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Abstract 

 
Data-Driven Approaches for Robust Signal Plans in Urban Transportation Networks 

 
by 
 

Zahra Amini 
 

Doctor of Philosophy in Civil and Environmental Engineering  
 

University of California, Berkeley 
 

Professor Alexander Skabardonis, Chair 
  

In urban transportation networks with signalized intersections a robust pre-timed signal plan is a 
practical alternative to adaptive control strategies, since it has less complexity and an easier 
implementation process. Recent advances in technology are making data collection at traffic 
signals economical and data-driven approaches are likely to benefit from the large traffic data. 
Data-driven approaches are necessary for designing robust timing plans that can satisfy rapid 
traffic volume fluctuation and demand growth. This dissertation introduces four data-driven 
approaches for studying and improving traffic conditions at signalized intersections. 
  
Firstly, I discuss the development and testing of two algorithms for checking the quality of traffic 
data and for estimating performance measures at intersections. The first of these algorithms 
estimates the systematic error of the detector data at signalized intersections by using flow 
conservation. According to the ground truth data from a real-world network, the algorithm can 
reduce the error in the data up to 25%. The second algorithm helps in estimating intersection 
performance measures in real-time by measuring the number of the vehicles in each approach 
using high resolution(HR) data. 
  
An offset optimization algorithm was developed to adjust signal offsets so as to improve the 
delay in the system. The performance of three real-world networks using the offsets obtained by 
the algorithm and those obtained from the widely used Synchro optimization tool, are compared 
using the VISSIM microscopic simulation model. Simulation results show up to a 30% reduction 
in the average number of stops and total delay that vehicles experience along the major routes 
when using the proposed algorithms’ optimized offsets. The fourth algorithm estimates the 
appropriate switching time between designed timing plans during the day based on the traffic 
profile of the intersection by using the K-means clustering method. 
  
In conclusion, these four algorithms extract useful information from HR data about traffic at 
signalized intersections. Moreover, the algorithms assist in designing robust timing plans for 
satisfying demand fluctuations at signalized intersection. Lastly, simulation results from real-
world networks illustrate the significant improvements that the proposed data-driven approaches 
can make in the control systems at urban transportation networks. 
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Chapter 1. Introduction 
 
1.1 Motivation 
 
Considerable attention has been given to new approaches for improving the urban transportation 
system because of limited funding and environmental concerns over constructing new highways.  
One promising approach is the implementation of advanced signal control strategies along 
arterials. This would reduce delays and stops at traffic signals and cut fuel consumption. In many 
instances, these arterial facilities also serve as reliever routes for congested freeways especially 
under incident conditions. Thus, arterial efficient operation could help the traffic performance 
along the entire travel corridor.   
 
An assessment of the state of practice in signal management on urban networks indicates that on 
average intersections are poorly managed, according to the National Transportation Operations 
Coalition (NTOC) 2012 signal systems report card [1].  The main reason for the poor 
performance is the lack of systematic data collection to estimate performance measures and the 
unavailability of simple control strategies that are responsive to real-time changes in traffic 
patterns. Adaptive traffic control systems provide greater flexibility in real-world cases with 
varying demand by updating the information based on real-time data from detectors [2].  Several 
adaptive control strategies have been developed, but their implementation is limited because of 
their complexity and their extensive and costly data requirements [3]. A robust pre-timed signal 
plan is one alternative to adaptive control system [2].  
 
High Resolution (HR) data at signalized intersections refers to continuous and simultaneous 
acquisition of detector data and signal status. Moreover, recent advances in technology are 
making HR data collection at traffic signals economical [4,5]. HR data presents a game-changing 
opportunity in traffic management. These data enable us to design a robust pre-timed signal plan 
that responds to the traffic demand fluctuation without the complexity and expenses of adaptive 
control systems [6]. Furthermore, these data can be complemented with measurements of 
aggregate performance, such as travel times and origin-destination patterns, derived from 
vehicle-based records of GPS traces or Bluetooth and WiFi addresses [7].  
 
1.1 Objective 
 
The goal of the research is to develop data-driven approaches for designing robust pre-timed 
signal plans, which increase throughput in urban transportation network and reduce vehicle delay 
and GHG emissions as well. The Dissertation focuses is as follows: 
 

• Data Quality: I will present a data filtering algorithm that reduces the systematic error in 
detector data.   
 

• Performance Measures: Estimating different performance measures for a signalized 
intersection helps to evaluate the performance of the control strategy and makes it possible to 
improve the system. I will introduce an algorithm that estimates the number of vehicles in each 
approach to an intersection in real-time by using HR data.  
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• Control Parameters: In signalized networks with coordinated signals, optimum signal offsets 

minimize the vehicle delay and number of stops in the network. In this dissertation, I develop an 
offset optimization algorithm and compare it with current popular approaches.  
 

• Control Plan Switching Time: After designing robust timing plans, it is important to estimate 
appropriate activation intervals for each control plan during the day. I will show how to use 
traffic profile data from an intersection to estimate the most accurate and suitable switching time.   
 
1.3 Contribution  
 
This dissertation introduces new ways to benefit from HR traffic data at signalized intersections 
and illustrates the impact of the data on the management of traffic in an arterial. Contribution of 
my dissertation includes analysis of HR data, estimating performance measures at traffic signals, 
optimizing the offset of signals in urban networks, and developing simple robust timing plan for 
addressing the variability in traffic demand. The methodology consists of empirical data 
collection, filtering, and analysis and analytical modeling.  It builds on recent and ongoing works 
by [7], [8], [9], and [10] on algorithms for estimating performance measures based on HR and 
emerging data sources and on the development of control strategies for traffic signals.  
 
1.4 Organization 
 
The rest of this dissertation is organized as shown in Figure 1.1 flow-chart. Chapter 2 is about 
step 1 and step 2 of the flow chart. This chapter explains the HR data collection process, and then 
describes a data filtering algorithm along with some results from a case study. Chapter 3 
contributes to the third step of the flow-chart, which is evaluating the performance of current 
control system in test network, by developing an algorithm for estimating vehicle accumulation 
in each approach at the intersection for any given time during the cycle. Step 4 of the flow chart 
is estimating new control parameters and Chapter 4 contributes to this step by estimating 
optimum signal offsets, which is one of the signal control parameters. The same chapter presents 
simulation results from implementing the offset optimization algorithm in a simulator, which 
covers step 6 of the flow chart as well. Chapter 5 studies the fifth step of the flow-chart, which is 
estimating the activation time for each timing plan during the day. Lastly, Chapter 6 summarizes 
all the previous chapters and introduces new directions for future studies.   
 

 
Figure 1. 1 Process of designing and applying robust timing plan in a signalized 
intersection 
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Chapter 2. HR Data Collection and Filtering  
 
2.1 Introduction 
 
As shown in Figure 1.1, data are the main requirement for a data-driven system. Therefore, I 
collaborated with Sensys Networks, Inc., and thus gained access to their database. They collect 
High Resolution(HR) data in real time from a large number of intersections across the nation by 
using magnetic field sensors.  
 
Magnetic sensors measure changes in the earth’s magnetic field induced by a vehicle, then 
processes the measurements to detect the vehicle, and transfers the processed data via radio to 
the Access Point (AP) [11]. The AP combines data from the multiple detectors into information 
for the local controller or the Traffic Management Center (TMC). A HR system called SAMS 
(Safety and Mobility System) detects and records the lane, speed, signal phase and time when 
each vehicle enters and leaves the intersection based on the available information in the AP [8], 
[12].  
 
Figure 2.1 shows the schematic of the detector layout for a signalized intersection in the city of 
Danville, CA, equipped with SAMS (Safety and Mobility System). In this intersection, each 
approach has a stop bar, along with advanced and departure detectors. There is a network 
monitoring card that provides the signal phase. The intersection is also equipped with a PTZ 
camera, which allows the verification of the accuracy of the data collection process.  
 

 
Figure 2. 1 Sample SAMS Instrumented Intersection, Danville CA 

 
HR data can be beneficial only if they provide reliable and accurate information about the traffic 
conditions. According to studies, the failure of detectors and communication links causes error in 
detector data [13], [14]. These errors could be investigated by running a health inspection on the 
equipment and the system. Also, there are errors due to detector malfunction, which are 
challenging to investigate because the source of the error is not clear and the magnitude of the 
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error is usually small compared to the detected value. A study by [15] uses some microscopic 
approaches, which uses speed estimated by the dual loop detectors to investigate the error. Some 
studies use macroscopic-level approaches. For example [16] applies different threshold test on 
the data to improve the accuracy. PeMS (Caltrans Performance Measurement System) uses a 
data-filtering algorithm, which was developed by [17] to detect bad loop detectors from their 
output and imputes the missing data from neighboring good loops. Moreover, [18] uses Fourier 
transform-based techniques to detect the data errors dues to malfunctioning detectors. On a 
different approach, [19] and [20] use a neural network model and genetic algorithms to address 
detector issues. In addition, [21] studies forecasting techniques such as historical average, 
nearest-neighbor algorithm, and autoregressive integrated moving average models for data 
correction and substitution. 
 
In this chapter I use flow conservation to estimate the systematic error of the detectors; i.e. at any 
time the overall number of the vehicles that enter the intersection is equal to the sum of the 
vehicles that exit the intersection. My approach has several advantages over the other existing 
methods. Most importantly, it can be used in real time and it is possible to include data-filtering 
algorithm in the data collection process. Moreover, it is easy to modify the algorithm and apply it 
on intersections with different detector systems and geometries. Finally, in addition to estimating 
the systematic error, it can substitute for missing value by using available data.  
 
2.2 Algorithm Description 
 
In an isolated intersection with 4 legs there are 4 inputs, 4 outputs, and the flows of 12 
movements as shown in Figure 2.2. The same figure also shows the location of the detectors. 
According to Figure 2.2 advance detectors are located at the upstream of the intersection and 
they measure the input flow. The output flow is measured by the departure detectors, which are 
located in the departure lanes, downstream of the intersection. Stop-bar detectors, which are 
located at the stop line, count the number of vehicles in each movement (right, left, through). 
Thus, we will have 20 values in total and each value will have a different amount of error. 
 
There are multiple sources of error in traffic data. Some errors are due to a vehicle’s movement, 
such as a lane change and driving over the lane. Others are due to environmental conditions such 
as rain. Accidents can also cause error in traffic data and interrupt the data collection process. 
Some detectors miscount vehicles with unusual length or when the vehicles are traveling too 
close to each other. In addition, there are systematic error, which is constant and independent 
from outside environment. For example, a detector always over count number of the vehicles by 
10%, that would be the systematic error of the detector. Using different detectors to count the 
same vehicle improves the accuracy of the detected value. Figure 2.2 shows an example where 
each vehicle has been counted 3 times and each measured value is equal to the true value plus 
some error. The data filtering algorithm goal is to minimize the summation of all the error terms.  
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Figure 2. 2 A signalized intersection with 4 legs 

As shown in Equation 2.1, my problem formulation assumes that detected flow value, 𝒇𝒊, equals 
to the imputed flow value, 𝒇𝒊, plus the error term, 𝜺𝒊. Therefore, a negative error term means the 
detected value is less than the actual value and the detector is undercounting. A positive error 
term implies that the detector is over counting. 
 
