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We present a comparison between a number of recently introduced low-memory wave function
optimization methods for variational Monte Carlo in which we find that first and second derivative
methods possess strongly complementary relative advantages. While we find that low-memory
variants of the linear method are vastly more efficient at bringing wave functions with disparate
types of nonlinear parameters to the vicinity of the energy minimum, accelerated descent approaches
are then able to locate the precise minimum with less bias and lower statistical uncertainty. By
constructing a simple hybrid approach that combines these methodologies, we show that all of
these advantages can be had at once when simultaneously optimizing large determinant expansions,
molecular orbital shapes, traditional Jastrow correlation factors, and more nonlinear many-electron
Jastrow factors.

INTRODUCTION

The practical utility of widely used methods in elec-
tronic structure theory is in large part determined by the
optimization algorithms they rely on. This basic theme
has been repeated throughout the history of quantum
chemistry, with methods as fundamental as Hartree-Fock
theory becoming dramatically more useful with the de-
velopment of superior solution methods such as the direct
inversion of the iterative subspace. [1] Similar transfor-
mations have been seen in configuration interaction (CI)
theory thanks to Davidson’s method, [2] in the density
matrix renormalization group (DMRG) approach thanks
to (among other innovations) the noise algorithm, [3] and
in many other methods besides. As in the case of DMRG,
it is usually not so simple as a single innovation in the nu-
merical methods that transforms a theory from a promis-
ing proof of concept into a robust computational tool.
Instead, such tools often arise as the result of a series of
innovations, that, once combined, fit together in a way
that makes them more than the sum of their parts.

In the context of quantum Monte Carlo (QMC), and
more specifically in its variational (VMC) formulation,
the introduction of the linear method (LM) for trial func-
tion optimization marked a large step forward along the
path to practical utility and reliability. [4] However, re-
cent research has revealed multiple options for bypassing
the LM’s memory bottleneck, making clear that there is
still a great deal of distance to cover in the maturation of
VMC numerical methods. Some of these approaches [5, 6]
depend, like the LM itself, on knowing at least some in-
formation about energy second derivatives, but by avoid-
ing the construction of full Hessian-sized matrices they
achieve dramatically lower memory footprints compared
to the LM. Other even more recent approaches, most
of which can be classified as accelerated descent (AD)
methods, [7–9] avoid second derivative information en-

tirely and are thus even more memory efficient, relying
instead on a limited knowledge of the optimization’s his-
tory of energy first derivatives or in one case just the signs
of these derivatives. [10] In the present study, we explore
the relative advantages of these first and second deriva-
tive approaches and find that, when combined, they offer
a highly complementary optimization strategy that ap-
pears both more robust and more efficient than either
class of methods is on its own.

The ability to optimize larger and more complicated
wave function forms is becoming increasingly relevant
due to rapid progress in other areas of VMC methodol-
ogy. The introduction of the table method [11, 12] has in-
creased the size of CI expansions that can be handled by
more than an order of magnitude, and expansion lengths
beyond 10,000 determinants are no longer unusual. A
recent improvement to the table method [13, 14] now
allows the molecular orbital basis to be optimized effi-
ciently in the presence of these large expansions, while
the resurgence of interest in selected CI methods [15–20]
has provided a convenient route to their construction. In
addition to these CI-based advances, other wave func-
tion innovations have also led to growing demands on
VMC optimization methods. Increasingly sophisticated
correlation factors, such as those used in Hilbert space
approaches [5, 7–9, 21–23] as well as a steady stream of
developments in real space [24–29] have also raised the
demand for optimization approaches that can deal with
large numbers of highly nonlinear parameters. Although
less thoroughly explored, the treatment of correlation ef-
fects via back flow transformations also continues to re-
ceive attention and create new optimization challenges.
[10, 30] Finally, in addition to these increases in ansatz
sophistication, recent interest in using excited state vari-
ational principles to expand QMC’s excited state capa-
bilities has led to its own collection of optimization diffi-
culties. [31–37]
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By supporting these various advances in QMCmethod-
ology, improved VMC optimization methods have the po-
tential for large impacts in diverse areas of chemistry and
solid state physics. Work on lattice models, for example,
continues to push the boundaries on how approximate
wave functions are defined. [38, 39] In the area of molec-
ular excited states, QMC methods offer promising new
routes to high-accuracy treatments of both double exci-
tations [31, 40] and charge transfer excitations, [33, 37]
both of which continue to challenge conventional quan-
tum chemistry methods. In QMC’s traditional area of
simulating real solids, applications of both VMC and
projector Monte Carlo would benefit immediately from
the ability to prepare more sophisticated trial wave func-
tions. [41–43] Diffusion Monte Carlo (DMC) in particular
would achieve higher accuracy using the better nodal sur-
faces determined by well-optimized ansatzes from VMC.
More generally, the ability of QMC to combine treat-
ments of weak and strong electron correlation effects
within a robust variational framework that operates near
the basis set limit makes it a powerful general-purpose
approach for difficult molecular and materials problems
where high accuracy is necessary. By increasing the size
and complexity of systems that fall into its purview, im-
provements in QMC wave function optimization methods
therefore have the potential to move electronic structure
simulation forward on a number of fronts.

The present study seeks to aid in this endeavor by
focusing on the relative advantages of recently devel-
oped low-memory first and second derivative methods
in VMC and in particular on how they can be used to
complement each other. Unlike deterministic optimiza-
tions, in which second derivative methods are typically
preferred so long as they are affordable, the situation is
less straightforward when the objective function and its
derivatives are statistically uncertain. One major con-
cern is that, in practice, it can be more difficult to achieve
low-uncertainty estimates of the second derivative terms
that appear in the LM and its descendants. While this is-
sue can be mitigated by the use of alternative approaches
to importance sampling, these can increase uncertainty
in the energy due to the loss of the zero-variance prin-
ciple. Thus, as we will demonstrate, statistical precision
tends to be higher when using AD methods, which is an
advantage on top of their ability to converge to the min-
imum without the bias that arises from the LM’s highly
nonlinear matrix diagonalization. However, we will also
see that in order to enjoy the advantages of a tighter
and less biased final convergence, AD methods must first
reach the vicinity of the minimum. For this task, we
find that the LM and its low-memory variants outper-
form all of the first derivative methods that we tested,
especially for optimizations in which the wave function
contains different classes of parameters that vary greatly
in their nonlinear character and how they couple to each
other. Happily, we will see that a hybrid approach — in

which AD and low-memory LM optimization steps are
interwoven — excels both at reaching the vicinity of the
minimum and producing unbiased final energies while si-
multaneously maintaining a high degree of statistical ef-
ficiency.

THEORY

Variational Monte Carlo

VMC combines the variational principle of quantum
mechanics with Monte Carlo evaluation of high dimen-
sional integrals.[44] To study the ground state of a sys-
tem, we pick a trial wave function Ψ of some particular
form and seek to minimize its energy expectation value.

E(Ψ) =
〈Ψ |H |Ψ〉

〈Ψ |Ψ〉
(1)

In the language of mathematical optimization, E(Ψ) is
an example of an objective function or cost function. For
a typical system with N electrons, this expression con-
tains integrals over 3N position space coordinates which
for some wave functions can only be evaluated efficiently
through Monte Carlo sampling rather than quadrature
methods. We rewrite the energy as

E =

∫
dRΨ(R)HΨ(R)∫

dRΨ(R)2
=

∫
dRΨ(R)2EL(R)∫

dRΨ(R)2

=

∫
dRρ(R)EL(R) (2)

where EL(R) = HΨ(R)
Ψ(R) is the local energy and ρ(R) =

Ψ(R)2∫
dRΨ(R)2

is the probability density. The zero-variance

principle[45] makes ρ(R) the most common choice of
probability distribution for obtaining samples, but it is
not the only option. For effective estimation of quanti-
ties beside the energy, such as the LM matrix elements,
other importance sampling functions are often preferred.
[35, 46, 47] In our LM and blocked LM calculations in this
study, we employ the importance sampling function (and
the appropriately modified statistical estimate formulas
[37])

|Φ|2 ≡ |Ψ|2 +
ǫ

M

∑

I

|DI |
2 (3)

in which the DI are the M different Sz-conserving single
excitations relative to the closed shell reference determi-
nant. The logic behind this choice is that it puts some
weight on configurations that are highly relevant for the
orbital rotation parameters’ wave function derivatives,
as small orbital rotations can be approximated via the
addition of singles. We find that this importance sam-
pling function substantially reduces the uncertainty of
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the LM matrix elements corresponding to orbital rota-
tions, which in turn helps reduce the update step uncer-
tainty. For AD, we simply use traditional |Ψ|2 impor-
tance sampling as in equation 2.
By the variational principle, we are guaranteed that E

is an upper bound on the true ground state energy. Given
some set of adjustable parameters in the functional form
of Ψ, we expect that values of those parameters that yield
a lower value of E to correspond to a wave function that
is closer to the ground state. One could then imagine
the abstract space produced by the possible values of all
variational parameters. The set of optimal parameter
values that specify the wave function expression which
minimizes E can be taken as a point in this space la-
beled by the vector p∗. In general, the initial choice for
parameters will not be at this energy minimum point,
but at some other point p0. The problem of determining
the best wave function in VMC calculations then relies
on an optimization algorithm for finding p∗ after starting
from p0.
Within this framework, one of the most important con-

siderations is that the optimization is inherently stochas-
tic due to the introduction of noise through the Monte
Carlo evaluation of the integral in equation 2. This
forms a contrast with many other methods in electronic
structure theory including Hartree-Fock, CI, and coupled
cluster where various deterministic optimization schemes
predominate.[48] Many of the algorithms commonly en-
countered in a deterministic quantum chemistry context
such as steepest descent and the Newton method, have
been adapted for use in VMC.[49–53] However, there is
now a need to be robust to the presence of noise. His-
torically, errors due to finite sampling led to numer-
ical instabilities that prompted interest in minimizing
variance[54, 55] instead of energy, but later optimization
developments have sought to mitigate this issue and in
this paper we only consider energy minimization. As we
will now discuss in their respective sections, both the LM
and gradient descent approaches possess features that en-
able them to operate stably in a stochastic setting.

