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ABSTRACT

This report, Part II, cdnstitutes the culmination of a
research study which was described initially in a paper of the
same title, Part I, that appeared as SI0O Reference 53-33,
September 1953, and provides-a further account of the mathemat-
ical theory involved in the determination of the electromagnetic
field components generated by a horizontal electric dipole em-
bedded in a conducting half-space separated from the non-=
conducting medium above by a horizontal plane. In particular,
a detailed account is given of the computations involved for
points of observation in the non-conducting medium when the
depth of the source and the height of the point of observation
are small in compariscn with the horizontal range.

The first part of this report 1s concerned mainly with
the general evaluation of the fundamental integrals for both
media by the double saddle point method of integration developed
earlier, and the salient feature of the present analysis 1s the
fact that the new asymptotic expansions are term-wise differ-
entiable to any order with respect to three essential parameters:
horizontal range, depth (or height) of dipole source, and height
(or depth) of the point of observation. It is shown that this
important achievement 1s a consequence of applying the saddle
point method of integration tc a more judicious choice of
exponent with the result that the asymptotic expansions pre-
sented here are much simpler than those reported in Part I.

The remainder of the report is concerned with the ap-
plication of the new asymptotic expansions to the evaluation
of the Cartesian components of the Hertzian vector and of the
cylindrical components of the electromagnetic field vectors
for points of observation in the non-conducting medium.
Simplified approximations in which numerical substitutions can
be readily made are presented for three distinct ranges cor-
responding to the asymptotic, the intermediate, and the near
field; and, 1n each case, a detailed account 1s given of the
power flow in the field. In addition, there is presented for
the first time, for points of observation in the non-conducting
medium, an approximation valid down to zero horizontal range.
which is attained by equating to zeroc the propagation constant
in the non-conducting medium. Numerical results are given 1in
a manner similar to the numerical example presented in Part I.
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CORRECTIONS TO PART I

Apart from minor typographical errors that are for the
most part self-evident, we wish to call the attention of the
reader to a number of corrections to our earlier work, which
be presented here for the sake of accuracy. We list the wvarious

corrections by section number.

6:2a Transformation to the a,-plane.- The speci-
fication of the poles, real and virtual, of the integrand for
vi?) are incorrectly labelled in Fig. 7, although the sig-

nificant poles which 1ie irn the vicinity of the saddle point,
a, = #7, are correctly labelled. The proper identification

is given 1in the next 1tem.

. , . R (29 o
£t.26 Asymptotic expansion for Vl?' - The specifica-

e ®

tion of the poles given by Eq. (6.78) and subsequent discus-
sion 1s incorrect. The correct labelling, 1n accordance with
Egs. (8.37), follows:

Putting w_ = tan"1n (principal value), the real poles

P, occur in Fig. 7, with m =0, 1, £2, ..., at

= & Yo« 2mo tfor N o= &
oy (%n+wo, - 2mn  for A L

viii

.



and the virtual poles P2 occur in PFig. 7 at

- % { Loar_ e =
a, = & (gm wo) » 2mnm for A T ko”

b.3a FExtension cf Watson s lemma to include the case

at _hand - The discussion of this section as well as the inter-

pretation of Fig. 8 should he compietely recast in the light

of our new findings as explained 1in detail in Sections 8.2c¢

and 8.4d. Briefly, in accordance with the correct interpreta-
tion illustrated in Fig. 12, we musi properly identify K%

and \V%S which are incorrectly given by Egs. (6.92) and (6.93)
respectively, as the (x| and y intercepts of the boundary

curves in Fig. 8. That 1is,

K

ix ! oo {21{20)%

instead of Fq. (6.92);

1
= ¥, = (4k2p}§ instead of Egq. (6.93),

\(oiw

exactly as we found in the present correct analysis. It should
pe pointed out that the erroneous interpretation of Fig. 8 led
to an estimate of the order of magnitude of the remainder of
our asymptotic series which was grossly in error, but that
otherwise the results given in Part 1 are correct as presented.
For the sake of accuracy we list all the equations in which
reference is made to the remainder as computed from the wrong
values of i and ¢ 3 namely, Bgs. (6.96), (6.102), (6,107},
(6.119), (6.133), (6.142), (6.149), and (6.156), which remain
correct as wr;tten so long as we give to A and  their

correct values specified above.
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/o
6,3¢c Asymptotic expansion for the integrals Miii

and 6M£2>/azﬁw The last paragraph in this section, pages 164

and 165, should be recast in the light of our findings con=-
cerning the behavior of the first few terms of our asymptetic
series, Sections 8.4b and 8.5c. Whereas it remains true that
the first few terms of our asymptotic series, old and new,
behave as reciprocal powers of iklp9 which in fact makes

our results useful and practical, it is no longer true that
higher order terms behave likewise. On the contrary, according
to Watson's lemma, the higher order terms eventually behave

as reciprocal powers of ik2pn

7.1la Imposition of the condition lklpi > 1l.- The first

ten lines of the first paragraph in this section are correct as
written. The remainder of this paragraph, beginning with the
sentence: “Thus, we contend that all integrals ..., etc.,"
should be deleted because it is incorrect. Instead we should
write:

Thus, we contend that all integrals of the type 119
being exponentially attenuated, are negligible and certainly
smaller than the order of magnitude of the error committed
in the asymptotic evaluation of the integrals of the type 12
which are computed over the path 02 around the branch cut
for Yo in the A-plane. To see this, consider an integral
of the form (5.10) in which §(x) possesses a branch point
at x = X, and is analytic for |x| < A%9 where K% <f&x1&9

and let the branch cut extend from x = X, to infinity within



the sector |arg{x}| < %m as shown in Fig. 9. Then, accofding
to Cauchy's theorem, the difference between the integral taken
over path (1) and the integral taken over path (2) is clearly
the contribution around the branch cut, but as already pointed

out this contribution is exponentially attenuated and therefore

negligible.
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PREFACE

This report is the announced sequel to our original
communication: "The Horizontal Electric Dipole in a Conducting
Half-Space," which appeared as SIO Reference 53-33, September
1953, henceforth referred to as Part I. It provides a further
account of the mathematical theory involved in the determina-
tion of the electromagnetic field components generated by a
horizontal electric dipole embedded in a conducting half-space
separated from the non-conducting medium above (Fig. 1) by a
horizontal interface. In particular, we complete the results
of Part 1, which were confined to points of observation in the
conducting medium, by giving a detailed account of the computa-
tions involved for points of observation in the non~-conducting
medium when the depth of the source and the height of the point
of observation are small in comparison with the horizontal range.
This report consists essentially of two additional Chapters
which deal, respectively, with an improved method of obtaining
the asymptotic expansions for the fundamental integrals, and
with the application of the theory for points of observation

in the non-conducting medium.



Thus, in Chapter VIII we give a detailed exposition of our
new asymptotic expansions for the fundamental integrals which
proved to be much simpler than those deduced in Part I. The new
method of attack came about as a result of a careful re-appraisal
of the methods already employed, for it soon became clear that, due
to the greater complexity of the exponential behavior exhibited by
the integrands of the fundamental integrals for the non-conducting
medium, the formulas and results presented in Chapters VI and VII
for the conducting medium, which in their most general form proved
to be so cumbersome, would become even more unwieldy when applied
to the non-conducting medium.

In addition to the complexity of our earlier expansions
we had to contend with the unpleasant fact that our asymptotic
series were not term-wise differentiable; that is, could not be
differentiated term by term to yield correctly the asymptotic
expansion of the corresponding derivative. As a consequence, we
had to differentiate the original integral under the sign of inte-
gration and then apply anew the double saddle point method of
integration to the new integrand to obtain the asymptotic expan-
sion of the derivative, but only at the expense of considerable
additional labor,

Furthermore, this critical analysis of our earlier methods
disclosed the fact that the complexity of the resulting expansions
and their lack of differentiability could be traced directly to
the complexity itself of the exponent to which we were applying
the double saddle point method of integration. And we soon

realized that this complexity was merely a consequence of the fact



that we had retained in the exponent the totality of the expo-
nential behavior contained in the integrand, although we recog-
nized that the saddle point method of integration does not
require that the complete exponential behavior be retained for
the purpose of determining the path of steepest descents, so
long as the convergence of the integral is guaranteed beforehand.