𝑓% = 𝑓% + 𝜀%			𝑓𝑜𝑟	𝑎𝑙𝑙	𝑖          (2.1) 
 
The estimated value, 𝑓%, is not necessarily equal to the actual value because 𝜀% is only the 
systematic error, which is one of the source of error in the data. However, my claim is that the 
imputed value would be closer to the actual value compared to the detected value. In the next 
section I test this approach on a real-world intersection, where the ground-truth vehicle count 
collected by observers is available.  
 
The cost function, C, in Equation 2.2, is corresponding to the example intersection in Figure 2.2 
includes 20 error terms, one for each detected movement. In the cost function, C is equal the 
summation of the ε12 values. I use the squared of the error terms to include both positive and 
negative errors and make sure that they do not cancel each other. Also, the squared error is an 
appropriate fit for our cost function because it is differentiable. Moreover, each ε term has a 
corresponding ω1 value, which is the weight of each 𝜀% term and its value depends on the level of 
accuracy of 𝑓%. In a normal condition, ω1 would be same for all the variables, but it is possible 
that we have more confident in one or some detectors’ performance than others. For example, it 
is reasonable to say that advanced detectors have a better accuracy in their counting process than 
stop-bar detectors, because of the lane change and stops that happen at the stop lines. Based on 
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available information about the detectors and previous studies we can assign an appropriate 
value for ω1. 
 
 𝐶 = 𝜔% ∗ 𝜀%2%           (2.2) 
 
Also, we have a set of constraints based on the flow conservation rule. The input flow in each leg 
must equal the sum of turn-movement flows in the same leg. Also, output flow in each leg must 
equal the sum of turn-movement flows that are feeding the output direction. Finally, all the 
detected and estimated flow values, 𝑓%and 𝑓%, should be equal or greater than zero.  
 
Ultimately, the detected flow values are given and I estimate the errors by minimizing C, which 
is a convex function, subject to linear constraints.  
 
After formulating the cost function, assigning appropriate ω values, and inputting the detected 
flow values I run the optimization problem. This process can be done in real time as well. After 
minimizing C, I get the ε12 for each 𝑓% value, then I can estimate, 𝑓% which is my imputed flow 
value. The time-interval for running the optimization needs to be long enough to minimize the 
impact of the incomplete trips, but at the same time it should be small enough so the traffic 
volume is uniform during each time step. 
 
2.3 Algorithm Evaluation 
 
In this section, I use the flow conservation to estimate each detector’s systematic error at the 
intersection of Montrose Rd. and Tildenwood Dr., in Montgomery County. Figure 2.3 shows the 
schematic of the detector layout for the signalized intersection. The intersection has four 
approaches (legs) and there are three movements per approach. As shown in Figure 2.3, in each 
leg there are 3 different types of detectors and each one counts vehicles independently. Advance 
detectors (located approximately 200-300 ft upstream from the stop-line) record the input values, 
which is shown by 𝑓%,8 where n is the leg number. The output value, 𝑓9,8 is recorded by departure 
detectors. On the same figure we can see the flows from the turn movements denoted by 𝑓(8,;), 
where left, right, and through movements are respectively m=1,2, and 3. The intuitively the  
approach is to minimize the error corresponding to each variable. We have 4 inputs, 4 outputs, 
and 12 turn movement variables, which gives 20 variables in total. The measured value, 𝑓, 
equals the estimated value, 𝑓, plus the error term ε (Equations 2.3-2.5).  
 
𝑓8,; = 𝑓8,; + 𝜀= >,? 					𝑓𝑜𝑟	𝑎𝑙𝑙	 𝑛,𝑚 , 𝑛 = 1,2,3,4	𝑎𝑛𝑑	𝑚 = 1,2,3	   (2.3) 
𝑓%,8 	= 𝑓%,8 + 𝜀=G,>					𝑓𝑜𝑟	𝑎𝑙𝑙	𝑛 = 1,2,3,4	          (2.4) 
𝑓9,8 = 𝑓9,8 + 𝜀=H,>					𝑓𝑜𝑟	𝑎𝑙𝑙	𝑛 = 1,2,3,4		       (2.5) 
 
The cost function in Equation 2.6 includes the square of all the error terms multiplied by the 
weights, 𝛼8, 𝛽8, and 𝛾(8,;). Flow values should be positive as well (Equations 2.7-2.9). Also, I 
have a set of constraints based on the flow conservation rule, which input counts equal the turn 
movement counts of that approach and output counts equal sum of all the movements that enter 
that approach (Equations 2.10-2.14). For example, in Equation 2.11 output flow in leg 1 equals 
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the right movement flow from leg 3 plus the left movement flow from leg 4 and the through 
movement from leg 1. 
 

min
=G,>,=H,>,= O,?

𝛼8𝜀=G,>
2P

8QR + 𝛽8𝜀=H,>
2P

8QR + 𝛾(8,;)𝜀= >,?
2S

;QR
P
8QR 			   (2.6) 

𝑠. 𝑡. 0 ≤ 𝑓8,;	𝑓𝑜𝑟	𝑎𝑙𝑙	(𝑛,𝑚)		         (2.7) 
	0 ≤ 𝑓%,8	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑛				             (2.8) 
	0 ≤ 𝑓9,8		𝑓𝑜𝑟	𝑎𝑙𝑙	𝑛			           (2.9) 
𝑓%,8 = 𝑓(8,;)S

;QR 						𝑓𝑜𝑟	𝑛 = 1,2,3,4	        (2.10) 
𝑓9,R = 𝑓2,S + 𝑓S,2 + 𝑓P,R 			         (2.11) 
𝑓9,2 = 𝑓(R,S) + 𝑓(P,2) + 𝑓(S,R)			         (2.12) 
𝑓9,S = 𝑓(P,S) + 𝑓(2,2) + 𝑓(R,R)		         (2.13) 
	𝑓9,P = 𝑓S,S + 𝑓R,2 + 𝑓2,R 			         (2.14) 
 

 
Figure 2. 3 Intersection of Montrose Rd. and Tildenwood Dr. layout  

 
I used the data-filtering algorithm to estimate the systematic error in 15-minute vehicle counts 
detector data from 6AM until 7PM on June 14, 2016. I put all the weights equal to 1 and 
assumed all detectors are in equal condition and have the same level of accuracy. For the same 
intersection and the same day, I have the ground truth turn-movement flows collected by 
observers over a 13-hour interval (6AM to 7PM) for every 5 minutes. I aggregated the data 
ground truth data to get the vehicle count for 15-minute interval, and then compared it with the 
turn movement count from detectors and imputed values estimated by data-filtering algorithm. 
The first column of Table 2.1 shows different movements in each leg and it separate the major 
movements from minor ones. Major movements have very high traffic demand, while the traffic 



 9 

volume in minor approaches are minimal. The second column shows the difference between the 
true and detected value divided by the true value in percentage and the last column is the 
difference between the true and imputed value in percentage. For Table 2.1 I estimated the error 
for each 15-minute time interval and then found the average error value over 13-hour.  
 
Based on the Table 2.1 results in the major movements the data-filtering algorithm reduces the 
systematic error up to 25%, (100* 4-3)/4=25%	 , which is about 100s of vehicles per day or 
several vehicles per cycle. For the minor movements, there is no improvement, however the 
traffic volume is very small so the error is about few vehicles per day.  
 

Movement Error for true vs. 
detected (%) 

Error for true vs. 
imputed (%) 

Major 
Movements 

Leg 3 through 4% 3% 
Leg 4 through 6% 5% 

Minor 
Movements 

Leg 3 Right 6% 9% 
Leg 3 Left -43% -35% 
Leg 4 Left -41% -11% 

Leg 4 Right -10% 7% 
Leg 2 Left 6% 2% 

Leg 2 Right 5% -20% 
Leg 1 Left -8% -37% 

Leg 1 Right 7% -19% 
Leg 2 through -75% 115% 
Leg 1 through -50% 198% 

Table 2. 1 Detected, imputed, and true values comparison 

 
In addition, Figure 2.4 presents the cumulative vehicle counts over the 13-hour interval. In this 
figure, each curve presents the cumulative vehicle count for a different method. Blue curve is the 
estimated value from the algorithm, the red one is the detected values before we apply the 
algorithm and the green curve is the true value from the observers. It is clear that the algorithm is 
improving the detected value and making it closer to the true value. 
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Figure 2. 4 Leg 3 through movement cumulative count curves 
 
Another conclusion that we can make from Table 2.1 is that detected values from minor 
movements are closer to the true values compared to the imputed values. Therefore, I increase 
the weights of minor movements, which means detectors in minor movements are more accurate 
compared to the major movements. Figure 2.5 shows result after calibrating the algorithm. In 
Figure 2.5 the dark blue curve is the imputed value in a situation that all the weights are equal to 
1 and the light blue curve is the imputed value in the calibrated scenario. When the algorithm is 
calibrated, the minor movement imputed value is improved as well.  
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Figure 2. 5 Leg 2 through movement cumulative count curves 

 
2.4 Discussion  
 
HR data can provide useful information about the traffic condition. Having access to HR data 
enables us to improve the control system at urban networks by increasing the capacity at 
intersections. Therefore, the accuracy of these data sets is substantial. The data filtering 
algorithm is a fast and efficient way for estimating the systematic error of the detector data and 
amending the accuracy of the data set. The advantage of this algorithm over similar methods is 
that it works in real time and it can be a part of the data collection process. Comparing the 
imputed values to the ground-truth values show that the data filtering algorithm can reduce the 
error of the data point up to 25% in traffic approaches with high traffic volume. Data filtering 
algorithm could work for minor approaches as well.  
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Chapter 3. Signalized Intersection System Evaluation 
 
There are different performance measures to evaluate the performance of the existing control 
system in the test network, including the delay, queue length, volume over capacity ratio, and 
many other parameters. In this Chapter I estimate different performance measures using HR data 
from a real-world signalized intersection and then I use stochastic gradient descent to estimate 
the vehicle accumulation in each approach at an intersection.  
 