The Linear Method

The LM[4, 56] begins with a first order Taylor expan-
sion of the wave function. For a set of variational param-
eters given by vector p, we have

Ψ(p) = Ψ0 +
∑

i

∆piΨi (4)

where Ψi = ∂Ψ(p)
∂pi

and Ψ0 is the wave function at the
current parameter values.
Finding the optimal changes to the parameters

amounts to solving the generalized eigenvalue problem

H~c = ES~c (5)

in the basis of the wave function and its first order pa-
rameter derivatives {Ψ0,Ψ1,Ψ2, ...}. H and S are the
Hamiltonian and overlap matrices in this basis with ele-
ments

Hij = 〈Ψi |H |Ψj〉 (6)

Sij = 〈Ψi |Ψj〉 (7)

The matrix diagonalization to solve this eigenproblem for
eigenvector ~c = (1,∆p) then yields the updated param-
eter values p1 = p0 + ∆p. As the matrices H and S

both contain a subset of the second derivative terms that
would be present in a Newton-Raphson approach, [57] the
LM is most naturally categorized as a second-derivative
method, and it certainly shares Newton-Raphson’s diffi-
culties with regards to dealing with matrices whose di-
mension grows as the number of variables.
For practical use with finite sampling, the LM must be

stabilized to prevent unwisely large steps in parameter
space. This is accomplished by adding shift values[4] to
the matrix diagonal that effectively act as a trust radius
scheme similar to those used with the Newton method.
In our implementation, the Hamiltonian is modified with
two shift values meant to address distinct potential prob-
lems in the optimization.[58]

H −→ H+ cIA+ cSB (8)

The matrix elements of A are given by Aij = δij(1 −
δi0) so that the shift cI effectively gives an energy penalty
to directions of change from the current wave function.[4]
The second shift is intended to address problems that
may arise if some wave function derivatives have norms
that differ by orders of magnitude. In this situation, the
single shift value cI is insufficient to preserve a quick yet
stable optimization. For a parameter with a large deriva-
tive norm, a sufficiently high value of cI might prevent an
excessively large change in its value. However, all other
parameter directions with smaller derivative norms will
be so heavily penalized by the large value of cI that those
parameters become effectively fixed. The purpose of the
second cSB term is to retain important flexibility in other
parameter directions. We can write the matrix B as

B = (QT)−1TQ−1 (9)

where

Qij = δij − δi0(1− δj0)S0j (10)

and

Tij = (1− δi0δj0)[Q
TSQ]ij (11)

The matrix Q provides a transformation to a basis where
all update directions are orthogonal to the current wave
function and the matrix T is the overlap matrix in this
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basis. The optimal choice of shift parameters cI and
cS may depend on the particular optimization problem.
In our implementation, an adaptive scheme adjusts the
shifts on each iteration by comparing the energies calcu-
lated through correlated sampling on three different sets
of shift values and choosing whichever shifts produced
the lowest energy.

The LM has been successfully applied to a variety of
systems to prepare good trial wave functions for DMC.
[4, 28, 29, 57, 59–61] It has also been used in the vari-
ational optimization of a recent functional for targeting
excited states.[31, 34, 37] However, it possesses a number
of limitations, most notably a memory cost that scales
with the square of the number of optimizable parameters
due to the matrices it builds. This memory cost currently
confines routine use of the LM to less than roughly 10,000
parameters though exceptional calculations with up to
about 16,000 have been made.[11] Another shortcoming
is the nonlinear bias of the LM. We are evaluating the el-
ements of the Hamiltonian and overlap matrices stochas-
tically and have a nonlinear relationship between them
and our energy through the generally high order charac-
teristic polynomial of the eigenvalue problem of equation
5. As a result, we in general expect the LM to converge
to a point in parameter space slightly offset from the true
minimum. This nonlinear bias has been studied for the
LM in Hilbert space[62] and a similar issue arises in the
context of Full Configuration Interaction QMC.[63] Both
the memory constraint and the nonlinear bias of the LM
become more severe for ansatzes with larger numbers of
variational parameters, which spurs the search for po-
tential alternatives. One approach suggested for mem-
ory reduction is to employ Krylov subspace methods for
Eq. 4 to avoid building matrices, but it requires a dras-
tically higher sampling effort due to the need for many
matrix-vector multiplications and so we do not pursue
the approach here.[5]

Blocked Linear Method

One recent approach to bypassing the memory bottle-
neck is known as the blocked linear method (BLM).[6]
The first step of the algorithm is to divide the full set
of parameters into Nb blocks. Next, a LM-style matrix
diagonalization is carried out within each block and some
number Nk of the resulting eigenvectors from the blocks
are retained as good directions for constructing an ap-
proximation for the overall best update direction in the
full parameter space. For a particular block of variables,
the wave function expansion in the LM is given by

|Ψb〉 = |Ψ0〉+

Mb∑

i=1

ci |Ψ
i〉 (12)

where |Ψi〉 is the wave function derivative with respect
to the ith variable in the block,Mb is the number of vari-
ables in the block, and |Ψ0〉 the current wave function as
in the normal LM. We can perform the same matrix diag-
onalization done in the LM, only with parameters outside
the block fixed. This yields a set of eigenvectors that we
can use to construct another approximate expansion of
the original wave function. We can construct a matrix
B using the Nk eigenvectors with the lowest eigenvalues
from each block and write a new expansion

|Ψ̃〉 = α |Ψ0〉+

Nb∑

k=1

Nk∑

j=1

Akj

Mb∑

i=1

B
(b)
ji |Ψi,b〉 (13)

Having now pre-identified important directions within
each block, the idea is that a subsequent LM-style diag-
onalization in the basis of these good directions (which
yields the coefficients Akj) should still provide a good
update direction when re-expressed in the full parameter
space.
In order to help retain most of the accuracy of the

traditional LM, the first stage of the BLM computation
includes No other good directions that are used to sup-
ply the current block’s diagonalization with information
about how its variables are likely to couple to those in
other blocks. In practice, important out-of-block direc-
tions are obtained by keeping a history of previous iter-
ations’ updates as the optimization progresses. We can
rewrite the one block expansion introduced in equation
12 as

|Ψb〉 = |Ψ0〉+

Mb∑

i=1

ci |Ψ
i〉+

No∑

j=1

Nb∑

k=1,k 6=b

djk |Θjk〉 (14)

where we take the

|Θjk〉 =

Mk∑

l=1

Cjkl |Ψ
l,k〉 (15)

as the linear combinations of wave function derivatives
from other blocks that were identified as important based
on previous iterations’ updates. The additional term in
the expansion allows us to account for couplings between
variables in different blocks and enable the construction
of a better space for the second diagonalization. We as-
semble the matrix B and |Ψ̃〉 and then seek to minimize
〈Ψ̃ |H | Ψ̃〉
〈Ψ̃ | Ψ̃〉

with respect to variational parameters α and

Akj in our BLM wave function expansion in equation 13.
Figure 1 portrays the algorithmic steps described

above. Some number of parameters too large to be
handled by the standard LM is divided among differ-
ent blocks whose diagonalizations produce the vectors ~bi
for the construction of the space of the second diagonal-
ization that produces the parameter update. The BLM
can be thought of as achieving memory savings in the
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FIG. 1. Flowchart depicting steps in the BLM algorithm to
arrive at a parameter update.

use of smaller matrices at the cost of having to run over
the sample twice when the traditional LM must run over
it just once. A more extensive description of the BLM
and its precise memory usage can be found in its original
paper.[6]
We divide parameters evenly among blocks, but one

could implement the use of tailored blocks of varying
sizes. It is advisable to choose the block size to be large
enough to keep important parameters of the same type,
such as all of those for a Jastrow factor, within the same
block. This enables the expected strong coupling be-
tween them to be handled more accurately by the LM-
style diagonalization within that block. While the BLM
has been successfully applied up to about 25,000 param-
eters and found to closely reproduce the results of the
standard LM, [6] it remains a relatively new method,
and the present study will provide additional data on its
efficacy.

Gradient Descent Methods

In the last few years, increasing attention[7–10, 64] has
been paid to optimization methods that use only first
derivatives to minimize a Lagrangian of the form

L(Ψ(p)) = 〈Ψ |H |Ψ〉 − µ(〈Ψ |Ψ〉 − 1) (16)

where µ is a Lagrange multiplier and, in practice, a mov-
ing average of the local energy. There is no need to solve
an eigenvalue problem as in the LM and the memory cost
of these approaches scales linearly with the number of pa-
rameters. We also note that the stochastic evaluation of
derivatives of this Lagrangian will lead to a smaller non-
linear bias compared to what is encountered in the LM.
While there is some nonlinearity present in the product
µ 〈Ψ |Ψ〉, it is mild compared to the high order polyno-
mials encountered in the solution of the LM eigenvalue
problem and can be avoided entirely if desired through
modest amounts of extra sampling. Minimization of this

Lagrangian targets the ground state, but excited states
can similarly be targeted with these optimization algo-
rithms merely by using derivatives of one of the excited
state functionals that have been developed.[31, 65, 66]
The simplest method in this category is the steepest

descent algorithm.

pk+1
i = pki − ηk

∂L(p)

∂pi
(17)

In this case, the value of each parameter on the k + 1’th
step is found simply by subtracting the statistically un-
certain parameter derivative times a step size ηk. The
step size can be taken as constant over all steps in the
simplest case, but rigorous proofs on the convergence of
stochastic gradient descent (SGD) rely on decaying step
sizes satisfying

∑
k ηk = ∞ and

∑
k η

2
k <∞.[67]

