UCLA UCLA Previously Published Works

Title

Parental occupational exposure to diesel engineexhaust in relation to childhood leukaemia andcentral nervous system cancers: a register-basednested case-control study in Denmark 1968–2016

Permalink

https://escholarship.org/uc/item/2rh4k8kb

Authors

Volk, Julie Heck, Julia Schmiegelow, Kjeld <u>et al.</u>

Publication Date

2019-10-14

Data Availability

The data associated with this publication are not available for this reason: No data are available

Peer reviewed

1Abstract

2**Objectives** Using nationwide register data, we investigated the 3association between maternal and paternal perinatal employment in 4industries with exposure to diesel engine exhaust and risk of leukemia and 5central nervous system (CNS) cancers, including certain subtypes.

6Methods Children aged <=19 years old and diagnosed with childhood 7cancer from 1968-2016 were identified in the Danish Cancer Registry and 825 randomly selected cancer free controls per case were matched by age 9and sex. Parents were identified in the Danish Civil Registration System 10and employment histories were retrieved from a nationwide mandatory 11pension fund. The probability of exposure to diesel engine exhaust was 12assessed using a validated job exposure matrix. Conditional logistic 13regression was used for estimation of odds ratios (OR), including their 95% 14confidence intervals (95% CI).

15**Results** Maternal employment in industries with diesel engine exhaust 16exposure was associated with an increased risk of CNS cancers (OR 1.31, 1795% CI 0.99–1.74) and of astrocytoma (OR 1.49, 95% CI 1.04–2.14) in 18offspring. The highest OR for these cancers were seen for mothers with 19highest probability of exposure to diesel engine exhaust. For fathers, ORs 20for cancers under study were close to one. No increased risks of leukemias 21were found for neither mothers nor fathers employed in diesel industries.

22**Conclusions** Risks were increased for CNS and astrocytoma for maternal 23employment in industries with diesel engine exhaust.

1Key terms: Childhood cancer, parental occupational exposure, diesel engine 2exhaust, register-based study, job-exposure matrix

3

4What is already known about this subject?

5Studies have been conducted on primarily paternal exposure to diesel engine 6exhaust and they display discrepant results for childhood leukemia and for central 7nervous system cancers. However, exposure assessment is complicated by 8grouping of various exposure sources and job titles making comparisons difficult.

9What are the new findings?

10This register-based study found that maternal employment in industries with 11exposure to diesel engine exhaust is associated with CNS cancers, in particular 12astrocytoma, and indicates a dose-response relationship for the latter. No 13increases were seen after paternal exposure.

14

$15 \mbox{How}$ might this impact on policy or clinical practice in the foreseeable $16 \mbox{future}?$

17Studies on various effects of exhaust is important and especially a distinction 18between diesel engine exhausts and petrol exhausts, as policy makers may 19introduce regulations on these matters.

20

21

2

3Introduction

4Although childhood cancer is rare, it is estimated that more than 300,000 children 5under the age of 20 were diagnosed with cancer worldwide between 2001-2010.

6(1)

7Little is known about the etiology of childhood cancers, yet, aside from new 8mutations or genetic syndromes, parental occupational exposures are suggested 9as contributing factors (2). Effects from maternal exposures can happen either 10before conception, during pregnancy through direct or indirect exposure of the 11womb or after birth through breastfeeding (3). For paternal exposures, effects 12may take place through epigenetic changes transferred by the sperm (4) or new 13mutations among other mechanisms.

14Diesel engine exhaust consists of a complex mixture of gases and particles, is 15common in several industries and has been classified as a human carcinogen by 16the International Agency for Research on Cancer (IARC) (IARC group 1). IARC 17considered whether diesel exhaust may be a cause of childhood cancers, but a 18conclusion was not reached due to the small number of studies available (5).

19Older studies have primarily investigated exposures arising across industries such 20as hydrocarbons or polycyclic aromatic hydrocarbons (PAH), or industries where 21workers presumably are exposed to exhausts. Larger studies are needed focusing 22on exhausts, which includes a broad mixture of chemicals, and differentiating 1between various types of exhaust. Generally, results are based on few exposed 2cases and display inconsistent results for leukemia and central nervous system 3cancers for both maternal and paternal exposures and employment in relevant 4industries (6-11). While there is a growing literature on ambient exposure to 5traffic pollution and childhood cancer, no studies have reported on diesel 6specifically. Notably, however, studies of leukemia in relation to ambient traffic 7exposure have found higher effect estimates in Europe compared to the US (12), 8and Europe has a much higher proportion of diesel cars registered (in 2008, 58% 9of cars in the EU vs. <3% in the US) (13).

10Retrospective assessment of parental occupational exposures is methodologically 11difficult in epidemiological studies. As population-based occupational information 12is not available in many countries, exposure assessments have most often been 13based on interviews, questionnaires and sometimes proxy informants e.g. 14mothers reporting the fathers' exposure or tasks. Though several studies used 15expert assessment to evaluate exposure, the use of proxy informants may have 16caused recall bias.

17In this relatively large case-control study for these rare cancers, we explored the 18association between exposure to diesel engine exhaust in both mothers and 19fathers and risk of childhood cancer in offspring. We used registry-based data on 20employment history and a job exposure matrix and validated cancer registry-21based diagnoses.

22

1Methods and material

2Cases ascertainment and control selection

3Cancer cases aged <=19 years and diagnosed with leukemia (n= 2,039) and CNS 4cancers (n= 1,141) were identified in the Danish Cancer Registry in the period 51968-2016. Subtypes of childhood cancer (acute lymphoblastic leukemia, acute 6myeloid leukemia, astrocytoma, medulloblastoma), as well as prenatal cancers 7(n= 2,737), thought to have originated in utero [i.e. acute lymphoblastic 8leukemia, Wilms tumor (nephroblastoma), medulloblastoma, neuroblastoma, 9retinoblastoma, and hepatoblastoma] (14, 15) were also included and grouped 10together. The Danish Cancer Registry was established in 1942 and contains 11information on morphology, topography, sex, and age at diagnosis, which is 12subjected to quality control and is updated regularly (16). Diagnosis was based on 13a Danish modification of the International Classification of Diseases, Revision 7 14(ICD-7) before 1978 from reporting forms, a converted version of ICD-7 to ICD-10 15until 2004 and subsequently ICD-10, while morphology and topography was 16recorded according to ICCC-1 and ICCC-3 (16).

17A unique 10-digit personal identifier, the CPR-number, is given to all Danish 18residents in Denmark and is used in all registries in the country. This secures 19correct linkages and avoiding multiple counts of same case. The CPR-numbers are 20confined to the Civil Registration System, which was established in 1968; it 21contains and continuously updates information on parents, children, spouses, and 22vital status. This registry was used to randomly select and match twenty-five 1controls per case based on age, sex and vital status at diagnosis date of the 2matched case (index date) (17).

3

4Parental employment histories

5Through record linkages, parents were identified in the Civil Registration System. 6Employment histories of the mothers and fathers were obtained through the 7Supplementary Pension Fund, including mandatory membership for all employees. 8Records hold information on the employee (CPR-number and name), the start and 9end of each employment, and a unique 8-digit company number. Companies have classified 10been into industry code "Danmarks Statistiks 11Erhvervsgrupperingskode", DSE-77, corresponding to an extended version of the 12International Standard Industrial Classification of all Economic Activities from 131968. All information is kept even if a worker has emigrated or died or the 14company closed (18). Mothers and fathers lacking employment records, e.g. due 15to employment less than 9 hours a week, being self-employed or being 16unemployed, were excluded in order to increase the comparability of included 17parents, i.e. all employees during relevant period of time. For mothers, exposure 18time was restricted to employment periods one year before to one year after birth 19in order to capture both the preconception and lactation periods. For fathers, 20 exposure time was restricted to employment one year before birth to capture the 21period of spermatogenesis. Only parents with employment history during the 22period of interest were included in the study.

2Parental occupational exposure to diesel engine exhaust was assessed by linkage 3between the DSE-77 codes and the Nordic Occupational Cancer Study job 4exposure matrix (NOCCA-JEM) for Denmark (NOCCA-DANJEM). The overall NOCCA-5JEM was developed by a group of Nordic occupational exposure experts based on 6the template of the Finnish job exposure matrix and included the time periods of 71960–1974, 1975–1984 and 1985–1994 (19). The NOCCA-DANJEM was converted 8to the population of Denmark on the basis of measurements of diesel exposures 9obtained in Finland and Denmark and further adapted to Danish conditions.

10The NOCCA-DANJEM was used to examine ever/never employment in industries 11with diesel engine exhaust exposure and probability of exposure, which was 12categorized into two groups: parents having a 5 to 50% probability of exposure in 13jobs with diesel exposure and parents with ≥50% probability of exposure. Further, 14we examined relative risks during the available time periods adjusted to our study 15period while assuming no change in exposure after 1994.

16

17**Covariates**

18Selection of confounders was based on the availability of covariates based on 19which factors were investigated by other papers (20-24). Potential confounders 20included information on socioeconomic status (SES) at the family level, 21reproductive factors (parental age at birth, birth order, and parity), and, 22geography (place of residence at the time of birth of index child), with covariates

1obtained from the Civil Registration System (17). Maternal smoking status, as 2collected at the first midwife consultation, was considered as a confounding 3variable and was obtained from the Medical Birth Registry. This registry was 4established and computerized since 1973 and information was gathered by 5midwives until 1996 and from then on by hospitals. The registry has undergone 6revisions, and therefore maternal smoking status is available from 1991 to 2016 7(25).

8SES was based on the last known job title, primarily available from income tax 9forms and was categorized into six groups corresponding to the definition made 10by the Danish Institute of Social Sciences, including academics or executive 11managers reflecting the highest status group, higher education of intermediate 12duration, higher education of shorter duration, skilled work, unskilled work and 13unknown (26). Categories for place of residence at time of birth of the index child 14included rural, small town, or urban areas in Denmark, while reproductive and 15geographical factors were categorized as follows: maternal and paternal age at 16birth (≤25, 26-28, 29-33, and ≥34), birth order (first, second, and third or later) 17and parity (1, 2, and 3 or more). Lastly, maternal smoking status was categorized 18as no/yes.

19

20**Statistical analyses**

21Conditional logistic regression for matched case-control sets was used to estimate 22the relative risk of childhood cancers in offspring of parents exposed to diesel 1exhaust, using odds ratios (OR) and their corresponding 95% confidence intervals 2(95% CIs). Analyses were conducted separately for mothers and fathers, and we 3additionally examined whether diesel exposure in both parents was related to 4higher risk of selected childhood cancers compared to children who had no 5exposed parents. Analyses were not carried out if the number of exposed cases 6was less than five.