3.1 Performance Measures  
 
Several measures of effectiveness (MOEs) have been proposed and used for evaluating traffic 
operations at intersections controlled by traffic signals. Table 3.1 displays the MOEs commonly 
proposed for the development and evaluation of traffic signal control algorithms. These MOEs 
vary depending on the operating environment (isolated intersections, arterials, grid networks), 
traffic conditions and patterns (e.g., congested-undersaturated vs. oversaturated conditions) and 
objectives/constraints (mobility, safety, environment).  Field data collection most of these MOEs 
with conventional approaches is expensive and time consuming, which limits the collection of 
data to when major design or control improvements are implemented, and does not allow for 
systematic monitoring of traffic performance.    
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Table 3. 1 Performance Measures for Signal Systems [22] 
 
In addition to the MOEs in Table 3.1, the following indicators of performance are commonly 
used to assess the quality of traffic operations at highway facilities:  
• Level of Service (LOS) per the Highway Capacity Manual (HCM) [22] 
• Volume/Capacity ratio (v/c)  
 
Level of service (LOS) is a quality measure describing operational conditions within a traffic 
stream, generally in terms of such service measures as delay, freedom to maneuver, traffic 
interruptions, and comfort and convenience. Six LOS are defined for each type of facility. LOS 
A represents the best operating conditions, and LOS F the worst. The average delay (sec/veh) is 

I. MOBILITY
Operating 
Environment 

Operating 
Conditions Performance Measure Units Comments

Intersection Undersaturated Average control delay sec/veh Difference free-flow travel time and actual travel time

Max back of queue #veh (ft/l)
Average and 95th % of the max extend of queue 
throughout the cycle 

Cycle failure %
Proportion of cycles that queue failed to clear during 
green

Green time utilization %
Proportion of green utilized by traffic demand served by 
the phase

Oversaturated Throughput # # vehicles served at the intersection per time interval

Arterial/ Undersaturated Average travel time (min)
Average travel time for movements served by 
coordinated signal phases

Grid Network Average travel speed (mph)
Average travel speed for movements served by 
coordinated signal phases

Travel time variability (min)
st deviation, 80th or 95th percentile of travel times served 
by coordinated phases

# of stops/stop rate #/(%)
Average # of stops (fraction of veh stopped) for 
movements served by coordinated phases

Total delay veh-hr Delay of all vehicles served in the system 

% vehicles in the green %
Proportion of platoon arriving during the green time per 
signal cycle 

Bandwidth efficiency %
Proportion of the green through bandwidth to the signal 
cycle 

Attainability %
Proportion of green bandwith to the min green time for 
the through phase

Transit delay1 sec/bus average delay to transit vehicles at traffic signals
Acceleration noise ft/sec2 Standard deviation of veh accelerations

Oversaturated Throughput # # veh served 
Extend of queue #/mi Distance or # of street segments with queue spillback
Congestion duration hr Duration of oversaturated conditions

II. SAFETY 

Intersection/ Undersaturated/ # accidents per type #/yr
# of accidents by severity and/or traffic movement (e.g., 
# left turn related accidents)

Encroachment time (ET) # conflicts Surrogate conflict measure 
Arterial/ Oversaturated # RLR # # of red light running violators

Grid Network # vehicles in yellow #/cycle
# vehicles in platoon arrive in the yellow clearance 
interval per signal cycle 

III.  ENVIRONMENTAL
Intersection/ Undersaturated/ Fuel Consumption gal Excess fuel consumption due to delay & stops
Arterial/ Oversaturated HC/CO/NOx/CO2/PM 

gr/hr, 
/gr/m, Air pollutant emissions / concentrations

Grid Network Noise [db] Inceased noise level due to congestion
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used to characterize the LOS at signalized intersections. Table 3.2 shows the relationship 
between the average delay per vehicle and the LOS.   
 

 
Table 3. 2 LOS table from Highway Capacity Manual  
 
The (v/c) ratio indicates the level of congestion at an intersection approach or the entire 
intersection; v/c ratios greater than 1.00 indicate that the traffic demand is higher than capacity 
which results in oversaturated conditions with long delays, excessive queue lengths, and cycle 
failures. 
 
Figure 3.1(a) shows a four-leg intersection located in in Beaufort, SC, which is equipped with 
Sensys Networks detectors. Figure 3.1(a) shows the layout of the intersection. Also, the signal 
operates as coordinated traffic actuated. The phasing and timing information are shown in Figure 
3.1(b). There are leading left-turns on the main road (southbound and northbound) and split 
phasing on the cross streets. There are a total of 9 fixed-time timing plans for am, midday and 
pm peak on weekdays plus weekends, light traffic and saturated conditions.  The signal settings 
for weekday conditions are shown in Figure 3.8(b). Fixed Control strategy changes according to 
the type of the day (weekday, Friday, and weekend) and time of the day.  The HR data from 
advanced and stop-bar detector are available along with the control system information for 
Wednesday February 18, 2015 from 6:00am to 7:00pm.  
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(a) Intersection Geometrics  
 
 
 
 
 
Time Period/Phase 1 2 3 4 5 6 7 8 Cycle Length 
AM Peak (6AM-9AM) 15 40 N/A 39 15 40 N/A 16 110 
Mid Day (9AM-2PM) 17 53 N/A 33 25 45 N/A 17 120 
PM Peak (2PM-7PM) 15 62 N/A 33 37 40 N/A 20 130 
(b) Signal Phase and Timing  
 
Figure 3. 1 Test Intersection-Ribaurt Rd@Lady’s Island Drive, Beaufort, SC 

 
First performance measure is delay and according to Sensys Network’s manual, its estimation 
process is as follows: after the light turns red, each time a vehicle crosses an advanced detector, 
that vehicle's time to join the queue is computed by calculating when the car would get to the 
stop-bar, traveling at the speed limit. This is done for each car that arrives during a red interval. 
Once the light turns green, the queue is assumed to disappear instantaneously. Thus, the average 
delay is computed using the time of arrivals of each vehicle to the queue, and the time when the 
light turns green. Since this approximation is weak, I suggest an alternative way for estimating 
delay in Section 3.2.  
 
Figure 3.2 shows the average delay per vehicle per cycle for southbound through movement for 
one hour of the PM-peak interval (5PM-6PM).  The same figure shows the average delays for the 
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same movement calculated using the analytical formula (3.1) from deterministic queuing (first 
term in the HCM delay estimation equation [22]): 
 

𝑑 =
^ R_`a

b

2(R_`a×
d
e)
				           (3.1) 

                            
The HR data based delays are longer than the analytically estimated values, because the analytical 
method does not take into consideration the random delays (second term in the HCM signalized 
intersections delay equation).   
 

 
Figure 3. 2 Measured versus estimated delay for southbound through movement of Ribaurt 
Rd and Lady’s Island Drive Intersection at 5PM-6PM  

 
Figure 3.3 presents the Level of Service (LOS) on average delay curves for each phase, which 
estimated from detector data. 
I use the average delay in second per vehicle per movement to estimate the LOS. Red lines on 
Figure 3.6 shows the limits for LOS values. According to Figure 3.3, phase 8, which covers all 
the movements in the northbound, has very high average delay compared to other phases. Other 
phases LOS are mostly at level B or C. 
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Figure 3. 3 Average delay with Level of Service (LOS) plots per cycle 

 
In addition, there are signal timing data available that provide the green time per phase and the 
cycle length. Figure 3.4 shows the cycle length and the green time for the phases serving the left 
turns and through movements on southbound and northbound.  Phase 2, which serves the through 
movement on southbound, has the longest green time. As shown in the Figure, the green time for 
Phase 6 which serves the through movement on northbound, is very close to phase 2.  
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Figure 3. 4 Cycle length and green interval of phases that serve the northbound and 
southbound of the Ribaurt Rd and Lady’s Island Drive Intersection for  
 
The signal timing data also provide information about the wasted green time per phase. Wasted 
green time is the time interval that a particular phase remains green but no vehicles enter the 
intersection from that movement and there is an active call (request for service) by other 
phase(s). Figure 3.5 shows the frequency of the wasted green time for phase 4 (westbound) 
during the analysis period (6PM-7PM). It can be seen that in over 56% of the signal cycles there 
is a wasted green time of longer than 4 seconds (yellow time is about 4 seconds)., indicating the 
need for adjusting the existing signal settings.  
 

  
Figure 3. 5 Wasted green time for phase 4 (westbound movements)  
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3.2 Using Stochastic Gradient Descent for Estimating Vehicle Accumulation 
in Links  
 
In this chapter I use an alternative method for estimating vehicle accumulation. I use HR data 
from the advanced detector and stop-bar detector to construct the arrival and departure curve. 
Next, I find the vehicle accumulation by finding the difference between the arrival and departure 
curve. On the other hand, the delay and queue length are easy to estimate by plotting the 
cumulative arrival and departure curve. [23], [24], and [25] have detailed explanation on 
estimating the queue length and delay from cumulative count curves.  Although, in this 
dissertation I am only focusing on estimating the vehicle accumulation in real time for each 
approach by using real time HR data. 
 
3.3 Problem Formulation 
 
There are advanced detectors located at the beginning of the link and stop-bar detectors located 
at the end of the link, the link is only the road segment in between the two sets of detector. I use 
detector vehicle counts at the entrance to the link and at the exit of the link to construct a naive 
vehicle count estimate as the cumulative difference between the flows of vehicles at the entrance 
and the exit. But unknown biases in detector counts and random errors make this naive estimate 
useless, so estimation algorithms propose alternatives.  
 
The approach is close to the naive estimator, corrected by compensation for the errors from 
biased and noisy advance and stop bar detector counts. An online learning algorithm based on 
stochastic gradient descent discovers the bias. The method provably learns the bias, and 
efficiently estimates the vehicle accumulation in the link with a theoretical guarantee under a 
certain condition on the detectors, namely, the stop bar detector reliably indicates when there is 
no vehicle in front of it.  For the problem formulation time is continuous. Let 𝑄 𝑡 , 𝑡 ≥ 0	be the 
vehicle accumulation in the link i.e. the number of vehicles between the advance and stop bar 
detector at time 𝑡.  
 
The set 𝑡 𝑄(𝑡) > 0  is a union of intervals called busy periods 𝜏%, 𝜏% , 𝑖 ≥ 1; 𝜏% is the 
beginning, 𝜏% = 𝜏% + 𝑇% is the end, and 𝑇% is the length of busy period 𝑖. More precisely, 𝑄(𝑡) >
0 if 𝑡 ∈∪% 𝜏%, 𝜏%  and 𝑄 𝑡 = 0 if 𝑡 ∉∪% 𝜏%, 𝜏% . I assume that the stop bar detector indicates 
when 𝑄 𝑡 = 0, i.e. when 𝑡 ∉∪% 𝜏%, 𝜏% . 𝑄 𝑡  evolves as  
 

𝑄 𝑡 = 𝐴8 𝑡 − 𝐷8 𝑡 								𝑡 ∈ 𝜏8, 𝜏8 , 𝑓𝑜𝑟	𝑠𝑜𝑚𝑒	𝑛
0																																																				𝑡 ∉∪8 𝜏8, 𝜏8

 ,       (3.2) 

 
in which 𝐴8 𝑡 , 𝑡 ∈ 𝜏8, 𝜏8  and 𝐷8 𝑡 , 𝑡 ∈ 𝜏8, 𝜏8  are the cumulative arrival and departure 
counts in the 𝑛-th busy period. That is, 𝐴8 𝑡  vehicles entered the link and 𝐷8 𝑡  vehicles 
departed the link during 𝜏8, 𝑡 . Note that arrivals during a non-busy period are immediately 
served, so a vehicle arriving during 𝑡 ∉∪8 𝜏8, 𝜏8  does not experience any delay.  
 