It may be worth briefly commenting that the typical
formulation of stochastic gradient descent as seen in the
machine learning and mathematical optimization litera-
ture is slightly different from what we use here within
VMC. In a common machine learning scenario,[67] one
has a training set of input data {x1, x2, ..., xn} and cor-
responding outputs {y1, y2, ..., yn} and wishes to mini-
mize a loss function Q(x, y;w) that measures the error
produced by a model fw(x), which predicts ỹi given xi
and is parameterized by variables w. For this setting,
the SGD algorithm refers to evaluating the gradient of
Q with a randomly chosen pair (xj , yj) from the given
data set and then computing the parameter update ac-
cording to wk+1 = wk − ηk∇wQ(xj , yj). For our VMC
optimization, we are dealing with a noisy gradient similar
to what occurs in this machine learning problem, but the
source of our noise is somewhat different and lies in our
means of evaluating the underlying 3N dimensional inte-
grals within our Lagrangian derivatives. Another impor-
tant distinction is that in machine learning applications,
complete convergence to the minimum is in fact unde-
sirable because it will overfit the model to the training
data and degrade its performance on new sets of test in-
puts. Much as SGD provides a computational speed up
for machine learning problems, we are also able to op-
erate gradient descent methods at a cheap per-iteration
cost because we need only a modest number of samples to
evaluate sufficiently precise Lagrangian derivatives com-
pared to the Hamiltonian and overlap matrices in the
LM. However, unlike the machine learning case, we do
want to come as close as possible to the true minimum,
and we will see that even reaching the vicinity of the min-
imum can be difficult for descent methods when typical
VMC initial guesses are employed.
While steepest descent can be guaranteed to eventually

reach the minimum of the Lagrangian even in a stochas-
tic setting, its asymptotic convergence is very slow. For
some intuition, one could imagine the landscape of the
Lagrangian’s values forming a very narrow valley near
the true minimum. In this situation, steepest descent
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FIG. 2. Illustration of the difficulty faced by steepest descent
in red on the lower left with its slow approach to the minimum.
Accelerated descent in green on the upper right is able to
progress more rapidly to the minimum with its memory of
previous gradients.

would produce parameter updates mostly back and forth
along the sides of the valley with little improvement of pa-
rameter values in the direction directly toward the mini-
mum. Due to the limitations of steepest descent, a num-
ber of other flavors of accelerated gradient descent (AD)
have been developed that include a momentum term with
information on previous values of the gradient. As il-
lustrated in Figure 2, the general intuition is that this
additional term provides some memory of the progres-
sion along narrow valleys that steepest descent lacks and
thereby achieves swifter convergence. In addition, there
are multiple schemes for adaptively varying the step sizes
used in a manner that draws on the particular derivative
values for each individual parameter as the optimization
progresses. These methods have recently been applied
successfully to Hilbert space QMC. In this study, we work
in real space and investigate a combination of Nesterov
momentum with RMSprop as presented by the Booth
group [7, 64], a method using random step sizes from the
Clark group[10], AMSGrad, recently used by the Sharma
group[8, 9], as well as the ADAM optimizer[68].

We now lay out the precise expressions for each of
these methods in turn. The RMSprop algorithm used
by Booth and co-workers is given by the following recur-
rence relations.[7]

pk+1
i = (1− γk)q

k+1
i − γkq

k
i (18)

qk+1
i = pki − τk

∂L(p)

∂pi
(19)

λ0 = 0 λk =
1

2
+

1

2

√
1 + 4λ2k−1 γk =

1− λk

λk+1

(20)

τk =
η√

E[( ∂L
∂pi

)2](k) + ǫ
(21)

E[(∂L)2](k) = ρE

[(
∂L

∂pi

)2
](k−1)

+(1−ρ)

(
∂L

∂pi

)2

(22)

Above, pki denotes the value of the ith parameter on the
kth step of the optimization, τk is a step size that is adap-
tively adjusted according to the RMSprop algorithm in
equations 21 and 22. The running average of the square
of parameter derivatives in the denominator of τk allows
for the step size to decrease when the derivative is large,
which should hedge against the possibility of taking ex-
cessively large steps. Conversely, a smaller denominator
when the derivative is small allows for larger steps to be
taken. The weighting in the running average is controlled
by a factor ρ that can be thought of as the amount of
memory retained of past gradients for adjusting τk, and
η again denotes the chosen initial step size. In order
to avoid possible singularities when the gradient is very
close to zero, a small positive number ǫ is included in the
denominator of τk. Equation 18 shows the momentum
effect in which the update for the parameter on the k+1
step depends on the update from the previous step as
well as the current gradient. We also follow the Booth
group in applying a damping factor to the momentum
by replacing γk with γke

−( 1

d
)(k−1). The quantity d effec-

tively controls how quickly the momentum is turned off,
which eventually turns the algorithm into SGD. The val-
ues of d,η, ρ, and ǫ may all be chosen by the user of the
algorithm and are known as hyperparameters in the ma-
chine learning literature. In the results we present using
this method, we have used d = 100, ρ = .9 and ǫ = 10−8.
We have found adjusting these hyperparameters has rel-
atively little influence on optimization performance com-
pared to choices for step size η, but their influence could
be explored more systematically.
The Clark group’s algorithm takes a far simpler form

pk+1
i = pki − αη

∣∣∣ ∂L∂pk

i

∣∣∣
∂L
∂pk

i

(23)

and has been recently used with neural network wave
functions in the context of the Hubbard model.[10] Here
α is a random number in the interval (0, 1) and η sets the
overall scale of the random step size. The motivation for
allowing the step size to be random is that it may help
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the optimization escape local minima that it encounters.
Within VMC, this algorithm can be run with fewer sam-
ples per iteration even compared to other gradient de-
scent based algorithms as only the sign of the derivative
needs to be known, but it typically requires many more
iterations to converge.
ADAM and AMSGrad are popular methods within

the machine learning community[68–70] and have simi-
lar forms. ADAM is given by:

pk+1
i = pki − η

mk
i√
nk
i

(24)

mk
i = (1− β1)m

k−1
i + β1

∂L

∂pki
(25)

nk
i = β2 n

k−1
i + (1− β2)

(
∂L

∂pki

)2

(26)

AMSGrad is a recent adaptive step size scheme devel-
oped in response to the limitations of ADAM [70] and
has almost the same form except for a slightly different
denominator.

nk
i = max

(
nk−1
i , (1 − β2)n

k−1
i + β2

(
∂L

∂pki

)2
)

(27)

In our calculations, we have used β1 = 0.1 and β2 =
0.01 for both AMSGrad and ADAM in line with the
choice made by the Sharma group.[8, 9] It may be worth
noting that a different convention appears in machine
learning literature using 1 − β1 and 1 − β2 for what we
and the Sharma group call β1 and β2. [69, 70]
Compared to the LM, these first derivative descent

methods have some significant advantages. Their low
memory usage and reduced nonlinear bias make them a
natural fit for the large parameter sets that the LM strug-
gles to handle. They are remarkably robust in the pres-
ence of noise and do not need special safeguards against
statistical instabilities such as the LM’s shifts. At a basic
practical level, the descent methods are also far simpler to
implement than the LM and especially its blocked vari-
ant. However, as we will see in our results, they often
struggle to reach the vicinity of the minimum using a
comparable sampling effort.

A Hybrid Optimization Method

In an attempt to retain the benefits of both the LM
and the AD techniques, we have developed a hybrid op-
timization scheme that can be applied to large numbers
of parameters. Our approach alternates between periods
of optimization using AD and sections using the BLM.
Among other advantages, this allows us to use gradient

Iteration

Energy

FIG. 3. Schematic depiction of a typical energy optimization
using the hybrid method. The dashed box around a section
of descent in green and BLM in red defines a macro-iteration
of the method.

FIG. 4. Schematic representation of gradient descent correc-
tions in green to the red BLM steps, which we have observed
to produce a greater degree of uncertainty about the location
of the final minimum.

descent to identify the No previous important directions
in parameter space that are used in the BLM via equa-
tion 14. The precise mixture of both methods can be
flexibly altered, but a concrete example would be to first
optimize for 100 iterations using RMSprop. By storing a
vector of parameter value differences every 20 iterations,
we would produce 5 vectors that can be used for equa-
tion 14 in some number (say three) steps of the BLM.
After the execution of these BLM steps, the algorithm
would return to another 100 iterations of descent and
the process repeats until the minimum is reached. Fig-
ure 3 shows a generic depiction of how the ground state
energy optimization may behave over the course of the
hybrid method. There are extended sections of computa-
tionally cheap optimization using gradient descent inter-
woven with substantial energy improvement over a few
BLM steps.

The use of AD and the BLM should naturally allow
parameter sets beyond the traditional LM limit of about
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10,000 variables to be addressed, a limit we will surpass in
the present study in the diflurodiazene system. For now,
Table I lays out how the memory cost of the methods
we are considering scales with number of parameters N .
Both the hybrid method and the BLM steps it contains
have a memory scaling that is intermediate between that
of the standard LM and the descent methods. The cost
is given only approximately because while it is normally
dominated by the cost of the Nb blocks in the BLM, there
are additional contributions related to how many direc-
tions are retained from the first BLM diagonalization and
how many old directions are used.[6]

TABLE I. Rough memory cost scaling for the optimization
methods we examine, with N the number of optimized pa-
rameters and Nb the number of blocks

Method Type Memory Cost

Standard Linear Method O(N2)

Blocked Linear Method ∼ O

(

N2

Nb

)

Hybrid Method ∼ O

(

N2

Nb

)

Descent Methods O(N)

One key motivation for including sections of AD, espe-
cially when the method is near convergence, is to coun-
teract the noise we observe in LM updates. While the
LM tends to converge in a relatively small number of
steps, we find the individual energies still fluctuate from
iteration to iteration by multiple mEh, particularly when
we are working with wave functions that possess many
highly nonlinear parameters. Figure 4 shows a cartoon
of this behavior near the minimum that prevents tight
convergence. Unless the shifts are large enough to con-
strain it to very small steps, the LM will tend to bounce
around near the true minimum due to substantial (and
biased) statistical uncertainties in its step direction. The
resulting energy fluctuations lead to ambiguity in what
to report as the definitive LM energy. One could take
the absolute lowest energy reached on any iteration, but
this is fairly unsatisfactory as it feels too dependent on
a ”lucky” step landing right on the minimum. Our prac-
tice has been to take an average over multiple steps at the
end of the optimization when parameter values should be
converged. However, this will generally include iterations
with upward energy deviations due to the step uncer-
tainties. The use of AD offers a way out of this dilemma
because it can correct the errors in the LM steps by mov-
ing towards the minimum more smoothly and with less
bias. As we shall demonstrate in our results, these con-
siderations seem to give the hybrid method a statistical
advantage over the LM by achieving lower error bars for
the same computational cost. They are also the basis
of our recommendation for finishing optimizations with

a long section of pure AD, which we shall show tends to
improve the energy and greatly diminish the final statis-
tical uncertainty.

