittsburgh, PA,
USA, 2015. ACM.

[189] Steven J Projan. Why is big pharma getting out of antibacterial drug discovery?
Current opinion in microbiology, 6(5):427–430, 2003.

[190] Hong Ren, Richard B Fair, and Micheal G Pollack. Automated on-chip droplet
dispensing with volume control by electro-wetting actuation and capacitance
metering. Sensors and Actuators B: Chemical, 98(2-3):319–327, 2004.

[191] Andrew J. Ricketts, Kevin M. Irick, Narayanan Vijaykrishnan, and Mary Jane
Irwin. Priority scheduling in digital microfluidics-based biochips. In Gielen [72],
pages 329–334.

[192] Christian P Robert, George Casella, and George Casella. Monte Carlo statistical
methods, volume 2. Springer, 1999.

[193] Steven L Rohall, Lydia Auch, Jonathan Gable, Jacob Gora, Johanna Jansen,
Yipin Lu, Eric Martin, Margaret Pancost-Heidebrecht, Bill Shirley, Nikolaus Stiefl,
et al. An artificial intelligence approach to proactively inspire drug discovery with
recommendations. Journal of Medicinal Chemistry, 63(16):8824–8834, 2020.

[194] Pranab Roy, Hafizur Rahaman, and Parthasarathi Dasgupta. A novel droplet
routing algorithm for digital microfluidic biochips. In R. Iris Bahar, Fabrizio
Lombardi, David Atienza, and Erik Brunvand, editors, Proceedings of the 20th
ACM Great Lakes Symposium on VLSI 2009, Providence, Rhode Island, USA, May
16-18 2010, pages 441–446, New York, NY, USA, 2010. ACM.

[195] Pranab Roy, Hafizur Rahaman, and Parthasarathi Dasgupta. Two-level clustering-
based techniques for intelligent droplet routing in digital microfluidic biochips.
Integration, 45(3):316–330, 2012.

[196] Feras A Saad, Marco F Cusumano-Towner, Ulrich Schaechtle, Martin C Rinard, and
Vikash K Mansinghka. Bayesian synthesis of probabilistic programs for automatic
data modeling. Proceedings of the ACM on Programming Languages, 3(POPL):1–32,
2019.

[197] Saman Sadeghi, Huijiang Ding, Gaurav J. Shah, Supin Chen, Pei Yuin Keng, Chang-
Jin “CJ” Kim, and R. Michael van Dam. On chip droplet characterization: A
practical, high-sensitivity measurement of droplet impedance in digital microfluidics.
Analytical Chemistry, 84(4):1915–1923, 2012. PMID: 22248060.

[198] Michael I. Sadowski, Chris Grant, and Tim S. Fell. Harnessing qbd, programming
languages, and automation for reproducible biology. Trends in Biotechnology,
34(3):214 – 227, 2016. Special Issue: Industrial Biotechnology.

[199] Michael J Schertzer, R Ben Mrad, and Pierre E Sullivan. Automated detection
of particle concentration and chemical reactions in ewod devices. Sensors and
Actuators B: Chemical, 164(1):1–6, 2012.

231

[200] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. ACM
SIGARCH Computer Architecture News, 41(1):305–316, 2013.

[201] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. In
Vivek Sarkar and Rastislav Bod́ık, editors, Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’13, Houston, TX, USA - March 16 -
20, 2013, pages 305–316, New York, NY, USA, 2013. ACM.

[202] Eva Sciacca, Salvatore Spinella, Dino Ienco, and Paola Giannini. Annotated
stochastic context free grammars for analysis and synthesis of proteins. In European
Conference on Evolutionary Computation, Machine Learning and Data Mining in
Bioinformatics, pages 77–88. Springer, 2011.

[203] David B Searls. A primer in macromolecular linguistics. Biopolymers, 99(3):203–217,
2013.

[204] Marwin HS Segler, Thierry Kogej, Christian Tyrchan, and Mark P Waller. Gener-
ating focused molecule libraries for drug discovery with recurrent neural networks.
ACS central science, 4(1):120–131, 2018.

[205] Steve C. Shih, Irena Barbulovic-Nad, Xuning Yang, Ryan Fobel, and Aaron R.
Wheeler. Digital microfluidics with impedance sensing for integrated cell culture
and analysis. Biosens Bioelectron, 42:314–320, Apr 2013.

[206] Steve C. Shih, Ryan Fobel, Paresh Kumar, and Aaron R. Wheeler. A feedback
control system for high-fidelity digital microfluidics. Lab Chip, 11:535–540, 2011.

[207] Yong Jun Shin and Jeong Bong Lee. Machine vision for digital microfluidics.
Review of Scientific Instruments, 81(1), 2 2010.