Advance detectors at the entrance and stop bar detectors at the exit of the link measure 𝐴8 𝑡  and 
𝐷8 𝑡 possibly with some bias or independent noise. Denote by 𝐴8 𝑡 , 𝑡 ∈ 𝜏8, 𝜏8  the cumulative 
counts of the entrance detector, and by 𝐷8 𝑡 , 𝑡 ∈ 𝜏8, 𝜏8  the cumulative counts of the exit 
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detector. Because of detector noise and bias 𝐴8 𝑡  may not equal 𝐴8 𝑡  and 𝐷8 𝑡  may not equal 
𝐷8 𝑡 . Since the stop bar detector indicates when 𝑄 𝑡 = 0, a naive vehicle accumulation 
estimator is 
 

𝑄8s%tu 𝑡 = 𝐴8 𝑡 − 𝐷8 𝑡 								𝑡 ∈ 𝜏8, 𝜏8 , 𝑓𝑜𝑟	𝑠𝑜𝑚𝑒	𝑛
0																																																				𝑡 ∉∪8 𝜏8, 𝜏8

 .     (3.3) 

 
This naive estimator uses the information about when the link becomes empty only to reset its 
estimate to zero, and does not attempt to estimate any systematic counting error. Further, it may 
lead to negative estimates of the vehicle accumulation. The proposed estimation algorithm and 
its theoretical properties are based on the following model of the detector counting processes: 
 
𝐴8 𝑡 − 𝐷8 𝑡 = 𝐴8 𝑡 − 𝐷8 𝑡 + 𝑏 𝑡 𝑑𝑡w

x>
+ 𝑍8 𝑡 − 𝜏8 , 𝑡 ∈ 𝜏8, 𝜏8 .    (3.4) 

 
Here 𝑏(𝑡) is the (possibly time-varying) systematic error or bias of the detectors’ counting 
processes, and 𝑍8(𝑡) is a sequence of independent cumulative zero-mean noise random variables 
with 𝑍8 0 = 0. I assume that 𝐸 𝑍82(𝑡) ≤ 𝑐R𝑡 for some finite constant 𝑐R > 0 for all 𝑛.  
 
3.4 Algorithm Description 
 
The estimation algorithm is based on stochastic gradient descent. I assume that 𝑏 𝑡 = 𝑏. Let 
𝛼8, 𝑛 ≥ 1, be the step-size (learning rate) of the algorithm, that is a positive decreasing sequence. 
The properties for the step size are standard for stochastic approximation [26]. The intuition is 
that the sum of the step sizes should be unbounded so that learning does not stop, while the sum 
of the squares of step sizes should be finite so that the cumulative error of estimation remains 
bounded. The estimate is designed to be 𝑄 𝑡 = 𝐴8 𝑡 − 𝐷8 𝑡 − 𝜀8𝑇8

|
wherein 𝜀8 is the 

correction term for busy period 𝑛, and 𝑥 | = max	(𝑥, 0). 𝜀8 is updated to learn the bias term 𝑏. 
Formally, the algorithm proceeds as follows.  
 

1. Initialize 𝜀� = 0 and 𝑛 = 0.   
2. If 𝑡 ∉∪8 𝜏8, 𝜏8 , then 𝑄(𝑡)=0. 
3. If 𝑡 ∈ 𝜏8, 𝜏8  for some n, then 𝑄 𝑡 = 𝐴8 𝑡 − 𝐷8 𝑡 − 𝜀8(𝑡 − 𝜏8)

|
. 

4. Update the correction term at the end of the busy period: 𝜀8|R ← 𝜀8 + 𝛼8 𝐴8 𝑡 −
𝐷8 𝑡 − 𝜀8𝑇8 . 

5. 𝑛 ← 𝑛 + 1. Repeat step 2-5. 
 
I now provide some intuition for the algorithm, which tries to learn the bias 𝑏 of the naive 
estimator in Equation 3.3. To find this bias adaptively, I consider a correction term 𝜀8, 𝑛 ≥ 1, 
that ideally should be close to 𝑏. I update 𝜀8 based on stochastic gradient descent which tries to 
solve the following offline optimization problem: 𝑚𝑖𝑛�𝑓 𝜀 = R

2
𝑏 − 𝜀 2. The solution to the 

optimization problem is obviously 𝜀∗ = 𝑏. If gradient descent is used to find the optimal 
solution, the update rule for 𝜀 would be 𝜀8|R = 𝜀8 − 𝛼

�
��
𝑓 𝜀 = 𝜀8 + 𝛼(𝑏 − 𝜀), in which 𝛼 is 

the step size. To find an algorithm based on knowing when the link is empty, I replace 𝑏 − 𝜀 by 
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its (scaled) unbiased estimator 𝐴 𝜏8 − 𝐷 𝜏8 − 𝜀8𝑇8. 
 
3.5 Algorithm Evaluation 
 
For simulation purposes, I assumed the following setting and parameters. Consider a single 
discrete-time link that has Poisson arrivals with rate λ vehicles per time slot. One can assume 
that each time slot in my simulation setup is 5 seconds. I set λ= 1.4 veh/ (5 sec) = 1008 veh/hr. I 
consider a cycle time of 12 time slots or 60 seconds with 6 time slots of green signal (30 
seconds), and 6 time slots of red signal. The service time distribution in my simulation is 
deterministic with service rate µ = 0.6 veh/( sec) = 2160 veh/hr if the signal is green and µ = 0 if 
the signal is red.  
 
There are 3 detectors at the link as shown in Figure 3.6. Detector A counts the number of 
vehicles that enter the link. Detector B counts the number of vehicles that exit the link, and 
detector C observes whether the link is empty or not. I evaluate the performance of the proposed 
algorithm when I assume that detector C is noiseless (since this is the key information I need for 
estimating the bias), detector A counts each arriving vehicle with probability 0.95 independently, 
and detector B counts each departing vehicle with probability 0.85 independently. 
 
This model captures the two important properties of the model: 1) random noise since each 
vehicles is observed with some probability independently, and 2) time-invariant bias since the 
observation probabilities of detectors A and B are different but fixed, which creates a bias. 
Observe that with the explained choices of the parameters, I expect to see a bias 𝜖 = (0.95 - 0.85) 
λ = 0.14 vehicles per time slot. I choose the step size αn= 0.02/n0.6. Figure 3.7 shows how the 
correction term εn converges to the bias 𝜖 = 0.14. One observes that after only around 30 busy 
periods the algorithm learns the bias and gets close to 0.14. The estimated vehicle accumulation 
for a period of 5000 seconds is shown in Figure 3.8. 
 
 

 
Figure 3. 6 Detector’s layout for simulation 
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Figure 3. 7 Error convergences  

 
Figure 3. 8 Actual versus estimated vehicle accumulation 
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I tested this algorithm on the intersection presented in Figure 3.1. Since I do not have the 
technology to know the exact time that link is empty in this intersection, I define the following 
characteristics. If light is green for more than 1 time slot, which is 3 seconds, and no vehicle 
passes the stop-bar and advanced detector the link is empty. Of course, detecting whether the 
link is empty or not through the mentioned rule is not exact and does not completely match the 
theoretical model. Figure 3.9 shows the difference between the arrival and departure curve real-
time for southbound through movement for 2-hour interval during the AM-peak. This 
information is useful for designing some control strategies such as Max-Pressure [27]. However, 
in this scenario, I am not able to verify the accuracy of the estimate because of the lack of 
ground-truth values.   
 
 

 
Figure 3. 9 Vehicle accumulation at southbound through movement for 7AM-9AM 

 
3.6 Discussion and Future Research 
 
I considered the problem of estimating the number of the vehicles behind red light at an 
intersection from noisy and biased vehicle count observations. I developed a real-time estimation 
algorithm based on stochastic gradient descent that provably learns detector bias, and estimates 
the arrival and departure curve with theoretical guarantee. I supported our theoretical 
contribution with simulations results and a detailed case study.  
 
There are two immediate directions for future research: 
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• We assumed that the algorithm perfectly observes whether the link is empty or not. It 
would be interesting to investigate the performance of the algorithm with noisy 
observation of whether the link is empty, both theoretically and experimentally. 
 

• One reason for estimating vehicle accumulation is to design efficient feedback control 
policies for the network. For example, the max-pressure algorithm [27] is known to be 
throughput-optimal, but it requires knowledge of the vehicle accumulation. An interesting 
question is to study the stability of the network with estimated vehicle accumulation that 
are asymptotically exact.  
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Chapter 4. Estimating Control Parameters at Signalized Network 
 
Up to this point, the main focus of my work was on individual intersection and evaluation of 
single control system. Now, I want to extend my work to group of intersections and discuss 
designing control parameters and improving the control systems in urban networks.  
 
Now that the performance of the current system was evaluated, according to Figure 1.1 flow-
chart, the fourth step is to design new control parameters that can satisfy demand fluctuation and 
improve the performance of the system. The new data and performance measures are the input 
values and updated control parameters will be the output. There are many different algorithms, 
including the Signal Phase and Timing (SPaT) [28] algorithm, that estimates traffic signal 
control parameters. Algorithms, such as SPaT are normally focusing on the cycle time, green 
interval, and phase sequences, but there are still weaknesses in estimating the optimum offset 
values for arterial. Therefore, in this chapter I focus on estimating the optimum offset values for 
an urban network using a new method.  
 
The last step in the flow-chart on Figure 1.1 is implementation. However, before applying any 
new method in the field and on real-world intersection, it is necessary to test its performance in 
simulation and report the weaknesses. Hence, I use the VISSIM microscopic traffic simulator to 
test developed algorithms on arterials and networks. I use Component Object Module (COM) 
program to communicate with VISSIM through MATLAB (Appendix A). The framework that is 
shown in appendix A could be used to collect data from simulator and update control parameters 
in urban networks in real-time. Such system is necessary for testing the performance of the 
robust timing plans, also it is beneficial for evaluating the impact of rapid update of the control 
system on the network’s condition.  
 
