UC Irvine

UC Irvine Previously Published Works

Title

Remarks on the mutual solubilities and superconductivity of hexaborides

Permalink

https://escholarship.org/uc/item/2rg6q8p7

Journal

Materials Research Bulletin, 9(5)

ISSN

0025-5408

Authors

Fisk, Z Lawson, AC Fitzgerald, RW

Publication Date

1974-05-01

DOI

10.1016/0025-5408(74)90133-0

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Mat. Res. Bull. Vol. 9, pp. 633-636, 1974. Pergamon Press, Inc. Printed in the United States.

REMARKS ON THE MUTUAL SOLUBILITIES AND SUPERCONDUCTIVITY OF HEXABORIDES

Z. Fisk*, A. C. Lawson, and R. W. Fitzgerald Institute for Pure and Applied Physical Sciences
University of California, San Diego
La Jolla, California 92037

(Received March 18, 1974; Communicated by B. T. Matthias)

ABSTRACT

X-ray diffraction and electron microprobe data indicate that the mutual solubility of LaB₆ and YB₆ depend strongly on the method of alloy preparation. Superconducting transition temperatures of these alloys are reported.

The hexaborides of yttrium, thorium and the light rare earths all crystallize in a cubic structure which can be visualized as a CsCl arrangement of metal atoms and B₆ octahedra. We give our values of a measured on single crystals in a Gandolfi camera in Table 1. Because of the small variations of the lattice constant, one expects, on the basis of the Hume-Rothery rules, complete solid solution between these hexaborides.

In a study of superconductivity in the YB_6 -LaB $_6$ system, we found that arc-melting of YB_6 -LaB $_6$ mixtures invariably produced

Research supported in part by the Office of Naval Research, Department of the Navy, Contract IPAPS/ONR-N00014-69-A-0200-6031; and in part by the Air Force Office of Scientific Research, Air Force Systems Command, Contract #AROSR-F44620-72-C-0017. Reproduction in whole or in part is permitted for any purpose by the United States Government.

TABLE 1

Compound	a _o (Å)	
	Experiment	Literature
LaB ₆	4.156	4. 154
CeB ₆	4.141	4.141
PrB ₆	4.133	4.130
NdB ₆	4.126	4.126
SmB ₆	4.133	4.133
GdB ₆	4.109	4.108
ThB ₆	4.110	4.113
YВ ₆	4.102	4.113

material with two distinct cubic lattice parameters, as well as tetraboride contamination. Metallurgical examination showed that three phases were present. Further examination in an electron-beam microprobe showed that a nominal (La $_5$ Y $_5$)B $_6$ arc-melted button contained two distinct B $_6$ phases, the LaB $_6$ -rich phase containing 15 ± 5 a/o YB $_6$, and the YB $_6$ -rich phase containing no LaB $_6$ within counting statistics. Microprobe scans for La L $_\alpha$ - and Y L $_\alpha$ -radiation are shown in Fig. 1.

This lack of solubility of LaB₆ in YB₆ is surprising, especially in view of the rapid quenching on the water-cooled arc-furnace hearth and the almost identical lattice parameter. Attempts were also made to prepare LaB₆-YB₆ solid solutions by sintering a pressed pellet of the mixed oxides and boron at 1600°C in vacuum. A possible reaction is: ²

$$(Y, La)_2O_3 + 14B \rightarrow 2(Y, La)B_6 + B_2O_3$$

Initially, we prepared YB₆ via this reaction. X-ray diffraction analysis showed both YB₄ and YB₆ present, and the material was not superconducting to 1.5°K, although arc-melted YB₆ is superconducting at 6.8°K. The results of increasing the B/Y_2O_3 ratio on T_c are given in Table 2. It appears from these results that there is some

Vol. 9, No. 5 HEXABORIDES 635

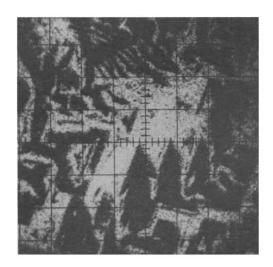


FIG. 1

Microprobe scans of La $_5$ Y $_5$ B $_6$. Left, LaL $_\alpha$ radiation; right Y L $_\alpha$ radiation. The field of view is approximately 150 $\mu \times$ 150 μ . Regions of inexact registry contain tetraboride.

variation in the stoichiometry which has a marked effect on $\rm T_c$. A very slight variation in a $_{O}$ ($\Delta\,a_{O}\sim\,0.001\,\rm \mathring{A}$) was observed on varying the B/Y2O3 ratio.

The T_c and lattice parameter data for YB_6 -LaB_6 mixtures prepared from oxides as above are given in Fig. 2. These data indicate the formation of a solid solution and the fact that the T_c extrapolates to zero near 25 a/o YB_6 . X-ray analysis indicates that now only one cubic phase is present and that Vegard's law is reasonably well obeyed.

TABLE 2

moles B/moles Y2O3	Phases Present	T _c (°K)
14	үв ₄ , үв ₆	None to 1.5°K
20	YB ₄ , YB ₆ , YB ₁₂	6.8 0.1
26	^{YB} ₄ , ^{YB} ₆ , ^{YB} ₁₂	6.3 ± 0.3

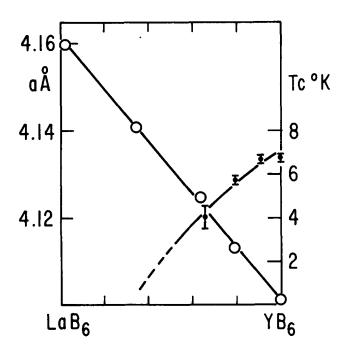


FIG. 2

Lattice parameters and superconducting transition temperatures of (La, Y)B solid solutions.

Since LaB₆ is congruently melting and YB₆ is incongruently melting, a possible explanation for the observed insolubility of La in YB₆ in arc-melted material is that the morphology of the appropriate ternary diagram is such that LaB₆ solidifies first from the (La, Y)B₆ melt, and that the liquidus-solidus separation is large enough to result in nearly complete fractionation.

Finally, we note that ThB₆ dissolves readily in both YB₆ and LaB₆ in the arc-furnace. The size factor certainly favors ThB₆-YB₆ solid solution, and our low temperature electrical resistivity measurements suggest that ThB₆ and LaB₆, but not YB₆, are electronically very similar. Insufficient data on the Th-B phase diagram exist to conclude whether ThB₆ melts congruently.

References

- See compilation by J. L. Hoard and R. E. Hughes in The Chemistry of Boron and Its Compounds [ed. E. L. Muetterties; New York, 1967], p. 118.
- 2. See discussion in G. V. Samsonov, High-Temperature Compounds of Rare Earth Metals with Nonmetals (New York: 1965), p. 56.
- 3. B. T. Matthias, T. H. Geballe, K. Andres, E. Corenzwit, G. W. Hull, and J. P. Maita, Science 159, 530 (1968).