7The impact of potential confounders for examined childhood cancers, including 8SES, reproductive factors and geography, was tested. Various models were 9investigated including models where we removed each factor one by one. Since 10the exposure-outcome association measure changed less than 10% when these 11factors were included, they were not considered confounders and based on this 12we chose to only display the unadjusted model.

13Since smoking was suggested as a risk factor for some childhood cancers (23, 27), 14we conducted a sensitivity analysis exploring the effect of maternal smoking for 15diagnoses with sufficient numbers. Stata 14.2 (StataCorp, College Station, TX, 16USA) was used for all statistical analyses. All p-values were two-sided.

17The Danish Data Protection agency approved this study, ref. No. 2008-41-2639, 182014-41-3174. As only register-based information was used, no personal consent 19was needed.

20

21**Results**

1Regarding population characteristics, cases and controls differed only marginally 2(Table 1).

3For maternal employment in industries with exposure to diesel engine exhaust, a 4modestly increased risk of CNS cancers (OR 1.31, 95% CI 0.99-1.74), particularly 5astrocytoma (OR 1.49, 95% CI 1.04-2.14) was observed in offspring. For other 6subtypes of CNS only marginally increased ORs were observed based on relatively 7few exposed cases. No increases were observed for leukemia or prenatal cancers 8(Table 2). The effects of maternal diesel engine exhaust exposure generally 9seemed to be larger during the first study period of 1968-1974 compared to the 10other study periods in which no effect was found except for astrocytoma 11(Supplementary table 1).

12For fathers, no deviations from unity were observed (Table 3). No clear pattern 13was found when investigating paternal exposure to diesel engine exhaust in the 14three available time periods based on information from the NOCCA-DANJEM 15(Supplementary table 2). When both parents were exposed estimates of selected 16cancers did not differ compared to non-exposed parents (Table 4).

17Results from our sensitivity analysis including maternal smoking did not differ 18significantly compared to risk estimates in our main analysis (results not shown).

19

20**Discussion**

21This nationwide register-based study of childhood cancers diagnosed over almost 2250 years in Denmark showed that maternal occupational exposure to diesel

1exhaust was associated with an increased relative risk of CNS tumors and 2astrocytomas in offspring overall and the highest OR was observed in the group 3with the highest probability of exposure. Also, an indication of a stronger effect of 4maternal employment in our selected industries in the early study period on the 5cancers investigated was found. For fathers, no significant associations were 6observed. Thus, our results are in contrast to the literature on ambient exposure 7to traffic pollution and childhood cancer, which largely has reported increases in 8leukemia with less clear increases in CNS cancers and especially astrocytoma 9though some studies report positive associations (28-31). The ambient traffic 10pollution studies include emissions from all on-road sources which can include 11substantial emissions from non-diesel cars. Hence, our findings suggest that the 12unique constituents of diesel may appear relevant for astrocytomas specifically.

13Although biological mechanisms for transmission of parental exposure to children 14are still poorly understood, perhaps maternal exposure may be of greater 15importance in relation to childhood cancer than paternal exposure since we only 16observed increased risks for maternal exposure rather than when both parents 17were exposed.

18Occupational maternal exposure to diesel exhaust has been linked to specific 19genetic mutations found in cord blood (32, 33). Timing of parental exposure in 20relation to conception and pregnancy has been investigated by several studies (9, 2111, 34, 35). Further, postnatal environmental exposures are also proposed as a 22contributing factor for childhood cancers and in some industries substances

1parents may inadvertently be transferred to the child on clothes, hair etc. These 2different mechanisms may explain the observed cancer susceptibility in children 3of mothers exposed to diesel exhaust in our study. Due to the relatively small 4number of exposed mothers, along with that mothers were unlikely to change jobs 5in the perinatal period, we were not able to distinguish between effects of 6maternal exposure before conception, during gestation, and after birth. However, 7we were able to investigate different study periods defined by the NOCCA-8DANJEM, which indicated that effects were larger for maternal employment in the 9selected industries during the early study period compared to the two later 10periods. Perhaps this can be attributed to protection devises used in the later time 11periods.

12The proportion of Danish women participating in the workforce has remained 13stably high during the study period (36). The ten most common industries for 14female employment with exposure to diesel engine exhaust (Supplementary table 155) were often characterized as being in the lower exposed category (probability of 16exposure under 50%). This distribution of industries remained stable throughout 17the three available JEM-periods. We found the same pattern for paternal 18employment. Since we found increased risks of cancer in off for maternal 19employment not neither for paternal employment nor combined maternal and 20paternal employment, this suggests that perhaps different underlying biological 21mechanisms are at play. Only few studies of epigenetic effect on cancer in 22humans have been conducted, yet it is a hypothesis that remains to be fully

1examined. As only few cases had both maternal and paternal exposure, results 2must be interpreted carefully.

3Several changes may have occurred during the study period. Information on 4benzene contents, which has been linked with childhood AML (37) in diesel during 5the early time period investigated was not available for Denmark. However, 6gasoline contained around 1 % weight/weight benzene during the late 1960's and 7early 1970's in Denmark (38) and may have contained various potentially 8carcinogenic substances such as sulphur or lead. Since exposure to diesel engine 9exhaust and gasoline exhaust may have overlapped, we cannot rule out that 10mothers have also been exposed to benzene and that this contributed to the 11observed results, at least until 1974, after which benzene was largely phased out 12of Danish workplaces. Analyses of maternal employment in relation to JEM periods 13showed increased risks for CNS cancer and astrocytoma before 1975 and and 14 lower point estimates observed after 1975, indicating that certain substances in 15the former period may contribute to these findings. However, we would not have 16 expected this to lead to an increased risk of CNS cancers as seen, but rather 17leukemia cases.

18

19To our knowledge, no other studies have investigated various time periods in 20relation to maternal employment.

21Previous studies on maternal perinatal exposure to diesel engine exhaust are few 22and display inconsistent results and they have been conducted on a relatively

1small number of cancers and exposed mothers (6, 8, 10, 11). More studies have 2examined fathers employed in occupations and industries with exposure to diesel 3engine exhausts in relation to both leukemia and CNS cancer risk in offspring but 4they also show inconsistent results (7, 8, 35, 39-41), yet some larger studies had 5increased ORs (6, 11, 34, 42). The largest studies were performed in England from 61962–2006 using exposure assessment from job titles in birth registration forms 7(43, 44) and did not find a positive association for fathers with leukemia or overall 8CNS cancers, which is consistent with our findings. Several other previous studies 9typically used interviews and self-administered questionnaires when assessing 10 exposure to diesel exhaust in parents, which might be prone to recall or 11participation biases, with recall bias potentially causing exposure misclassification 12 leading to an overestimation of the true association (6, 9, 10, 34, 41) yet some 13studies evaluated exposure using expert assessment or JEMs. In addition, studies 14covered various grouping of job titles, industries or exposures and also 15 investigated different time periods further complicating comparisons.

16

17However, there are limitations in our study. As laws on maternity leave from 1960 18gave all women the right to leave work up to eight weeks prior to births, this may 19mean that we, at least for a subgroup of mothers, only investigated the potential 20effects of employment in diesel engine exhaust industries in the first two-thirds of 21pregnancy. The period of leave postnatally changed during the study period.

1Since paternity leave is granted after birth, this would not have affected results in 2our study (36).

3Further, NOCCA-DANJEM assumes uniform exposure across industries and cannot 4determine individual exposures, which might have induced exposure 5misclassification leading to an attenuation of the OR towards the null. Further, we 6assumed that exposure was the same throughout the study period, which might 7have led to exposure misclassification.

8The composition of exhaust depends, among other parameters, on the types of 9engines, the types of vehicles and the technologies controlling the composition of 10the exhaust, which has all changed during the study period (5). Yet it was not 11 possible to pinpoint exact times for implementation of changes possibly affecting 12exposures in order to conduct further sub analyses, as turnover of on-road 13vehicles may take many years. We did, however, use the time periods specified in 14the NOCCA-DANJEM as a proxy for changes in exposures during the study period. 15In addition, a distinction between diesel and gasoline exhaust exposure was not 16possible and exposures likely overlap. Lastly, many different occupations are 17 exposed to diesel engine exhaust at different levels, and protective factors such 18as air filters and wind direction also influence the level of exposure, further 19complicating exposure assessment and potentially introducing misclassification 20(5). Further, individual domestic and environmental exposure to diesel exhaust 21 could not be accounted for, which may have induced bias if cases live in locations 22 with higher or lower ambient exposures than controls. In addition, ambient air

1pollution may affect exposure but home air pollution exposure information was 2not available for us to investigate further. Nevertheless, these effects may have 3been limited; when controlling for our geography variable as a proxy for domestic 4exposure at birth, risks were not affected. Also, a Danish study investigating air 5pollution found increased risks of Hodgkin lymphoma but no other types of 6childhood cancers, thus supporting our results(29). It it also possible that 7unknown factors have impacted results why it would have been interesting to 8perform a neughbourhood cluster analysis, but data was not available for this.

9Still, there are several strengths to our study. We were able to identify a large 10number of childhood cancer cases from the Danish Cancer Registry. In addition, 11we could also identify a relatively large percentage of both mothers (100%) and 12fathers (99.4%) and their full job history using updated nationwide registries with 13high coverage and validity (16-18). Further, using a validated JEM this is one of 14the first studies to have specifically targeted diesel exposure in both parents 15combined when examining associated childhood cancers. By prospective 16collection of occupational data linked to the JEM, recall bias was avoided. Lastly, 17the proportion of women employed in the Danish workforce has remained stably 18high since the 1960's and 1970's with more than 70% employed outside the 19home.

20

21 Conclusion

1Policymakers concerned about the health and environmental effects of 2occupational exposures can shape policies encouraging or discouraging the use of 3diesel vehicles. Hence it remains important in research studies to differentiate the 4risks incurred from diesel exposures from the risks from gasoline. Our study does 5lend some support to the hypothesis that maternal exposure to diesel engine 6exhaust may increase the risk of CNS cancers and the specific subtype 7astrocytoma in offspring. However, large epidemiological studies exploring the 8association between paternal and especially maternal exposure to diesel exhaust 9and childhood cancers are warranted, including studies of environmental models 10that can differentiate the two exposures.

11

12Conflicts of interest

13None declared.