Wave Functions

An assessment of optimization methods’ effectiveness
requires consideration of the form of the wave function
that they are applied to. Multi-Slater determinant wave
functions have been a common choice of ansatz in QMC
and are typically combined with Jastrow factors that
help recover some electron correlation and describe parti-
cle cusps.[41] We specify our Multi-Slater Jastrow (MSJ)
wave function with the following set of equations.

Ψ = ψMSψJψC (28)

ψMS =

ND∑

i=0

ciDi (29)

ψJ = exp
∑

i

∑

j

χk(|ri −Rj |) +
∑

k

∑

l>k

ukl(|rk − rl|)

(30)

ψC = exp(
∑

IJ

FIJNINJ +
∑

K

GKNK) (31)

In equation 29 above, ψMS consists of ND Slater de-
terminants Di with coefficients ci. It can be generated
by some other quantum chemistry calculation such as
complete active space self-consistent field (CASSCF) or
a selective CI method prior to the VMC optimization.
In the one- and two-body Jastrow factor ψJ , we have
functions χk and ukl, which are constructed from opti-
mizable splines whose form is constrained so as to enforce
any relevant electron-electron and electron-nuclear cusp
conditions. [58]
While MSJ wave functions with these types of tradi-

tional Jastrow factors (TJFs) have been successfully used
in many contexts, [4, 11, 14, 37, 41] more involved cor-
relation factors can be considered. Typically, this in-
volves the construction of many-body Jastrows factors,
[55, 71, 72] which may involve various polynomials of in-
terparticle distances [26, 27, 71] or an expansion in an
atomic orbital basis [24, 72–77] or a set of local count-
ing functions. [28, 29] The latter case of many-body
Jastrows, known as real space number-counting Jastrow
factors (NCJF), is employed here as an example many-
body Jastrow factor. In real space, Jastrow factors have
historically been effective at encoding small changes to
the wave function associated with weak correlation ef-
fects, [41] but work in Hilbert space and lattice model
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VMC reminds us that they can also be used to aid in
the recovery of strong correlations. [40, 78, 79] One way
to view NCJFs is as an attempt to develop a real space
many-body Jastrow factor that can aid in recovering both
strong and weak electron correlations. [29]
The form of our NCJFs in equation 31 has the

same structure as previously proposed four-body Jas-
trow factors,[75] where NI denotes the population of a
region and the FIJ and GK are linear coefficients. The
region populations are computed by summing the values
of counting functions at each electron coordinate.

NI =
∑

i

CI(ri) (32)

In this work, we use a recently introduced [29] form for
the counting functions consisting of normalized Gaus-
sians.

CI =
gI(r)∑
j gj(r)

(33)

where

gj(r) = exp((r − µ)TA(r − µ) +K) (34)

describes a Gaussian about a center µ. By placing these
normalized Gaussians at various centers, we can divide
up space with a Voronoi tessellation. Schemes have been
developed to generate partitions that either consist of re-
gions centered on atoms or of finer grained divisions of
space that can capture correlation within an atomic shell.
We make use of both types of partitioning methods for
different wave functions in our study. For simplicity, we
only consider optimization of the parameters FIJ in the
F -matrix of our NCJFs (the coefficients GK can be elim-
inated with a basis transformation of the region popula-
tions NI), [29] but in principle the parameters defining
the Gaussians gj could also be optimized. We provide de-
tails of the Gaussians used in our ansatzes in Appendix
D.
We also consider the problem of optimizing the molec-

ular orbital shapes alongside the other variational pa-
rameters. The ability to relax orbitals is important for
successful study of many systems, particularly those in-
volving excited state phenomena.[37] We make use of con-
siderable theoretical and computational machinery based
on the table method enhancements developed by Filippi
and coworkers [13, 14] that enables efficient evaluation of
orbital rotation derivatives in large MSJ wave functions.
A rotation of molecular orbitals can be described with a
unitary transformation with matrix U parameterized as
the exponential of an antisymmetric matrix X = −XT

U = exp(X) (35)

Impressively, one can obtain all wave function derivatives
with respect to the elements of X for a large multi-Slater

determinant ansatz for a cost that is only slightly higher
than that of the local energy evaluation. For the details
of how this is accomplished, we refer the reader to the
original publications. [13, 14] From the standpoint of
parameter optimization, the main significance of the or-
bitals (and the NCJFs) lies in both their nonlinearity and
their strong coupling to other optimizable parameters. In
practice, we find that turning on the optimization of or-
bitals and NCJFs greatly enhances the difficulty of the
optimization problem compared to MSJ optimizations in
which only the CI coefficients and one- and two-body
Jastrow parameters are varied.

RESULTS

Multi-Slater Jastrow N2

For a small initial test system, we consider the nitro-
gen dimer N2 at the near-equilibrium and stretched bond
lengths of 1.1 and 1.8 Å. The nitrogen dimer is a known
example of a strongly correlated system and a common
testing ground for quantum chemistry methods.[40, 79–
84] The initial wave function ansatz consists of a modest
number of Slater determinants (67 for the equilibrium
geometry and 169 for the stretched, the result of a 0.01
cutoff limit on determinant coefficients) with traditional
one-body and two-body Jastrow factors. The Jastrow
splines provide 30 additional optimizable parameters via
10 point cubic b-splines with cutoff distances of 10 bohr
for the electron-nuclear and same-spin and opposite-spin
electron-electron components. The Slater determinant
expansion is the result of a (10e,12o) CASSCF calcula-
tion in GAMESS[85] using BFD pseudopotentials and
the corresponding VTZ basis set.[86] Due to the simplic-
ity of the variable space in this case, we have employed
the |Ψ|2 guiding function for all optimization methods,
including the LM and BLM. See Appendix B for further
computational details.
The first and simplest study we can make is to optimize

our ansatzes with our multiple optimization techniques
until convergence and compare final energies. Note that
all of our VMC optimizations with different methods in
this study were performed using our implementations
within a development version of the QMCPACK soft-
ware package.[58] As N2 is a small enough system that
the traditional LM can be easily employed, we take the
approach of first obtaining a traditional LM optimiza-
tion result and then using it as a reference against which
to compare the performance of other methods. For the
gradient descent methods, multiple optimizations were
attempted with the initial step sizes tweaked from run
to run based on a rough examination of how parame-
ter values compared to the LM’s results. We find that
the chosen values for the step sizes and other hyperpa-
rameters in the gradient descent algorithms often leads to
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FIG. 5. Different methods’ optimized energies relative to that
of the LM for equilibrium N2 when optimizing CI coefficients
and the TJF.

apparent convergence at different energies. It is therefore
essential to make effective choices for these parameters,
which in part seems to rely on one’s experience with a
given system.
Figures 5 and 6 show energy differences relative to the

LM result when optimizing the equilibrium and stretched
nitrogen dimer wave functions respectively. Tables pro-
viding the precise energies and statistical uncertainties as
well as the step sizes used are shown in the appendices.
First, we see the choice of step sizes can have a substan-
tial influence on the quality of gradient descent results.
In some cases, the same method can appear to converge
to energies more than 20 mEh apart when run with differ-
ent initial step sizes. While many of the gradient descent
optimizations clearly did not reach the minimum, the en-
ergy differences from the LM are only about 5 mEh or less
when looking at the runs that used what turned out to be
the best choices for the hyperparameters. With further
tweaking of the hyperparameters, we would guess that
at least some of these descent methods could match the
performance of the LM in this simple test case. Finally,
we observe that the hybrid method performs about as
well as the best descent optimizations, typically reaching
energies that agree with the LM within error bars.

All parameter N2

We now add a NCJF and enable orbital optimization in
order to extend the comparison in a setting with a larger
number and variety of nonlinear parameters. We will
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FIG. 6. Different methods’ optimized energies relative to that
of the LM for stretched N2 when optimizing CI coefficients
and the TJF.

consider the relative merits of the optimization methods
in much greater detail in this setting as it offers a clearer
view of their differences. For the number-counting Jas-
trow factor, we generated a set of 16 counting regions
with 8 octants per atom after dividing space in half with
a plane bisecting the bond axis. The details are given
in Appendix D, but we will note here that this adds
135 F -matrix parameters to the optimization. Allow-
ing for orbital optimization adds another 663 and 618
parameters for the equilibrium and stretched cases, re-
spectively. Note that our implementation of orbital opti-
mization in QMCPACK removes rotation parameters for
orbitals that are not occupied in any determinant and
also between orbitals occupied in all determinants, and
so the precise number of rotation parameters is a function
of the determinant expansion. With orbital optimization
enabled, the choice of importance sampling function be-
comes an issue, and we now employ |Φ|2 for all LM and
BLM steps with the ǫ weight set to 0.001.