Thus, to improve on our earlier expansions, we made a
more judicious choice of exponent in applying the method of
steepest descents, with the gratifying result that our new
asymptotic expansions proved to be much simpler and, most
important of all, term-wise differentiable to any order with
respect to all pertinent parameters. Furthermore, partly as a
consequence of the greater simplicity of the asymptotic series
and partly because we approached more directly the problem of
obtaining the coefficients of the double power series expansion
of the amplitude function in our double integrals, we were able
to compute in detail one more term of the asymptotic series
than had been possible in the past; and, what is more important,
we were able to estimate correctly the order of magnitude and
the behavior of all higher order terms.

In this manner we established that higher order terms
of our asymptotic series, o0ld and new, behave like (fikzg)wn
rather than (iklp)-n, as we had erroneously claimed in Part I,
and we were led to re-examine the estimate of the error in our
asymptotic series as deduced from Watson's lemma (see Correc-
tions to Part I). This analysis, Sections 8.4b, 8.4d, and

8.4e, shows how to obtain the correct estimate of the error for



sufficiently large number of terms, but gives no clue as to the be-
navior of the first few terms. However, we found that the first
few terms of our new asymptotic expansions, like those in Part I,
can be written as reciprocal powers of iklp and, in fact, admit
rutting k2 = 0 outright, all of which signifies that we have
zchieved results which prove useful in practice notwithstanding

T

apparent limitations imposed by Watson's lemma.

As a final remark on Chapter VIII we wish to point out that
the present method of attack is quite general and yields at once
the evaluation of the fundamental integrals over the contour 02
arcund the branch cut for v, (Fig. 10) for both media, thus
afferding a valuable check on the expansions of Part I. In addi-
tion, 1t 1s clear that, except for obvious modifications, the
rresent method of attack can be applied equally as well to the
evaluation of the contour integrals around the branch cut for ISK:
end. in fact, by a different choice of exponent and hence of branch
cuts, it is evident that this method can be applied to other ranges

o.ﬂ

parameters besides points of observation close to the interface
separating the two media. Thus we feel that, in Chapter VIII, we
present general methods of wider applicability than is apparent
from the applications discussed in this report.

In Chapter IX we consider the application of the general
results of Chapter VIII to points in the non-conducting medium for
which the height of the point of observation and the depth of the
scurce are much smaller than the horizontal range. We compute

thie Cartesian components of the Hertzian vector, the cylindrical

com»onents of the electromagnetic field vectors E and H, and




Wwn

the components of the time average Poynting's vector,
%Re{EXHfgg which yields the power flow, for three distince
ranges of parameters.

First, we consider in Section 9.2 the asymptotic results
for p — o0 or Bn2k2pﬂ;> l. This means that the horizontal
range is so large that Sommerfeld’s "numerical distance" 1s
also large and, in fact, larger than unity. Although this range
is of no pradtical interest in the present low freguency study,
its examination shows that, for points of observation in the
non-conducting medium close to the interface separating the two
media (Fig. 1), we observe essentially a surface wave whose
equiphase planes are tilted forward (towards increasing p)
by a very small angle, while its equiamplitude planes are hori-
zontal (parallel to the interface) with downward exponential
attenuation. The results of this section are compared with the
/corresponding results for the conducting medium and the boundary
conditions for the field components and for the power flow are
verified.

In Section 9.3 we consider the intermediate range,
%nzkzpﬂ 1<K §k2p99 for which the horizontal range of the
point of observation is large when measured in terms of the
wavelength in the non-conducting medium, but for which Sommer-

feld's numerical distance, approximately ?nz

kzpﬁg remains
less than unity. This range again is of no practical impor-
tance in the low frequency case, but we consider it here in

detail for completeness sake and for its historical importance,

for it is in this range that the celebrated Sommerfeld




ttenuation formula applies which proveoked 1n The past so many argi-

ments concerning its validity and the existence of Sommerfeid’s

3

=

electromagnetic surface wave, Section 7. 3. i contrast 1o tne

(DT -

&

responding analysis for the conducting medium which was conifined

exclusively to the fundamental vectors, Section 7.lc, we have
computed, for the non-conducting medium, the Hertzian vector, the
field components, and the power flow. The salient feature of "he
present results is that the components of the power flow :n tns ;
radial and vertical directions tehave essentially as 1/¢ as
would be the case for the radiation field of a dipole embedded in
an unbounded non-dissipative medium. This result 18 to be con-
trasted with the asymptotic (p -5 00} vpower tlow whereln all
three components behave as l/pam

Next, we take up in Section 9.4 the so-calleld vracrtioal
range., k,p < 1 sf?kjpi@ for which the horizontsi range of 1he

2! I

point of observation 1s large in terms of wavelength the con-

e
O]
i
o3

A

ducting medium, but small in terms of wavelengths 1n the non-
conducting medlum. It 1s here where the uselulncsz of ouy asymo-
totic expansions 1s most clearly brought cut: Tor pn sapite of *he

fact that now k20~< 1y c¢ontrary to the limiteblions fogpossn oy

<

the magnitude of the remainder of an asymptoltic series adcord:
1o Watson's lemma {Section 8.4d), we st1ll otiagin useful and
practical results for the ccmponents of the Hertzian ventor, of
the electromagnetic field wectors, and of the power flow. 11
should be emphasized at this Jjuncture that 1t would have been

1mpossible to obtain accurate resulfts in this rangs 1f we had nov

retained as many as three terms in the asymptotic ssries for the




fundamental integrals, which to our knowledge had never been
obtained by our predecessors. Thus, we feel that our formulas
for this range and for points of observation in the non-
conducting medium constitute significant results which we
believe are being presented here for the first time. Further-
more, our formulas for both media are eminently practical in
the sense that numerical substitutions can be readily made.

In addition, there is presented for the first time in
Section 9.5, for points of observation in the non-conducting
medium, an approximation valid down to zero horizontal range,
which is attained by equating to zero the propagation constant
k2 in the non-conducting medium. The results for this range,
0 € k,p <4 1, constitute an extension of the Lien approxi-
mation which we reported in Section 7.4 for the conducting
medium, and together with the results for the three distinct
ranges reported here, give us a complete picture of the be-
havior of the field components as the horizontal range varies
from zero to infinity.

Finally, we take up a numerical example with the same
data used in Part I, Section 7.5, for the purpose of illus-
trating the application of our formulas to the computation of
the field components in the non~-conducting medium for the low
frequency case. It is shown that, in the practical range, the
horizontal field components vary inversely as the cube of the
horizontal range of the point of observation, the 2z component
of the electric field varies inversely as the square of the

horizontal range, and the 2z component of magnetic intensity




curth power of tThe

small, varying inversely as the T
11 field components are cXpun€i-

range; and, finally, a
tizlly attenuvated with the depth of the source.




VIII. NEW ASYMPTOTIC EXPANSIONS FOR THE

FUNDAMENTAL INTEGRALS

In Part I of this report we established asymptotic
expansions for the fundamental integrals Ul and Vl’
Egs. (2.88) and (2.89), by first resolving each integral into
the sum of two terms in accordance with Eq. (2.107), and then
treating each term, respectively, by the saddle point method
for single integration (Section 5.1) and for double integra-
tion (Section 5.2). In applying the saddle point method of
integration to Uy and Vl we chose to retain in the expo-
nential factor of their respective integrands the totality of
the exponential behavior therein contained, with the conse-
quence that the resulting asymptotic expansions turned out to
be not term-wise differentiable; that is, we established that,
to obtain correctly the asymptotic expansion of a given deriv-
ative, we had to begin anew by differentiating under the sign
of integration and then applying the saddle point method of
integration to the new integrand, all of which proved to be a
laborious procedure. Furthermore, especially in the case of
the integrals over the contour 02 around the cut for Yo

(Figure 4), the resulting asymptotic expansions turned out to

9
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be much too cumbersome in their most geuneral form, even though
we were able to extract useful approximate expressions valid
for restricted ranges of the pertinent parameters.

Thus, when we undertook the evaluation of the fundamental
integrals U, and V,, Egs. (2.90) and {2.91), for points of
observation in the non-conducting medium, we were led to re-
appraise the whole approach with the aim in view of obtaining
term-wise differentiable asymptotic series, and simplifying the
resulting expansions to the point where numerical substitutions
could be readily made. This program we have achieved and it
is described in the present Chapter, except that for the moment
we have confined our attention to the evaluation of the funda-
mental integrals over the contour CZ around the cut for Yo
(integrals of the type 129 Section 2.54), since we have
already shown that, in the low frequency case; integrals of the
type Il are exponentially attenuated and therefore negligibile
in the working range of parameters.