14

15**Contributors**

16JV performed programming of data, analyses, participated in interpretation of 17results and wrote the manuscript. KS participated in the interpretation of results 18and critically reviewed the manuscript. JEH was a key participant in the design of 19the study, interpretation of results and critical review of the manuscript. JH was a 20key participant in designing the study, collection of data, programming of data, 21interpretation of results, and supervised the writing of the manuscript.

1Acknowledgements

2This work was partly supported by the Danish Cancer Society (74150007-FU) and 3US National Institutes of Health (R03ES021643). The authors would like to thank 4Julie Elbæk Pedersen for her useful comments to the manuscript.

1**References**

2

31. Steliarova-Foucher E, Colombet M, Ries LAG, Moreno F, Dolya A, Bray F, et 4al. International incidence of childhood cancer, 2001-10: a population-based 5registry study. Lancet Oncol. 2017;18(6):719-31.

62. Anderson LM, Diwan BA, Fear NT, Roman E. Critical windows of exposure for 7children's health: cancer in human epidemiological studies and neoplasms in 8experimental animal models. Environ Health Perspect. 2000;108 Suppl 3:573-94.

93. Lightfoot TJ, Roman E. Causes of childhood leukaemia and lymphoma. 10Toxicol Appl Pharmacol. 2004;199(2):104-17.

114. Braun JM, Messerlian C, Hauser R. Fathers Matter: Why It's Time to Consider 12the Impact of Paternal Environmental Exposures on Children's Health. Curr 13Epidemiol Rep. 2017;4(1):46-55.

145. Humans IWGotEoCRt. Diesel and Gasoline Engine Exhausts and Some 15Nitroarenes. Iarc Monographs on the Evaluation of Carcinogenic Risks to Humans. 16IARC monographs on the evaluation of carcinogenic risks to humans / World 17Health Organization, International Agency for Research on Cancer. 2014;105:9-18699.

196. McKinney PA, Fear NT, Stockton D. Parental occupation at periconception: 20findings from the United Kingdom Childhood Cancer Study. Occup Environ Med. 212003;60(12):901-9.

227. Feychting M, Plato N, Nise G, Ahlbom A. Paternal occupational exposures 23and childhood cancer. Environ Health Perspect. 2001;109(2):193-6.

248. Hemminki K, Saloniemi I, Salonen T, Partanen T, Vainio H. Childhood cancer 25and parental occupation in Finland. J Epidemiol Community Health. 1981;35(1):11-265.

279. Reid A, Glass DC, Bailey HD, Milne E, Armstrong BK, Alvaro F, et al. Parental 28occupational exposure to exhausts, solvents, glues and paints, and risk of 29childhood leukemia. Cancer causes & control : CCC. 2011;22(11):1575-85.

3010. Huoi C, Olsson A, Lightfoot T, Roman E, Clavel J, Lacour B, et al. Parental 31occupational exposure and risk of childhood central nervous system tumors: a 32pooled analysis of case-control studies from Germany, France, and the UK. Cancer 33causes & control : CCC. 2014;25(12):1603-13.

3411. Peters S, Glass DC, Reid A, de Klerk N, Armstrong BK, Kellie S, et al. Parental 35occupational exposure to engine exhausts and childhood brain tumors. Int J 36Cancer. 2013;132(12):2975-9.

3712. Filippini T, Heck JE, Malagoli C, Del Giovane C, Vinceti M. A review and meta-38analysis of outdoor air pollution and risk of childhood leukemia. J Environ Sci 39Health C Environ Carcinog Ecotoxicol Rev. 2015;33(1):36-66.

4013. Cames M, Helmers E. Critical evaluation of the European diesel car boom -41global comparison, environmental effects and various national strategies. 42Environmental Sciences Europe. 2013;25(1):15.

4314. von Schweinitz D. Neonatal liver tumours. Semin Neonatol. 2003;8(5):403-4410.

115. Marshall GM, Carter DR, Cheung BB, Liu T, Mateos MK, Meyerowitz JG, et al. 2The prenatal origins of cancer. Nat Rev Cancer. 2014;14(4):277-89.

316. Gjerstorff ML. The Danish cancer registry. Scand J Public Health. 2011;39(7 4suppl):42-5.

517. Pedersen CB, Gøtzsche H, Møller JØ, Mortensen PB. The Danish civil 6registration system. Dan Med Bull. 2006;53(4):441-9.

718. Hansen J, Lassen CF. The supplementary pension fund register. Scand J 8Public Health. 2011;39(7 suppl):99-102.

919. Kauppinen T, Heikkila P, Plato N, Woldbaek T, Lenvik K, Hansen J, et al. 10Construction of job-exposure matrices for the Nordic Occupational Cancer Study 11(NOCCA). Acta Oncol. 2009;48(5):791-800.

1220. Dockerty JD, Draper G, Vincent T, Rowan SD, Bunch KJ. Case-control study of 13parental age, parity and socioeconomic level in relation to childhood cancers. 14International journal of epidemiology. 2001;30(6):1428-37.

1521. Contreras ZA, Hansen J, Ritz B, Olsen J, Yu F, Heck JE. Parental age and 16childhood cancer risk: A Danish population-based registry study. Cancer 17Epidemiol. 2017;49:202-15.

1822. Huang Y, Huang J, Lan H, Zhao G, Huang C. A meta-analysis of parental 19smoking and the risk of childhood brain tumors. PloS one. 2014;9(7):e102910. 2023. Momen NC, Olsen J, Gissler M, Li J. Exposure to maternal smoking during 21pregnancy and risk of childhood cancer: a study using the Danish national 22registers. Cancer causes & control : CCC. 2015.

2324. Schuz J, Luta G, Erdmann F, Ferro G, Bautz A, Simony SB, et al. Birth order 24and risk of childhood cancer in the Danish birth cohort of 1973-2010. Cancer 25causes & control : CCC. 2015;26(11):1575-82.

2625. Knudsen LB, Olsen J. The Danish Medical Birth Registry. Dan Med Bull. 271998;45(3):320-3.

2826. Hansen EJ. Socialgrupper i Danmark Socialforskningsinstituttet The Danish 29National Institute of Social Research 1984.

3027. Heck JE, Contreras ZA, Park AS, Davidson TB, Cockburn M, Ritz B. Smoking 31in pregnancy and risk of cancer among young children: A population-based study. 32Int J Cancer. 2016;139(3):613-6.

3328. Heck JE, Wu J, Lombardi C, Qiu J, Meyers TJ, Wilhelm M, et al. Childhood 34cancer and traffic-related air pollution exposure in pregnancy and early life. 35Environ Health Perspect. 2013;121(11-12):1385-91.

3629. Raaschou-Nielsen O, Hertel O, Thomsen BL, Olsen JH. Air pollution from 37traffic at the residence of children with cancer. Am J Epidemiol. 2001;153(5):433-3843.

3930. Danysh HE, Mitchell LE, Zhang K, Scheurer ME, Lupo PJ. Traffic-related air 40pollution and the incidence of childhood central nervous system tumors: Texas, 412001-2009. Pediatr Blood Cancer. 2015;62(9):1572-8.

4231. Lavigne E, Belair MA, Do MT, Stieb DM, Hystad P, van Donkelaar A, et al. 43Maternal exposure to ambient air pollution and risk of early childhood cancers: A 44population-based study in Ontario, Canada. Environ Int. 2017;100:139-47. 132. Shu XO, Perentesis JP, Wen W, Buckley JD, Boyle E, Ross JA, et al. Parental 2exposure to medications and hydrocarbons and ras mutations in children with 3acute lymphoblastic leukemia: a report from the Children's Oncology Group. 4Cancer Epidemiol Biomarkers Prev. 2004;13(7):1230-5.

533. Ho SM, Johnson A, Tarapore P, Janakiram V, Zhang X, Leung YK. 6Environmental epigenetics and its implication on disease risk and health 7outcomes. ILAR J. 2012;53(3-4):289-305.

834. Miligi L, Benvenuti A, Mattioli S, Salvan A, Tozzi GA, Ranucci A, et al. Risk of 9childhood leukaemia and non-Hodgkin's lymphoma after parental occupational 10exposure to solvents and other agents: the SETIL Study. Occup Environ Med. 112013;70(9):648-55.

1235. van Steensel-Moll HA, Valkenburg HA, van Zanen GE. Childhood leukemia 13and parental occupation. A register-based case-control study. Am J Epidemiol. 141985;121(2):216-24.

1536. Kvinder og mænd i 100 år - fra ligeret mod ligestilling. Danmarks Statistik: 162015.

1737. Loomis D, Guyton KZ, Grosse Y, El Ghissassi F, Bouvard V, Benbrahim-Tallaa 18L, et al. Carcinogenicity of benzene. Lancet Oncol. 2017;18(12):1574-5.

1938. Lizzi Andersen KB, Christian Grøn. Sammensætning af olie og benzin 20Kemiske profiler til brug for risikovurdering. DHI – Institut for Vand og Miljø for 21Miljøstyrelsen, 2008.

2239. Hakulinen T, Salonen T, Teppo L. Cancer in the offspring of fathers in 23hydrocarbon-related occupations. Br J Prev Soc Med. 1976;30(2):138-40.

2440. Peters S, Glass DC, Greenop KR, Armstrong BK, Kirby M, Milne E, et al. 25Childhood brain tumours: associations with parental occupational exposure to 26solvents. Br J Cancer. 2014;111(5):998-1003.

2741. Metayer C, Scelo G, Kang AY, Gunier RB, Reinier K, Lea S, et al. A task-based 28assessment of parental occupational exposure to organic solvents and other 29compounds and the risk of childhood leukemia in California. Environ Res. 302016;151:174-83.

3142. Perez-Saldivar ML, Ortega-Alvarez MC, Fajardo-Gutierrez A, Bernaldez-Rios 32R, Del Campo-Martinez Mde L, Medina-Sanson A, et al. Father's occupational 33 exposure to carcinogenic agents and childhood acute leukemia: a new method to 34 assess exposure (a case-control study). BMC Cancer. 2008;8:7.

3543. Keegan TJ, Bunch KJ, Vincent TJ, King JC, O'Neill KA, Kendall GM, et al. Case-36control study of paternal occupation and childhood leukaemia in Great Britain, 371962-2006. Br J Cancer. 2012;107(9):1652-9.

3844. Keegan TJ, Bunch KJ, Vincent TJ, King JC, O'Neill KA, Kendall GM, et al. Case-39control study of paternal occupation and social class with risk of childhood central 40nervous system tumours in Great Britain, 1962-2006. Br J Cancer. 412013;108(9):1907-14.