4.1 Introduction: Offset Optimization Algorithm 
  
Traffic signal offsets specify the timing of a traffic light relative to adjacent signals. Offsets 
constitute the main parameter for coordinated traffic movement among multiple traffic signals.  
Optimizing the offsets in an urban network reduces the delay and the number of stops that 
vehicles experience. Existing offset optimization algorithms focus on two-way arterial roads. 
The papers [29] and [30] present algorithms for maximizing the green bandwidth, that is, the 
length of the time window in which a vehicle can travel along the entire road without being 
stopped by a red light. Traffic control software such as Synchro [31], TRANSYT [32], [33] 
optimize offset values by minimizing delay and number of the stops. Recently, advances in data 
collection technology led to methods for offset optimization using archived traffic data [34].  
 
All of the above-cited methods assume sufficient storage capacity for links and therefore do not 
consider the risk of spill-back in which a segment of road between traffic lights is completely 
filled with vehicles so that upstream traffic cannot enter the link, even with a green light. 
However, spill-back is a critical condition that can arise in an urban network; [35] and [36] focus 
on detecting and modeling spill-back. In some cases, spill-back can be prevented by changing the 
control system setting [37]; another study [38] shows that severe congestion could be improved 
by dynamically adapting offset values.  
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The paper [39] introduced a new approach that formulates offset optimization as a quadratically 
constrained quadratic program amenable to convex relaxation. This approach has many 
advantages over previous studies. It considers all links in a network with arbitrary topology and 
is not restricted to a single arterial. Further, the approach is computationally efficient and used in 
[40] to optimize offsets for large networks with high traffic demand from multiple directions. 
 
Next, I extend the algorithm in [39] to allow for links with finite storage capacity. By eliminating 
the assumption of infinite storage capacity, I get one step closer to improving the original model 
and make it more realistic. Moreover, with an example, I show how the result changes when the 
storage capacity constraints are active.  
 
The rest of this chapter is organized as follows. Section 4.2 briefly describes the vehicles arrival 
and departure model and Section 4.3 explains the offset optimization algorithm from [39]. 
Section 4.4 presents the simulation results from three different networks. Section 4.5 introduces 
the storage capacity constraints and extends the algorithm from Section 4.2. Section 4.5 also 
presents the evaluation process of the optimization problem when the storage capacity 
constraints are active with an example. Finally, Section 4.6 and 4.7 present the conclusions and 
some ideas for future researches.  
 
4.2 Problem Formulation 
 
In this section, I briefly recall the traffic network model proposed in [39]. Consider a network 
with a set S of signalized intersections and a set L of links. Let 𝜎(𝑙) denote the traffic signal at 
the head of the link l controlling the departure of vehicles from link l, and let 𝜏(𝑙) denote the 
signal at the tail of the link l controlling the arrivals of vehicles into link l. (Traffic in a link flows 
from its tail to its head.) 
 
All signals have a common cycle time T, hence a common frequency 𝜔 = 2𝜋/𝑇 rad/sec. The 
signals follow a fixed-time control. Relative to some global clock, each signal s has an offset 
value of 𝜃� = (0,2𝜋] radians that represents the start time of the fixed control pattern of the 
intersection. This pattern has designated green interval for each movement that repeats every 
cycle and controls the vehicle flow. Therefore, each link 𝑙 ∈ 𝐿 has a vehicle accumulation of 
𝑞� ≥ 0 at time t equal to the difference between the cumulative arrivals of vehicles, 𝑎� (𝑙), and 
departures, 𝑑�  ,  

 
𝑞� 𝑡 = 𝑎� 𝑡 − 𝑑� 𝑡           (4.1) 
 
If exogenous arrivals into the network are periodic with period T and there is no spill-back, it is 
reasonable to assume the network is in periodic steady state so that all arrivals and departures are 
also periodic with period T [41]. I then approximate the arrival and departure processes in a link 
as sinusoids of appropriate amplitude and phase shift. To this end, for each entry link l, the 
arrival of vehicles into link l at signal 𝜎(𝑙) is approximated as  
 
𝑎� 𝑡 = 𝐴� + 𝛼�cos	(𝜔𝑡 − 𝜑�)        (4.2) 
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for constants 𝐴�, 𝛼�	, 𝜑� ≥ 0 with 𝐴� ≥ 𝛼�. The constant Al is the average arrival rate of vehicles 
into link l; 𝛼�	allows for periodic fluctuation in the arrival rate. For a non-entry link l, the arrival 
process is approximated by  
  
𝑎� 𝑡 = 𝐴� + 𝛼�cos	(𝜔𝑡 − (𝜃x � + 𝜑�),       (4.3) 
 
for  
 
𝐴� = 	 𝛽�%𝐴%%∈�  ,          (4.4) 
 
𝛼�2 = 𝛽�%𝐴%cos	(𝛾%) 2 + 𝛽�%𝐴%cos	(𝛾%) 2,    (4.5) 
 
𝜑� = 𝜆� + arctan	(

�OG�G���	(�G)G∈�
�OG�G�1�	(�G)G∈�

).     (4.6) 
 
where 𝜆� denotes the travel time, in radians, of link l and 𝛽�% denotes the fraction of vehicles that 
are routed to link l upon exiting link i, which is given and fixed. The mid-point of the green 
interval in every cycle is specified by its offset 𝛾% ∈ [0,2𝜋]. The signal offsets at the tail and head 
of each link are respectively 𝜃x and 𝜃�.   
 
Similarly, I approximate the departure process for both entry and non-entry links by  
 
𝑑� 𝑡 = 𝐴� 1 + cos 𝜔𝑡 − 𝜃�(�) + 𝛾�     (4.7) 
 
where (𝜃�(�) + 𝛾�) is the actuation offset of link l as determined by the offset of signal 𝜎� at the 
head of link l and the green interval offset, 𝛾�, of link l. 
 
From equation (4.4.1), (4.4.3), and (4.4.7) I formulate the approximating queueing process, 
𝑞�(𝑡), as  
 
𝑞� 𝑡 = 𝑎� 𝑡 − 𝑑� 𝑡 = 𝛼� cos 𝜔𝑡 − 𝜃x � −	𝜑� −𝐴� cos 𝜔𝑡 − 𝜃� � − 𝛾� = 𝑄� cos 𝜔𝑡 − 𝜉�   
      (4.8) 
 
where  

𝑄� 𝜃 = 𝐴�2 + 𝛼�2 − 2𝐴�𝛼�cos	( 𝜃x � + 𝜑� − 𝜃� � + 𝛾� ),     (4.9) 

 
and 𝜉� is a phase shift; I omit the explicit expression for 𝜉� but note that it is easily computed.  

 
Therefore, it follows that 

 
𝑞� 𝑡 =  O

¡
sin 𝜔𝑡 − 𝜉� + 𝐵�,        (4.10) 
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where Bl is the average vehicle accumulation on link l. Since 𝑞� 𝑡  cannot be negative, I 

conclude that  O
¡
≤ 𝐵�.  

 
The cost function is the total average vehicle accumulation in all links, 𝑄��∈� . Since the first 
part 𝐴�2 + 𝛼�2 of formula (4.9) is constant, instead of minimizing 𝑄��∈� , I can maximize the 
negative part of the formula, 𝐴�𝛼�cos	( 𝜃x � + 𝜑� − 𝜃� � + 𝛾� ) for all links and our objective 
becomes  

 
max
{¤¥}	�∈§

𝐴�𝛼�cos	(�∈� 𝜃x � − 𝜃� � + 𝜑� − 𝛾�)      (4.11) 

 
in which the offset values, 𝜃�, are the only decision variables and all other parameters are given 
by the green splits.  
 
4.3 Algorithm Description 
 
Problem 4.11 is non-convex. To solve it, [39] uses semi-definite relaxation. To this end, [39] first 
formulates the equivalent QCQP by defining z=(x,y), where 𝑥� = cos	(𝜃�) and 𝑦� = cos	(𝜃�). 
Thus, the equivalent cost function becomes zTWz, where  
 
𝑊R 𝑠, 𝑢 = 𝐴�𝛼� cos 𝜑� − 𝛾��∈�      (4.12) 
𝑊2 𝑠, 𝑢 = 𝐴�𝛼�sin	(𝜑� − 𝛾�)�∈�      (4.13) 
 
and  
 

𝑊 = 𝑊R 𝑊2
−𝑊2 𝑊R

	,𝑊 = R
2
𝑊 +𝑊«     (4.14) 

 
Also, I have the constraints 𝑥�2 + 𝑦�2 = 1 for all 𝑠 ∈ 𝑆 let 𝐸� ∈ ℝ for 𝑠 ∈ 𝑆 be given by  
 

𝐸� 𝑣, 𝑢 = 	1				𝑖𝑓	𝑢 = 𝑣
0			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

      (4.15) 
 
and define  
 

𝑀� =
𝐸� 0
0 𝐸�

.      (4.16) 

 
Then the constraints 𝑥�2 + 𝑦�2 = 1 are equivalent to 𝑧«𝑀�𝑧 = 1 As a result, the optimization 
problem is  
 
max

³∈ℝb ´ µb
𝑧«𝑊𝑧 

	𝑆. 𝑡				𝑧«𝑀�𝑧 = 1			∀𝑠 ∈ 𝑆	     (4.17) 
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The quadratic terms in 4.17 are of the form 𝑧«𝑄𝑧 with 𝑍 = 𝑧𝑧«. Further if the matrix 𝑍 is 
positive semi-definite and of rank 1, it can be decomposed as 𝑍 = 𝑧𝑧«. The advantage of this 
transformation is that is linear in the new variable 𝑍.  
 
In the original offset optimization algorithm, [39] relaxes the exact, non-convex QCQP into a 
convex Semi-Definite Programming (SDP) by removing the rank constraint and gets the 
following formulation 
 
max

³∈ℝb ´ µb
𝑻𝒓(𝑊𝑍) 

	𝑆. 𝑡				𝑻𝒓 𝑀�𝑍 = 1			∀𝑠 ∈ 𝑆 
𝑍 ≥ 0		            (4.18) 
 
The solution to the relaxed convex SDP problem gives an upper bound on the value of the 
optimization problem. This upper bound is the optimum solution of the rank-constrained SDP 
problem if the solution matrix has rank 1. If the solution matrix has rank bigger than 1, [39] 
proposes vector decomposition as one of the options for obtaining the optimum solution. In this 
paper, I used vector decomposition to estimate the optimum solution as well. 
 