To achieve term-wise differentiable series it is suf-
ficient to recognize that, in applying the saddle point method
of integration, it is not necessary to retain in the exponent
the complete exponential behavior of the integrand, which means
that there exist several possible formulations of “he problem.
and we have merely selected the one that seems most appropriate
for the present aims. In addition, we have endeavored to treat
the fundamental integrals in a sufficiently general way to yield
at once the integrals for both media, thus affording a check

on our earlier work.
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8.1 FUNDAMENTAL INTEGRALS

As explained in Chapter II1I, the Cartesian components
of the Hertzian vectors and the cylindrical components of the
electromagnetic field vectors are expressible in terms of four
fundamental integrals: U; and V,, Egs. (2.88) and (2.89),
for points of observation in the conducting medium, and U2

and V Egs. (2.90) and (2.91), for points of observation in

29
the non-conducting medium above (Figure 1). In this section

we establish that all four fundamental integrals can be deduced
from two new fundamental integrals, U and V defined below,

which in turn are most readily evaluated by introducing two

simpler auxiliary integrals that we have labelled J and K.

8.1la Differenfial equations.- All the integrals dis-

cussed here are of the general form

7

I(asb,p) = ‘f}
/

=00

. =Y1a-Yob_ 1. ’
F(ave 25 TT2PEL (ho)nan, (8.1)

which is the generalization of the integral (2.92), 1In
Eq. (8.1) a, b, and p are non-negative real parameters

and Yy, and Y,, as defined by Egs. (2.58), are given by

.

2 .2 : \ ¢ :

in which A 1is the (complex) variable of integration. The
function F(A) is devoid of any exponential behavior.

It is readily seen, by inspection of the integrand,
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that all integrals of the type (8.1) satisfy the followihg par-

tial differential equations:

//2 » geas i 2 P . ( N
Y I + Iaa 2 k]I f O3 £8.3%)
721 T ¢ + K57 o 01 (8.4)
Vo pp t X3l ; 8

- g 2 2 b G o v ‘r

Ipp = lgg = (Eq=k5)I; (8.5)

AL D i 2 0. 9. ;

kllb‘b e kzIaa N (klwkz,) \\/plﬁ (806:}
g .

.kilbb = k3T = - (k4-k4)(§/g+k £y, (8.7)

in which letter subscripts denote partial differentiation with

respect to the corresponding parameters and where
Y} 1 = (1/p)(8/8p)(p 31/8p). (8.8)

In Bq. (8.7) k§ corresponds to the values of A which yield
the zeros of the Sommerfeld denominator, Eq. (2.94), and has

the form, symmetric in kl and k2,

2 SraE R : \
as given already in Eq. (2.95). These differential equations,
(8.3) through (8.7), have proved extremely useful in the evalua-

tion of the fundamental integrals.

8.1b Fundamental forms U and V.- We now adopt as

fundamental integrals the forms
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(8.10)

Y1-Y -Y1a-Yob
=cs/ 172 “Tiscr2 H(A0)AAA;

and

- -Y»b
o Y1a=Y2

» 1,
V(a,b;p) = N H, (Ap)AdA
RIS RESRE

(8.11)

e

i kS k-
| T

[ (K-kp) (A
-0

V1 -Y1a-Y2
- €
_ko )

o 7.
Hi(xp)xdx,

NINS

in which the second forms are readily deduced upon making use

of Egs. (8.2) and (809),'respectively, and in which it is neces-
sary to assume that"a,bgé O 1in order to insure the convergence
of the integrals. The forﬁs U and V are not indepéndent of

each other; in fact, making use of Egs. (8.3) through (8.7), we

can exhibit U 1in terms of V as follows:

2 2 .
k - X2V
bb |
g = -2 - S 3% _ vy b (8.12)
kS - k a
1 2
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- - 7%y .
U -~ \\!,‘ 0\7 = Vab’
U= X2V + (V_-V,)_;
1 a b’a’

U= K5V - (V -V )y,
in which only the last form, Eq. (8.15), had been previously
pointed out by us in Eg. (2.71la).
Making use of the new fundamental forms (8.10) and
(8.11), it is readily seen that our original fundamental
integrals, as defined in Section 2.4d, may now be expressed,

with h » O, as

Ul = Ulh-z,0,0), z < 03
r o 18 ) < 0.
vy = klv(h—nggp,, z L 0;
Uz = U(h,z,0), z > 0;
V, = ¥2V(h,z,p) >0
o T %5 5250 ) z 2 U,

in which, it is recalled, U and V belong to points of

1 1
observation in the conducting medium and have been amply
treated in Part I, whereas U? and V2 correspond to points

of observation in the non-conducting medium and, hence, their

evaluation constitutes the main purpose of the present report.

8.1lc Auxiliary forms J and X.- To facilitate the

asymptotic evaluation of the fundamental integrals U and V.,

(8.

(8.

13}

(8.14)

15)

.16)



15

as defined by Egs. (8.10) and (8.11), it proves conveniszsnt to

introduce the auxiliary integrals

o
/[ ~yya-Yob
// -Y1a-12b1

J(a,b,p) = o (APIAGA; (8.20)
and
[0 0]
e—Yla—Yzb 1
K(a,b,p) = | ~——p—— E_(Ap)AdA, (8,21)
J_oo A —ko

which are obviously related to each other as follows:

k4 kg

K -
J = - (§7§K +kx) = 120 Zea (8.22)
k) -k

where the last equality follows immediately from Eq. (8.7).
In terms of the auxiliary integrals (8.20) and (8.21),
we have at once for our fundamental integrals (8.10) and (8.11)

the important working formulas

- J)/(KE-K5) 5 (8.23)

(on}
i

= (Ja

and

Vo= (k5K -K5K, )/ (kd-k]) (8.24)

which are readily established by inspection.



8.1d Choice of cuts in the a-plane.- In Eq. {(8:1) the

original path of integration is along the real axis in the
A-plane, =-m ¢ A ¢ . Before discussing the present choice
of cuts for Y1 and Yo and the corresponding deformation of
the path of integration 1t 1s well to review briefly the argu-
ments that led to the choice of cuts described in detail in
Section 2.5b and depicted graphically in Fig. 4. In Part 1
we were concerned mainly with the asymptotic evaluation of the
fundamental integrals Ul andb V1 for points of observation
in the conducting medium. It is seen from Egs. (8.16) and

(8.17) that b = 0 1in that case and therefore Vo does not

enter into the exponential factor of the corresponding inte-

0

!

grands. Thus, when b = 0, the cholce of cuts for Vo o 15
quite arbitrary so long as we comply with the requirement that
RG{Y2} > 0 on the original path of integration (assuming that
kz has a positive imaginary past. no matter how small'. 4s
indicated 1n Section 2.5b we chose the cuts for Y, in such a
way that Im{yz}'g 0 everywhere on the cut A-plarne with
Re{y2§'>r0 along the real axis, and this was achieved by
drawing the cuts for Y, as depicted in Fig. 4. When ¢ > 0
no such freedom of choice 1s available to us.

As regards the cuts for 18] it was pointed out 1in
Section 2.5b that, in order to guarantee the convergence of
the integrals U; and VvV, as 2 ——» -00,; we must choose the
cuts for Y1 in such a way that Reg&lg » 0 for all values
of A on the original path of integration and on the cor-

responding sheet of the Riemann surface; and this was achieved
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as described in Sebtion 2.5b and depicted graphically in Fig. 4.
More generally, the parameters a and b assume the values
a =h-z and b =0 foripoints of observation in the con-
ducting medium, or else a =h and b = z for points of
observation in the non-conducting medium. Furthermore, in
practice we find that the depth or height of the source as
given by h and the depth or height of the point of observa-
tion given by é will in general be much smaller than the
horizontal range p (see Fig. 1) and, in no practical case,
“would we be required to insure the convergence of the integrals
(8.1) except for finite values of a and b: Therefore, in
the present instance, we are no longer compelled to choose
the cuts for Y1 in the manner already described.