Tables

Table	1	Characteristics	of	the	populatio	n

				Leuke	mia						Acute ly	/mpho	blastic le	euken	nia	
		Мо	thers			Fat	hers			Mo	others			Fa	thers	
	Ca	ses	Cont	rols	Cas	ses	Contr	ols	Ca	ses	Contr	ols	Ca	ses	Contr	rols
		=	n-		n-		n=			=	n=			=	n=	
	1,6	673	39,1	L07	1,8	11	44,2	55	1,3	304	30,1	85	1,3	897	34,0	22
	n	%	n	%	n	%	n	%	n	%	n	%	n	%	Ν	%
Child's sex																
Воу			21,93		1,00	55.	24,62	55.	74	57.	17,45	57.	79	57.	19,54	57.
	922	55.1	0	56.1	4	4	7	6	5	1	6	8	9	2	5	4
Girl			17,17			44.	19,62	44.	55	42.	12,72	42.	59	42.	14,47	42.
	751	44.9	7	43.9	807	6	8	4	9	9	9	2	8	8	7	6
Child's age																
at																
diagnosis			10 77				10.00	50		~ 4	10.11	~ 4	50		1 4 4 7	
0-4	720	F 2 7	16,77	F1 0	774	51.	18,99	52.	44	34.	10,11	34.	59	51.	14,43	51.
5.0	728	52.7	8	51.9	774	8	7	0	0	4	9	2	1	6	0	8
5-9	321	23.2	7 6 7 0	23.8	358	23. 9	8,595	23. 5	52 9	41. 4	12,31 5	41. 6	31 0	27. 1	7,482	26. 8
10-14	521	23.2	7,679	23.0	220	9 13.	0,595	5 13.	18	4 14.	5	0 14.	14	12.	7,402	。 12.
10-14	186	13.5	4,233	13.1	199	15. 3	4,792	15.	7	14. 6	4,242	14. 3	7	12. 8	3,497	12. 5
15-19	100	13.5	4,255	13.1	199	11.	4,792	11.	, 12	0	4,242	10.	/	0	5,497	J
15-19	146	10.6	3,622	11.2	164	0	4,160	4	3	9.6	2,955	0	97	8.5	2,462	8.8
Birth order	140	10.0	5,022	11.2	104	U	4,100	-	5	5.0	2,555	0	57	0.5	2,402	0.0
First			17,91			44.	19,17	43.	28	22.		20.	62	44.	14,73	43.
	780	46.6	9	45.8	796	0	8	3	7	0	6,055	1	4	7	5	3
Second			14,59			38.	16,87	38.	66	50.	15,42	51.	52	37.	12,95	38.
	621	37.1	0	37.3	689	0	6	1	0	6	9	1	1	3	7	1
Third or later					_	18.		18.	35	27.		28.	25	18.		18.
	272	16.3	6,598	16.9	326	0	8,201	5	7	4	8,701	8	2	0	6,330	6
Family																

socioecono mic status Academics Middle education Shorter education Skilled Unskilled Unskilled Unknown Parental age at birth of the	167 234 226 430 234 382	10.0 14.0 13.5 25.7 14.0 22.8	3,900 5,554 5,909 9,667 5,384 8,693	10.0 14.2 15.1 24.7 13.8 22.2	172 244 231 469 274 421	9.5 13. 5 12. 8 25. 9 15. 1 23. 2	4,412 5,748 6,145 11,20 6 6,583 10,16 1	10. 0 13. 0 13. 9 25. 3 14. 9 23. 0	13 7 18 7 17 6 33 4 18 3 28 7	10. 5 14. 3 13. 5 25. 6 14. 0 22. 0	3,018 4,266 4,571 7,463 4,166 6,701	10. 0 14. 1 15. 1 24. 7 13. 8 22. 2	13 7 19 3 18 1 36 1 21 0 31 5	9.8 13. 8 13. 0 25. 8 15. 0 22. 5	3,417 4,391 4,739 8,604 5,033 7,838	10. 0 12. 9 13. 9 25. 3 14. 8 23. 0
index child <=25 26-28 29-33 >=34 Childs birthplace	388 397 560 328	23.2 23.7 33.5 19.6	10,08 6 8,985 12,93 3 7,103	25.8 23.0 33.1 18.2	229 343 636 603	12. 6 18. 9 35. 1 33. 3	6,250 8,392 15,31 4 14,29 9	14. 1 19. 0 34. 6 32. 3	29 9 30 9 43 6 26 0	22. 9 23. 7 33. 4 19. 9	7,678 6,922 10,07 1 5,514	25. 4 22. 9 33. 4 18. 3	16 2 26 4 50 5 46 6	11. 6 18. 9 36. 1 33. 4	4,743 6,465 11,74 5 11,06 9	13. 9 19. 0 34. 5 32. 5
Urban Small town Rural Number of children 1	525 523 625 365	31.431.337.421.8	12,76 5 12,32 8 14,01 4 8,079	32.6 31.5 35.8 20.7	584 568 659	32. 2 31. 4 36. 4	14,61 7 14,31 2 15,32 6	33. 0 32. 3 34. 6	41 9 40 3 48 2 28 7	32. 1 30. 9 37. 0 22. 0	9,766 9,499 10,92 0 6,055	32. 4 31. 5 36. 2 20. 1	46 5 43 0 50 2	33. 3 30. 8 35. 9	11,13 5 10,98 1 11,90 6	32. 7 32. 3 35. 0

2	849	50.7	19,69 9	50.4	66 0	50. 6	15,42 9	1
3 or more	450	77 4	11,32	20.0	35	27.	0 701	28.
Maternal smoking during pregnancy 1991-2015	459	27.4	9	29.0	1	4	8,701	8
No			13,69		47	74.	10,68	75.
	601	75.1	1	75.3	5	9	3	2
Yes					13	20.		20.
	164	20.5	3,683	20.2	0	5	2,869	2
Unknown	35	4.4	818	4.5	29	4.6	652	4.6

Table 1 Characteristics of the population

Table I Chara	acterist	ics of th														
				e myeloi	<u>d leuke</u> m							C	:NS			
		Mo	thers			Fat	thers				others				athers	
	Ca	ses	Cont	rols	Cas	ses	Contr	ols	Ca	ses	Contr	ols	Ca	ses	Contr	ols
	n	=	n	=	n=	=	n=	:	n	=	n=	:	n	=	n=	=
	2	64	6,1	71	28	7	6,95	57	93	26	22,0	64	1,0	003	24,7	80
	n	%	n	%	n	%	Ν	%	n	%	n	%	n	%	n	%
Child's sex																
Воу						47.		46.	49	53.	11,70	53.	53	53.	13,14	53.
- 2	254	96.2	5,876	95.2	135	0	3,239	6	5	5	3	0	4	2	9	1
Girl	_		- /			53.	-,	53.	43	46.	10,36	47.	46	46.	11,63	46.
	10	3.8	295	4.8	152	0	3,718	4	1	5	1	0	9	8	1	9
Child's age	-			-	_	-	-, -			_		-	-	-		-
at																
diagnosis																
0-4						48.		49.	27	36.		34.	28	34.		34.
-	117	46.2	2,610	44.0	118	6	2,899	3	7	4	6,222	2	7	8	7,009	3
5-9			,			14.	,	13.	22	29.	- /	30.	25	30.		30.
	34	13.4	920	15.5	34	0	813	8	7	9	5,559	5	2	5	6,201	3
10-14						16.		16.	14	18.		19.	15	19.	- / -	19.
	43	17.0	1,019	17.2	41	9	949	1	3	8	3,571	6	9	3	3,994	5
15-19						20.		20.	11	14.	- / -	15.	12	15.	- /	15.
	59	23.3	1,388	23.4	50	6	1,223	8	3	9	2,851	7	7	4	3,235	8
Birth order																
First						40.		43.	44	47.	10,19	46.	45	45.	10,87	43.
	116	43.9	2,851	46.2	117	8	3,049	8	0	5	8	2	2	1	Ó	9
Second						41.		38.	34	37.		37.	38	38.		38.
	106	40.2	2,330	37.8	118	1	2,664	3	8	6	8,257	4	5	4	9,474	2
Third or later						18.		17.	13	14.		16.	16	16.		17.
	42	15.9	990	16.0	52	1	1,244	9	8	9	3,609	4	6	6	4,436	9
Family																
socioecono																
mic status																
Academics									10	11.		10.	11	11.		
	24	9.1	609	9.9	26	9.1	669	9.6	5	3	2,226	1	1	1	2,421	9.8
Middle	40	15.2	881	14.3	41	14.	934	13.	12	13.	3,268	14.	12	12.		
	-			-	·	-		-	_		-,		_	-		

education						3		4	7	7		8	8		8	3,374	13. 6
Shorter education						10.		14.	15	16.		16.	15	5	15.		15.
Skilled	34	12.9	949	15.4	30	5 23.	977	0 25.	3 23	5 25.	3,626	4 27.	9 20		9 26.	3,731	1 27.
Unskilled	58	22.0	1,562	25.3	68	7 16.	1,778	6 15.	5 12	4 13.	5,973	1 13.	2 14		1 14.	6,851	6 15.
Unknown	37	14.0	858	13.9	46	0 26.	1,071	4 22.	0 18	0 20.	3,038	8 17.	3 20		3 19.	3,803	3 18.
Parental	71	26.9	1,312	21.3	76	5	1,528	0	6	1	3,933	8	0		9	4,600	6
age at birth of the																	
index child <=25	60	00 F	1 600	07.4		15.	1 000	14.	26	28.	6 1 0 7	28.	15		15.	2 7 4 0	15.
26-28	62 60	23.5 22.7	1,690	27.4 23.7	44 53	3 18. 5	1,023	7 19.	5 24 2	6 26.	6,187	0 23.	2	L	2 20.	3,740	1 20.
29-33	86	32.6	1,460 1,953	31.6	92	32. 1	1,355 2,436	5 35. 0	2 27 6	1 29. 8	5,254 7,062	8 32. 0	0 37 5	7	9 37. 4	5,052 8,703	4 35. 1
>=34	56	21.2	1,068	17.3	98	34. 1	2,143	30. 8	14 3	15. 4	3,561	16. 1	20 6	5	- 26. 5	7,285	29. 4
Childs birthplace	50	21.2	1,000	17.5	50	-	2,113	Ũ	5	•	3,301	-	Ū		5	7,200	·
Urban	75	28.4	2,045	33.1	82	28. 6	2,340	33. 6	31 7	34. 2	6,997	31. 7	33 8		33. 7	7,968	32. 2
Small town	87	33.0	1,973	32.0	94	32. 8	2,260	32. 5	28 5	30. 8	7,234	32. 8	31 8		31. 7	8,239	33. 2
Rural	102	38.6	2,153	34.9	111	38. 7	2,357	33. 9	32 4	35. 0	7,833	35. 5	34 7		34. 6	8,573	34. 6
Number of children									10	~~							
1 2	55	20.8	1,348	21.8					18 6 46	20. 1 49.	3,921 11,33	17. 8 51.					
2 3 or more	135 74	51.1 28.0	2,998 1,825	48.6 29.6					40 1 27	49. 8 30.	0 6,813	31. 4 30.					