Figures 7 and 8 show converged ground state ener-
gies relative to that of the LM. For this more difficult
version of the nitrogen dimer, we find that the gradi-
ent descent methods are less effective. They now often
yield energies that can be 10 mEh or more above the
LM’s answer though we again find that choice of step size
plays a significant role. The worst results for AMSGrad
and ADAM were the result of choosing inappropriately
large step sizes and simple reductions in the initial step
size produced improvements in energy of tens of mEh

though the final result still remained well above the LM’s.
When we examined the optimizations over the course of
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FIG. 7. Different methods’ optimized energies relative to that
of the traditional LM for equilibrium N2 when all parameters
are optimized simultaneously. See also Table II.

their iterations, the gradient methods typically displayed
some ability to quickly improve the wave function and
energy initially, but they would then plateau and only
very slowly improve the energy thereafter. Extrapolat-
ing from our results indicates that even if these gradient
descent methods eventually converge to the minimum,
they will only do so after thousands more iterations and
at a computational cost well beyond that of the LM.
A more careful comparison of the different methods can

be made by referring to Tables II and III, which list the
precise converged energies and their error bars. We also
report the total number of samples used in each optimiza-
tion as a proxy for computational effort, noting that for
the BLM and the BLM portion of the hybrid method we
double counted samples out of fairness as the BLM steps
require running over their samples twice. In assessing
cost, one must also consider the statistical uncertainty
achieved, where we see that the LM and BLM are at a
disadvantage. To help illustrate the update uncertainty
contribution to this error, which we first discussed in the
theoretical section above, we show the energy versus LM
iteration for equilibrium N2 in Figure 9. The fluctuations
in energy from step to step, sometimes by as much as 2
mEh, demonstrate the difficulty the LM faces from the
uncertainty in its steps near the minimum. In this case,
we see that the LM’s final energy uncertainty is driven by
the update step uncertainty rather than the uncertainty
in evaluating the energy for a given set of parameter val-
ues at a particular iteration. We have observed similar
behavior in the BLM and include the result of a BLM
calculation in the tables. Note that the tabulated ener-
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FIG. 8. Different methods’ optimized energies relative to that
of the traditional LM for stretched N2 when all parameters
are optimized simultaneously. See also Table III.

TABLE II. Energies, uncertainties, and sample numbers for
optimization of all parameters in equilibrium N2.

Method Energy (a.u.) Uncertainty (a.u.) Samples
Hybrid 1 -19.9263 0.0004 5,400,000
Hybrid 2 -19.9266 0.0004 10,000,000
Hybrid 3 -19.9272 0.0004 42,000,000

RMSprop 1 -19.8974 0.0005 20,000,000
RMSprop 2 -19.9242 0.0004 20,000,000

AMSGrad 1 -19.9115 0.0006 20,000,000
AMSGrad 2 -19.9221 0.0004 20,000,000

ADAM 1 -19.8973 0.0009 20,000,000
ADAM 2 -19.9165 0.0005 20,000,000

Random 1 -19.9019 0.0006 20,000,000
Random 2 -19.9157 0.0005 20,000,000

LM -19.9280 0.0008 40,000,000

BLM -19.9297 0.0008 80,000,000

DF-BLM -19.9293 0.0001 90,000,000
DF-Hybrid 1 -19.9290 0.0001 15,400,000
DF-Hybrid 2 -19.9290 0.0001 20,000,000
DF-Hybrid 3 -19.9293 0.0001 52,000,000

gies come from an average over the last ten optimization
steps in the case of the standard LM and BLM and from
an average over the last 50 descent steps in the case of
the hybrid and pure descent methods.

From the tabulated data, we see that the hybrid op-
timization can achieve lower energies than the gradient
descent methods using fewer samples, and that its re-
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TABLE III. Energies, uncertainties, and sample numbers for
optimization of all parameters in stretched N2.

Method Energy (a.u.) Uncertainty (a.u.) Samples
Hybrid 1 -19.6316 0.0004 5,400,000
Hybrid 2 -19.6321 0.0004 8,400,000
Hybrid 3 -19.6340 0.0004 49,200,000

RMSprop 1 -19.6277 0.0005 20,000,000
RMSprop 2 -19.6313 0.0005 20,000,000

AMSGrad 1 -19.5571 0.0010 20,000,000
AMSGrad 2 -19.6064 0.0008 20,000,000
AMSGrad 3 -19.6268 0.0008 20,000,000

ADAM 1 -19.5889 0.0009 20,000,000
ADAM 2 -19.6179 0.0006 20,000,000
ADAM 3 -19.6192 0.0005 20,000,000

Random 1 -19.6112 0.0006 20,000,000
Random 2 -19.6196 0.0006 20,000,000

LM -19.6356 0.0009 40,000,000

BLM -19.6354 0.0008 80,000,000

DF-BLM -19.6356 0.0001 90,000,000
DF-Hybrid 1 -19.6352 0.0001 15,400,000
DF-Hybrid 2 -19.6354 0.0001 18,400,000
DF-Hybrid 3 -19.6346 0.0001 59,200,000
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FIG. 9. The standard LM optimization for all parameter
equilibrium N2.

sults are typically within a few mEh of the traditional
LM. While the accelerated descent sections of the hybrid
method provide some swift energy reductions early on
when the wave function is still far from the minimum in
parameter space, the BLM steps in the algorithm greatly
accelerate the process of bringing the parameters near
to the minimum, as can be seen in Figure 10. Looking
at the electron-nuclear spline parameter and the orbital
rotation parameter, we see typical cases in which rapid
initial parameter movement during the early part of the
first RMSprop stage transitions to much slower move-
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FIG. 10. Values for the first off-diagonal F -matrix element
(F01), the first electron-nuclear TJF spline parameter (u0),
and the second orbital rotation variable (X02) at each micro
iteration of the “Hybrid 1” optimization for all parameter
equilibrium N2.

ment later in that stage, followed by very little movement
at all in later RMSprop stages. Note that the latter can
be explained largely by the need to keep initial step sizes
small in later stages to avoid significant upward devi-
ations in the energy as the RMSprop method rebuilds
its momentum history. In between these AD stages, the
BLM updates move the parameter values in much larger
steps, greatly accelerating convergence. This behavior
makes the hybrid approach somewhat more black box as
compared to the pure descent approaches, as the ability
to get near the minimum with a modest sampling effort is
much less dependent on the choice of the initial step sizes
than for the AD methods. This conclusion is supported
by the fact that the hybrid optimizations in Tables II and
III used various initial step size settings (as discussed in
Appendix B) and nonetheless produced lower energies
than the pure descent methods in every case.

As discussed in our introduction of the hybrid method,
another advantage is its ability to obtain a lower error bar
at convergence than the LM for the same overall compu-
tational cost. This is a natural consequence of spending
part of its sampling effort on gradient descent steps that
correct for the BLM steps’ uncertainty and bias (as illus-
trated earlier in Figure 4) and that hew closer to the zero-
variance principle by importance sampling with |Ψ|2. To
demonstrate this advantage explicitly, we ran additional
sets of LM and hybrid optimizations adjusted to have
essentially the same total number of samples. We then
compare the standard error for the last ten LM steps and
the last ten hybrid macro iterations in Figures 11 and 12,
where we find that the hybrid has a substantially lower
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FIG. 11. Standard Errors for the hybrid method and LM on
all parameter equilibrium N2 vs different optimizations’ total
sampling costs.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Total Number of Samples 1e8

0.2

0.4

0.6

0.8

1.0

St
an

da
rd

 E
rro

r (
m
E h

)

Linear Method
Hybrid Method

FIG. 12. Standard Errors for the hybrid method and LM on
all parameter stretched N2 plotted against different optimiza-
tions’ total sampling costs.

statistical uncertainty in every case. Assuming the usual
N−1/2 decay of uncertainty with sample size, the LM
would require a factor of roughly four times more sam-
ples to reach the hybrid’s uncertainty,

These statistical advantages in the final energy can be
improved even further if we finish an optimization with
a long section of pure descent. To demonstrate this, we
have taken the final wave functions produced by the hy-
brid and BLM optimizations in Tables II and III and
applied a further period of optimization using RMSprop
with initial step sizes of 0.001 for all parameters. This
“descent finishing” (DF) adds only a modest additional
cost compared to the preceding optimization and yields a
large improvement in statistical uncertainty and, in many
cases, an improvement in the final energy value as well.
These advantages can be seen clearly in Figures 13 and
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FIG. 13. Converged energies in equilibrium N2 before and
after a final descent optimization.
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FIG. 14. Converged energies in stretched N2 before and after
a final descent optimization.

14, as well as in Tables II and III, where we observe final
error bars that are a factor of eight smaller than those of
the LM. In terms of cost, this implies that the traditional
LM would have required 64 times the original number of
samples to achieve the DF-BLM or DF-hybrid precision.
Put another way, we find that the DF-hybrid approach
gives an equivalent or lower energy, with a much smaller
error bar, at a substantially lower cost. Note that, in con-
trast, we find that this DF approach is not very effective
when used in conjunction with the pure descent methods,
where it essentially amounts to restarting the methods at
the parameter values found after the first run of their op-
timization. While we do find that this restarting of the
accumulation of momentum can improve the energy, the
wave function parameters still do not reach their optimal
values and the energy lowering vs total sampling cost is
not competitive with the DF-hybrid.

Our study of the nitrogen dimer provides some clarity
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FIG. 15. Equilibrium geometry of styrene. See Appendix C
for structure coordinates.

on the relative strengths of the LM and gradient descent,
while also pointing the way to a more effective synthe-
sis of the two. Gradient descent methods struggle in the
presence of a variety of different highly nonlinear param-
eters, although they did perform better when we were
only optimizing TJFs and CI coefficients. Among the
descent methods, we found that the RMSprop approach
came the closest to achieving the LM minimum energy.
It is of course difficult to rule out the possibility that this
and other AD methods could reach the LM energy with
additional sampling and more experimentation with the
hyperparameters. However, it is far from obvious that
this would be be cost-competitive, and the need to make
careful and possibly system-specific choices for hyperpa-
rameters is somewhat antithetical to the general aspira-
tion that an optimizer be as black-box as possible. For
its part, the LM is more effective at moving parameters
into the vicinity of the minimum, but tight convergence is
then stymied by an unsatisfactory level of biased statisti-
cal uncertainty. As a side note, this behavior — in which
the first derivative methods give better convergence once
near the minimum but are at a relative disadvantage far
from the minimum — is somewhat the reverse of what
one would expect in deterministic optimization, where
second derivative methods are at their strongest relative
to first derivative methods during the final tight conver-
gence in the vicinity of the minimum. Although things
are reversed in the stochastic VMC case, we stress that
the two classes of methodology are strongly complemen-
tary, as they compensate for each other’s weaknesses. By
using a low-memory version (BLM or hybrid) of the LM
to get near to the minimum and then handing off to an
accelerated descent method to achieve tight convergence,
we find better overall performance than when working
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FIG. 16. Converged energies in equilibrium styrene before
and after a final descent optimization.

with either class of method on its own. These insights
in hand, we will now apply this combined approach in
a pair of larger and more challenging VMC optimization
examples.