[208] Jeremy Singer. Static Program Analysis based on Virtual Register Renaming. PhD
thesis, University of Cambridge, UK, 2005.

[209] Rishabh Singh and Sumit Gulwani. Predicting a correct program in programming
by example. In Daniel Kroening and Corina S. Pasareanu, editors, Computer Aided
Verification - 27th International Conference, CAV 2015, San Francisco, CA, USA,
July 18-24, 2015, Proceedings, Part I, volume 9206 of Lecture Notes in Computer
Science, pages 398–414, San Francisco, CA, USA, 2015. Springer.

[210] Hugo Sinha, Angela B. V. Quach, Philippe Q. N. Vo, and Steve C. Shih. An
automated microfluidic gene-editing platform for deciphering cancer genes. Lab
Chip, pages 11–12, 2018.

[211] Temple F Smith, Michael S Waterman, et al. Identification of common molecular
subsequences. Journal of molecular biology, 147(1):195–197, 1981.

[212] Armando Solar-Lezama, Liviu Tancau, Rastislav Bod́ık, Sanjit A. Seshia, and
Vijay A. Saraswat. Combinatorial sketching for finite programs. In John Paul
Shen and Margaret Martonosi, editors, Proceedings of the 12th International

232

Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2006, San Jose, CA, USA, October 21-25, 2006, pages 404–415,
New York, NY, USA, 2006. ACM.

[213] Larisa N. Soldatova, Wayne Aubrey, Ross D. King, and Amanda Clare. The
EXACT description of biomedical protocols. In Proceedings 16th International
Conference on Intelligent Systems for Molecular Biology (ISMB), Toronto, Canada,
July 19-23, 2008, pages 295–303, New York, NY, USA, 2008. Oxford University
Press.

[214] Ekaterina A Sosnina, Sergey Sosnin, Anastasia A Nikitina, Ivan Nazarov, Dmitry I
Osolodkin, and Maxim V Fedorov. Recommender systems in antiviral drug discovery.
ACS omega, 5(25):15039–15051, 2020.

[215] W.R. Spickerman. Binet’s formula for the tribonacci sequence. In Fibonacci
Quarterly. Citeseer, 1982.

[216] WR Spickerman and RN Joyner. Binet’s formula for the recursive sequence of
order k. Fibonacci Quarterly, 22(4):327–331, 1984.

[217] Vugranam C. Sreedhar, Roy Dz-Ching Ju, David M. Gillies, and Vatsa Santhanam.
Translating out of static single assignment form. In Static Analysis, 6th Interna-
tional Symposium, SAS ’99, Venice, Italy, September 22-24, 1999, Proceedings,
pages 194–210, 1999.

[218] Vijay Srinivasan, Vamsee Pamula, and Richard Fair. Droplet-based microfluidic
lab-on-a-chip for glucose detection. Analytica Chimica Acta, 507:145–150, 04 2004.

[219] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. Template-based program
verification and program synthesis. STTT, 15(5-6):497–518, 2013.

[220] Fei Su and Krishnendu Chakrabarty. Module placement for fault-tolerant
microfluidics-based biochips. ACM Trans. Design Autom. Electr. Syst., 11(3):682–
710, 2006.

[221] Fei Su and Krishnendu Chakrabarty. High-level synthesis of digital microfluidic
biochips. JETC, 3(4):1, 2008.

[222] Fei Su, William L. Hwang, and Krishnendu Chakrabarty. Droplet routing in the
synthesis of digital microfluidic biochips. In Gielen [72], pages 323–328.

[223] Ian I. Suni. Impedance methods for electrochemical sensors using nanomaterials.
TrAC Trends in Analytical Chemistry, 27(7):604 – 611, 2008. Electroanalysis Based
on Nanomaterials.

[224] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. Equality saturation:
a new approach to optimization. In Zhong Shao and Benjamin C. Pierce, editors,
Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of

233

Programming Languages, POPL 2009, Savannah, GA, USA, January 21-23, 2009,
pages 264–276, Savannah, GA, USA, 2009. ACM.

[225] Explainer: Peptides vs proteins - what’s the difference?, Dec 2020.

[226] William Thies, John Paul Urbanski, Todd Thorsen, and Saman Amarasinghe.
Abstraction layers for scalable microfluidic biocomputing. Natural Computing,
7(2):255–275, 5 2007.

[227] Michael C Thrun and Alfred Ultsch. Using projection-based clustering to find
distance-and density-based clusters in high-dimensional data. Journal of Classifi-
cation, 38(2):280–312, 2021.

[228] John D Turnidge. Susceptibility test methods: general considerations. Manual of
clinical microbiology, pages 1246–1252, 2015.