Thus, bearing in mind that the parameters a and b
in our general integral (8.1) are to remain finite and smaller
than p, we have chosen the cuts for Y1 and Yo, as shown
in Fig. 10, by drawing half-lines in the upper half-plane
parallel to the axis of imaginaries, starting at the respective
branch points A = kl and A = k2, and similarly for the
lower half-plane; that is, the chosen cuts are specified by

the conditions
Re{x} = Re{ikf’)ﬂ and Re{x} = 1k, (8.25)

(since k2 is essentially real). It can be readily ascertained
that this choice of cuts in no wise modifies the nature of the

poles of the integrands that exhibit the Sommerfeld denominator
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(2.94), as listed in the last column of Table II, page I~51,
nor the structure of the Riemann surface of four sheets in the
A—plane shown schematically in Fig. 5. 1In this sense, muck of
the discussion in Section 2.5b and all of Section 2.5¢c are still
applicabkle in the present instance.

Finally, following the arguments adduced in Section 2.54
we now deform the original path of integration as shown in
Fig. 10. That is, starting on the real axis at A ——s =00,
the proposed path follows, first, the semi-circle at infinity
in the second quadrantq next the contour 02 completely around
the upper branch cut for Yoo then the contour Cl completely
around the corresponding branch cut for Y1 and, finally,
the semi-cirecle at infinity in the first quadrant terminating
on the real axis at A —% +00 . By Cauchy’s theorem, the
proposed path is completely equivalent to the original path
alcong the real axis, for there are no singularities of the
integrand between the two paths. Furthermore, it can be
readily shown that the contribution over the semi-c¢ircle at
infinity in the upper half-plane vanishes, with the result that
we can express our original integral (8.1), in the manner of

Eg. (2.107;, as the sum of two integrals,

I =1 (8.26

1t 129

where Il and IZ denote the integrals evsluated on the
contours Cl and 02 respectively.
As shown later in Section 8.2a, the principal merit of

the present choice of cuts is the fact that the contours Cl
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and C of Pig. 10 are themselves paths of steepest descents

2
- for the exponent 1iap which is implicit in the asymptotic behavior

of the Hankel function H%(Ap) in the integrand of (8.1), and
it turns out that, if we apply the saddle point method of
integration exclusively to the exponent 1Ap, the resulting
asymptotic expansions are term-wise differentiable to any order

1

with respect to all three parameters a, b, and p. Further-
more, the resulting asymptotic expansions are considerably
simpler than our earlier developments, with the result that we
have been able to compute higher order terms, thus enabling us
to ascertain more accurately the behavior of the first few terms
of our new asymptotic expansions.

The present Chapter is concerned mainly with the evalua-
tion of the fundamental integrals over the contour 029 since
we have already pointed out in Section 7.l1la that the integrals
over the contour C1 are exponentially attenuated and therefore
entirely negligible in the low frequency case. However, it
should be pointed out here 4that the methods of evaluation des-
cribed below for integrals over the contour CZ are equally
applicable, except for trivial modifications, to the evaluation

of the integrals over the contour Clm

(2)
8.2 EVALUATION OF J

The integral in question, J(a,b,p), is the auxiliary
form defined by Eq. (8.20) in which the path of integration as

the real axis in the A-plane. Deforming the path of integration
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in accordance with Fig. 10 and selecting for study and evalua-

tion the integral over the path 02 we have

' / -Y1a=-Y2b
1) (ap,0) = | TR (o)aan, (8.27)

C2

where, it is recalled, 02 denotes the contour around the upper
branch cut for Yo which, in the A-plane, is the half-line
from A =k, %o A=k, +1 o (parallel to the axis of

imaginaries); i.e., C2 is defined by the conditions

Re§x§ = ky; Im{i} >0 on C,. (8.28)

(2)

We now proceed to evaluate J by the double saddle point
method of integration following the essential prescriptions
laid out in Section 502; except for a more enlightened approach
to the problem of obtaining the power series expansions that are

needed in the application of the method as described below,

8.2a The conformal transformation A = kZQosw@_ Fol~-
lowing the analysis described in detail in Sections 6.2a and

6.2b, we now apply directly the conformal transformation
A = k,cosw; dAr = - kysinw dw, (8.29)
according to which we have, from Egs. (8.2),

Y1 = (K2wk§)% = - ikl(lanzcoszw)%; (8.30)
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and

Y, = (AZ—kg)% = ik,sinw, (8.31)

where n = k2/k1 as defined by Egq. (2.64). As shown in Fig. 11,
the conformal transformation (8.29) maps the entire Sheet I of
the Riemann surface in the A-plane (Fig. 10) unto the curvi-
linear strip of width =® whose boundaries represent, respec-
tively, the mappings of the contour 02 around the upper branch
cut for Yo and of the corresponding contour about the lower
branch cut.

In fact, the equation of the boundaries can be readily

deduced from the conditions
Re{cosw% = £ 1; Imfcoswt % 0, (8.32)

which follow at once from (8.28) and (8.29). Writing

A =1u + 1iv and imposing the first condition (8.32) we obtain
cosu coshv = 1 (8.33)

as the equation of the contour 029 from which, solving for v,

one readily deduces
v = log tan(&n-3u). (8.34)

It is readily seen from (8.34) that, as v —s % o,
U —s F $7, respectively, and that the slope of the curve

as it crosses the real axis at u =0 1is =1 as indicated
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Fig. 11.- The w-plane illustrating the half-period
strip corresponding to Sheet I in the A-plane and the path

of steepest descents 02.
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by the symmetric boundary labelled 02 in Fig. 11. Similarly,
one obtains for the contour around the lower branch cut for Yo

in the A-plane the equation
v = log tan(-3m-3u), (8.35)

which corresponds to the symmetric left-hand boundary in Fig. 11
crossing the real axis at u = -m. It is clear from Section 2.5b
and Fig. 5 that the half-period curvilinear strip shown in Fig. 11
corresponds to Sheet I of the Riemann surface in the A-plane
and that it is bordered by similar half-period strips correspond-
ing to the (periodic) mapping of Sheet III unto the w-plane.
Next, we must display in Fig. 11 the location of the
branch points of Y1 and the mapping of the corresponding branch
cuts. These branch points occur in the A-plane at A = % k1
and, therefore, making use of Eq. (8.29), we readily ascertain
that the branch points for Y; on Sheet I of the A-plane occur,

on the w-plane, at

cos_l(l/n) for A =k

s
il
=
il

15
and (8.

AN
oy

i
a
i

- cos'l(l/n) - for A= - ky,

where n = k2/kl and cos“l(l/n) signifies the principal

Finally, to complete the picture in the w-plane we

need to indicate in Fig. 11 the position of the zeros of the
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Sommerfeld denominator, Eq. (2.94), which constitute real poles
of the corresponding integrands. In accordance with earlier
discussion (Section 2.5b) the points A = i k,, where kg
is defined by Eq. (2.96), are zeros of the Sommerfeld denomina-
tor only on Sheets II aﬁd ITI. Therefore in Fig. 11, which
displays Sheet I bordered by Sheet III, we find from Eg. (8.29)
that the poles occur at

W= W= tan™tn for A=k
and (8.37)

-1
W=-Ww, =-T1=- tan n - n for A = = ko’

where n = k2/k1 and tanln denotes the principal value.
These poles, which are labelled P on Fig., 11, fall just
outside of the principal half-period strip corresponding to
Sheet 1 and, therefore, occur on Sheet III in gccordance with
Table I1. It is recalled that the w-plane is in point of
fact a Riemann surface of two sheets and that Fig. 11 exhibits
only the one corresponding to Sheets I and III of the A-plane.
Thus, the poles that occur on Sheet II of the A-plane are
not displayed in Fig. 11.