Styrene

We first turn to styrene at its equilibrium geometry
(Figure 15) which offers an optimization with both more
electrons and more variables, but in which the tradi-
tional LM is still quite achievable for comparison. As
in N2, we construct a multi-Slater wave function modi-
fied by both TJFs and a NCJF. To generate our Slater
determinants, we have employed the heatbath selective
CI (HCI) method as implemented in the Dice code by
Sharma and coworkers. [16, 18] The orbital basis for the
HCI calculation was produced via a (14e,14o) CASSCF
calculation in Molpro [87] using a recently developed set
of pseudopotentials and their corresponding double zeta
basis.[88] In this CASSCF basis, HCI then correlated 32
electrons (out of a total of 40 electrons left over after ap-
plying pseudopotentials) in 64 orbitals. For our NCJF,
we defined one counting region per atom, giving our F -
matrix 135 optimizable parameters (see Appendix D for
further NCJF details).

We optimized our wave function in a staged fash-
ion using the standard LM, the BLM, and the hybrid
method. First, we conducted a partial optimization of
the TJFs and the 100 most important CI coefficients.
We then turned on the optimization of the orbitals and
the NCJF’s F -matrix, reaching a total of 4,570 parame-
ters, most of them highly nonlinear. In the hybrid and
BLM optimizations, the parameters were divided into 5
blocks and we used Nk = 50 and No = 5 for our numbers
of kept directions and previous important directions, re-
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TABLE IV. A summary of the VMC optimization stages in
FNNF showing the number of determinants Nd included from
HCI, which parameters are optimized, and the total number
Np of optimized parameters. Note that CI coefficients are
optimized at every stage. Stages 2, 3, and 4 start from the
parameter values from the previous stage, with newly added
determinants’ coefficients initialized to zero. We also report
the number of iterations performed in each stage, which for
stage 4 is simply the number of RMSprop steps. A hybrid
iteration, on the other hand, consists of 100 RMSprop steps
followed by three BLM steps. All RMSprop steps use 20,000
samples drawn from |Ψ|2, while the BLM steps each use 1
million samples drawn from the |Φ|2 guiding function with ǫ

set to 0.01.

Stage Method Nd TJF F -matrix Orbitals Np Iterations

1 Hybrid 102 X 139 9

2 Hybrid 103 X X 1048 4

3 Hybrid 104 X X X 15,573 6

4 AD 104 X X X 15,573 1,000

spectively. We used a value of 0.001 for ǫ in the |Φ|2

distribution for the LM and BLM sampling. These opti-
mizations were then followed by 1,000 steps of RMSprop.
As shown in Figure 16, we find that our hybrid method
reaches a converged energy as low or better than that of
the standard and blocked LM, and finishing our optimiza-
tions with descent provides a substantial improvement in
the statistical uncertainty even in this more challenging
case.

FNNF

We now turn our attention to a strongly correlated
transition state of the the diflurodiazene (FNNF) cis-

trans isomerization, where we test the hybrid optimiza-
tion approach on a much larger determinant expan-
sion. The FNNF isomerization can be thought of as
a toy model molecule for larger systems such as pho-
toswitches, which have potential uses in molecular ma-
chines [89, 90] and high-density memory storage. [91] In
addition, FNNF itself is of interest as part of the synthe-
sis of high energy polynitrogen compounds and has been
the subject of multiple electronic structure studies.[92–
94] Here we focus on its strongly correlated transition
state, which is the direct analogue of the out-of-plane
TS1 transition state in diazene. [95]
Our treatment of this transition state began by locat-

ing its geometry via an (8e,8o) CASSCF optimization
in the cc-pVTZ basis using Molpro.[87] At this geome-
try (given in Appendix C) we then switch over to us-
ing BFD pseudopotentials and their corresponding triple
zeta basis, [86] in which we use the Dice code [16, 18] to
iterate an HCI calculation with 24 electrons distributed
in the lowest 50 (8e,8o) CASSCF orbitals until its vari-
ational wave function has reached almost 2 million de-

TABLE V. Energies of the transition state of FNNF.

Method Energy (a.u.) Uncertainty (a.u.)
Hartree-Fock -67.112730
CASSCF -67.359100
VMC Stage 1 -68.1017 0.0011
VMC Stage 2 -68.1213 0.0009
VMC Stage 3 -68.1698 0.0006
VMC Stage 4 -68.1750 0.0002

terminants. We then import the first 10,000 of these
determinants into our VMC optimization and combine
them with TJFs, atom-centered NCJFs, and orbital op-
timization, which produces an ansatz with over 15,000
variational parameters.

Our VMC optimization proceeds in stages as summa-
rized in Table IV. This begins with TJFs and a 100-
determinant ansatz from HCI, with later optimization
stages adding more determinants and turning on the op-
timization of the NCJF and orbital rotation variables. As
in styrene, the strategy is to bring the parameters near
to their optimal values with the help of the LM and then
to perform a final unbiased relaxation via a long run of
RMSprop AD. Due to the large number of variational pa-
rameters, we incorporate the LM via the hybrid scheme,
with the BLM steps employing 2, 2, and 10 blocks dur-
ing stages 1, 2, and 3, respectively. In stages 1 and 2, we
used an initial RMSprop step size of 0.01 for TJFs and
CI coefficients before setting it to 0.005 at the beginning
of stage 3. For the F -matrix parameters, we began by
setting the initial step size to 0.001, but after observing
a significant rise and fall of the energy during the RM-
Sprop section of the first hybrid macro iteration in stage
3, we reduced this to 0.0001 and also lowered the TJF
and CI step size to 0.0005 for the last 4 macro iterations
in that stage. For all steps in stage 4, we maintained the
0.0001 step size for the F -matrix parameters and low-
ered the initial step size for TJFs and CI coefficients to
0.0002. An initial step size of 0.0001 was used for orbital
parameters throughout both stages 3 and 4. The BLM
steps used the |Φ|2 guiding function with a value of 0.01
for ǫ.

The energies resulting from this staged optimization
are shown in Table V and Figure 17. Unsurprisingly,
stage 3 proved to be the most challenging and expen-
sive stage, as it is where we hope to move all parameters
near to their final values in a setting where the tradi-
tional LM would face severe memory bottlenecks. As
seen in Figure 17, both the AD and BLM steps clearly
work to lower the energy during the first two macro it-
erations of stage 3. In the last four macro iterations of
stage 3, however, the energy decreases more slowly and
it is less clear, at least when looking at the energetics,
whether the BLM steps are still necessary. Instead, their
importance is revealed by inspecting the movement of the
F -matrix values within the NCJF, an example of which
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FIG. 17. Left panel: energies during stages 3 and 4 of the FNNF optimization. The descent energies are reported as the
average over the last 50 RMSprop steps within each block of 100 RMSprop steps, whereas the BLM energies are the energy
estimates on the random samples used for the BLM update steps. Right panel: change in the value of the F -matrix parameter
that couples the two nitrogen atoms’ counting regions over the first three macro iterations of stage 3, with each micro iteration
corresponding to one RMSprop or BLM step. The nine BLM points on the right panel correspond to the first nine BLM points
on the left panel.

is shown in the right-hand panel of Figure 17. As in
N2, these parameters prove to be the most resistant to
optimization via AD, and we clearly see that although
AD does gradually move their values in the same direc-
tion as the BLM, the BLM steps dramatically accelerate
their optimization. This effect is seen throughout all six
macro iterations of stage 3, and so although the BLM
energies are not obviously improving at the end of this
stage, the inclusion of these steps is clearly still benefi-
cial. Note that relaxing the NCJF after moving from a
1,000-determinant to a 10,000-determinant expansion is
important, because the larger determinant expansion is
better able to capture some of the correlation effects that
the NCJF is encoding, and so we expect (and indeed see)
that this diminishing of its role leads to smaller F -matrix
values being optimal.

Although we have again found that it would be diffi-
cult for AD alone to provide a successful optimization of
our ansatz, the statistical advantages of its incorporation
are still quite clear. A close inspection of the sample sizes
used in the optimization reveals that each of the AD and
BLM points in the left panel of Figure 17 corresponds to
averaging over 1 million random samples. Despite this
equal sampling effort, the uncertainties for the AD en-
ergy estimates are about one third the size of those for
the BLM, implying that a pure BLM approach would
require an order of magnitude more sampling effort to
produce similar results. To understand this statistical ad-

vantage, we need to remember two important differences
between the AD and BLM steps. First, the nonlinearity
of the LM and BLM eigenvalue problem leads to biases
in the update steps that can both increase the step-to-
step energy uncertainty and cause the method to opti-
mize off-center from the true minimum. Second, the use
of an alternative guiding function for the BLM samples
in order to mitigate this step uncertainty moves us away
from the zero-variance regime enjoyed by traditional |Ψ|2

sampling. If we were to instead employ traditional sam-
pling, our energy estimates for a specific wave function
would improve, but the BLM step uncertainty would in-
crease sharply. As the AD methods do not suffer from
these issues, they help us to further mitigate the BLM
step uncertainty and to perform a final, high-precision re-
laxation during stage 4. In total, incorporating the AD
steps in this case roughly doubles the number of samples
required, but is well worthwhile given that it improves
statistical efficiency by almost an order of magnitude.