Maternal smoking during pregnancy 1991-2015					9		1		9	
No					26	6	70.		72.	
	86	74.8	1,968	75.5	8		3	6,300	8	
Yes						2	23.		22.	
	23	20.0	521	20.0	89	9	4	1,956	6	
Unknown	6	5.2	116	4.5	24	4 (6.3	401	4.6	

Table 1 Characteristics of the population

				Astrocy	/toma							Epend	ymoma			
		Мо	thers			Fat	hers			Mo	others			Fa	thers	
	Ca	ses	Cont	rols	Cas	ses	Contr	ols	Ca	ses	Contr	ols	Ca	ses	Contr	ols
	n=	503	n	=	n=5	648	n=	:	n	=	n=	:	n=	142	n=	
			12,2	210			13,6	44	136		3,11	.2			3,49	90
	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%
C hild's sex Boy						48.		48.		58.		56.		58.		56
JOy	244	48.5	5,903	48.3	263	40. 0	6,578	40. 2	79	1	1,766	JU. 7	83	5	1,986	9
Girl	244	40.5	5,905	40.5	205	52.	0,578	2 51.	19	41.	1,700	, 43.	05	41.	1,900	43
וווכ	259	51.5	6,307	51.7	285	0	7,066	8	57	9	1,346	4J. 3	59	5	1,504	45
Child's age	235	51.5	0,507	51.7	205	0	7,000	0	57	9	1,540	J	55	5	1,504	т
at																
diagnosis																
)-4						29.		29.		46.		46.		54.		53
	131	28.2	2,965	26.1	136	6	3,302	1	59	5	1,339	6	64	7	1,538	2
5-9						32.		31.		22.		21.		17.		17
	150	32.3	3,647	32.1	147	0	3,593	7	29	8	628	8	21	9	494	1
10-14						21.		21.		16.		16.		12.		12
	102	21.9	2,675	23.5	97	1	2,474	8	21	5	459	0	14	0	370	8
15-19						17.		17.		14.		15.		15.		16
	82	17.6	2,082	18.3	79	2	1,965	3	18	2	450	6	18	4	487	9
Birth order						. –										
irst					o / -	45.		43.	~~	50.		46.	~ ~	46.		45
C	237	47.1	5,639	46.2	247	1	5,980	8	68	0	1,454	7	66	5	1,571	0
Second	100	77 4	4 5 4 0	ר דר	204	37.	E 100	38.	16	33.	1 166	37.	FO	35.	1 226	38
Third or later	188	37.4	4,548	37.2	204	2 17.	5,196	1 18.	46	8 16.	1,166	5 15.	50	2 18.	1,326	0 17
ning of later	78	15.5	2,023	16.6	97	17. 7	2,468	18.	22	10. 2	492	15. 8	26	18. 3	593	0
amily	70	10.0	2,023	10.0	51	'	2,400	Т	22	2	432	0	20	J	797	0
ocioecono																
nic status																
cademics										11.		10.		12.		10
	52	10.3	1,225	10.0	51	9.3	1,333	9.8	16	8	330	6	18	7	358	3
Middle	67	13.3	1,788	14.6	69	12.	1,835	13.	21	15.	502	16.	19	13.	496	14
-	-		,	-		-	,	-	-			-				-

education Shorter education Skilled Unskilled Unknown Parental age at birth	89 120 65 110	17.7 23.9 12.9 21.9	2,027 3,274 1,687 2,209	16.6 26.8 13.8 18.1	95 137 79 117	6 17. 3 25. 0 14. 4 21. 4	2,065 3,683 2,109 2,619	4 15. 1 27. 0 15. 5 19. 2	23 36 12 28	4 16. 9 26. 5 8.8 20. 6	509 812 439 520	1 16. 4 26. 1 14. 1 16. 7	24 40 14 27	4 16. 9 28. 2 9.9 19. 0	527 970 535 604	2 15. 1 27. 8 15. 3 17. 3
of the index child																
<=25	138	27.4	3,374	27.6	78	14. 2	2,020	14. 8	43	31. 6	928	29. 8	22	15. 5	527	15. 1
26-28	134	26.6	2,917	23.9	104	19. 0	2,765	20. 3	36	26. 5	719	23. 1	33	23. 2	731	20. 9
29-33	155	30.8	3,927	32.2	215	39. 2	4,822	35. 3	37	27. 2	1,007	32. 4	56	39. 4	1,236	35. 4
>=34	76	15.1	1,992	16.3	151	27. 6	4,037	29. 6	20	14. 7	458	14. 7	31	21. 8	996	28. 5
Childs birthplace																
Urban	174	34.6	3,873	31.7	186	33. 9	4,374	32. 1	42	30. 9	1,017	32. 7	43	30. 3	1,165	33. 4
Small town	153	30.4	3,918	32.1	173	31. 6	4,459	32. 7	44	32. 4	1,049	33. 7	47	33. 1	1,188	34. 0
Rural	176	35.0	4,419	36.2	189	34. 5	4,811	35. 3	50	36. 8	1,046	33. 6	52	36. 6	1,137	32. 6
Number of children																
1	97	19.3	1,981	16.2					36	26. 5	702	22. 6				
2	245	48.7	6,351	52.0					64	47. 1	1,520	48. 8				
3 or more	161	32.0	3,878	31.8					36	26. 5	890	28. 6				
Maternal																

smoking during pregnancy No	151	60.0	3,639	73 5	36	70. 6	783	73.	
Yes	101	09.9	3,039	13.5	50	23.	105	22.	
	51	23.6	1,071	21.6	12	5	236	0	
Unknown	14	6.5	239	4.8	3	5.9	52	4.9	

Table 1	Characteristics	of the p	population
---------	-----------------	----------	------------

				Medullo	blastor							Prenata	al cancers			
		Mot	hers			Fat	thers			Мо	thers			Fat	hers	
	Cas		Cont			ases		trols	Cas		Contr		Case		Cont	
	n=2	222	n= 5,1		n=	-242		= 364	n= 2,2		n= 52,3		n= 2,44		n= 59,3	
	n	%	n	%	n	%	n	%	n	%	n	%	n	%	n	%
Child's sex		70	11	70		70		70		70		70	11	70	11	70
Boy		63.	3,22	62.	15		3,65		1,27	57.	29,85	57.		56.	33,60	56
Girl	141	5 36.	8 1,95	3 37.	2	62.8	7 2,20	62.4	9	0 43.	8 22,49	0 43.	1,393	9 43.	7 25,71	7 43
	81	5	6	7	90	37.2	7	37.6	963	0	9	0	1,055	1	3	3
Child's age at diagnosis													·			
)-4		36.	1,63	34.			1,85		1,19	59.	27,60	58.		61.	31,32	61
7-4	75	8	3	2	75	39.1	7	38.9	5	0	27,00	4	1,289	8	3	8
5-9	, 5	39.	1,91	40.		5511	, 1,76	5015	5	24.	11,52	24.	1,200	22.	11,49	22
-	80	2	6	2	70	36.5	0	36.9	486	0	9	4	476	8	6	7
10-14		15.		15.						10.		10.				
	32	7	740	5	30	15.6	702	14.7	218	8	4,993	6	199	9.5	4,719	9.
15-19				10.												
	17	8.3	481	1	17	8.9	451	9.5	125	6.2	3,133	6.6	122	5.8	3,117	6.
Birth order																
First	110	49.	2,38	45.	11	45.0	2,53	42.2	1,05	46.	24,01	45.	1 0 7 0	44.	25,67	4
Eacond	110	5 40.	2 1,94	9 37.	1 10	45.9	7	43.3	1	9 37.	5	9 37.	1,079	1 38.	0 22,67	3
Second	89	40. 1	1,94	57. 6	3	42.6	2,25 9	38.5	834	2 2	19,49 7	2	936	2 2 2	22,07	2
<i>Fhird or later</i>	09	10.	/	16.	J	42.0	1,06	20.2	004	15.	,	16.	900	17.	10,97	18
	23	4	855	5	28	11.6	8	18.2	357	9	8,845	9	433	7	7	
⁻ amily socioecono nic status		·		-			-			2	0,010	-			·	-
Academics		14.		10.						10.		10.		10.		
	32	4	516	0	35	14.5	553	9.4	238	6	5,254	0	247	1	5,879	9
Middle	30	13.	732	14.	29	12.0	785	13.4	323	14.	7,405	14.	335	13.	7,669	1

education Shorter education Skilled Unskilled Unknown Parental age at birth of the	33 55 31 41	5 14. 9 24. 8 14. 0 18. 5	828 1,43 2 694 982	1 16. 0 27. 6 13. 4 18. 9	32 60 38 48	13.2 24.8 15.7 19.8	865 1,66 3 876 1,12 2	14.8 28.4 14.9 19.1	299 562 307 513	4 13. 3 25. 1 13. 7 22. 9	8,019 13,04 5 7,065 11,56 9	1 15. 3 24. 9 13. 5 22. 1	317 628 366 555	7 12. 9 25. 7 15. 0 22. 7	8,346 15,10 9 8,784 13,53 3	9 14. 1 25. 5 14. 8 22. 8
index child <=25		77	1 40	27.						24	12 52	25		10		14
<=25 26-28	62 59	27. 9 26. 6	1,42 2 1,25 3	27. 4 24. 2	1 12 2	0.4 50.4	46 2,44 3	0.8 41.7	543 519	24. 2 23. 1	13,53 9 11,97 0	25. 9 22. 9	304 473	12. 4 19. 3	8,415 11,29 4	14. 2 19. 0
29-33	65	29. 3	1,63 2	31. 5	78	32.2	2,20 2	37.6	749	33. 4	17,19 5	32. 8	879	35. 9	20,43 9	34. 5
>=34	36	16. 2	877	16. 9	41	16.9	1,17 3	20.0	431	19. 2	9,653	18. 4	792	32. 4	19,17 2	32. 3
Childs birthplace																
Urban	73	32. 9	1,60 4	30. 9	77	31.8	1,85 4	31.6	732	32. 6	17,02 8	32. 5	826	33. 7	19,45 8	32. 8
Small town	70	31. 5	1,73 1	33. 4	78	32.2	1,98 1	33.8	701	31. 3	16,66 9	31. 8	775	31. 7	19,41 2	32. 7
Rural	79	35. 6	1,84 9	35. 7	87	36.0	2,02 9	34.6	809	36. 1	18,66 0	35. 6	847	34. 6	20,45 0	34. 5
Number of children	75	Ū	5	,	0,	50.0	5	54.0	005	1	Ū	Ū	047	U	Ū	5
1	46	20. 7	1,00 3	19. 3					577	25. 7	12,81 2	24. 5				
2	121	, 54. 5	2,63 4	50. 8					1,10 1	, 49. 1	25,74 9	49. 2				
3 or more	55	24. 8	4 1,54 7	8 29. 8					ı 564	25. 2	13,79	26. 3				
Maternal	22	0	/	0					504	2	6	С				