4.4 Algorithm Simulation 
 
In this section, I test the performance of the offset optimization algorithm that was developed in 
[39] on three real world case study networks. Figure 4.1(a) shows a ten-intersection portion of 
San Pablo Ave. in Berkeley, California that serves as our first case study. The figure also 
indicates the input approaches that have the most traffic volume. The second and third case study 
networks are respectively shown in Figure 4.1(b) and Figure 4.1(c). Similar to the first network, 
Figure 4.1(b) and Figure 4.1(c) indicate the major inputs of the networks. These networks are 
equipped with detectors from Sensys Network Inc.. According to the detection data, major traffic 
flow into the Montrose Rd. Network from three directions and they flow into the Live Oak Ave 
Network from two directions. Figure 4.1(b) indicates that most traffic in the eastbound direction 
comes from input 1 and in the westbound direction comes from inputs 2 and 3. 

 
In the San Pablo Ave Network, there are 2 through lanes in each direction and left turn lanes (1 
lane for left turn) at each intersection. The distance between intersections ranges from 0.15 to 
0.35, for a total length of 2.1 miles. The posted speed limit is 30 mph. All signals operate as 
fixed-time coordinated with a common cycle length of 80 seconds. 
 
 
In the Montrose Rd Network, there are 3 through lanes in each direction and left turn lanes 
(additional 1 to 3 lanes for turn) at each intersection. The distance between intersections ranges 
from 0.2 to 0.6, for a total length of 1.4 miles (note that the length of the top portion and the 
bottom portion of the network is very similar, therefore, the distance from the left-most 
intersection to any of the right-most intersection is around 1.4 miles.) The posted speed limit is 
40 mph. All signals operate as fixed-time coordinated with a common cycle length of 120 
seconds. 
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In the Live Oak Ave Network, there are 2 through lanes in each direction and left turn lanes (1 
lane for turn) at each intersection. The distance between intersections ranges from 0.1 to 0.4, for 
a total length of 1.5 miles. The posted speed limit is 35 mph. All signals operate as fixed-time 
coordinated with a common cycle length of 120 seconds. 
 

  
(a) Case study 1: San Pablo Ave Network in Berkeley, California 
 

  
(b) Case study 2: Montrose Rd. Network in Montgomery County, Maryland.  
 

 
 (c) Case study 3: Live Oak Ave in Arcadia, California.  
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Figure 4. 1 Case studies site schemes  
 
I used Synchro 9 to build a test-bed of the networks, as shown in Figure 4.2, and then used 
Synchro’s offset optimization tool to optimize the intersection offsets, while other control 
parameters such as cycle time, green time, split ratio, and etc. are constant. As explained in the 
Synchro user manual, for each offset combination, Synchro reevaluates the departure patterns at 
the intersection and surrounding intersections and uses Highway Capacity Manual (HCM) delay 
equation to recalculate delay values [22]. It then chooses the offset values with the lowest delay 
as the optimum. I repeated this process for all the traffic profiles and recorded the offset values.  
 

  
(a) San Pablo Ave Network Synchro model  
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(b)  Montrose Rd. Network Synchro model 
 

 
(c)  Live Oak Ave Network Synchro model  
 
Figure 4. 2 Synchro models for the networks  
 
In addition, a simulation test-bed was built in VISSIM 8 [42] as shown in Figure 4.3 for 
evaluating the performance of different offsets. I used the current signal settings and network 
information for modeling, and for each traffic profile I tested 2 scenarios:  

• Offsets determined by Synchro’s optimization method.  
• Offsets determined by the proposed offset optimization algorithm.  
 

  
(a) San Pablo Ave Network VISSIM model  
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(b)  Montrose Rd. Network VISSIM model 
 

 
(c)  Live Oak Ave Network VISSIM model  
 
Figure 4. 3 VISSIM models for the networks  

Based on available data, I designed several different traffic profiles for each network, which is 
showne in Figure 4.4. In Figure 4.4(a), San Pablo Ave Network traffic profile, scenario 1 and 
scenario 2 correspond to the traffic during the peak hour in different directions, and scenario 3 
corresponds to the traffic during off-peak hours. Also, in Figure 4.4(b), Montrose Rd. Network 
traffic profiles, scenarios 1 and 5 represent the AM-peak condition while scenarios 2 and 4 are 
the PM-peak condition, and scenario 3 represents the mid-day traffic profile. Finally, Figure 
4.4(c), Live Oak Ave Network traffic profiles, presents the AM-peak traffic condition in that 
network.  
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(a) San Pablo Ave Network traffic profiles  
 

  
(b)  Montrose Rd. Network traffic profiles  
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(c)  Live Oak Ave Network traffic profiles  
 

Figure 4. 4 Traffic profiles for all the networks 

 
For the case study networks and for each traffic scenario, I tested the performance of the offsets 
suggested by the offset optimization algorithm and offsets suggested by Synchro. To do so, I ran 
the VISSIM simulation for one hour for each scenario. In order to evaluate the performance of 
the network under each offset configuration, I collected the following measures for vehicles 
moving along the major routes:  

• Average number of stops that each vehicle experiences.  
• Average vehicle delay that each vehicle experiences.  

 
Major routes carry the most traffic volume. In the San Pablo Ave Network and the Live Oak Ave 
Network, highest traffic volumes are in the south-to-north and north-to-south approaches through 
all the intersections. In the Montrose Rd. Network, there are four major routes: from west to the 
upper east leg and vice-versa, and from west to lower east leg and vice-versa. 
 
Before presenting the vehicle delay and number of stops results, let’s take a look at an example 
of the offset values for Live Oak Ave Network, Scenario 1. As it is shown in Figure 4.5, offset 
values from Synchro and algorithm are different and there is no relationship between them. In all 
other networks and scenarios, there is no pattern between the offset values, because the methods 
that Synchro and algorithm use to optimize offset are different. Hence, the offset values will be 
different.  
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Figure 4. 5 Example of the offset values for Live Oak Network, Scenario 1 
 
The following results present the average traffic measures over all the major routes in each 
network.  

 
 

 
(a) Average vehicle delay results for San Pablo Ave Network   
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(b) Average vehicle delay results for Montrose Rd. Network  
 

 

 
(c)  Average vehicle delay results for Live Oak Ave Network  
 
Figure 4. 6 Case studies average vehicle delay results for every scenario 

 
VISSIM estimates the vehicle delay as the difference between the travel time in free flow 
condition and actual travel time of each vehicle. This delay includes the time that a vehicle is 
stopped at red lights and accounts for the acceleration and deceleration time as well. In Figure 
4.6, the orange (respectively, yellow) columns show the average delay that vehicles experience 
under offset values suggested by Synchro (respectively, the proposed algorithm).  
 
In the Montrose Rd. network, as seen in Figure 4.6(b), the average delay is lower for all traffic 
scenarios under offset values suggested by the proposed offset optimization algorithm compared 
with Synchro, and scenario 2 experiences the most improvement, with 30% reduction in delay.  
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Clearly, the algorithm offsets reduce vehicle delay in Live Oak Ave Network, Figure 4.6(c) as 
well. However, in the San Pablo Ave Network, Figure 4.6(a), the vehicle delay is almost same 
for both Synchro and algorithm’s offset values under all the traffic profiles.  
 
In Figure 4.7, the orange (respectively, yellow) columns show the average number of stops that 
vehicles experience under offset values suggested by Synchro (respectively, the proposed 
algorithm). Clearly, the algorithm offsets reduce the number of stops in all three traffic profiles 
for the San Pablo Ave Network, Figure 4.7(a) and up to 20% improvement in scenario 2. 
 
In the Montrose Rd. Network, I tested 5 traffic profiles. Figure 4.7(b) shows the average number 
of stops for these profiles. In all scenarios, the proposed algorithm outperforms Synchro. 
Scenario 2 shows the most improvement of 30% reduction in the number of stops. Also, 
according to Figure 4.7(c) the vehicles during the AM-peak in the Live Oak Ave Network 
experience 6% fewer stops under the offset values from the algorithm compare to the Synchro’s 
offset values. 
 
Note that the number of stops vehicles experience in the Live-Oak Ave Network is very large, it 
is because of the cycle failure in intersection 1 in the westbound direction. This intersection has 
about 40 second of green time and it only has 1 through movement lane, as a result, very large 
queue forms at this intersection and very quickly it grows and reaches upstream intersections. 
Hence, vehicles experience very large delay and number of stops in this direction because of the 
cycle failure.  
 

 
(a) Average number of stops results for San Pablo Ave Network   
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(b) Average number of stops results for Montrose Rd. Network  
 

 
(c)  Average number of stops results for Live Oak Ave Network  
 
Figure 4. 7 Case studies average number of stops results for every scenario 
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The result from case studies show the algorithm’s suggested offset values improve the traffic 
condition in the networks. However, this algorithm implicitly assumes infinite storage capacity 
on links. While this assumption may be sometimes reasonable, as in the case studies above, some 
networks with short links or high traffic volumes may be susceptible to the spill-back 
phenomenon where a link exceeds its capacity and the queue blocks upstream traffic flow. In this 
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section I show how to modify the algorithm to work for networks with limited storage capacity 
links.  
 

  
Figure 4. 8 Queue spill-back at the first intersection (red circle) blocks the entrance. 
 
At this point I have a model of the average vehicle accumulation, equation 4.9, in each link as a 
function of the offsets 𝜃� for 𝑠 ∈ S. However, in reality, the number of the vehicles occupied 
each link cannot exceed the storage capacity of that link, and if it reaches the capacity, vehicles 
will not be able to enter the link and will block the upstream intersection; this situation is called 
spill-back. Figure 4.8 shows an example of the spill-back in a network. The intersection marked 
by the red circle is experiencing spill-back, and vehicles cannot enter the intersection even 
though the light is green. 
 