While it is possible that the NCJF parameters are not
quite converged in this particular optimization and that
increasing iteration counts in stages 1 through 3 could
further improve the energy, the lessons learned from in-
vestigating a large MSJ optimization for the FNNF tran-
sition state are already clear. While both the BLM and
the AD methods can be used in this 10,000+ parameter
regime, they bring highly complementary advantages to
the optimization and so would appear to work better to-
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gether than apart. In particular, the BLM helps optimize
the parameters that change only very slowly during AD,
whereas the statistical advantages of AD greatly increase
precision at a given sample size and work to eliminate the
statistical biases suffered by the BLM.

CONCLUSIONS AND OUTLOOK

We have found that a combination of first and second
derivative optimization methods appears to work bet-
ter than using either class of method on its own when
minimizing the energies of wave functions in variational
Monte Carlo. This is particularly true for wave func-
tions with a wide variety of different types of nonlin-
ear parameters, as for example when dealing simultane-
ously with traditional one- and two-body Jastrow fac-
tors, many-body Jastrow factors, and orbital relaxations.
While the linear method and its low-memory variants
show a superior ability to move these nonlinear parame-
ters into the vicinity of their optimal values, accelerated
descent methods prove much more capable of converg-
ing them tightly around the minimum. This situation
stands as an interesting reverse of what is typically en-
countered in deterministic optimization, where second
derivative methods are usually superior for tight final
convergence and first derivative methods perform rela-
tively better in the early stages of an optimization. The
realities of working with statistically uncertain energies
and energy derivatives turns this expectation on its head,
both because of the need to stabilize the statistics of the
linear method’s second derivative elements through zero-
variance-violating importance sampling schemes and due
to the nonlinear biases that are induced when solving the
linear method’s eigenvalue problem. The linear method’s
ability to quickly move the parameters near the mini-
mum, however, makes it appear that employing it as part
of a hybrid approach is well worthwhile. Indeed, in our
testing, hybridizing low-memory linear method variants
with accelerated descent methods provides better ener-
gies with smaller statistical uncertainties at a lower com-
putational cost when compared to the stand-alone use of
either the linear method or accelerated descent methods.
Looking forward, there are many questions still to be

answered about the interplay between first and second
derivative methods. For example, although the blocked
linear method greatly reduces memory cost vs the tradi-
tional linear method, it is not clear that it can be applied
effectively beyond 100,000 parameters in its current form.
One thus wonders whether it is necessary to optimize all
of the parameters during the linear method steps of the
hybrid approach, or whether it may be possible to iden-
tify (perhaps during an ongoing optimization?) which
parameters would benefit from linear method treatment
and which would not. Were such a sorting possible, ac-
celerated descent methods with their even lower memory

footprint could be left to deal with most of the param-
eters, with only a relatively small subset treated by the
linear method steps. Another important issue is making
the hybrid approach as black box and user friendly as
possible. Although we have tested it here with many dif-
ferent descent step size settings for the different param-
eter types, this has not been a systematic survey. More
extensive testing may allow clear defaults to be settled
upon so that users can reasonably expect a successful op-
timization without resorting to careful step size control.
We look forward to investigating these exciting possibil-
ities in future.
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APPENDIX A: ADDITIONAL ENERGIES

TABLE VI. Precise Values for optimizing CI coefficients and
traditional Jastrow factors in equilibrium N2.

Method Energy (a.u.) Uncertainty (a.u.) Samples
Hybrid 1 -19.9083 0.0005 3,900,000
Hybrid 2 -19.9095 0.0006 5,400,000
Hybrid 3 -19.9101 0.0005 29,000,000

RMSprop 1 -19.8936 0.0006 20,000,000
RMSprop 2 -19.9091 0.0005 20,000,000

AMSGrad 1 -19.8998 0.0007 20,000,000
AMSGrad 2 -19.8926 0.0008 20,000,000
AMSGrad 3 -19.9048 0.0006 20,000,000
AMSGrad 4 -19.9071 0.0005 20,000,000

ADAM 1 -19.9009 0.0005 20,000,000
ADAM 2 -19.9056 0.0006 20,000,000
ADAM 3 -19.9078 0.0005 20,000,000

Random 1 -19.8926 0.0006 20,000,000
Random 2 -19.9041 0.0005 20,000,000

Linear Method -19.9105 0.0010 40,000,000



18

TABLE VII. Precise Values for optimizing CI coefficients and
traditional Jastrow factors in stretched N2.

Method Energy (a.u.) Uncertainty (a.u.) Samples
Hybrid 1 -19.6141 0.0005 27,000,0000

RMSprop 1 -19.6010 0.0007 20,000,000
RMSprop 2 -19.6137 0.0005 20,000,000

AMSGrad 1 -19.6044 0.0006 20,000,000
AMSGrad 2 -19.5858 0.0007 20,000,000
AMSGrad 3 -19.6096 0.0006 20,000,000

ADAM 1 -19.6028 0.0006 20,000,000
ADAM 2 -19.6105 0.0005 20,000,000

Random 1 -19.5937 0.0006 20,000,000
Random 2 -19.6147 0.0006 20,000,000

Linear Method -19.6155 0.0010 40,000,000

APPENDIX B: DETAILS FOR N2

OPTIMIZATIONS

The details for the optimizations behind the final ener-
gies in the main paper are presented below. In every case
of N2, all flavors of pure gradient descent based optimiza-
tion were run for 2000 iterations at 10,000 samples per
iteration except for the random step size method, which
was run for 10,000 iterations at 2000 samples per itera-
tion. The total sampling cost was then 20 million sam-
ples, half of the standard linear method’s cost of 40 mil-
lion over 40 steps. Given the descent methods’ tendency
to plateau after a few hundred iterations and then lower
the energy by only a few mEh afterward, we expect that
running them longer to fully match or exceed the linear
method’s sampling effort would not yield a much better
result in most cases. We found that it was often advan-
tageous to allow for different types of parameters to be
given different initial step sizes. Tables VIII through XI
list the step sizes for different descent optimizations in all
cases of N2. The values can be cross-referenced with the
energy results in earlier tables to see which choices were
most effective. Some amount of experimentation was nec-
essary to build up intuition for what choices are effec-
tive, but we generally expect more nonlinear parameters
such as those in the F -matrix and the orbitals to require
smaller step sizes. We also found that RMSprop bene-
fited from using larger step sizes compared to other de-
scent algorithms. The energy may be significantly raised
on early iterations, but tends to be quickly lowered and
eventually brought to an improved result once enough
gradient history has built up over more steps.
The details of the different hybrid method optimiza-

tions are slightly more involved and are discussed sep-
arately here. In all cases, the blocked linear method
steps of the hybrid optimization used 5 blocks with 5
directions from sections of RMSprop to provide coupling
to variables outside a block and retained 30 directions
from each block to construct the final space for determin-

ing the parameter update. These were also the settings
given to the blocked linear method optimizations of N2

that appear in the main text. All hybrid optimizations
used the RMSprop method for their AD sections with
the hyperparameters d = 100, ρ = .9 and ǫ = 10−8. The
step sizes used in the AD sections varied over the course
of the hybrid optimizations. We typically chose larger
step sizes for the AD portion of the first macro-iteration
in order to obtain more energy and parameter improve-
ment at a low sampling cost before any use of the BLM
and these are tabulated separately as ”Hybrid-Initial”.
The smaller step sizes reported for the rest of hybrid
optimization were used in the later macro-iterations to
avoid rises in the energy that might occur before a suf-
ficient gradient history was accumulated. We also list
the step sizes in the long RMSprop optimization used to
achieve the descent finalized energies. These were some-
times larger than those for the AD sections of the initial
hybrid optimizations because the descent finalization was
long enough for any early transient rises in the energy to
recover.

We now specify how the hybrid method sampling costs
reported in Tables II and III of the main paper were di-
vided between AD and the BLM. In all parameter equi-
librium N2, Hybrid 1 consisted of 500 AD steps costing 3
million samples interwoven with 12 BLM steps that cost
2.4 million samples. Hybrid 2 consisted of the same se-
quence of steps, but had an increased sampling effort of
6 million samples on descent and 2.4 million on BLM.
Hybrid 3 had a greatly increased sampling cost and con-
sisted of 1400 AD steps for 11.2 million samples interwo-
ven with 19 BLM steps costing 38 million. For all pa-
rameter stretched N2, Hybrid 1 used the same sequence
of steps and sampling cost breakdown as Hybrid 1 for
the equilibrium case. Hybrid 2 consisted of 600 AD steps
that cost 7 million samples and 15 BLM steps that cost
3 million. Hybrid 3 also had 600 AD steps, now using 12
million samples, and 15 BLM steps, now using 30 mil-
lion samples. For all descent finalizations in N2, we used
1000 steps of RMSprop at an additional cost of 10 million
samples and took an average over the last 500 steps to
obtain our reported energies and error bars.

Finally, we give the breakdown of the hybrid sampling
costs in Tables VI and VII of Appendix A. For the equi-
librium case, Hybrid 1 had 500 AD steps costing 1.5 mil-
lion samples and 12 BLM steps costing 2.4 million sam-
ples. Hybrid 2 had the same combination of steps and
BLM cost as Hybrid 1 while the AD steps used 3 million
samples. Hybrid 3 used the same sequence of steps, but
increased the AD and BLM sampling costs to 5 million
and 24 million, respectively. In the stretched case, the
hybrid optimization used 500 AD steps with 3 million
samples and 12 BLM steps costing 24 million samples.
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TABLE VIII. Step sizes for TJFCI equilibrium N2 optimiza-
tions.