[229] Olgierd Unold, Mateusz Gabor, and Witold Dyrka. Unsupervised grammar induc-
tion for revealing the internal structure of protein sequence motifs. In International
Conference on Artificial Intelligence in Medicine, pages 299–309. Springer, 2020.

[230] John Paul Urbanski, William Thies, Christopher Rhodes, Saman Amarasinghe,
and Todd Thorsen. Digital microfluidics using soft lithography. Lab Chip, 6:96–104,
2006.

[231] Jessica Vamathevan, Dominic Clark, Paul Czodrowski, Ian Dunham, Edgardo
Ferran, George Lee, Bin Li, Anant Madabhushi, Parantu Shah, Michaela Spitzer,
et al. Applications of machine learning in drug discovery and development. Nature
reviews Drug discovery, 18(6):463–477, 2019.

[232] Laurens Van Der Maaten. Learning a parametric embedding by preserving local
structure. In Artificial intelligence and statistics, pages 384–391. PMLR, 2009.

[233] Philippe Q. N. Vo, Mathieu C. Husser, Fatemeh Ahmadi, Hugo Sinha, and Steve C.
Shih. Image-based feedback and analysis system for digital microfluidics. Lab Chip,
17:3437–3446, 2017.

[234] Peng Wang, Jiaming Xu, Bo Xu, Chenglin Liu, Heng Zhang, Fangyuan Wang, and
Hongwei Hao. Semantic clustering and convolutional neural network for short text
categorization. In Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 2: Short Papers), pages 352–357, 2015.

[235] Xinyu Wang, Isil Dillig, and Rishabh Singh. Program synthesis using abstraction
refinement. Proceedings of the ACM on Programming Languages, 2(POPL):1–30,
2017.

[236] Matthew White Royal, Nan M. Jokerst, and Richard Fair. Droplet-based sensing:
Optical microresonator sensors embedded in digital electrowetting microfluidics
systems. IEEE Sensors Journal, 13:4733–4742, 12 2013.

234

[237] Irith Wiegand, Kai Hilpert, and Robert EW Hancock. Agar and broth dilution
methods to determine the minimal inhibitory concentration (mic) of antimicrobial
substances. Nature protocols, 3(2):163–175, 2008.

[238] Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock,
and Pavel Panchekha. egg: Fast and extensible equality saturation. Proc. ACM
Program. Lang., 5(POPL):1–29, 2021.

[239] Max Willsey, Ashley P. Stephenson, Chris Takahashi, Pranav Vaid, Bichlien H.
Nguyen, Michal Piszczek, Christine Betts, Sharon Newman, Sarang Joshi, Karin
Strauss, and Luis Ceze. Puddle: A dynamic, error-correcting, full-stack microflu-
idics platform. In Proceedings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS
’19, pages 183–197, New York, NY, USA, 04 2019. ACM.

[240] Tao Xu and Krishnendu Chakrabarty. Integrated droplet routing and defect
tolerance in the synthesis of digital microfluidic biochips. JETC, 4(3):11, 2008.

[241] Tao Xu, Krishnendu Chakrabarty, and Fei Su. Defect-aware high-level synthesis
and module placement for microfluidic biochips. IEEE Trans. Biomed. Circuits
and Systems, 2(1):50–62, 2008.

[242] Hailong Yao, Qin Wang, Yiren Shen, Tsung-Yi Ho, and Yici Cai. Integrated
functional and washing routing optimization for cross-contamination removal in
digital microfluidic biochips. IEEE Trans. on CAD of Integrated Circuits and
Systems, 35(8):1283–1296, 2016.

[243] Hailong Yao, Qin Wang, Yiren Shen, Tsung Yi Ho, and Yici Cai. Integrated
Functional and Washing Routing Optimization for Cross-Contamination Removal
in Digital Microfluidic Biochips. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 35(8):1283–1296, 2016.

[244] Jacob Yasonik. Multiobjective de novo drug design with recurrent neural networks
and nondominated sorting. Journal of Cheminformatics, 12(1):1–9, 2020.

[245] Ping-Hung Yuh, Chia-Lin Yang, and Yao-Wen Chang. Placement of defect-tolerant
digital microfluidic biochips using the t-tree formulation. JETC, 3(3):13, 2007.

[246] Ping-Hung Yuh, Chia-Lin Yang, and Yao-Wen Chang. Bioroute: A network-flow-
based routing algorithm for the synthesis of digital microfluidic biochips. IEEE
Trans. on CAD of Integrated Circuits and Systems, 27(11):1928–1941, 2008.

[247] Kourosh Zarringhalam, David Degras, Christoph Brockel, and Daniel Ziemek.
Robust phenotype prediction from gene expression data using differential shrinkage
of co-regulated genes. Scientific reports, 8(1):1–10, 2018.