In order to prevent spill-back, I constrain the maximum vehicle accumulation that can exist in 
each link, 2Bl, to be equal or less than the maximum number of the vehicles that can be stored in 

the link under jam density,	𝑘�. Section 4.2 explains that  O
¡
≤ 𝐵�, so for each link 𝑙 ∈ 𝐿, the 

storage capacity constraint is as following 
 

2𝑄� ≤ 𝜔𝑘� 	⇔ 		𝑄�2 −
¡¼O
2

2
	≤ 0.     (4.19) 

 
This leads to the final optimization problem by adding the constraint (4.19) to (4.11)  
 
max
{¤¥}	�∈§

𝐴�𝛼�cos	(
�∈�

𝜃x � − 𝜃� � + 𝜑� − 𝛾�) 

𝑠. 𝑡		𝑄�2 −
¡¼O
2

2
	≤ 0		∀𝑙 ∈ 𝐿.       (4.20) 

 
Now, to incorporate the new constraints in the QCQP formulation for each link 𝑧«𝐶�𝑧 ≤ 𝐾� 
where 𝐾� = −𝐴�2 − 𝛼�2 +

¡¼O
2

2
 and 𝐶� is given by  

 
𝐶R 𝑠, 𝑢 = −2𝐴�𝛼� cos 𝜑� − 𝛾� 			𝑖𝑓		𝑠 = 𝜏 𝑙 		𝑎𝑛𝑑		𝑢 = 𝜎 𝑙

0																																																																		𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (4.21) 

𝐶2 𝑠, 𝑢 = −2𝐴�𝛼� sin 𝜑� − 𝛾� 			𝑖𝑓		𝑠 = 𝜏 𝑙 		𝑎𝑛𝑑		𝑢 = 𝜎 𝑙
0																																																																		𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (4.22) 
  
with  
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𝐶� =
𝐶R 𝐶2
−𝐶2 𝐶R

		 , 𝐶� =
R
2
𝐶� + 𝐶�« .    (4.23) 

 
The original optimization problem from 4.17 together with the new storage capacity constraints 
leads to  
 
max

³∈ℝb ´ µb
𝑧«𝑊𝑧 

	𝑆. 𝑡				𝑧«𝑀�𝑧 = 1			∀𝑠 ∈ 𝑆	 
𝑧«𝐶�𝑧 ≤ 𝐾�			∀𝑙 ∈ 𝐿          (4.24) 
 
Then, I relax the exact, non-convex QCQP into a convex Semi-Definite Programming (SDP) by 
removing the rank constraint  
 
max

³∈ℝb ´ µb
𝑻𝒓(𝑊𝑍) 

	𝑆. 𝑡				𝑻𝒓 𝑀�𝑍 = 1			∀𝑠 ∈ 𝑆		 
𝑻𝒓 𝐶�𝑍 ≤ 	𝐾�			∀𝑙 ∈ 𝐿 
𝑍 ≥ 0.	            (4.25) 
 
When Z has rank equal to 1, the answer is the optimum solution but, if Z has rank higher than 
1the result of the optimization problem is the upper bound solution. Therefore, one option is to 
use vector decomposition to estimate a feasible solution close to the optimum point.  
 
Now, let’s test the algorithm by assuming a network such as the one in Figure 4.8, with 4 
intersections and fixed common cycle time for all intersections. Starting from the most left-hand 
side intersection, there is intersection 1, 2, 3, and 4. Also, there is link 1, connecting intersection 
1 and 2, link 2, connecting intersection 2 and 3, and finally we have link 3, connecting 
intersection 3 and 4.  
 
Input demands from minor streets to the network are minimal and there are traffic volumes equal 
to 800 and 500 vehicles per hour respectively on the eastbound and westbound. Moreover, 
signals have fixed predesigned timing plans but the offset vales were estimated by Offset 
optimization algorithm. I estimated the offset value under the following scenarios 

• Scenario 1: Infinite storage capacities for links.  
• Scenario 2: Storage capacity of link 1, 2, and 3 are respectively 3, 4, and 5 vehicles.  

 
As a result, Table 4.1 shows the offset values for scenario 1 and 2. Moreover, Table 4.2 presents 
the algorithm’s estimated values of the maximum number of the vehicles in each link under each 
scenario. According to this table, the maximum vehicle accumulation in link 1 WB, link 2 WB, 
and link 3 WB are smaller in scenario 2 and they are equal to the storage capacity values of the 
links. However, the maximum vehicle accumulation in link 1 EB, 2 EB, and 3 EB, increased due 
to the new offset values.  
 
 
  



 42 

Intersection 1 2 3 4 
Offset values in seconds for scenario 1 0 4 10 19 
Offset values in seconds for scenario 2 0 3 7 12 
Table 4. 1 Offset value of each intersection under the two scenarios 
 

Link Number of vehicles in Scenario 1 Number of vehicles in Scenario 2 
Link 1 EB 1.8 2.2 
Link 2 EB 2.3 3.0 
Link 3 EB 2.5 4.6 
Link 1 WB 3.2 3.0 
Link 2 WB 4.4 4.0 
Link 3 WB 6.0 5.0 

Table 4. 2 Maximum number of vehicles in each link under the two scenarios 
 
Clearly estimated vehicle accumulation values are not equal to the queue length, also the model 
does not consider car following theory. So, I will not be able to test the new algorithm in a 
simulator and on a real-world network. But the result from the algorithm and vehicle 
accumulation values from the model shows that algorithm is preventing spill-back by having a 
limit on the maximum number of the vehicles in the link. 
 
4.6 Discussion and Future Research 
 
In this chapter, I evaluated the performance of an offset optimization algorithm on two real world 
networks under several traffic profiles. In almost all cases, the offset values obtained by the 
proposed algorithm reduce the average number of stops and total delay that vehicles experience 
as compared to Synchro’s extracted optimum offset values. I used Synchro’s suggested optimum 
offset value as my baseline because it is a popular method among transportation engineers that is 
commonly used in practice.  
 
The improvement varies depending on the geometry of the network and traffic profile. However, 
in all scenarios, the proposed offset optimization algorithm has better performance compared to 
Synchro. Networks that are larger and more complicated, in other words having multiple major 
traffic inputs, such as Montrose Rd. network, are likely to benefit more from the proposed offset 
optimization method because by considering the demand in all the existing links and traffic 
approaches, this algorithm can also improve network congestion in a time-efficient manner. For 
example, in the Montrose Rd. network, the offset optimization algorithm reduces the delay and 
number of stops by about 30% in some traffic profiles. 
 
In section 4.5, I extended the original offset optimization algorithm by eliminating the 
assumption of infinite storage capacities for links. I added storage capacity constraints to the 
optimization problem, so the maximum vehicle accumulation in the links cannot pass the storage 
capacity of the links. The ultimate goal is to prevent spill-back in the network by controlling the 
maximum vehicle accumulation in critical links. In order to achieve this, I need to improve the 
current model in a way that it will estimate a queue length value. One approach for improving 
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the current algorithm in future, is to use multiple sinusoidal waves to model arrival and departure 
instead of using a single wave.  
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Chapter 5. Estimating Activation Intervals for Signal Plans 
 
5.1 Introduction 
 
Having the most efficient control parameter is only valuable if we apply it at the right time and 
place. Therefore, the fifth step of the flow-chart from Figure 1.1 is to estimate the suitable 
activation interval for control parameters. Existing responsive systems address the problem of 
responding to actual traffic condition by applying appropriate switching time between control 
plans [43].  
 
There are different methods for estimating the switching time, such as using time of the day or 
the condition of the traffic. I specifically use the traffic profile of the intersection to estimate the 
most appropriate switching time. In order to do that I tested different machine learning methods 
and eventually picked K-means clustering to group the data points with the most similar traffic 
conditions together.  
 
There are other parameters such as saturation flow rate and volume capacity ratio that could be 
used to estimate the switching times but traffic volumes are the most accessible information and 
it is available at all time.  
 
Section 5.2 describes the switching time algorithms and next I test the algorithm on two real-
world intersections and show the result in Section 5.3. Lastly, Section 5.4 presents a short 
conclusion.  
 
5.2 Algorithm Description 
 
K-means clustering method partitions observation points into k clusters in which each 
observation belongs to the cluster with nearest mean. The objective is to minimize the Euclidean 
distance of every item in each cluster from the center of the cluster, as it is shown in the 
following formula 
 
𝑎𝑟𝑔𝑚𝑖𝑛

§
| 𝑥 − 𝜇% |Á∈§G

¼
%QR .          (5.1) 

 
Where 𝑘 is the number of clusters and 𝜇% is the center of the 𝑖wÂ cluster. Also, rows of 𝑆 
correspond to points and columns correspond to variables. Hence, every 𝑆% is a subset of the set 
𝑆, 𝑆% ∈ 𝑆, but the intersection of the all the subsets is empty, 𝑆R ∩ 𝑆2 ∩ 𝑆S …	∩ 𝑆¼, where 𝑆R ∪
𝑆2 ∪ 𝑆S …	∪ 𝑆¼ = 𝑆. Point x presents a row from matrix S and includes the following 
information  
 

𝑆 =
𝛽 ∗ 𝑡R				𝑉R,R ⋯ 𝑉R,8

⋮ ⋱ ⋮
𝛽 ∗ 𝑡x				𝑉x,8 ⋯ 𝑉x,8

			        (5.2) 

 
There are 𝜏 rows in the 𝑆 matrix and each row represents a time slot, which can vary from a 
single second to one hour or even several hours. Time slots are equal and their length depend on 
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two factors, first the resolution of the data, second the desired accuracy for the switching time. 
For example, some systems may only accept the whole hour values as the switching time, 
therefore the length of each slot is 1 hour and 𝜏 is equal to 24. Since data points are sorted by 
time, clusters include points that are in the same time range. However, to capture the increasing 
order of the time for all cases, I added an extra coefficient value, 𝛽, next to the time, which let 
me to increase the impact of the time by having higher coefficient. The default value for the 
coefficient 𝛽 is 1 but it can go as high as necessary, until all the clusters include points in same 
time interval.  
 
The first column of the 𝑆 matrix is time, and the rest are the traffic volumes, 𝑉. Number of the 
columns that correspond to the traffic volume depends on the dataset as well. For example, if the 
data is available for every approach in each leg then there is one column for each approach, but if 
we only have the traffic volume per leg, then the number of the column is equal to the number of 
the legs. Moreover, for every day there is one set of columns, so for the cases that data is 
available for several days or months, there will be additional columns for every day. However, to 
estimate switching time for a specific day in the future, it is reasonable to use days with similar 
characteristic. For instead, if I want to estimate the switching time for a Monday, my 𝑆 matrix 
only includes the previous weekdays (or just previous Mondays). In conclusion, each row 
includes the information about the traffic volume for a specific time of the day in all the 
approaches and for all the available dates.    
 
After estimating the 𝑆 matrix and assigning a value to 𝑘, I can solve the optimization problem in 
equation 5.1. As a result, I have 𝑘 clusters and the index number of the members inside each 
cluster. Next, to find the switching time, I search for the times that cluster numbers change, for 
example if up to 7AM data points are in cluster number 1 but after 7AM data points are in cluster 
number 2, then 7AM is the switching time. The switching time is when the condition of the 
traffic changes and the difference between the traffic volume before and after switching time is 
significant.  
 
For the case studies, I use the K-means clustering tool in MATLAB to group the data points and 
find the index of the member of each cluster.  
 
