UC Davis
UC Davis Previously Published Works

Title
Efficient Dense Reconstruction Using Geometry and Image Consistency Constraints

Permalink
https://escholarship.org/uc/item/2riew5ph

Authors

Shashkov, Mikhail M
Mak, Jason
Recker, Shawn

Publication Date
2015-10-01

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/2rj6w5pb
https://escholarship.org/uc/item/2rj6w5pb#author
https://escholarship.org
http://www.cdlib.org/

Efficient Dense Reconstruction Using Geometry and
Image Consistency Constraints

Mikhail M. Shashkov, Jason Mak, Shawn Recker, Connie Nguyen, John Owens, Kenneth 1. Joy
Institute for Data Analysis and Visualization
University of California - Davis
Davis, California 95616
Email: mmshash, jwmak, strecker, csnguyen, jowens @ ucdavis.edu

Abstract—We introduce a method for creating very dense
reconstructions of datasets, particularly turn-table varieties. The
method takes in initial reconstructions (of any origin) and makes
them denser by interpolating depth values in two-dimensional
image space within a superpixel region and then optimizing
the interpolated value via image consistency analysis across
neighboring images in the dataset. One of the core assumptions
in this method is that depth values per pixel will vary gradually
along a gradient for a given object. As such, turntable datasets,
such as the dinosaur dataset, are particularly easy for our
method. Our method modernizes some existing techniques and
parallelizes them on a GPU, which produces results faster than
other densification methods.

I. INTRODUCTION

In the past several years the number of applications that
benefit from dense and efficient multi-view reconstruction has
surged. Robotics, for example, has experienced an increased
interest in quadcopters and other personal drones due to their
increased affordability. Similarly, consumer attention to 3D
printing has symbiotically led to increased 3D scanning needs.
Both of these areas, and classical applications such as surveil-
lance and terrain modeling, are made possible by efficient,
accurate, and dense modeling of the scenes and objects in
their view. State-of-the-art algorithms [1]—[3] are based mainly
on sparse feature detection and matching, utilizing the Scale-
Invariant Feature Transform (SIFT) algorithm [4] and other
feature trackers inspired by its concept. For general scenes,
these algorithms provide reasonably accurate feature tracking,
camera poses, and scene structure. However, a key observa-
tion is that most of the data for the previously mentioned
applications consists of sequential images of a scene whose
geometry varies gradually along a gradient, i.e., there are
few sharp jumps in depth on a per pixel basis. Many prior
algorithms have taken this into account by doing region-
based calculations [5]-[9]. Our proposed method revisits this
work by creating regions with a modern superpixel algorithm,
SEEDS [10], interpolating iteratively for higher fidelity, and
performing computation on multiple graphics processing units
(GPUs). Specifically, it consists of a two-phase algorithm that
iteratively solves for unknown pixels by interpolating and op-
timizing ray-distance values using a multi-image consistency
check via the Colored SIFT (CSIFT) descriptor [11]. The
accuracy of the resulting reconstruction is only limited by

978-1-4673-9558-8/15/$31.00 (©2015 IEEE

the accuracy and density of the initial known reconstruction
and the accuracy of the camera parameters. For example, the
dinosaur dataset has very accurater camera positions and an
initial reconstruction just using SIFT features can be made
very dense via our method as shown in Figure 1.

Fig. 1. An initial sparse reconstruction, with good camera estimation, on the
left. It can be made into a very dense version, on the right, by our method.

Furthermore, it is demonstrated that prior results from
state-of-the-art algorithms can be substantially improved. An
overview of general and sequential multi-view reconstruction
is provided in Section II. The proposed algorithm is detailed in
Section III, followed by results (Section IV) and conclusions
and future work (Section V).

II. BACKGROUND

For scene reconstruction, the input is a set of images and, in
some cases, camera calibration information, while the output
is typically a 3D point cloud along with color and/or normal
information, representing scene structure. Camera parameters
include intrinsic parameters, such as focal length, skew and
principal point, as well as extrinsic or pose parameters of ab-
solute position and orientation, and radial distortion. Intrinsics
and extrinsics can be encapsulated in 3 x 4 projection matrices
for each camera [12]. For estimating the epipolar geome-
try [12] between views, camera calibration and scene structure,
most pipelines, such as Bundler [2], made use of feature tracks
between images. This and other reconstruction algorithms
are based on SIFT feature detection and tracking [4], but
there are a number of other sparse and dense methods in
the literature. Dense tracking assigns a correspondence in a