FPollowing the prescriptions set down in Section 6.2b,
we now apply the conformal transformation (8.29) to the

variable of integration in Eq. (8.27), obtaining the integral

~ I .
7 (a,0,0) = - 12 [ P(w)ef Waw, (8.38)

o

Co
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where 02 is the path of integration shown in Fig. 11 and where

the exponent g(w) is given by
g(w) = ik,p cosw, (8.39)

as a consequence of which we have, in Eq. (8.38),

-1kop cosw) ,
H%(k2p cosw)e 2 %; (8.40)

A

]

F(w) G(w) cosw sinw{

e

2

N : }
w)® - ik,b sinw%ﬂ (8.41)

4

G(w) exp§ik a(l—n2cos
Ul

Thus, we have exhibited the integral J(z)(agbgp) in
the form (5.2) which we require in preparation for the applica-
tion of the saddle point method of integration. And, it is
clear from Eq. (8.39), that with the present choice of exponent
the saddle point in which we are interested occurs at w = 0O,
for which the path of steepest descents is given by imposing

the condition

. N ;
Im{ik2a cosw; = Iméikzp

i o
¥ e

(8.42)

in accordance with Eq. (6.62). But the condition (8.42) is
seen to be precisely the condition (8.28) satisfied by the
contour 02 in both the A and the w planes. Therefore,
the chosen path of integration in Eq. (8.27) is already the
path of steepest descents for the variable w and the

exponent g(w) given by Eq. (8.39).
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8.2k Transformation to the x-plane.- In accordance

with the prescriptions of Section 6.2c we now introduce the new

variable of integration x defined by

= 4(0) - g(w) = ik,p(l-cosw), (8.43}
from which we deduce, putting

£ = cx; c = (ik2p)’%, (8.44)

the following useful relations:

cosw = 1 - %52;

1
sinw = £(1-3£°)%; (8.45)
sinw(dw/dx) =

It is recalled that, in accordance with Section 5.1,
the conformal transformation (8.43), from the w-plane unto
the x-plane,; maps the path of steepest descents 02 of Fig. 11
unto the real axis in the x~plane. Thus, transforming to the
x variable of integration in Eq. (8.38) and bisecting the
interval of integration in accordance with Eq. (5.10), we

obtain

(0 0]

k2 k2 f

(2), - 142 o
J 7 (asb,p) F(W)+F(-w)](dw/dx)e =% 4x, (8,46

J



28

in which F(w) 1is given by Egs. (8.40) and (8.41) with

w = w(x) in accordance with (8.43).

8.2¢ Representation as a double integral.- In prepara-

tion for the application of the double saddle point method of
integration described in Section 5.2 we need to replace the

bracket in Eq. (8.40) by the integral representation

(¢0)

-ikop cosw 4
ks

1 . 2.5 -k 2 \
Ho(kzp cosw)e = ! (4ik2p cosw-y<) e gy (8.47}

[
|
o}

which follows from Eg. (5.50). Thus, introducing (&.47) into
the integrand of (8.46) and, proceeding in accordance with

Eg. (5.51), we cbtain the double integral

@ Q@
, . ik o] o g E o LAy 2+ 2 - ¢
38 (an,0) = - 2k§e o £ 0 0 Bix,y)e BN Y Jaxay,  (8.48)
T
0 e

where the function <@(x9y) is the product of two factors,

Ux,y) = £(x) g(x.y), (8.49;

in which, with w = w(x) from Eq. (8.43), we have

il

' o0
f(x) @G(w)-G(ww)ﬁcosw sinw (dw/dx); (8.50)

G(w)

il

exp{iklau(x> - 1k,bv(x)] (8.51)



u(x) = (1-n“cos“wj® = (lmn )= b Py
E - 2(1-n%)
(8.52)
2.4 4_6 3 ' _
- = £2 p) b= = g 2.3 = ee "7\/)?9 ggnz < ‘Jz(lmne)/ng(;
8(1-n“) 16(1-n%) ]
vix) = sinw = &(1—%52)%
(8.53)
2 4 6 N
\) g g g 7 7 2 .
= 4l - 2= - - R € & 4
: 17778 " 128 " 1024 I Bl <
g(x,y) = (4ik2p COSW-y ) -F %c - %02(2x2+y22} -t R (8.54)

in which, it is recalled, ¢ = (ikzo)n% and & = ¢x 1in

accordance with Egs. (8.44).

8.2d Expansion of f(x).- The application of the

double saddle point method of integration requires the expan-
sion of the function @(xgy)9 Eq. (8.49), into a double power
series in x and y. To expand the factor £(x) we first

consider, from Egs., (8.50) and (8.51), the function

' ) B ikjau(x ro-ik bvix' ik bV‘Xy/
360w - 6(-m)] = gt 1 )i@ 2bv(x)_ 1ieabv (x)]
(8.55"

i1kjaul(x
-1 31n£} bv(x) ﬂc 184 )

and, making use of the expansion (8.52), we obtain




alﬂlau(x) = AO(1+A2§2+A4§4+A6§6+ ses)s 1B

in which the expansion coefficients are

L1
ikja(1-n2)®

o = ° ’
A, = $ik an2(l—n2)"%'
2~ E ’
_ 1. 2., 2v=3/2 1 . 2 4,. 2y-1, L
Ay = - 5 ik an (1-n%) * 3 (1k1a) n'{1-n")" " (8.57)
1oL o A 2v-5/2 1 2 4¢q_ 2y=2
Ag = G ik an (1-n%) G (1k1a) n'(1-n%)

Proceeding similarly with the remaining factor in

Eq. (8.55) we find, making use of Eq. (8.53), the expansion

N ] ‘ . 6 12 . fa o
- i s1ngg2bv(x)é = Bl§(1+3252+54£4+B6§ + .ea)y, &I 04, (8.58)
with the expansion coefficients
Bl = = ik2b,
_ 17 2 31
B2 = - ;?,}kgb) + ch,
(8.59)
I U R A -] 2 151,
B4 = 5:>§k2b) + 5 (k2b) 6]
1 6 , 105 4 . 315 2, 3151
B, = - = (kzb) + (k2b) + (kzb) + —jr L




Multiplying out the expansions (8.56) and (8.58) in

accordance with Eq. (8.55) we obtain the expansion

tlo(w)-(-w)] = cya(140,8%40,8 0 05E% o), gl?

<4y

with the expansion coefficients

Cl = AOBl;

(52=A2 +B2;

04 = A4 + A2B2 + B4;

06 = A6 + A4B2 + A2B4 + B6.

Finally, introducing Egs. (8.45) and (8.60) into (2.50) we

obtain the desired power series expansion for f(x), namely

£(x) = 200,82 (1-382) (1+0,8%+0, g4+ 8% ..
= D2x2 + D4x4 + D6X6 + D8x8 H aees Ex§2<< 4,0,
in which the expansion coefficients are
D, = 2670 ;
D, = 2670, (Cy=%) 5 D4/02D2 = C, - ¥;
Dg = 2070, (C,=4C,) 5 De/eD, = 0, - 30,
Dg = 2090, (Cg-4C,) ; Dg/c®D, = C¢ - %G,

31

(8.60)

(8.,61)

(8.62;
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The question of the radius of

series expansion (8.62) deserves a word of explanation.

convergence of the power

First,

the radius of convergence indicated for the expansion (8.56) is

simply given by the branch points for

Eq.
(8.58) is given by the branch points

Eq.

convergence for the expansion (8.56).

occurring in u(xj,

Yl

(8.52); whereas, the radius of convergence of the expansion

of the funection v(x),

(8.53), which is seen to be much smaller than the radius of

In conseguence, the power

series expansion (8.62), which involves the product of the

expansions (8.56) and (8.58), Eq.

smaller of the two radii of convergence.

radius of convergence in (8.62) we have made use of Egs.

8.2e

the function g(x,y)

power series expansion of the form

gix,y) = By + (B3x 2482 o )

in which the expansion coefficients,

second form of (8.54), are tabulated

Bg =% c
BZ = é% c5 Bg = é%vcb Bg =
Bg = 52207 Bi = é%% @7 Bg =

Fxpansion of g(x,y).- According to Eg.

(8.,60), is limited by the

In expressing the

(8.44;.