[248] Lu Zhang, Jianjun Tan, Dan Han, and Hao Zhu. From machine learning to
deep learning: progress in machine intelligence for rational drug discovery. Drug
discovery today, 22(11):1680–1685, 2017.

235

[249] Yang Zhao and Krishnendu Chakrabarty. Cross-contamination avoidance for
droplet routing in digital microfluidic biochips. IEEE Trans. on CAD of Integrated
Circuits and Systems, 31(6):817–830, 2012.

[250] Yang Zhao and Krishnendu Chakrabarty. Cross-contamination avoidance for droplet
routing in digital microfluidic biochips. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 31(6):817–830, 2012.

[251] Yang Zhao, Tao Xu, and Krishnendu Chakrabarty. Integrated control-path design
and error recovery in the synthesis of digital microfluidic lab-on-chip. JETC,
6(3):11:1–11:28, 2010.

[252] Huanyu Zhou, Li Xi, Daniel Ziemek, Shawn O’Neil, Julie Lee, Zachary Stew-
art, Yutian Zhan, Shanrong Zhao, Ying Zhang, Karen Page, et al. Molecular
profiling of ulcerative colitis subjects from the turandot trial reveals novel phar-
macodynamic/efficacy biomarkers. Journal of Crohn’s and Colitis, 13(6):702–713,
2019.

236

	List of Figures
	List of Tables
	I Bridging Gaps: Making pLoC Workflows Practical
	Introduction
	Background and Related Work
	Background and Related Work
	Analytical Biochemical Protocols (Assays)
	Digital Microfluidic Biochips (DMFBs)
	OpenDrop

	DMFB Compilation
	Language Design for Programmable Chemistry
	Ontologies
	Laboratory Automation
	Domain-Specific Languages for pLoCs

	Mixing Modules

	Supporting Time-Constrained Chemistry
	Introduction
	Timing Constraint Annotations
	Timing Constraints
	BioScript Example

	Scheduling Problem
	Precedence Constraints
	Fluidic Identifiers (Types)
	DMFB Architecture
	Resource Constraints
	Timing Constraints

	Scheduling Algorithms
	Relative Interval Scheduling
	Phase 1 – Satisfying Precedence and Timing Constraints
	Relative Interval Forest
	Phase 2 – Satisfying Resource Constraints
	RIS Example

	Integer Linear Programming Formulation

	Benchmarks
	Evaluation
	Setup
	Simulation Results: Schedule Length
	Execution Time

	Conclusion

	Practical Compiler Optimizations
	Introduction
	Overview
	An Optimizing Compiler for Cyber-Physical DMFBs
	Scheduling
	Interference Graph
	Definitions and Properties
	Construction

	Placing a CFG
	Global Placement as an Optimization Problem
	Adapting Graph Coalescing for CFG Placement
	Optimized CFG Placement
	Mix Operation Resizing and Rescheduling

	Droplet Routing

	Implementation
	Overview
	Modification of Placement Algorithms for Placing Interference Graphs
	Modification of Placement Algorithms for Mix Module Resizing

	Evaluation
	Experimental Setup
	Benchmarks
	Compiler Configurations
	Results and Analysis

	Conclusion

	Compiling Functions onto pLoCs
	Introduction
	Technology Issues
	Fluidic Functions
	Function Definition
	Function Placement
	Coordinate Spaces
	The Physical Function Prototype
	Stack Management for Fluidic Variables
	External Devices
	Droplet I/O
	Calling Context and Multiple Function Versions
	Recursion

	Evaluation
	Implementation
	Benchmarks
	Setup
	Discussion

	Conclusion

	Conclusion

	II MediSyn: A Modular Pharmaceutical Discovery and Synthesis Framework
	Introduction
	Preliminaries
	Drug Discovery and Development
	Antimicrobial Peptides
	Drug Efficacy Evaluation
	Cost Considerations

	Superoptimization and Program Synthesis
	Probabilistic Context-Free Grammars

	Word Embeddings and Semantic Clusters

	Overview
	Modules
	Generalized Core, Gen, and Back-end Modules

	PepSyn
	PepSyn Front-ends
	PepSketch Front-end
	PepGen Front-end
	Augmentation
	Semantics-encoding Transformation

	Peptide Filter
	Back-end
	MIC Estimation

	Evaluation
	Benchmarks
	Methods
	Results
	Discussion

	Related
	Conclusion
	Mix Module Resizing Example
	Benchmarks
	Benchmarks for
	Benches from
	Benches from

	Benchmarks for
	SLE-only
	Multiplexed
	Split-Dilutes

	Mixed

	Benchmarks for
	OpenDrop Demos

	Pseudocode for Relative Interval Scheduling
	Overview of Peptide Synthesis
	
	Number of sentences a model processes from a single input instance
	Number of sentences in the training corpus for PepGen's model

	Bibliography