destination image to each source image position and can be
computed through a variety of methods [13], such as optical
flow. Dense approaches especially suffer from issues such
as occlusions, repetitive patterns, texture-less regions, and
illumination changes, which dramatically affect the quality of
the tracks and reconstruction. To alleviate this problem, recent
approaches utilize either luminance and/or geometric informa-
tion from images to compute a descriptor for a given interest
point. With SIFT [4] and its variants [11], [14], local gradient-
orientation histograms for the same-scale neighboring pixels
of an interest point are used as the key entries of the descriptor.
All orientations are assigned relative to a dominant orientation
of the interest point, making the descriptor invariant to object
orientation. The stability to occlusion, partial appearance, and
cluttered surroundings is achieved by local description of
the interest points. An overview of different pose estimation
methods based on feature tracking were given in Rodehorst
et al. [15]. Scene structure can be computed from feature
tracks and projection matrices using, for example, linear or
optimal triangulation [12]. Once pose and structure estimates
are available, a common fine-tuning step is to perform a
bundle adjustment, where the total reprojection error of all
computed 3D points in all cameras is minimized using non-
linear techniques [16].

There are a number of successful general reconstruction
algorithms in the literature, and comprehensive overviews and
comparisons were given in Seitz et al. [17] and Strecha et
al. [18]. As for classical general sequential reconstruction
algorithms, Pollefeys et al. [19] provided a method for re-
construction from hand-held cameras, Nistér [20] dealt with
reconstruction from trifocal tensor hierarchies, while Fitzgib-
bon et al. [21] provided an approach for turn-table sequences.

A. Existing Dense Reconstruction Methods

There are a quite a number of dense reconstruction al-
gorithms in the literature [6]-[9], [22]-[34]. Perhaps the
best known of these algorithms is Patch-Based Multi-View
Stereo (PMVS) [22]. This algorithm creates quasi-dense re-
constructions by enforcing photo-consistency constraints on
patch matching. The upgraded Clustering Views for Multi-
view Stereo (CMVS) version [23] provided higher efficiency
by intelligently grouping sets of images, and does not have
memory limitations, but still suffers from non-completeness
and a lack of additional constraints. Both algorithms are part
of the popular VisualSfM program [1] for 3D reconstruction.
There is even a further improvement, Tensor-Based Multi-view
Stereo (TMVS) [35], which suffers from the same problems.

Besides patch-based multi-view stereo, there are a number
of image-based rendering methods in the literature and others
that can provide a fully dense and watertight reconstruction.
Examples of this, in chronographical order, are shape from
silhouettes [36], voxel coloring [37], and space carving [38],
[39]. In summary, shape from silhouettes [36] is a form of
voxel labeling, in which the visual hull of the viewed shape
is computed by intersecting the projected volumes of the
object’s silhouettes as they appear in each input image. Voxel

coloring [37] differs in that it computes a photo-consistent
3D shape by voxel projection followed by correlation of pixel
colors amongst the input images. Space carving [38], [39] uses
a multi-pass sweep of a plane to eliminate voxels which violate
the photo consistency constraint, as does plane sweeping [40].
The main issue with these algorithms is that they typically rely
on an accurate knowledge of the viewed object’s silhouette,
and thus have a more restricted application space than multi-
view stereo methods, which do not have this requirement.
Furthermore, since plane sweeping is based on homographies,
there could be ’drifting’ of the obtained feature tracks, and
inaccuracy in the 3D point. An advantage of space carving is
that it doesn’t depend on texture or color, and is capable of
producing a dense, water-tight reconstruction by virtue of the
approach. However, because of inaccuracies in the obtained
silhouettes or input camera parameters, it is seldom accurate
enough to capture very fine details.

There also exist a number of volumetric methods [26]-
[28]. Given the recent advances in convex optimization, glob-
ally optimal formulations have been proposed for the multi-
view reconstruction problem [26], [27]. However, this line
of research has so far mainly focused on the optimization
methods themselves. In order to obtain highly accurate re-
construction results, the data term in energy formulations is
just as important. Even the best currently available approaches
have major problems in low-textured image areas, leading to
visible artifacts in the obtained reconstructions. In Kostrikov et
al. [30], a formulation based on an analysis of the reasons why
volumetric approaches have problems in specific challenging
regions is derived. A probabilistically well-founded formula-
tion for the labeling cost that is more robust to outliers and that
achieves improved reconstruction results is provided. Though
great results are obtained, there is an outlier removal step that
affects completeness, and is still based on the use of a cost
function.

A benchmark for comparing dense reconstruction algo-
rithms was provided by the Middlebury Multi-View Stereo
Evaluation [17]. This evaluation is based on completeness
percentage and accuracy. According to the results, which are
updated live through user input, PMVS/CMVS is still the
top performing method overall as far as completeness, with
the method by Guillemaut and Hilton [34] also performing
very well. It is hard to see a clear trend in accuracy; both
those methods plus Kostrikov et al. [30] perform well in most
evaluations. As far as runtimes, most methods take several
hours on the tested datasets, when runtimes are normalized to
a 3.0 GHz processor frequency. By far the fastest overall are
the methods by Zach [31], Merrell et al. [33] and Chang et
al. [32], which take on the order of just a few seconds, but
have a lower accuracy and completeness percentage overall
than the top performing methods in those categories.