(5.72;,

defined by (8.54) possesses a double

2© 4. .2 2 2 L4 4 ‘e A
4X *BZ BO“ ) + ho o L8288
deduced directly from the
below:
2 0
256
A2 7 w6 . _5 7

‘ B ; S = £
1024 0 2048
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where, it is recalled, c¢ = (ikzp)"%.
The double power series expansion (8.64) is merely a
formal development, using the binomial theorem, of the

expression

e
2 = (8.66)

(- 2 2\1-
g(x,y) = %c%l - 2c(2x%+y )%

k& ._.:!‘
and we must now determine for what domains of the complex x
and y planes does the expansion (8.64) actually converge.
To this end, we observe from (8.66) that the function g(x,y)

exhibits branch points for values of x and y satisfying the

equation

2x° + y2 = 4/02 = 4ik,p. (8.67)
Thus, we note from Eq. (8.67) that, as x varies, [yl
a A
must always remain less than ﬁ4ik2p - 2x2§§; therefore,

constructing the function

%
y = b(x) = |4ikyo - 22|
(8.68)
. ) E : 3
n(0) = (4k,p)%; h(x) ——— 2%x,
X —> 0

which is depieted graphically in Fig. 12, we can assert that,
for fixed real values of x (0& x { @), the function
g(x,y) possesses a convergent power series expansion in even
powers of y provided |y| < h(x). That is, provided that,

for real values of y, this variable remains below the boundary
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Fig. 12.- Domains of analiticity of the functions

g(x,y), f(x), and (x,y) = £(x) g(x,y) as explained
in the text.



h(x) and, hence, within the domain labelled region {I} in
Fig. 12.

Similarly, we note from Eq. (8.67) that, as y varies,
2/%

lx{ must always remain less than ﬂ2ik2p - 3y - Hence, if

we construct the function

| 3
x = H(y) = ﬁ21k2o - #20%
(8.69)

H(0) = (2k0)%; H(y) ——— 275y,
y =5 @

which is likewise drawn in Fig. 12, we can assert that, for
fixed real values of y (0 y < @), the function g(x,y)
possesses a convergent power series expansion in e?en powers
of x provided |x| <« H(y). That is, provided that, for real
values of x, this variable remains to the left of the boundary
H(y) and, hence, within the domain labelled region (II) in
Fig. 12.

We note further from Egs. (8.68) and (8.69) and from
Fig. 12 that regions (I) and (II) overlap yielding a common
region of analiticity (shaded region) within which the function
g(x,y) must be regarded as an analytic function of the two
complex variables x and y. That is, we interpret this
result by asserting that the double power series expansion
(8.64) for g(x,y) is valid and therefore convergent, provided
lx}] and |yl remain within the common region of analiticity
bounded by the curves h(x) and H(y) and the coordinate

axes in Fig. 12, In Section 8.4c we return to this matter
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indicating how these results govern the asymptotic behavior of
our expansions and how do they enter into the estimate of the
order of magnitude of the remainder. It will then be shown in
what respect the similar analysis in Part T, Section 6.3a and
Fig. 8, is partly erroneous and how must we correct our earlier
estimates of the order of magnitude of the remainder (see

Corrections to Part I).

8.2f Computation of the expansion terms.- Once in pos-

session of the expansions (8.62) for f(x) and (8.64) for
r(x,y) we can proceed to the calculation of the expansion

A

terms in the asymptotic evaluatiorn of the double integral (8.48}
by merely'following the prescriptions of Section 5.2b. Thus,
making use of Egs. (5.74) and (8.65) we obtain, in the present

notation, the expansion terms:

h@(o> - O;
e B
AR 2cDy;
v
¢ ¢(2) = ‘%GBD,;{ 7, - _3]3 gig
=.8 0292?
(= 1225 33D 15D, 1
128 8¢“D,  ¢'D,
- . 15445 1467D 225D 105D, 7
53(4) = 715(? {D ! + 5 4 + 6 & 5129

! 2. 4. [
11024 128¢°D,  8c¢D, SRS UNE

which must be here regarded as general formulas applicanle to

all the integrals discussed in this Chapter.

18700



Next, substituting the coefficients (8.63) into {&.70)

we obtain the expansion terms &b(n)

w

corresponding to our

integral J(z)(a,b,p)9 namelys

i(o) = 0;

4(1) - 0401;

$(2) _ %0601£6C2 - %}; (8.71}
(3) _ %c801[12004 - 27¢, - %%j;

4 _ j;clocl§§o4oc6 _ 11700, - 293, - 12897

48 4 g2 64

where the C's are given by Egs. (8.61) in terms of the A'‘s

and B's defined by Egs. (8.57) and (8.59) respectively.

8.22 Asymptotic expansion for J(z)oa Recalling from

Eq. (5.67) that

W
[ [ 2. .2 i .
2 i AP P =\ 0 L o
% ;f { gg(xgy)e &( Y )dx dy ﬂf,ﬂ§ J + g§ ) oebey, 1B.TZ2)
! i
““};O 0

and making use of this result in Eq. (8.48) we obtain, with

1
c = (ikzp)"f, the asymptotic expansion

ikop | ;
(2) 2k30,e 20 [ 60,-5/4  1200,-27C,-39/16 ;
J (a;bsp) Av = 5 ﬁl + + 5 S P
(ik,p) Lo 2(ikyp) 8(ik,p) (8.73"
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where the C's are given by Egs. (8.61). Substituting the

A's and B's from Egs. (8.57) and (8.59) respectively, we ob-

tain the asymptotic expansion

i . 2 e

ikpp+ikja(l-n©)® ‘
(2) o eikde o0 © B (a,b)
J (a ,b Qp) s - T \)2 'ﬁé 1 + - - - "'"
klkzp, 2(1k2p}

. Eg(agb) . EB(aQb) . &9
. N ., 7" {
8{1k20} 48(1k2p) :

where the expansion coefficients En9 expressed in terms of

the C's, are

E,(ab) = 60, - 5/43
E2(a9b) = 12004 - 27C, - %0/16:
E

whereas, expressed in terms of the A's and B's, Egs. (8.
they become
E,(a;b) = 6(A,4B,) = 5/43
Ez(agb} = 12O(A4+A252+B4} ~ 27QA2¢BZ) 39/165
E5(a,b) = 5640(A6+A4BZ+A234+B6) ~ 1170{A,+A5B,+B, ]

= (999/8)(a,+B,) - 1269/84.

3<a9b) = 5040C, - 1170C, - (999/8:C, - 1269/

(8,75

(8.76)
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Finally, making use of Egs. (8.57) and (8.59) to express the

A's and B's in terms of the cdnvenient arguments
a = ikla; B = iklb, (8.77)

we obtain for the first two coefficients in the asymptotic

expansion (8.74) the expressions

El(a,b) -2 + nz[ﬁa(l-nz)-% + BZE;

i

- 3n2{5a(l—n2)-3/2 + 7a(l-n2)”% + 46%] (8.78)

Ez(a,b)

+ n4{15a2(1—n2)_1 + 10082(1-n%)"% & g4/,

The coefficient EB(agb) will not be used in further computa-
tions and thus is not displayed here.,

Two points of interest concerning the asymptotic expan-
sion (8.74) must be mentioned here. First, the gquestion of the
behavior of the first few terms, which is intimately related
to the order of magnitude of the remainder, is not discussed
now but we return to this matter in Sections 8.4b and 8.4c.

The second question has to do with the behavior of the expan-
sion coefficients E, as a,b —» 0. Thus, making use of

Egs. (8.57) and (8.59) and putting a =0 and b =0 we

have, from Egs. (8.76),
EI(O’O) = 6B2<O> - 5/4 = - 23

E,(0,0)

i

12034(0) - 27B,(0) - 39/16 = 0; (8,79

B,5(0,0) = 5040B5(0) - 11708,(0) - (999/8)B,(0) - 1269/64 = C,
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in which the first two results also follow directly from
Egs. (8.78). These results strongly suggest, as will ve proved

later (Section 8.4e), that

Eﬁmosoymﬁz, (8.80)

~——r

a fact which is extremely helpful later in predicting the

behavior of higher order terms.

8.3 EVALUATION OF ‘%)

The integral in question, K(a,b,p), is the auxiliary
form defined by Eg. (8.21) in which the path of integratiocn is
the real axis in the a-plane. In this szction we are con-

cerned with the evaluaticn of the integral

, i =Yia-Yob ;

(2) i |

k' (a,b,0) = [ T K
- KC

7

(ApIAGH (8.81)

in which the path of integration 02 is the contour arournd the

upper branch cut for vy, in the Ai-plane (Fig. 10}.