Maternal

smoking during pregnancy 1991-2015					
No		67.	1,52	70.	73. 18,10 75.
	62	4	2	8	788 1 4 4
Yes		25.		24.	22. 20.
	23	0	536	9	240 3 4,876 3
	7	7.6	91	4.2	50 4.6 1,042 4.3

diesel engine exh									
	Overall		to diesel engir	ne		ty of exposu		y of exposure	
		exha	ust		to diesel	engine exha		ngine exhaus	t
					un	der 50 %	0\	/er 50 %	
-	Total	Exposed	d OR (95%	CI)	Exposed	OR (95% (OR (95% C	CI)
	cases and	cases			cases		cases	·	,
	controls n	and			and		and		
		controls	3		controls		controls		
		n			n		n		
-	1,643/38,		1.06 (0.8	34-		1.76 (0.83	3-	1.01 (0.56	-
Leukemia	915	80/1,77	5 1.34)		68/1,503	1.37)	12/272	1.81)	
Acute									
lymphoblastic	1,280/30,		1.07 (0.8	32-		1.12 (0.85	5-	0.79 (0.37	_
leukemia	035	62/1,362			55/1,157	1.48)	7/205	1.68)	
Acute myeloid			0.76 (0.4	10-		0.74 (0.36	5-		
Leukemia	260/6,141	10/295			8/246	1.51)	*	-	
Central nervous	913/21,94		1.32 (0.9	99-	-	1.24 (0.92	L-	1.75 (0.94	-
system cancer	4	55/1,02			44/863	1.70)	11/164	3.26)	
-	491/12,14		1.52 (1.	06-		1.44 (0.97	7_	1.97 (0.84	-
Astro Eable a UI	nadju s ted O	ddsykretikog	s (OR) ang 👰 🗛	6 confider	ncegintenva	al (95%) (ÇİĞ) fo	or offspring6%gfath	iers expossed	to diesel
engine exh	aust in the	year befoi	re birth to the	birth of in	dex child	,	-,		
Medulloblastom		Overall e	exposyreggadie	egel engin	e	Probabilitys	f exposure to	Probability (of exposure to
а	222/5,150	11/229		-	9/190	dieselieng	ine exhaust*		jine exhaust
-		,	1.20 (0.5	57-		1.06 40.44	<u>r_</u> 50 %	ove	r 50 %
Ependymoma	135/3.098	Tote/153	Exposed.51)	OR (95%	Cl6/126		OR (95% Cł)	Exposed	OR (95% CI)
Prenatal			cases <u>1</u> amod (0, 8		-, -	cases 2and 9)_	capes a 0.05	_
cancers ^a	110 CO	ntrols4	controls 1,28)	_	92/1.948	controls30)	10/356	controls4n	
1 Leukemia	1,	806/44,	480/11,77	0.99 (0.8			0.98 (0.87-	· · ·	T.03 (0.86-
±		178	5	1.11)		342/8,488	1.11)	138/3,287	1.23)
2 Acute									
lymphob	lastic 1,	393/33,		1.01 (0.8	39-		1.00 (0.87-		1.04 (0.84-
3 leukemia		962	373/9,025	1.14)		267/6,518	1.14)	106/2,507	1.27)
Acute my	/eloid			0.95 (0.7	73-		0.94 (0.69-		0.99 (0.62-
4 Leukemi	a 28	7/6,941	75/1,883	1.25)		54/1,376	1.27)	21/507	1.56)
E Central nei	rvous 1,	000/24,		0.97 (0.8	34-		0.95 (0.81-		1.00 (0.78-
`		741	263/6,658			189/4,836		74/1,822	
		6/13,62							
5		4	142/3.672	•		97/2.702	•	45/970	•
-			i = i =			- , , -		-,	
	stoma 24	2/5,853	72/1,579			55/1,145		17/434	
-									
F 3		2/3,487	29/940			20/664		9/276	
Prenatal ca									
a		217	7	1.10)		4	1.10)	180/4,293	1.20)
4 Leukemia 5 Central ner system car Astrocyto 1 Medullobla 2 Ependym Prenatal ca	a 28 rvous 1, ncer oma 54 stoma 24 noma 14	000/24, 741 6/13,62 4 2/5,853 2/3,487 438/59,	263/6,658 142/3,672 72/1,579 29/940 652/15,77	1.25) 0.97 (0.8 1.12) 0.95 (0.7 1.16) 1.14 (0.8 1.51) 0.70 (0.4 1.06) 1.00 (0.9	34- 78- 36- 46- 92-	189/4,836 97/2,702 55/1,145 20/664 472/11,48	1.27) 0.95 (0.81- 1.12) 0.88 (0.70- 1.10) 1.20 (0.87- 1.63) 0.69 (0.43- 1.12) 1.00 (0.90-	74/1,822 45/970 17/434 9/276	1.56) 1.00 (0.78- 1.27) 1.15 (0.84- 1.58) 0.98 (0.59- 1.63) 0.72 (0.36- 1.43) 1.03 (0.88-

Table 2 Unadjusted Odds Ratios (OR) and 95% confidence interval (95% CI) for offspring of mothers exposed to diesel engine exhaust in the year before birth to the year after birth of index child

_				
2				
3				
2				
4				
5				
6				
7				
8				
9				
0	Table 4 Odds ratios (O	R) and 95% cor	fidence interv	als (95% CI) for
1	offspring of both mothe			
2	exhaust			
2		Total cases	Exposed	OR (95% CI)
3		and	cases and	
<i>,</i>		controls n	CONTROLS N	
	Leukemia	controls n 1,104/25,4	controls n	0.96 (0.66-
	Leukemia	controls n 1,104/25,4 10	30/711	0.96 (0.66- 1.40)
1	Acute lymphoblastic	1,104/25,4 10	30/711	
1 5	Acute lymphoblastic leukemia	1,104/25,4		1.40) 1.09 (0.72- 1.63)
4 5	Acute lymphoblastic leukemia Central nervous	1,104/25,4 10 868/19,623	30/711 26/535	1.40) 1.09 (0.72- 1.63) 1.14 (0.71-
4 5 5	Acute lymphoblastic leukemia Central nervous system cancer	1,104/25,4 10	30/711	1.40) 1.09 (0.72- 1.63) 1.14 (0.71- 1.84)
4 5 6	Acute lymphoblastic leukemia Central nervous	1,104/25,4 10 868/19,623 587/14,243	30/711 26/535 19/414	1.40) 1.09 (0.72- 1.63) 1.14 (0.71- 1.84) 1.38 (0.75-
4 5 6 7	Acute lymphoblastic leukemia Central nervous system cancer Astrocytoma	1,104/25,4 10 868/19,623	30/711 26/535	1.40) 1.09 (0.72- 1.63) 1.14 (0.71- 1.84) 1.38 (0.75- 2.53)
4 5 6 7	Acute lymphoblastic leukemia Central nervous system cancer	1,104/25,4 10 868/19,623 587/14,243 316/7,866	30/711 26/535 19/414 12/231	1.40) 1.09 (0.72- 1.63) 1.14 (0.71- 1.84) 1.38 (0.75- 2.53) 1.20 (0.47-
4 5 6 7 8	Acute lymphoblastic leukemia Central nervous system cancer Astrocytoma Medulloblastoma	1,104/25,4 10 868/19,623 587/14,243 316/7,866 144/3,366	30/711 26/535 19/414	1.40) 1.09 (0.72- 1.63) 1.14 (0.71- 1.84) 1.38 (0.75- 2.53) 1.20 (0.47- 3.05)
4 5 6 7 3 9	Acute lymphoblastic leukemia Central nervous system cancer Astrocytoma	1,104/25,4 10 868/19,623 587/14,243 316/7,866 144/3,366 1,497/33,9	30/711 26/535 19/414 12/231 5/96	1.40) 1.09 (0.72- 1.63) 1.14 (0.71- 1.84) 1.38 (0.75- 2.53) 1.20 (0.47- 3.05) 1.06 (0.78-
4 5 6 7 3 9	Acute lymphoblastic leukemia Central nervous system cancer Astrocytoma Medulloblastoma Prenatal cancers ^a	1,104/25,4 10 868/19,623 587/14,243 316/7,866 144/3,366 1,497/33,9 97	30/711 26/535 19/414 12/231 5/96 45/942	$\begin{array}{c} 1.40)\\ 1.09\ (0.72-\\ 1.63)\\ 1.14\ (0.71-\\ 1.84)\\ 1.38\ (0.75-\\ 2.53)\\ 1.20\ (0.47-\\ 3.05)\\ 1.06\ (0.78-\\ 1.44)\end{array}$
4 5 6 7 8 9 0	Acute lymphoblastic leukemia Central nervous system cancer Astrocytoma Medulloblastoma Prenatal cancers ^a a Acute lymphoblastic l	1,104/25,4 10 868/19,623 587/14,243 316/7,866 144/3,366 1,497/33,9 97 eukemia, Wilms	30/711 26/535 19/414 12/231 5/96 <u>45/942</u> s tumor (neph	1.40) 1.09 (0.72- 1.63) 1.14 (0.71- 1.84) 1.38 (0.75- 2.53) 1.20 (0.47- 3.05) 1.06 (0.78- 1.44) roblastoma),
4 5 6 7 8 9 0	Acute lymphoblastic leukemia Central nervous system cancer Astrocytoma Medulloblastoma Prenatal cancers ^a a Acute lymphoblastic I medulloblastoma, neuro	1,104/25,4 10 868/19,623 587/14,243 316/7,866 144/3,366 1,497/33,9 97 eukemia, Wilms	30/711 26/535 19/414 12/231 5/96 <u>45/942</u> s tumor (neph	1.40) 1.09 (0.72- 1.63) 1.14 (0.71- 1.84) 1.38 (0.75- 2.53) 1.20 (0.47- 3.05) 1.06 (0.78- 1.44) roblastoma),
4 5 6 7 8 9 0 1	Acute lymphoblastic leukemia Central nervous system cancer Astrocytoma Medulloblastoma Prenatal cancers ^a a Acute lymphoblastic I medulloblastoma, neuro hepatoblastoma	1,104/25,4 10 868/19,623 587/14,243 316/7,866 144/3,366 1,497/33,9 97 eukemia, Wilms oblastoma, retir	30/711 26/535 19/414 12/231 5/96 <u>45/942</u> s tumor (nephi noblastoma, a	1.40) 1.09 (0.72- 1.63) 1.14 (0.71- 1.84) 1.38 (0.75- 2.53) 1.20 (0.47- 3.05) 1.06 (0.78- 1.44) roblastoma),
4 5 6 7 8 9 0 1 2	Acute lymphoblastic leukemia Central nervous system cancer Astrocytoma Medulloblastoma Prenatal cancers ^a a Acute lymphoblastic I medulloblastoma, neuro	1,104/25,4 10 868/19,623 587/14,243 316/7,866 144/3,366 1,497/33,9 97 eukemia, Wilms oblastoma, retir	30/711 26/535 19/414 12/231 5/96 <u>45/942</u> s tumor (nephi noblastoma, a	1.40) 1.09 (0.72- 1.63) 1.14 (0.71- 1.84) 1.38 (0.75- 2.53) 1.20 (0.47- 3.05) 1.06 (0.78- 1.44) roblastoma),
4 5 6 7 8 9 0 1 2 3	Acute lymphoblastic leukemia Central nervous system cancer Astrocytoma Medulloblastoma Prenatal cancers ^a a Acute lymphoblastic I medulloblastoma, neuro hepatoblastoma	1,104/25,4 10 868/19,623 587/14,243 316/7,866 144/3,366 1,497/33,9 97 eukemia, Wilms oblastoma, retir	30/711 26/535 19/414 12/231 5/96 <u>45/942</u> s tumor (nephi noblastoma, a	1.40) 1.09 (0.72- 1.63) 1.14 (0.71- 1.84) 1.38 (0.75- 2.53) 1.20 (0.47- 3.05) 1.06 (0.78- 1.44) roblastoma),
4 5 6 7 8 9 0 1 2	Acute lymphoblastic leukemia Central nervous system cancer Astrocytoma Medulloblastoma Prenatal cancers ^a a Acute lymphoblastic I medulloblastoma, neuro hepatoblastoma	1,104/25,4 10 868/19,623 587/14,243 316/7,866 144/3,366 1,497/33,9 97 eukemia, Wilms oblastoma, retir	30/711 26/535 19/414 12/231 5/96 <u>45/942</u> s tumor (nephi noblastoma, a	1.40) 1.09 (0.72- 1.63) 1.14 (0.71- 1.84) 1.38 (0.75- 2.53) 1.20 (0.47- 3.05) 1.06 (0.78- 1.44) roblastoma),