Given the problems with the current literature, it is desirable
to find a method that is accurate, dense, efficient, and does
not require additional image information, such as silhouettes.
As will be described, this can be achieved with a deceptively
simple, highly parallelizable method that isn’t far from a brute-

force algorithm.

III. METHODOLOGY

This section presents a densification algorithm that begins
with any initial reconstruction. The key behind the algorithm
is that the distance along the ray from the position of the
3D structure to the camera (ray-distance) varies smoothly for
image regions corresponding to the same object. Furthermore,
these regions do not have to be computed on a per-object
basis since objects can be over-segmented by a superpixel
algorithm [10]. The details of the algorithm are presented
in Section III-A, along with GPU implementation details in
Section III-B.

A. Densification Algorithm

The goal of the densification procedure is to find a ray-
distance value for each and every pixel in the image sequence.
This value, along with the pixel coordinate, uniquely defines
the 3D location in the scene for that pixel. The algorithm
depends on an initial reconstruction (input images, camera
projection matrices, and initial 3D structure), for which these
distance values have been computed. A SuperPixel segmenta-
tion [10] of the input images is computed to roughly segment
the image into regions corresponding to the same objects. The
average and standard deviation of the number of known pixel-
distance pairs are computed from the initial reconstruction.
Once this information has been computed, the algorithm uti-
lizes two major procedures (interpolate and optimize), which
are invoked iteratively in two phases. Pseudocode for the
densification algorithm is presented in Figure 1. The algorithm
will use the known ray-distance values to compute interpolated
pixel-distance pairs in eligible superpixels, optimize them,
triangulate them, and add the 3D structure into the scene.

Algorithm 1 Densification Algorithm

1: procedure DENSIFY(¢mages, init_recon)

2 for each image € images do

3 known_Ds <« compute KnownDists(init_recon)

4 for i + 0 to NUM_ITERATIONS do

5: for each pizel € Eligible Pizels do

6: guess_D <+ interpolate(known_Ds, pixel)
7 dist < optimize(guess_D,images)

8 current_Ds < dist

9 point < triangulate(dist)

10: known_Ds < updateKnownDists(current_Ds)
11: EligiblePizels + increaseEligible Pizels(i)

The algorithm proceeds as follows: first, an initial recon-
struction is provided. The known ray-distances are computed
from the initial reconstruction and used to interpolate a dis-
tance for the given pixel being solved. After the distance is
optimized, the point is triangulated and the computed distance
is added to the set of currently known distances. This process
proceeds for some user defined number of iterations. Details of
the interpolation, and the reasoning behind the multiple passes
is provided in the following section.

1) Interpolation: Certain superpixels have more known
pixel-distance pairs than others. The iterative process is de-
signed to capitalize on superpixels that have a large number
of known pairs. While the algorithm can solve all superpixels
in one iteration, the option of multiple iterations allows us to
solve for increasingly sparse superpixels per iteration, which
results in more accurate interpolation estimates at the cost
of computation. Solved pixel-distance pairs from the previous
iteration are added to the known pixel-distance pairs for inter-
polation in the next iteration. In the first phase, a superpixel is
eligible for reconstruction when the number of pixel-distance
pairs within it exceed an adaptive threshold. This threshold
is determined by dividing the distribution of distance counts
into a number of regions equal to the number of phase-
one iterations (i.e. one iteration solves for all superpixels,
two iterations solves for superpixels with higher than average
counts in the first iteration and the rest in the second, and so
forth). In phase one, this threshold must always be greater than
zero, but there may exist superpixels that have no known pixel-
distance pairs. An optional phase two of the algorithm solves
for empty superpixels neighboring non-empty superpixels per
iteration. With enough phase-two iterations, all of the pixels
in the image can potentially be added to the scene but each
iteration adds increasingly dubious pixels depending on the
quality and distribution of the initial reconstruction.

2) Optimization: The optimize function fine-tunes the ray-
distance estimate from the interpolation procedure for the
given iteration. This procedure defines a small ray-distance
search space around the given interpolation estimate to search
for the best possible value. The best distance is determined us-
ing image information from a window of neighboring images
in the image sequence. The effect of window size is explored
in Section IV-A.