8.%a Representation as a double integral.- To evaliuate

the integral (8.81) by the double saddle point method of
integration, we proceed as in Section 8.2 by first applying

the conformal transformation (8.29), which is illustrated in
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Fig. 11, and then applying the conformal transformation (8.43)
which maps the path of steepest descents 02 into the real

axis in the x-plane, In this manner we obtain for K(z)(a,b,p)
an integral which, except for a constant factor, is formally
identical to the integral (8.46). TFinally, making use of the

integral representation (8.47), we obtain the double integral

%
(2) ik 2 [ [ & ~3(x%432)
K'“/(ab,p) = - 2e "= O(x,y)e dxdy, (8.82)
) '%

where the function @Xx,y) is again the product of two
factors, Eq. (8.49), in which g(x,y) is still given by

Eq. (8.54), but now we have for the first factor, with w = w(x)
from Eg. (8.43),

. P 1 ° |
£(x) = [6(w) - G(-w) SOSL AN (dw/dx) | (8.83)
- - COS W — COS W,

In Eq. (8.83%) the function G(w) is still defined by Egs.
(8.51), (8.52), and (8.53) and, in accordance with the first

of Egs. (8.37), we have

cosw, = (1+n2)"% . (8.84

8.3b Expansion of f(x).- Comparing the factors (8.50)

and (8.83) we notice that the only difference is the new

denominator in (8.83), cos2w - coszwo, which we now proceed
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to expand as follows. First we note, from Egs. (8.45), that

' 2 , .
and cosw = 1 - %509 (8.85)

Wl
()

cosw = 1 =

where, from Egs. (8.,43) and (8.84),

' . i , \ : -
&5 = 2(1-coswo) = 2¥lc(l+n2j )= n2(1+n2) %Q (8.86)
with
o2y 2\3 41 _ 1.2 1 4 5 6 . 7.8 e
Q - 2n ?L(l+n ) - g o 1 - 41’1 + §ﬂ bl ‘64n + 128n = ¢ w6 ® (8@8;‘}‘

Factoring out the denominator in (8.83) and making use

of the expressions (8.85) we obtain the expansion

o 2
(cfosgvv--c:oszwo)m1 = ~i§wﬁl + ii%m 52
n® = n

dn
in which use has been made of the identity

) 2. . 2 . | .
&i(dmigj = 4 31n2wo = 4n%/(1m°%) (8.89)

which follows readily from Egs. (8.84) and (8.86). Finally,

combining the expansion (8.88) with (8.45), in accordance with

Eq. (8.83) we obtain the desired expansion for the factor

cosw sinw(dw/dx) _ 1+n27’ , 240 2
7 T TR Tl s 8
cos"w - cos"w_ n~ 2n

(8.90}




The remaining factor in (8.83), &G(w) - G(-wi}g is
identical to the corresponding factor in (8.50).

the expansions (8.60) and (8.90) we now obtain for the new

f(x) the power series

f(x) = D2x2 + D4x4 + D6x6

in which the expansion coefficients are

foee s, |xP < nPryel,

2
. 3 1l+n
D, = 2¢”C H
2 1 n2
2 2.
5 1+n° [ 24n° 7
D, = 2c¢°C C, + H
4 1 n2 2 2n2§
2 . 2 _ 2 4
Dg = 2c7Cl li§~ C4 + 2+n2 Co, + iiéﬂziﬁ_] ’
n . 2n 4in -
with the ratios
D 240
-zt = G 3
c D2 2n
Ds _ o, 2m% . 4s5nent
ch2 4 2n2 2 4ni

The radius of convergence given for the expansion

(8.91) has its origin in the presence of the pole which limits

the expansion (8.88).
hc:%\r: 5&.\9

o but if
low frequencies, we see from Eq.

actually
(8.86)

as indicated.

that

The radius of convergence here is

Enﬂz << 1 as is the case at

2

1Eol® =

Thus,

43

combining

(8.91)

(8.92)

(8.93)
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8.3¢c Computation of the expansion terms.- Proceeding as

in Section 8.2f and making use of the general formulas (8.,70)

we obtain at once, for KQZ)(agbyp), the expansion terms

&:7\\0) = O’
A1) _ 4y 1in°
= - H
1 n2
- R 2 - P N ) .
Q(Z) - %6601 l‘g 56&?2 . 2»t1'1,,2}+ 7 ¥
n- = onc’ 4 !
(8.94)

_ a2 2 > 4.
#3) - %0801 ii§~“12ofb4 + BB ¢, §i5n4rn >

/7 2 .

+ 3300, + 2*n2> 2251
X 2n"/ 16

in which, as before, the (‘s are given by Egs. (8.61) in
terms of the A's and BRB's defined by Egs. (8.57) and (8.59)
respectively.
Substituting the expansion (8.72) for the double
integral (8.82), making use of the coefficients (8.94), we
have for our second auxiliary integral the three-term asymptotic

expansion

1kop
K(z) ZCle 1+n

(a,byp) ~ =

2 Ez(agb) 3

L N
£l (8.95)

E, (a;b)
«;;(l ¢ 2

: +
2 2 | o
)

(1k2p n® - 2(1k2p) 8(ik,p)

where the new expansion coefficients are
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2
\ 2+n 7
E-(a,b) = 6C + 3 + =
1 S 9 ) n2 4 3
T 2+n21 4+5n° +n4 \
Yy = ~ -
E2(agb, 120(,4 + }33 + 60 —5— 2 + 30 Y (8,96
e n- 4 n
2
2+n 225
. + o
+ 33 o2 16

8.3d Proof that the present asymptotic expansions are

term-wise differentiable.- As a necessary step in the verifica-

tion of the fact that our present asymptotic expansions admit
the term by term partial derivatives, to any order, with respect
to any of the three parameters a, b, and p, to yield the
asymptotic expansions of the corresponding partial derivatives
of the original integral, we need to verify by actual‘computa—
tion that Egs. (8.22), for example, are indeed satisfied by the
asymptotic expansions of the corresponding integrals over the

path 020 That is, we need to establish that
5B ap,0) = - (V321K P (a,,0) (8.97)

for the actual asymptotic expansions (8.73) and (8.95).
Thus, making use of the expansion (8.95), we obtain

by term-wise differentiation with resﬁect to p

2. 1ikop v 2, ,.2

(2) 2k5C; e 4; . E1—6(l+n ) /n
2 |
|

- (T +k2)K ) (a,0,0) ~ - ,A
(ik,p) 2(1k,p)

(8098>
E.-(20E, -32) (1+n°) /n° 5

‘ 2 1 )
+ “1' 0o 0 0 9

8(ik,0)° J
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where E; and E, are given by Egs. (8.96). But, now, it

is a matter of simple arithmetic to verify that the expansion

coefficients in (8.98) reduce to

- ., 5., 2 ,
Y = -‘4 ‘1/- ey N x’;\/o
Bl 6{i+n }/n 6@2 5 /4

(8.
E2 = (20Elm32}(1~n ;/ﬁd = 12OC4 - 27@2 - 30/14

which are seen to be identical to the coefficients in the

. - 23
expansion (8.73) for u( !

{a,t,p}. Hence, we have established
by actual computation that the asymptoti@ expansions (8.73) and
(8.95) do satisfy Eq. (8.97), and we interpret this result as
constituting proof of the fact that our present asymptotic
expansions are term-wise differentiable to any order with

respect to p. We reach this conclusion by noting that we

obtain in the end the same asymptotic expansion (8.73) whether

we apply the differential operator (K7§+k§) to the iantegrand
427

of the definition integral (8.81) for K'“’{a,b,c) or term by
term to its asymptotic expansion (8.95), which demcunstrates
the existence of the asymptotic expansions for the first and
second order derivatives with respect to p and hence, by
induction, for all higher order derivatives.

The proof of the term-wise differentiability of our
asymptotic expansions with respect to a and ©v follows im=-
mediately by noting that the second equality in (8.22) must
also be satisfied by our asymptotic expansion (8.95). However,
there is no need to verify this fact by actual computation. It

is sufficient to observe that, having established that our




asymptotic expansions are indeed term-wise differentiable with
respect to p, we need only refer to Egs. (8.3) and (8.4), which
are satisfied by all of our integrals, to establish that they
are also term-wise differentiable with respect to a and b,
to any order. This conclusion follows logically from the
uniqueness of an asymptotic expansion and from the fact that
an asymptotic series can always be integrated term by term.
Finally, we must remark that the term-wise differenti-
ability of our present asymptotic expansions stems from the
more enlightened choice of exponent in the application of the
double saddle point method of integration. As a conseguence
of the new choice of exponent given by Eq. (8.39) we now
obtain asymptotic series in which a and b appear only
as polynomials in the numerators of successive terms, whereas
p appears only as simple powers in the corresponding

denominators.