In the year before	birth to the y	/ear after t	pirth of index child	d for various	time period	is defined by the	job-exposure	e matrix NO	ICCA-DANJEM
		1968-197	74		1975-198	84		1985-2	015
	Total	Expose	OR (95% CI)	Total	Exposed	OR (95% CI)	Total	Exposed	OR (95% CI)
	cases and	d cases		cases	cases		cases	cases	
	controls n	and		and	and		and	and	
		controls		controls	controls		controls	controls	
		n		<u> </u>	n		<u>n</u>	n	
Leukemia	252/6,03	17/311	1.27 (0.76-	347/8,32	10/316	0.78 (0.41-	1,044/	53/1,148	1.08 (0.81-
	8		2.13)	5		1.47)	24,552		1.44)
Acute	185/4,439	12/223	1.29 (0.70-	278/6,51	8/238	0.80 (0.39-	817/	42/901	1.09 (0.79-
lymphoblastic			2.37)	5		1.65)	19,081		1.50)
leukemia									
Acute myeloid	42/974	*	-	56/1,415	*	-	162/3,75	6/172	0.78 (0.34-
Leukemia							2		1.80)
Central nervous	137/3,290	14/173	2.14 (1.19-	247/6,0	11/235	1.13 (0.61-	529/12,6	30/619	1.18 (0.81-
system cancer			3.84)	17		2.10)	37		1.73)
Astrocytoma	64/1,609	7/82	2.59 (1.12-	137/3,33	9/138	1.51 (0.75-	290/7,19	18/359	1.31 (0.80-
			5.99)	7		3.06)	6		2.14)
	39/808	*	-	55/1,362	*	-	128/2,98	5/139	0.80 (0.32-
Medulloblastoma							0		1.98)
Ependymoma	22/510	*	-	34/841	*	-	79/1,747	6/88	1.61 (0.68-3.85
Prenatal cancers ^a	316/7,84	20/371	1.35 (0.84-	494/11,9	20/468	1.07 (0.67-	1,395/	62/1,465	0.97 (0.75-
	3		2.17)	94		1.69)	32,273		1.26)

Supplementary table 1 Odds Ratios (OR) and 95% confidence interval (95% CI) for offspring of mothers exposed to diesel engine exhaust in the year before birth to the year after birth of index child for various time periods defined by the job-exposure matrix NOCCA-DANJEM

*n<5

a Acute lymphoblastic leukemia, Wilms tumor (nephroblastoma), medulloblastoma, neuroblastoma, retinoblastoma, and hepatoblastoma

Supplementary table 2 Odds Ratios (OR) and 95% confidence interval (95% CI) for offspring of fathers exposed to diesel engine exhaust the year before birth to birth of index child for various time periods defined by the job-exposure matrix NOCCA-DANJEM

		1968-197	4		1975-19	84		1985-2015			
	Total cases and controls n	Exposed cases and controls n	OR (95% CI)	Total cases and controls n	Exposed cases and controls n	OR (95% CI)	Total cases and controls n	Exposed cases and controls n	OR (95%		
Leukemia	337/8,16 0	102/2,26 7	1.11 (0.88- 1.41)	380/9,18 0	99/2,638	0.87 (0.69- 1.10)	1,089/ 26,838	279/6,87	1.00 (0.8		
Acute lymphoblastic leukemia	246/5,96 4	80/1,660	1.23 (0.94- 1.62)	297/7,14 8	82/2,060	0.94 (0.73- 1.23)	850/20,8 50	211/5,30 5	0.97 (0.8 1.13)		
Acute myeloid leukemia	56/1,30 3	14/377	0.82 (0.44- 1.52)	64/1,567	13/444	0.65 (0.35- 1.21)	167/4,07 1	48/1,062	1.14 (0.8 1.61)		
Central nervous system cancer	176/4,34 8	39/1,234	0.72 (0.50- 1.03)	261/6,62 8	73/1,846	1.01 (0.76- 1.33)	563/13,7 65	151/3,57 8	1.03 (0.8 1.25)		
Astrocytoma	85/2,097	19/584	0.76 (0.45- 1.28)	147/3,65 8	39/1,032	0.92 (0.63- 1.33)	314/7,86 9	84/2,056	1.02 (0.7 1.32)		
Medulloblastoma	45/1,082	14/321	1.07 (0.56- 2.05)	58/1,532	21/438	1.41 (0.82- 2.46)	139/3,23 9	37/820	1.05 (0.7 1.54)		
Ependymoma	29/690	*	_	35/903	7/231	0.74 (0.32- 1.71)	78/1,894	19/514	0.88 (0.5 1.48)		
Prenatal cancers ^a	440/10, 559	136/2,97 5	1.13 (0.92- 1.39)	548/13,3 27	158/3,81 4	1.01 (0.84- 1.22)	1,450/ 35,331	358/8,98 8	0.95 (0.8		

*n<5

a Acute lymphoblastic leukemia, Wilms tumor (nephroblastoma), medulloblastoma, neuroblastoma, retinoblastoma, and hepatoblastoma

.

Supplementary table 3 Adjusted Odds Ratios (OR) and 95% confidence interval (95% CI) for offspring of mothers exposed to diesel engine exhaust in the year before to the year after the birth of index child

	Leukemia	Acute lymphoblasti c leukemia	Acute myeloid leukemia	Central nervous system	Astrocytoma	Medulloblasto ma	Ependymoma	Prenatal cancers ^a
Exposure to diesel engine exhaust Socioecono mic status at the family level	1.04 (0.83- 1.31)	1.05 (0.81- 1.37)	0.78 (0.41- 1.49)	1.32 (0.99- 1.75)	1.49 (1.04- 2.15)	1.13 (0.60- 2.11)	1.15 (0.55- 2.42)	1.03 (0.84- 1.27)
Academics and high self employed	1.00 (1.00- 1.00)	1.00 (1.00- 1.00)	1.00 (1.00- 1.00)	1.00 (1.00- 1.00)	1.00 (1.00- 1.00)	1.00 (1.00- 1.00)	1.00 (1.00- 1.00)	1.00 (1.00- 1.00)
Middle long education" Shorter education Skilled worker Unskilled worker" Unknown" Parental age Number of children by mother prior to diagnosis	1.00 (0.81- 1.22) 0.91 (0.74- 1.12) 1.08 (0.89- 1.30) 1.07 (0.87- 1.32) 1.06 (0.86- 1.31) 1.02 (1.01- 1.03)	0.98 (0.78- 1.23) 0.86 (0.68- 1.09) 1.02 (0.83- 1.26) 1.01 (0.80- 1.28) 0.94 (0.75- 1.19) 1.02 (1.00- 1.03)	1.18 (0.70- 1.99) 1.00 (0.58- 1.71) 1.06 (0.64- 1.74) 1.28 (0.74- 2.19) 1.90 (1.11- 3.23) 1.05 (1.02- 1.09)	0.82 (0.62- 1.07) 0.86 (0.67- 1.12) 0.81 (0.63- 1.03) 0.79 (0.60- 1.04) 0.93 (0.70- 1.22) 0.98 (0.97- 1.00)	0.86 (0.59- 1.25) 0.99 (0.70- 1.42) 0.83 (0.59- 1.18) 0.88 (0.59- 1.29) 1.14 (0.78- 1.67) 0.99 (0.97- 1.01)	0.66 (0.39- 1.11) 0.63 (0.38- 1.05) 0.62 (0.39- 0.99) 0.73 (0.43- 1.24) 0.63 (0.37- 1.10) 1.00 (0.96- 1.04)	0.85 (0.43- 1.67) 0.85 (0.44- 1.65) 0.82 (0.44- 1.53) 0.47 (0.21- 1.03) 0.88 (0.43- 1.81) 0.96 (0.92- 1.01)	0.98 (0.82- 1.16) 0.84 (0.70- 1.00) 0.98 (0.83- 1.15) 0.99 (0.83- 1.18) 0.95 (0.80- 1.14) 1.01 (1.00- 1.02)
1 child 2 children	1.00 (1.00- 1.00) 0.96 (0.82- 1.12)	1.00 (1.00- 1.00) 0.90 (0.75- 1.07)	1.00 (1.00- 1.00) 1.16 (0.75- 1.79)	1.00 (1.00- 1.00) 0.86 (0.69- 1.06)	1.00 (1.00- 1.00) 0.78 (0.58- 1.05)	1.00 (1.00- 1.00) 1.04 (0.67- 1.62)	1.00 (1.00- 1.00) 0.79 (0.44- 1.39)	1.00 (1.00- 1.00) 0.94 (0.82- 1.08)
1								39