Specifically, the search space is set to the initial distance
estimate plus/minus a user-defined threshold. This space is
quantized into n candidate distances. The density of this
quantization is limited by the desired computation time. For
each candidate ray-distance, the corresponding feature track
is first computed for all images within the window. This is
accomplished by simply traversing the ray generated from the
pixel location for the candidate ray-distance. In other words,
this procedure searches along epipolar lines in the image
sequence.

To ensure the best possible match is obtained, the
CSIFT [11] descriptor is evaluated at each feature track
location for each candidate ray-distance. This evaluation is
essentially checking for image consistency for a given pixel’s
candidate structure point. The given pixel provides a reference
CSIFT descriptor, cref. The CSIFT descriptors at the feature
track locations, c;, (generated by the candidate ray-distances)
should be very similar. The algorithm chooses the candidate
ray-distance that minimizes the L; Euclidean distance between
c¢; and cy.r, for all 7, across all the feature tracks gener-
ated from candidate values. Notice there could be occlusions
present at the correct distance; images at which these occur
increase the error value. However, the total error is not as high

as in cases where the wrong distance is being evaluated since
most images will coincide.

Naturally, this optimization scheme works well when the
camera parameters are perfect or very accurate, and the desired
feature is actually present on the epipolar line along which the
optimizer searched. To account for datasets where the camera
parameters are not completely accurate, the search can be
expanded to include a variable number of lines parallel to the
initial epipolar line. The less accurate the camera parameters
are, the more extra lines should be searched, but this increases
the likelihood of false positives. A good number of extra lines
to add could be congruent to the reprojection error of the
initial reconstruction (i.e., 2 pixels of reprojection error should
require searching 2 extra lines above and 2 extra lines below).

3) Cleaning: As one might imagine, there may be a con-
siderable amount of noise produced in failure cases and also a
large amount of redundancy. Luckily, since the algorithm has
redundantly added the “same feature” to the image multiple
times (as many times as it appears in unique images), noise can
easily be removed by performing a statistical outlier removal
and then merging close points to minimize the size of the
reconstruction. This optional functionality was implemented
using the Point Cloud Library [41]. Additionally, it might
be necessary to perform background segmentation on images
from a turntable dataset to avoid reconstructing background
pixels.

B. GPU Implementation

The method solves for the depth of every pixel in every
image, a computation workload that can be performed in
parallel. To make runtime more tractable, the method is
implemented on a GPU using the CUDA programming model.
As an overview, CUDA programs are written in a language
based on C++, but a single program runs in parallel on a group
of blocks, with each block having up to 1024 threads. The
GPU can run several blocks in parallel, but within each block,
it runs a group of 32 threads, called a warp, in SIMD fashion.
Threads that are part of the same block can also share data
through a small shared memory that is many times faster than
the much larger off-chip DRAM (global memory). Both global
and shared memory, however, require memory accesses to be
regular across threads to be efficient. Another type of memory
that is read-only, texture memory, exists to enable a group of
threads to have irregular memory accesses as long as these
accesses are spatially local in one, two, or three dimensions.
Our implementation works on multiple GPUs, as the pixel-
distance pairs to solve can be split independently among
multiple GPUs. OpenMP is used to manage the separate GPUs.

Between the two major stages of our method, interpolate
and optimize, the more expensive is optimize. During this
stage, hundreds of candidate ray-distances for each pixel are
tested in the search for the most optimal one. For each
candidate ray-distance, a descriptor is computed on the neigh-
borhood patch surrounding the coordinates where the candi-
date ray-distance is projected onto an image. The absolute
difference (L, Euclidean distance) between this descriptor

and the reference descriptor is computed, and the smallest
average of differences across all images in the image window
determines the final depth that is most optimal. For simplicity,
the optimization of each pixel-distance pair is assigned to one
CUDA block. Each thread computes multiple descriptors, one
for each image in the image window, and saves the average
difference of the descriptors with respect to the reference
descriptor. Next, finding the smallest average difference across
threads is simply a blockwise parallel reduction that is done
in shared memory. This reduction is implemented using the
NVIDIA CUB library [42]. Figure 2 illustrates the work
granularity of searching for the optimal depth of a single pixel.

Traversing the ray-distance for a pixel in the reference
image corresponds to traversing an epipolar line in another
image. This approach of searching for the best depth leads
directly to descriptors being computed along diagonal epipolar
lines in the images. Although image data is stored linearly in
memory, this cannot be exploited due to a lack of predictable
regular memory access patterns when reading along diagonal
epipolar lines. WIth this in mind, images are processed in
texture memory instead of global memory. The GPU’s dedi-
cated hardware for texture fetching and its texture cache are
efficient for irregular groups of memory reads, as long as
the reads have spatial locality. Adjacent GPU threads in our
implementation compute descriptors along the same epipolar
line, enabling the memory accesses to have 2D spatial locality.
Additionally, descriptors are computed with image data at
a subpixel level, and texture memory is optimized for fast
subpixel interpolation.