Method 2-Body TJF 1-Body TJF CI
RMSprop 1 0.01 0.01 0.005
RMSprop 2 0.05 0.05 0.01

AMSGrad 1 0.05 0.05 0.01
AMSGrad 2 0.05 0.05 0.05
AMSGrad 3 0.01 0.01 0.01
AMSGrad 4 0.001 0.001 0.001

ADAM 1 0.01 0.01 0.01
ADAM 2 0.005 0.005 0.005
ADAM 3 0.001 0.001 0.001

Random 1 0.01 0.01 0.01
Random 2 0.0005 0.0005 0.0005

Hybrid-Initial 1 0.1 0.1 0.01
Hybrid-Initial 2 0.1 0.1 0.01
Hybrid-Initial 3 0.1 0.1 0.01

Hybrid 1 0.001 0.001 0.001
Hybrid 2 0.005 0.005 0.005
Hybrid 3 0.005 0.005 0.005

TABLE IX. Step sizes for TJFCI stretched N2 optimizations.

Method 2-Body TJF 1-Body TJF CI
RMSprop 1 0.01 0.01 0.005
RMSprop 2 0.05 0.05 0.01

AMSGrad 1 0.05 0.05 0.01
AMSGrad 2 0.05 0.05 0.05
AMSGrad 3 0.01 0.01 0.01

ADAM 1 0.01 0.01 0.01
ADAM 2 0.005 0.005 0.005

Random 1 0.01 0.01 0.01
Random 2 0.001 0.001 0.001

Hybrid-Initial 1 0.1 0.1 0.1
Hybrid 1 0.005 0.005 0.005

TABLE X. Step sizes for all parameter equilibrium N2 opti-
mizations.
Method 2-Body TJF 1-Body TJF F -Matrix CI Orbitals
RMSprop 1 0.005 0.005 0.001 0.001 0.001
RMSprop 2 0.05 0.05 0.01 0.01 0.01

AMSGrad 1 0.05 0.05 0.005 0.01 0.001
AMSGrad 2 0.005 0.005 0.001 0.001 0.001

ADAM 1 0.05 0.05 0.005 0.01 0.001
ADAM 2 0.005 0.005 0.001 0.001 0.001

Random 1 0.001 0.001 0.001 0.001 0.001
Random 2 0.001 0.001 0.0005 0.001 0.0005

Hybrid-Initial 1 0.1 0.1 0.0001 0.01 0.01
Hybrid-Initial 2 0.1 0.1 0.0005 0.01 0.01
Hybrid-Initial 3 0.01 0.01 0.001 0.01 0.001

Hybrid 1 0.0001 0.0001 0.0001 0.0001 0.0001
Hybrid 2 0.001 0.001 0.0005 0.0005 0.0005
Hybrid 3 0.001 0.001 0.001 0.001 0.001

DF-Hybrid 1 0.001 0.001 0.001 0.001 0.001
DF-Hybrid 2 0.001 0.001 0.001 0.001 0.001
DF-Hybrid 3 0.001 0.001 0.001 0.001 0.001

TABLE XI. Step sizes for all parameter stretched N2 opti-
mizations.
Method 2-Body TJF 1-Body TJF F -Matrix CI Orbitals
RMSprop 1 0.05 0.05 0.05 0.01 0.01
RMSprop 2 0.1 0.1 0.01 0.01 0.005

AMSGrad 1 0.05 0.05 0.05 0.01 0.01
AMSGrad 2 0.05 0.05 0.01 0.02 0.001
AMSGrad 3 0.005 0.005 0.001 0.002 0.001

ADAM 1 0.05 0.05 0.05 0.01 0.01
ADAM 2 0.05 0.05 0.01 0.02 0.001
ADAM 3 0.005 0.005 0.001 0.002 0.001

Random 1 0.001 0.001 0.001 0.001 0.001
Random 2 0.001 0.001 0.0005 0.001 0.0005

Hybrid-Initial 1 0.1 0.1 0.01 0.01 0.001
Hybrid-Initial 2 0.1 0.1 0.01 0.01 0.001
Hybrid-Initial 3 0.1 0.1 0.01 0.01 0.001

Hybrid 1 0.0001 0.0001 0.0001 0.0001 0.0001
Hybrid 2 0.001 0.001 0.0005 0.0005 0.0005
Hybrid 3 0.001 0.001 0.0005 0.0005 0.0005

DF-Hybrid 1 0.001 0.001 0.001 0.001 0.001
DF-Hybrid 2 0.001 0.001 0.001 0.001 0.001
DF-Hybrid 3 0.001 0.001 0.001 0.001 0.001
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APPENDIX C: MOLECULAR GEOMETRIES

TABLE XII. Structure of equilibrium styrene. Coordinates
in Å.

C 1.39295 0.00000 0.00000
C 2.16042 -1.19258 0.01801
C 2.09421 1.23178 -0.01914
C 3.56585 -1.15969 0.05286
C 3.50142 1.27211 0.01795
C 4.23686 0.07503 0.06081
C 0.00000 0.00000 0.00000
C -0.79515 -0.93087 0.54406
H 1.71222 -2.11161 -0.00239
H 1.59237 2.12471 -0.04753
H 4.09818 -2.03273 0.07153
H 3.99086 2.16987 0.01692
H 5.25794 0.10043 0.09503
H -0.46324 0.77112 -0.42775
H -0.43431 -1.72147 1.02278
H -1.78240 -0.84577 0.49296

TABLE XIII. Structure of FNNF transition state. Coordi-
nates in Å.

N 0.49939 -0.44656 -0.59377
N 0.57066 0.41224 0.5639
F -0.39084 0.14563 -1.36959
F -0.39807 -0.12032 1.39157

APPENDIX D: NCJF GAUSSIAN BASIS

The form for the three dimensional Gaussian basis
functions of NCJFs in the main text can equivalently
be written as gj(r) = exp(rTAr − 2BT r + C) where A

is a symmetric matrix defined by 6 parameters, B is a
three-component vector, and C is a single dimensionless
number. We used 16 basis functions for the all parameter
cases of N2, 16 in styrene, and 4 in FNNF. Their com-
plete specifications are presented in Tables XIV-XVIII.
The components Axx, Axy, Axz, Ayy, Ayz, Azz with units
of inverse square bohr are the same for each basis func-
tion within a particular system and are therefore listed
separately in Table XIV. Tables XV-XVIII contain com-
ponents Bx, By, Bz, with units of inverse bohr and C for
each system’s basis functions.

TABLE XIV. Components of the matrix A for our systems.

System Axx Axy Axz Ayy Ayz Azz

Equilibrium N2 -6.9282 0.0 0.0 -6.9282 0.0 -6.9282
Stretched N2 -6.9282 0.0 0.0 -6.9282 0.0 -6.9282
Styrene -0.1 0.0 0.0 -0.1 0.0 -0.1
FNNF -0.1 0.0 0.0 -0.1 0.0 -0.1

TABLE XV. Gaussian components for all parameter equilib-
rium N2.

Basis Function Bx By Bz C

g0 -0.8 -0.8 -0.8 -0.2771
g1 0.8 -0.8 -0.8 -0.2771
g2 -0.8 0.8 -0.8 -0.2771
g3 0.8 0.8 -0.8 -0.2771
g4 -0.8 -0.8 0.8 -0.2771
g5 0.8 -0.8 0.8 -0.2771
g6 -0.8 0.8 0.8 -0.2771
g7 0.8 0.8 0.8 -0.2771
g8 -4.4787 -0.8 -0.8 -11.2500
g9 -2.8787 -0.8 -0.8 -4.5981
g10 -4.4787 0.8 -0.8 -11.2500
g11 -2.8787 0.8 -0.8 -4.5981
g12 -4.4787 -0.8 0.8 -11.2500
g13 -2.8787 -0.8 0.8 -4.5981
g14 -4.4787 0.8 0.8 -11.2500
g15 -2.8787 0.8 0.8 -4.5981

TABLE XVI. Gaussian basis functions for all parameter
stretched N2.

Basis Function Bx By Bz C

g0 -0.8 -0.8 -0.8 -0.2771
g1 0.8 -0.8 -0.8 -0.2771
g2 0.8 0.8 -0.8 -0.2771
g3 0.8 0.8 -0.8 -0.2771
g4 -0.8 -0.8 0.8 -0.2771
g5 0.8 -0.8 0.8 -0.2771
g6 -0.8 0.8 0.8 -0.2771
g7 0.8 0.8 0.8 -0.2771
g8 -5.8015 -0.8 -0.8 -22.7322
g9 -4.2015 -0.8 -0.8 -11.8474
g10 -5.8015 0.8 -0.8 -22.7322
g11 -4.2015 0.8 -0.8 -11.8474
g12 -5.8015 -0.8 0.8 -22.7322
g13 -4.2015 -0.8 0.8 -11.8474
g14 -5.8015 0.8 0.8 -22.7322
g15 -4.2015 0.8 0.8 -11.8474

TABLE XVII. Gaussian basis functions for equilibrium
styrene.

Basis Function Bx By Bz C

g0 -0.2632 0.0 0.0 -0.6929
g1 -0.4083 0.2254 -0.003403 -2.1748
g2 -0.3957 -0.2328 0.003617 -2.1081
g3 -0.6738 0.2191 -0.009989 -5.0220
g4 -0.6617 -0.2404 -0.003392 -4.9561
g5 -0.8007 -0.01418 -0.01149 -6.4137
g6 0.0 0.0 0.0 0.0
g7 0.1503 0.1759 -0.1028 -0.6409
g8 -0.3236 0.3990 0.0004516 -2.6392
g9 -0.3009 -0.4015 0.008982 -2.5184
g10 -0.7744 0.3841 -0.01352 -7.4750
g11 -0.7542 -0.41005 -0.003197 -7.3691
g12 -0.9936 -0.01898 -0.01796 -9.8794
g13 0.08754 -0.1457 0.08083 -0.3543
g14 0.08207 0.3253 -0.19328 -1.4992
g15 0.3368 0.1598 -0.09316 -1.4767
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TABLE XVIII. Gaussian basis functions for FNNF.
Basis Function Bx By Bz C

g0 -0.09437 0.08439 0.1122 -0.2862
g1 -0.1078 -0.07790 -0.1066 -0.2905
g2 0.07386 -0.02752 0.2588 -0.7320
g3 0.07522 0.02274 -0.2630 -0.7533
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