3 or more children Birth order	0.91 (0.73- 1.14)	0.86 (0.67- 1.10)	1.04 (0.59- 1.83)	0.91 (0.69- 1.20)	0.89 (0.62- 1.29)	1.08 (0.61- 1.91)	0.59 (0.27- 1.30)	0.93 (0.76- 1.14)
First born	1.00 (1.00-	1.00 (1.00-	1.00 (1.00-	1.00 (1.00-	1.00 (1.00-	1.00 (1.00-	1.00 (1.00-	1.00 (1.00-
	1.00)	1.00)	1.00)	1.00)	1.00)	1.00)	1.00)	1.00)
Second born	0.94 (0.82-	0.94 (0.81-	0.91 (0.63-	1.10 (0.92-	1.11 (0.87-	0.98 (0.68-	1.11 (0.66-	0.98 (0.86-
	1.07)	1.10)	1.30)	1.31)	1.41)	1.40)	1.86)	1.11)
Third born or later Childs birth place	0.89 (0.70- 1.12)	0.91 (0.70- 1.19)	0.79 (0.44- 1.43)	1.02 (0.76- 1.38)	1.00 (0.67- 1.49)	0.57 (0.30- 1.10)	1.80 (0.77- 4.24)	0.90 (0.73- 1.12)
Urban	1.00 (1.00-	1.00 (1.00-	1.00 (1.00-	1.00 (1.00-	1.00 (1.00-	1.00 (1.00-	1.00 (1.00-	1.00 (1.00-
	1.00)	1.00)	1.00)	1.00)	1.00)	1.00)	1.00)	1.00)
Small town	1.06 (0.94-	1.02 (0.88-	1.25 (0.91-	0.88 (0.74-	0.89 (0.71-	0.95 (0.67-	0.99 (0.63-	1.00 (0.90-
	1.20)	1.18)	1.72)	1.04)	1.11)	1.34)	1.54)	1.12)
Rural	1.11 (0.98-	1.07 (0.93-	1.29 (0.94-	0.92 (0.78-	0.89 (0.71-	1.03 (0.74-	1.19 (0.76-	1.03 (0.93-
	1.26)	1.23)	1.77)	1.09)	1.11)	1.45)	1.84)	1.14)

a Acute lymphoblastic leukemia, Wilms tumor (nephroblastoma), medulloblastoma, neuroblastoma, retinoblastoma, and hepatoblastoma

	Leukemia	before birth to t Acute Iymphoid Ieukemia	Acute myeloid leukemia	Central nervous system	Astrocytoma	Medulloblasto ma	Ependymoma	Prenatal cancers ^a
Exposure to diesel engine exhaust Socioeconi mic status at the family level	0.99 (0.89- 1.10)	1.01 (0.89- 1.14)	0.95 (0.72- 1.25)	0.98 (0.84- 1.13)	0.96 (0.78- 1.17)	1.18 (0.88- 1.57)	0.71 (0.47- 1.08)	1.00 (0.92- 1.10)
Academics and high self employed	1.00 (1.00- 1.00)							
Middle long education" Shorter education Skilled worker Unskilled worker" Unknown"	1.10 (0.90- 1.34) 0.98 (0.80- 1.20) 1.10 (0.92- 1.32) 1.11 (0.91- 1.35) 1.16 (0.95- 1.42)	1.12 (0.89- 1.40) 0.98 (0.78- 1.23) 1.08 (0.88- 1.33) 1.09 (0.87- 1.37) 1.07 (0.85- 1.34)	1.11 (0.67- 1.84) 0.78 (0.45- 1.33) 0.97 (0.60- 1.55) 1.13 (0.68- 1.86) 1.66 (1.00- 2.77)	0.82 (0.63- 1.07) 0.92 (0.72- 1.19) 0.83 (0.66- 1.05) 0.81 (0.63- 1.06) 0.90 (0.69- 1.17)	1.00 (0.69- 1.45) 1.23 (0.87- 1.75) 1.01 (0.72- 1.41) 1.00 (0.69- 1.44) 1.21 (0.83- 1.76)	0.56 (0.34- 0.94) 0.55 (0.33- 0.90) 0.52 (0.33- 0.81) 0.68 (0.41- 1.10) 0.57 (0.34- 0.96)	0.70 (0.36- 1.36) 0.81 (0.43- 1.53) 0.76 (0.42- 1.36) 0.47 (0.23- 0.98) 0.76 (0.38- 1.51)	1.06 (0.89- 1.25) 0.92 (0.77- 1.09) 1.02 (0.87- 1.19) 1.04 (0.88- 1.23) 1.02 (0.86- 1.21)
Parental age Number of children by mother	1.02 [°] (1.01- 1.03)	1.02 (1.01- 1.03)	1.02 (1.00- 1.05)	0.99 [°] (0.98- 1.00)	1.00 (0.98- 1.02)	0.98 (0.95- 1.01)	0.97 (0.94- 1.01)	1.01 (1.00- 1.02)
1 child 2 children	1.00 1.00- 1.00 0.99 (0.85-	1.00 (1.00- 1.00) 0.97 (0.82-	1.00 (1.00- 1.00) 0.98 (0.64-	1.00 (1.00- 1.00) 0.88 (0.71-	1.00 (1.00- 1.00) 0.82 (0.61-	1.00 (1.00- 1.00) 0.99 (0.65-	1.00 (1.00- 1.00) 0.96 (0.54-	1.00 (1.00- 1.00) 0.97 (0.85-
3 or more children Birth order	1.16) 0.93 (0.76- 1.15)	1.16) 0.90 (0.71- 1.15)	1.49) 0.91 (0.53- 1.55)	1.09) 0.93 (0.71- 1.22)	1.09) 0.95 (0.67- 1.36)	1.52) 0.83 (0.48- 1.46)	1.69) 0.85 (0.40- 1.82)	1.11) 0.91 (0.75- 1.11)
First born	1.00 1.00	1.00 (1.00-	1.00 (1.00-	1.00 (1.00-	1.00 (1.00-	1.00 (1.00-	1.00 (1.00- 41	1.00 (1.00-

Supplementary table 4 Adjusted Odds Ratios (OR) and 95% confidence interval (95% CI) for offspring of fathers exposed to diesel engine exhaust in the year before birth to the birth of index child

born 1.08) 1.07) 1.57) 1.24) 1.29) 1.54) 1.59) 1.10) Third born 0.92 (0.75- 0.92 (0.72- 1.07 (0.63- 0.96 (0.73- 0.91 (0.64- 0.75 (0.41- 1.41 (0.64- 0.96 (0.79- or later 1.14) 1.18) 1.80) 1.25) 1.30) 1.37) 3.10) 1.17) Childs birth nlace 1.80 1.80 1.25) 1.30 1.37) 3.10) 1.17)
place Urban 1.00 (1.00- 1.00 (1.00- 1.00 (1.00- 1.00 (1.00- 1.00 (1.00- 1.00 (1.00- 1.00 (1.00- 1.00 (1.00-
1.00 1.00 <th< td=""></th<>
Small town 1.00 (0.89- 0.95 (0.83- 1.18 (0.86- 0.94 (0.80- 0.92 (0.75- 1.03 (0.74- 1.12 (0.73- 0.95 (0.86-
1.12) 1.08) 1.60) 1.10) 1.14) 1.43) 1.72) 1.05)
Rural 1.10 (0.97- 1.04 (0.91- 1.33 (0.98- 0.97 (0.83- 0.93 (0.75- 1.11 (0.80- 1.30 (0.84- 0.99 (0.90-
$\frac{1.23}{2.4 \text{ subs}} \frac{1.18}{1.18} \frac{1.79}{1.19} \frac{1.1}{1.19} \frac{1.15}{1.54} \frac{1.54}{1.99} \frac{1.99}{1.10}$

a Acute lymphoblastic leukemia, Wilms tumor (nephroblastoma), medulloblastoma, neuroblastoma, retinoblastoma, and hepatoblastoma

retinoblastoma, and hep		าล					
Ν	lothers				Fathers		
	Exposed controls n	Expose d cases n	Expose d total n		Exposed controls n	Exposed cases n	Exposed total n
29011. Clay and gravel pits, also stone quarries	417	14	431	71142. Moving businesses	5,099	222	5,321
29013. Limestone and chalk quarries 29030. Extraction of	404	14	418	71163. #Fire brigade 71211. Shipping	2,748	128	2,876
salt 29090. Other nonmetallic raw	326	16	342	companies	2,564	89	2,653
materials extraction in general 35401. Asphalt	288	10	298	71212. Ferry operations	1,715	56	1,771
factories 38210. Manufacture of engines (except for	271	9	280	71232. Harbours 71233. Loading and	1,174	37	1,211
electric motors and marin 38220. Manufacture of	220	19	239	unloading contractors (stevedores), etc.	1,05	50	1,1
agricultural machinery and accessories 38231. Manufacture of	208	13	221	83241. Consulting engineers	1,022	30	1,052
machinery for wood- working 38232. Manufacture of	196	11	207	91020. Police	1,007	40	1,047
machinery for metal- working 38233. Manufacture of	151	7	158	29011. Clay and gravel pits, also stone quarries	947	39	986
foundry machinery and machines for rolling me	137	8	145	29012. Stone fishers (who fish up stones from sea bottom)	952	33	985

Supplementary table 5 The ten most common industries with exposure to diesel engine exhaust for mothers and fathers of children diagnosed with leukemia, acute lymphoblastic leukemia, acute myeloid leukemia, central nervous system cancer, astrocytoma, medulloblastoma, ependymoma, Wilms tumor (nephroblastoma), neuroblastoma, retinoblastoma, and hepatoblastoma