THREAD BLOCK

Tn

TO T T2[T3,

FINAL DEPTH

Fig. 2. A pixel whose depth is to be optimized is highlighted on the left. A
reference descriptor is computed at this pixel. Candidate depths are projected
to other images in the window of images. As the depth is varied during the
search, its projection to other images traverses epipolar lines. Descriptors are
computed on the projected points, and the L1 Euclidean distance between each
descriptor and the reference descriptor is computed. The work to compute
descriptors and distances are assigned to threads within a block. A final
blockwise reduction determines the smallest average distance and the best
depth.

IV. RESULTS

The proposed algorithm was analyzed for its general behav-
ior and processing time on several real datasets. The effect of
window size in the optimization routine was tested on datasets
with ground-truth information available. The algorithm was
implemented in C++, parallelized with CUDA, and all results
were generated on an Ubuntu 12.04 Linux machine with an
Intel Xeon E5-2637 and four K40C NVIDIA GPUs.

A. Window Size Justification

The optimization procedure of the algorithm performs a
photo-consistency check across neighboring images in the
sequence. It is necessary to experiment with the amount
of neighboring images (the window size). A window size
of two refers to analyzing one image before and one after
the current image, a window size of four corresponds to
analyzing the two images before and two after, and so on.
First, the ray-distances were generated using the ground-truth
3D information and camera data. The standard deviation, o,
of the ground-truth ray-distance values, s;, was computed. To
analyze the robustness of the optimize procedure, noise was
introduced into the ground-truth distances at varying levels,
e =10,1,2,3] and the optimize procedure was executed using
the noisy estimate, s, and a specified window size. The noisy
estimate is computed by sampling a uniform distribution in the
range of s; € [s; — 0 X €,8; + 0 X €]. Reported error values
correspond to average distance error between computed and
ground-truth 3D points, for a full reconstruction. Table I shows
the results of the test when run on the ground-truth Oxford
Dinosaur dataset [43]. For all tested window sizes, and low
noise levels € = 0 and € = 1, similar error values overall were
obtained. Therefore, using a window size of two is usually
justified since it is less expensive to compute and provides
the same results. For larger window sizes there is a risk of
running into occlusions and other wide baseline effects that
might affect scoring. For high noise levels, such as e = 2 and
€ = 3, errors were significantly higher, and relatively constant
across window sizes. For our results on sequential images, we
choose a window size of four to keep runtime small, while
still obtaining a sufficient photo-consistency check.

TABLE I
AVERAGE 3D POSITIONAL ERROR AT VARYING WINDOW SIZES AND NOISE
LEVELS.
Window size 2 4 6 8 34
Score € = 0 0.0013 | 0.0014 | 0.0016 | 0.0018 | 0.0093
Score e =1 0.0014 | 0.0015 | 0.0017 | 0.0019 | 0.0086
Score € = 2 0.0287 | 0.0236 | 0.0207 | 0.0191 | 0.0239
Score € = 2 0.0815 | 0.0682 | 0.0612 | 0.0584 | 0.0758

B. Results on Real Datasets

To analyze the efficacy of the algorithm, the densifica-
tion procedure was executed on the Middlebury Temple [17]
dataset benchmark. Results, as displayed in Figure 3, show
that the densification procedure outperforms PMVS/CMVS in

(b) Our Result

(a) Reference Image

Fig. 3. Reconstructions of the Template Dataset. Reference image of the
Temple dataset (a). Complete dense reconstruction of the Temple dataset via
the proposed method (b). For this result, 39 images of size 640x480 were used.
The result of the proposed method outperforms PMVS/CMVS in runtime (1.5
minutes vs. 4.5 hours) and is similarly complete.

runtime (1.5 minutes vs. 4.5 hours). We also found them to
be similarly complete.

In addition, we tested our method on a dataset with aerial
images, since aerial scenes can often resemble turntable
sequences. Figure 4 shows a reference image from the
Brown Site 22 dataset [44], and a dense reconstruction of the
scene produced by our method. As shown in the figure, our
result is noisy and unable to accurately capture many details in
the scene. Like many other algorithms, our method struggles
with aerial scenes due to their inherent challenges, including
the difficulty of estimating accurate camera parameters and
the low resolution of the images with respect to the relatively
large scale of the scene in real life. The latter prevents
our method from performing accurate region segmentation.
However, considering the size of the images in the dataset
(1280x720), we achieve a reasonable runtime of 32 minutes.
We believe our method, with its use of GPUs, can enable the
reconstruction of very large-scale aerial scenes. In the future,
we hope to explore ways to improve accuracy, particularly by
incorporating other sensor data, such as GPS, in the process
to recover accurate camera parameters.