5.3 Algorithm Evaluation 
 
In this section I show the result of using the switching time algorithm on two real world 
intersections. The first intersection is Tildenwood and Montrose Rd. located in Montgomery 
County in Maryland and it is shown in Figure 5.1. The same figure shows the leg number as 
well. For this intersection, traffic volume per leg is available for July 17-30, 2016 and according 
to the control system information from the city, there are 5 control plans per day and switching 
time values should be in hour only.  
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Figure 5. 1 Picture of Tildenwood and Montrose Rd. intersection in Maryland 
 
As a result, I formulate the 𝑆 matrix as follows 
 

𝑆 =
𝑡R ⋯ 𝑉�Q;,ÉQ8,wQR
⋮ ⋱ ⋮
𝑡2P ⋯ 𝑉�Q;,ÉQ8,wQ2P

	 , 𝑚 = 1,2,3,4,			𝑛 = 1,2,3,4,5.			    (5.2) 

 
where I use the first week of the data, July 17-23, 2016, to construct the 𝑆 matrix and estimate 
the switching time for Tuesday July 26th. In equation 5.2, m represents the leg number and there 
are 4 legs. Also, n is the number of the days, which is five here because I use all the weekdays 
from the first week, July 18-22. As a result, I have the 𝑆 matrix and number of cluster is equal to 
5, 𝑘 = 5, because the control system accept maximum of 5 control plans per day. Now I estimate 
the switching time by using the algorithm developed in section 5.2.  
 
There are four curves in Figure 5.2 and each curve represents the traffic volume of a leg in the 
Tildenwood and Montrose Rd. Intersection during July 26th. In addition, on the same figure, 
there are black vertical lines that divide the day into 5 portions. These black lines represent the 
estimated switching times from the algorithm. As it is shown on the figure leg 3 and 4 have the 
highest traffic volume and the most contribution in the traffic demand of the intersection, 
accordingly, the black line are located at time when there are the most changes in the traffic 
behavior.  
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Figure 5. 2 Tildenwood and Montrose Rd. intersection traffic volume per leg from July 26th 
and estimated switching time values  
 
The second case study is Ribaurt Rd. and Lady’s Island Drive Intersection in Beaufort, SC from 
Figure 3.1 in Chapter 3, which the traffic volume for every 5 minutes per leg is available for 
Wednesday February 18, 2015 from 6:00AM to 7:00PM. In this intersection from 6:00AM to 
7:00PM there are 3 different control plans (AM peak, Mid-day, PM-peak). However, the total 
traffic volume in Figure 5.3 shows that there is a time the in mid-day interval that has a total 
volume as high as AM-peak or PM-peak but the current control plan does not consider the high 
demand at the middle of the day.  
 
According to my studies the high demand from 12PM to 1PM is due to the lunch break for the 
hospital and school close to that intersection and it happens every day. As a result, I construct the 
𝑆 matrix by using the same day traffic volume for every leg and assigned 5-minute interval for 
time slots, also have 𝑘 equal to 4 (instead of 3, which is the default value) to run the algorithm. 
Note that, since the time slot length is 5 minutes, the switching times have higher accuracy and 
resolution compared to the first case study. 
 
The y-axes on Figure 5.3 shows the total traffic volume of all the legs in the intersection for 
every 5 minutes and the x-axes it the time from 6AM to 7PM. On the same figure the black lines 
show the estimated switching time between control plans. Similar to the first case study, the 
switching times clearly presents the change in the traffic condition. 
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Figure 5. 3 Total traffic volume in Ribaurt Rd. and Lady’s Island Drive Intersection with 
estimated switching time for control plans 
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Chapter 6. Conclusions 
 
6.1 Summary of Conclusions 
  
Studying the traffic condition and existing signal control strategies in urban transportation 
networks indicate that gaps exist in the areas of performance measurement, analysis tools, and 
control strategies. Adaptive control system was introduced to reduce these gaps; however, the high 
cost and complexity make it hard to implement such systems. On the other hand, robust pre-timed 
signal plan is an alternative to the adaptive control system, which is cheaper, and easier to 
implement. Also, recent advances in traffic data collection technology at intersections make it 
possible to design efficient robust timing plans that satisfy demand fluctuation.   
 
In this dissertation, I studied a six-step process for designing and implementing robust pre-timed 
signal plans. This six-step process included, collect data, filter data, evaluate the control system, 
update the control parameters, design activation interval for new parameters, and implementation. 
Moreover, I presented my contribution on each one of the steps separately. For the first step, I used 
data on vehicle arrivals and departures plus the signal status at real-world intersections. The data 
included information on turning movement counts at various time resolutions and saturation flows, 
also it provided performance measures such as lost times, wasted green times, proportion of 
vehicles arriving on green, and delays. Next, I developed a data-filtering algorithm to reduce the 
systematic error in detector data up to 25%. Furthermore, analysis of the data provided an extensive 
set of metrics that used for the development and assessment of signal settings at signalized 
intersections. In addition, to evaluate the performance of the control system in the test intersection, 
an algorithm was developed to estimate the vehicle accumulation in each approach at any given 
time.   
 
After conducting a complete evaluation on the performance of the control system, it was time to 
improve the weaknesses and update control parameters. At this step, I expanded my view from 
single intersection to network of intersections and focused on estimating offset values, because 
offsets constitute the main parameter for coordinated traffic movement among multiple traffic 
signals. I introduced an extended version of an offset optimization algorithm that optimizes offset 
by minimizing the vehicle accumulation in all the links. Also, I compared the performance of this 
algorithm with Synchro’s offset optimization tool and used VISSIM to simulate changes in traffic 
condition in real-world networks. Offset optimization algorithm reduced the delay and number of 
stops up to 30% in some scenarios and in overall showed a better performance than Synchro’s 
offset optimization tool. Lastly, a clustering algorithm was introduced to determine the appropriate 
switching time between signal plans during the day.  
 
The main advantage of data-driven approaches over existing method is their flexibility and fast 
reaction time. Existing control systems and signal plans get revised every several years but with 
data-driven approaches, control systems can automatically update their control parameters 
rapidly and satisfy the demand growth and traffic volume fluctuations. In conclusion, data-driven 
approaches will have the main role in improving the traffic condition in future and they will fill 
out the gaps in performance measurements and control strategies. 
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6.2 Future Work 
 
Data-driven approaches that I introduced in this dissertation were tested in simulator or on real-
world database and showed promising results. Even that simulators provide environments very 
similar to the real world but still a real-world field test is necessary to estimate the actual benefits 
of the algorithms and identify problems that are not clear in the simulation. Since the data 
collection technology already exist in the studied networks, the field test of the algorithms would 
be relatively easy and it will not require any change of the infrastructures.   
 
Considering all the works that have been done so far on developing robust pre-timed signal 
plans, there are still a lot to be done in this field. The six-step process that was introduced in this 
dissertation is a general framework for designing robust pre-timed signal plans and each step 
could be extended in the future. More importantly, most of the studies that have been done so far 
are not easily applicable to the real world and might work only under unrealistic assumptions. 
The algorithms that I have developed showed improvement on real world networks in simulation 
and they are also applicable in real world, due to their simplicity, low cost, and easy 
implementation process.  
 
Lastly, algorithms that design control parameters can improve the safety of the intersection as 
well. For example, preventing spill-back at intersections by designing appropriate control 
parameters (e.g. green interval, offset value, and cycle time) will reduce the scenarios that 
vehicles block the intersection, which is an unsafe situation. Data-driven algorithms are practical 
methods that can address safety and efficiently in urban transportation networks.  
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Appendix A: Algorithm Implementation  
 
In the traffic engineering community, applications programming and the development of COM 
application are regularly used to enhance or extend VISSIM (and other traffic) model 
capabilities, providing features or simulation abilities that cannot be otherwise accomplished.  
Typical uses of VISSIM-COM apps are dynamically rerouting or diverting traffic during major 
freeway incidents; dynamically changing driver/vehicle desired speed parameters as a response 
to speed reductions posted on changeable message signs, and implementing complex coordinated 
and demand responsive signal control strategies. 
 
The VISSIM software has a COM interface as one of its built-in features.  During a VISSIM 
model run, VISSIM’s COM interface provides the ability to communicate with other apps that 
are also running. In order for VISSIM to communicate with other software applications, these 
other software apps need to have a built-in COM interface as well. These COM communications 
between VISSIM and MATLAB can provide the means to pass data, model runtime status or 
model parameters between the two communicating apps. By means of COM programming, 
MATLBA can also control or trigger events within another app.  For example, MATLAB can 
invoke VISSIM, tell the VISSIM app to load a network, set model parameters, start a simulation 
model run, pause the simulation model run, retrieve and change VISSIM model parameters, and 
generally control the VISSIM model run.  
 
COM programming can be used to detect VISSIM events and/or to change many of the model’s 
aspects, parameters and/or conditions during VISISM simulation model runs.  A typical COM 
program sequence of events would be: 

• “Pause” the VISSIM simulation model:  
o Once or multiple times during the model run   
o At predetermined intervals or preselected times  
o Upon detection of specific conditions or events 

• “Retrieve” data and information on VISSIM model runtime status:  
o Current signal controller values 
o Traffic volumes 
o Vehicle detector occupancy rates  
o Transit boarding/alighting counts 

• “Set” or change VISSIM model parameters and/or status:  
o Signal controller offsets and/or splits 
o Ramp metering rates 
o Vehicle type and driver behavior model parameters 
o Vehicle route choice factors 
o Traffic toll collection booth operational parameters 

• “Initiate” or “Terminate” events: 
o Freeway collision  
o Lane closures 

• “Continue” the VISSIM simulation model 
 
For my work, a MATLAB-VISSIM COM was built to:  

1. Initiate the VISSIM model run 
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2. Periodically pause the VISSIM simulation model run to get traffic volumes and other 
performance measures from VISSIM 

3. Change the traffic profiles or/and control parameters  
4. Continue the model run    

 
As I mentioned, I used this interface in Chapter 4 for testing the offset optimization algorithm 
and Figure A.1 shows the flow of information between the MATLAB, VISSIM and the Offset 
Optimization Module.  The COM program and the Offset Optimization Module were developed 
in MATLAB.  This means that, at runtime, MATLAB controls the VISSIM model and controls 
or calls the Offset Optimization Module.  MATLAB initiates the VISSIM model run; it initiates 
and controls the VISSIM→MATLAB data transmissions (the data retrievals), the 
MATLAB→VISSIM data transmissions (the data pushes); and it invokes or calls the Offset 
Optimization Module (and controls parameter passing between MATLAB and the Offset 
Optimization Module). 
 
 

 
 
 
 
 
 
Figure A.1 Flow of information during MATLAB-VISSIM “COM” Controlled Model Run 
 
Figure A.2 shows the iterative COM program’s sequence of events.  COM signal controllers like 
this one tend to be circular or iterative in nature, with their sequence of events being repeated 
with every signal cycle, or once every 5 cycles, or once every 10 (or so) cycles.  It is up to the 
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VISSIM modeler to determine how often the signal timing parameters (e.g., offsets and splits) 
should be updated. 
 
 

 
Figure A.2 Control of VISSIM Model and Offset Optimization Module 
 
As a result, the performance of the algorithm was evaluated in the simulator. Such result helps 
the transportation engineer to have a more realistic understanding about the algorithm and 
performance of the algorithm in the real-world.  

 

 