(a) Reference Image

Fig. 4. The result of our method on Brown22, an aerial dataset containing
243 images of size 1280x720.

As discussed earlier, one limitation to the final correction
stage of the algorithm is that it can only be used for sequential

image streams, unlike PMVS/CMVS which is more general.
However, there are a great number of relevant scenarios,
spanning many important applications, where an accurate and
dense reconstruction is necessary, and the proposed algorithm
is capable at meeting these requirements. Finally, Figure 5
shows a number of dense reconstructions obtained with the
proposed method.

V. CONCLUSIONS AND FUTURE WORK

This paper presented an updated, efficient take on an old
deceptively simple algorithm. It was modernized in many
ways, including region segmentation via the SEEDS Super-
Pixel algorithm [10], the use of an effective and fast descriptor,
CSIFT [11], and parallelization on the GPU. Additionally, it
proposes a two phase approach that allows for even denser re-
constructions when initial reconstructions are well distributed
in 2D space.

Ideally, future improvements on this algorithm would lower
runtime by exploring data structures to enable more efficient
memory access patterns on the GPU. Reconstruction of aerial
scenes can be revisited by incorporating more sensor data. Ac-
curacy improvements can also be made by applying geometric
constraints from known geometries (such as the rectangular
nature of buildings).

ACKNOWLEDGMENTS

This work is supported by the Laboratory Directed Research
and Development program at Sandia National Laboratories,
a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, and by the U.S. Department of Energys National
Nuclear Security Administration under contract DE-ACO04-
94AL85000. We would also like to thank NVIDIA for equip-
ment donations. We give special thanks to our colleagues at
the Institute for Data Analysis and Visualization for the useful
discussions and support.

REFERENCES

[1]1 C. Wu, “Towards linear-time incremental structure from motion,” in 3D
Vision - 3DV 2013, 2013 International Conference on, June 2013, pp.
127-134, 10.1109/3DV.2013.25.

[2] N. Snavely, S. M. Seitz, and R. Szeliski, “Photo tourism: exploring photo
collections in 3D,” in SIGGRAPH '06: ACM SIGGRAPH 2006 Papers.
New York, NY, USA: ACM, 2006, pp. 835-846.

[3] M. Goesele, N. Snavely, C. Curless, H. Hoppe, and S. M. Seitz, “Multi-
view stereo for community photo collections,” in Proceedings of ICCV
2007, 2007.

[4] D. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal On Computer Vision, vol. 60, no. 2, pp. 91-110,
2004.

[5] H.-H. Vu, P. Labatut, J.-P. Pons, and R. Keriven, “High accuracy
and visibility-consistent dense multiview stereo,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 34, no. 5, pp. 889-901,
May 2012, 10.1109/TPAMI.2011.172.

[6] J. Isidro and S. Sclaroff, “Stochastic refinement of the visual hull to
satisfy photometric and silhouette consistency constraints,” in Computer
Vision, 2003. Proceedings. Ninth IEEE International Conference on, Oct
2003, pp. 1335-1342 vol.2, 10.1109/ICCV.2003.1238645.

[71 Y. Wei and L. Quan, “Region-based progressive stereo matching,” in
Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceed-
ings of the 2004 IEEE Computer Society Conference on, vol. 1, June
2004, pp. I-106-1-113 Vol.1, 10.1109/CVPR.2004.1315020.

[8] A. Wendel, M. Maurer, G. Graber, T. Pock, and H. Bischof, “Dense
reconstruction on-the-fly,” in Computer Vision and Pattern Recogni-
tion (CVPR), 2012 IEEE Conference on, June 2012, pp. 1450-1457,
10.1109/CVPR.2012.6247833.

[9]1 Z. Zhang and Y. Shan, “A progressive scheme for stereo matching,”
in Revised Papers from Second European Workshop on 3D Structure
from Multiple Images of Large-Scale Environments, ser. SMILE
’00. London, UK, UK: Springer-Verlag, 2001, pp. 68-85. [Online].
Available: http://dl.acm.org/citation.cfm?id=646489.694937

[10] M. Van den Bergh, X. Boix, G. Roig, B. de Capitani, and
L. Van Gool, “Seeds: Superpixels extracted via energy-driven
sampling,” in Computer Vision ECCV 2012, ser. Lecture Notes in
Computer Science, A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato,
and C. Schmid, Eds. Springer Berlin Heidelberg, 2012, vol.
7578, pp. 13-26, 10.1007/978-3-642-33786-4-2. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-33786-4-2

[11] A. E. Abdel-Hakim and A. A. Farag, “CSIFT: A SIFT descriptor
with color invariant characteristics,” in Computer Vision and Pattern
Recognition, 2006 IEEE Computer Society Conference on, vol. 2, 2006,
pp. 1978-1983, 10.1109/CVPR.2006.95.

[12] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd ed. Cambridge University Press, 2004.

[13] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms,” International Journal On
Computer Vision, vol. 47, no. 1-3, pp. 7-42, 2002.

[14] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up
robust features,” in Computer Vision — ECCV 2006, ser. Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 2006,
vol. 3951, pp. 404-417, 10.1007/11744023.32. [Online]. Available:
http://dx.doi.org/10.1007/11744023.32

[15] V. Rodehorst, M. Heinrichs, and O. Hellwich, “Evaluation of relative
pose estimation methods for multi-camera setups,” in International
Archives of Photogrammetry and Remote Sensing (ISPRS "08), Beijing,
China, 2008, pp. 135-140.

[16] M. L. A. Lourakis and A. A. Argyros, “The design and implementation
of a generic sparse bundle adjustment software package based on
the Levenberg-Marquardt algorithm,” Institute of Computer Science —
FORTH, Heraklion, Crete, Greece, Tech. Rep. 340, Aug. 2000.

[17]1 S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski, “A
comparison and evaluation of multi-view stereo reconstruction algo-
rithms,” in CVPR ’06: Proceedings of the 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. Washington,
DC, USA: IEEE Computer Society, 2006, pp. 519-528.

[18] C. Strecha, W. von Hansen, L. J. V. Gool, P. Fua, and U. Thoennessen,
“On benchmarking camera calibration and multi-view stereo for high
resolution imagery,” in CVPR’08, 2008.

[19] M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest, K. Cornelis,
J. Tops, and R. Koch, “Visual modeling with a hand-held camera,”
International Journal of Computer Vision, vol. 59, pp. 207-232, 2004.

[20] D. Nistér, “Reconstruction from uncalibrated sequences with a hierarchy
of trifocal tensors,” in ECCV ’00. London, UK: Springer-Verlag, 2000,
pp- 649-663.

[21] A. W. Fitzgibbon, G. Cross, and A. Zisserman, “Automatic 3D model
construction for turn-table sequences,” in Proceedings of the European
Workshop on 3D Structure from Multiple Images of Large-Scale Envi-
ronments. London, UK: Springer-Verlag, 1998, pp. 155-170.

[22] Y. Furukawa and J. Ponce, “Accurate, dense, and robust multi-view
stereopsis,” in IEEE Conference on Computer Vision and Pattern Recog-
nition, June 2007, pp. 1-8.

[23] Y. Furukawa, B. Curless, S. Seitz, and R. Szeliski, “Towards internet-
scale multi-view stereo,” in Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on, June 2010, pp. 1434-1441.

[24] C. Esteban and F. Schmitt, “Silhouette and stereo fusion for 3D object
modeling,” in 3-D Digital Imaging and Modeling, 2003. 3DIM 2003.
Proceedings. Fourth International Conference on, Oct 2003, pp. 46-53.

[25] C. Hernandez, G. Vogiatzis, and R. Cipolla, “Probabilistic visibility for
multi-view stereo,” in Computer Vision and Pattern Recognition, 2007.
CVPR ’07. IEEE Conference on, June 2007, pp. 1-8.

[26] K. Kolev, M. Klodt, T. Brox, and D. Cremers, “Continuous
global optimization in multiview 3D reconstruction,” International
Journal of Computer Vision, vol. 84, no. 1, pp. 80-96, 2009,
10.1007/s11263-009-0233-1. [Online]. Available: http://dx.doi.org/10.
1007/s11263-009-0233- 1

Fig. 5. Results from the proposed method for the Dinosaur and Conch datasets. The first column shows an example input image, the second shows the initial
sparse reconstruction used as input, the third shows results from the proposed method, and the last column shows the result of CMVS/PMVS as implemented
by VisualSfM. For the Conch shell dataset with 216 images of size 640x480, our method takes 3 minutes. For the Dinosaur dataset with 36 images of size
720x576, our method takes 1.3 minutes.

[27]

[28]

[29]

(30]

(31]

[32]

[33]

(34]

[35]

[36]

(371

[38]

K. Kolev, T. Pock, and t. . A.b. .P.s. .E.y...i.. X. L
u..h a ..p..S. a .B. Cremers, D.
G. Vogiatzis, P. Torr, and R. Cipolla, “Multi-view stereo via volumetric
graph-cuts,” in Computer Vision and Pattern Recognition (CVPR),
2005 IEEE Conference on, vol. 2, June 2005, pp. 391-398 vol. 2,
10.1109/CVPR.2005.238.
S. Ricco and C. Tomasi, “Video motion for every visible point,” in
Computer Vision (ICCV), 2013 IEEE International Conference on, Dec
2013, pp. 2464-2471, 10.1109/ICCV.2013.306.
I. Kostrikov, E. Horbert, and B. Leibe, “Probabilistic labeling cost
for high-accuracy multi-view reconstruction,” in Computer Vision and
Pattern Recognition (CVPR), 2014 IEEE Conference on, June 2014, pp.
1534-1541, 10.1109/CVPR.2014.199.
C. Zach, “Fast and High Quality Fusion of Depth Maps,” Proc. ASP/UI
Symp. Close-Range Photogrammetry, pp. 1-18, 2008.
J. Y. Chang, H. Park, I. K. Park, K. M. Lee, and S. U. Lee, “GPU-
friendly multi-view stereo reconstruction using Surfel representation
and graph cuts,” Comput. Vis. Image Underst., vol. 115, no. 5, pp.
620-634, May 2011, 10.1016/j.cviu.2010.11.017. [Online]. Available:
http://dx.doi.org/10.1016/j.cviu.2010.11.017
P. Merrell, A. Akbarzadeh, L. Wang, P. Mordohai, J.-M. Frahm, R. Yang,
D. Nister, and M. Pollefeys, “Real-time visibility-based fusion of depth
maps,” in Computer Vision (ICCV), 2013 IEEE International Conference
on, Oct 2007, pp. 1-8, 10.1109/ICCV.2007.4408984.
J.-Y. Guillemaut and A. Hilton, “Joint multi-layer segmentation and
reconstruction for free-viewpoint video applications,” Int. J. Comput.
Vision, vol. 93, no. 1, pp. 73-100, May 2011, 10.1007/s11263-010-0413-
z. [Online]. Available: http://dx.doi.org/10.1007/s11263-010-0413-z
T.-P. Wu, S.-K. Yeung, J. Jia, and C.-K. Tang, “Quasi-dense 3D
reconstruction using tensor-based multiview stereo,” in Computer Vision
and Pattern Recognition (CVPR), 2010 IEEE Conference on, June 2010,
pp. 1482-1489, 10.1109/CVPR.2010.5539796.
R. Szeliski, “Rapid octree construction from image sequences,”
CVGIP: Image Underst., vol. 58, no. 1, pp. 23-32, Jul. 1993,
10.1006/ciun.1993.1029. [Online]. Available: http://dx.doi.org/10.1006/
ciun.1993.1029
S. M. Seitz and C. R. Dyer, “Photorealistic scene reconstruction
by voxel coloring,” Int. J. Comput. Vision, vol. 35, no. 2, pp.
151-173, Nov. 1999, 10.1023/A:1008176507526. [Online]. Available:
http://dx.doi.org/10.1023/A:1008176507526
K. N. Kutulakos and S. M. Seitz, “A
space carving,” Int. J. Comput. Vision,

.H.op...n..

theory of shape by
vol. 38, no. 3, pp.

[39]

[40]

[41]

[42]
[43]

[44]

199-218, Jul. 2000, 10.1023/A:1008191222954. [Online]. Available:
http://dx.doi.org/10.1023/A:1008191222954

S. Lazebnik, E. Boyer, and J. Ponce, “On computing exact visual hulls
of solids bounded by smooth surfaces,” in Computer Vision and Pattern
Recognition (CVPR), 2001 IEEE Conference on, vol. 1, 2001, pp. I-
156-1-161 vol.1, 10.1109/CVPR.2001.990469.

D. Gallup, J.-M. Frahm, P. Mordohai, Q. Yang, and M. Pollefeys, “Real-
time plane-sweeping stereo with multiple sweeping directions,” in Com-
puter Vision and Pattern Recognition (CVPR), 2007 IEEE Conference
on. IEEE, 2007, pp. 1-8.

R. B. Rusu and S. Cousins, “3D is here: Point cloud library (PCL),”
in [EEE International Conference on Robotics and Automation (ICRA),
Shanghai, China, May 9-13 2011.

D. Merrill and NVIDIA-Labs, “Cuda unbound (cub) library.”

Oxford Visual Geometry Group, “Multi-view and Oxford Colleges
building reconstruction,” http://www.robots.ox.ac.uk/~vgg/, Aug. 2009.
F. Calakli, A. O. Ulusoy, M. I. Restrepo, G. Taubin, and J. L.
Mundy, “High resolution surface reconstruction from multi-view aerial
imagery,” in Proceedings of the 2012 Second International Conference
on 3D Imaging, Modeling, Processing, Visualization & Transmission,
ser. 3DIMPVT ’12. Washington, DC, USA: IEEE Computer Society,
2012, pp. 25-32, 10.1109/3DIMPVT.2012.54. [Online]. Available:
http://dx.doi.org/10.1109/3DIMPVT.2012.54