8.4 EVALUATION OF U2

According to Eg. (8.23), the integral in question,
Eq. (8.10), when evaluated over the path G2 can be computed

as follows:

P
[08]
o

042 (a,0,0) = {5§2)— Jéz)ﬂ/(ki-kg)@

Therefore, we need only compute the partial derivatives with

respect to a and b of the asymptotic expansion (8.74) for
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(2) « ) . . .
J‘z)(agbgp)g combining the resulting expansions in accordance

with (8.100).

4(2)

8.4a Asymptotic expansion for .= Carrying out the

above prescriptions we obtain from Eg. (8.74), after some

algebraic manipulations, the expansicn

1kpp+ikla(lmn2)%
(o . 2ik,e o F,(ab)
002) (a,0,0) s = B g B (8,D) ¢ Ao
(1-n%) (1k,p) - 2(1k,p )
1 2
(8.101:
Fg(a,b) F3(a9b) 5
+ - 2 % ) - 3 '+ o o & . G
8{1k,p) 48(1ik,0)
in which we have
F(a,b) = 1 - ikyb(1-n®)%; F (0,0) = 1:
- - T i e g Y . - { ) - e
Fy(a,b) = F_E; ¢ b(E B _); F,(0,0) 25
(8,107
¥ T} o \ 3 4 ( - A { ' = I3
( Y = ' e " - Y e ==
Fgla,b) = F By + b(Bg ~Eg ); F,(0,0) = 0,

where the coefficients E‘m9 m= 152,33, are given by Egs.
(8.75) or (8.76), and where the letter subsecripts attached

to Em denote partial derivatives with respect to the
corresponding parameter. It 1s noteworthy to point out that,
in the present expansion (8.101), the coefficients satisfy

the condition

B (0,0) = 0, m 2 2, (8.103,
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which follows at once from Egs. (8.80) and (8.102). Further-
more, making use of Egs. (8.76), (8.57), and (8.59), we deduce
by induction from the structure of the terms and from the
condition (8.80) that Em(agb) = O(n2)9 m % 2, and hence

from Egs. (8.102) that
P (a,b) = 0(n%), m > 2. (8.104)

8.4b Behavior of the first few terms.- It now becomes

of importance to examihe the relative order of magnitude of
successive terms in the asymptotic expansion (8.101) for
U(Z)(a,bpp)a It 1is seen by examining in detail the coefficients
(8.102), in the light of the condition (8.104), that the bracket
in the expansion (8.101) can be written to order of magnitude

as

0(1) , O(n2)2 . 0% _o@?)
ko (ikyp)®  (ikyet”  (ikpe)?

O(l:) + + cc o o (8\105:‘

Noting that the factor in front of the expansion (8.101)

contains the term k2 = nklg and incorporating n into the

bracket we obtain

o(n) , _0(n’) 0(n’) 0(n?)

+ > +
ik

O(n) +
oy N - ) = :
0 (iky0)%  (ikyp)’  (ik,e)*

+’ o @ o

9 (80106)

which can be written in terms of reciprocal powers of iklp

as follows:
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- 7 -‘1
O(n) + Oﬁl) + Okh) 5 + O(l) 5 O(n % PO {8»
. (s . \ . N4
1k1p \lklp) (lklp) (1klp>
This result suggests that, if Sn“z {< 1, the asymptotic series

ought to be broken off retaining only the first three terms.

This would appear to minimize the error in the asymptotic

expansion of J<2)(ayb9p)w

It is also noted that, after the

third term, all successive terms of the asymptotic series (8.107]

1

the next section.

term asymptotic

U(z)(aybvp> = -

behave like successive powers of (ik2p)~ in accordance with
the predictions based on Watson's lemma which are reviewed in
o \ +(2) ~ Loy
Accordingly, we propose for U (a,b,0) the three-
expansion
1
ikoc+ikya(l-n2)®
2ikpe’ 2 1T G, (a,b)
: 5 5 <§Go(a9b) b r———
(1-n") (ik,p) » 2(ikq0)
(8.
G,r(a,b) .
Pg— —s + Clikyer 7
8(iklp) -

in which the estimate of the error is possibly somewhat

smaller than the actual error when

coefficients in

parameters «o

and B

2

‘n © << 1. The expansion

(8.108), displayed in full in terms of the

introduced by Egs. (8.77), becons



6 (a,o) =  uF (ab) = n%}wﬁ(lnnz)%;;
Gptae) = F(ap) = - 2/1-p100)F |+ 30%lap) (1-n®)F
- ap + 82 - 1 83aad)E
Gp(a.b) = n7MRy(ab) = - 30 5(a-p) (1-n") "2 4 7(a-p) (1-n®) 7

_ (8.109)
1

+ n2{150(a-28) (1-0%)"% + 30a82(1-n%)"F - 108>
56(302+2p2) (1-n%) % + 58% - g7 (1-0%)F

§

and, the notable feature of this expansion is the fact that,
in the limiting case in which we put k2 =0 or n= 0, none
of the retained terms become infinite leading to the simple

expression

£2)

ikja | .
» 21k, e il - 1ik,b 3
U " (a,byp) = 4

1 1
an A 2 (\r 2
\lklp ) lklp

e o(iklp)‘ - (kgzo). (8,110}

S

8.,4¢ Application of Watson's lemma to the present

asymptotic expansions.- In Section S.la we considered a par-

ticular formulation of Watson’s lemma as applied to the typical
integral (5.10) in which the function  @&(x) exhibits no
exponential behavior, Egs. (5.11), (5.12), and (5.15), This
time, however, with the aim in view of simplifying and improving
our resulting asymptotic expansions, we have chosen to apply

the saddle point method of integration to a different expconent,
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7

Eq. (8.39), with the consequence that the function {x),
Egs. (5,10) and (5.11), now. exhibits the exponential behavior
that arises from the factor exp § - Y;& - yzb; , Eag. (8.1,
which is common to all integrals ;resently stﬁdied@
Therefore, we must reformulate Watson's lemma to take
care of the new situation. Folliowing Section 5.la, we reword

Watson’'s lemma as follows:

Lemma: - Let @?(u) e analytic within the unit circle

fui < 1; i.e., let f@(u) have the power series expansion

o0
oo X .m_2m e o
"l}{(u ,) = b:’i ) A zm}\ [0} 9 ill E \ 1 ’ ( 8 ® ]. L & f
m=0
further, assume that
2
| ; ¢ i .7 2 v \ u ¢ 5
Cufu) < Aa Pe%“W . 18,117
where A 1s a positive number independent of u, p 1i1s a
positive integer or zero, and = /(a,b} is a positive
number, O §~W‘< 1, when u 1is real and wu 2 1. Then, the
asymptotic expansion
Qo
- ' . L <U* (2m}} i

n
Bﬁ
= |
0
=
®

is valid in the sense of Poincare.
To establish the above result we note from Egs. {(8.111)

and (8.112) that, if M 2 p is a fixed integer, a constant B




can be found such that
‘f(u> , Aoph ¥ i.. Bu?MeFrpu (8.114)

m—-o

whenever u » O, whether u €1 or wu >» 1l; and therefore

ﬁl ) 1 17,M l ( Y
-g(0)r _ (a.yE) S T w / -
© I=(zm) L o A2m * Ry (8.115)
L mM=0 v
where RM’ the remainder after M terms, is bounded as
follows:
1 GFO 1. 2
IRyt < a%B | uPMemEr(Imn
L E (2m) ~M
= ($m)"E £T~i?\il- N (8.116)
2°M! - b
= O"ﬁ(la@ﬂg

i

Comparing thié result with Egq. (5.19), we conclude
that all of our earlier findings., in particular Egs. (5.20a)
and (5.20b} are still applicable if we merely replace A in
the form of the remainder by the smaller number A(lan}o
Thus, it is seen that, unless m<<< 1, the magnitude gf the
remainder is increased due to the presence of exponential

behavior in the factor @i{x).
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To apply these new findings to our present integrals
we note that the exponential behavior in question arises from

the factor

e

3|

] ikjau(x)

G(w) - 6(-w) = - i 51nik2bV(X)‘e ; (8.117)

which first appeared in Eq. (8.50) and which is common to all
our integrals. Thus, we must show that the absolute value of
this factor, EG(W) - G(uw)%, remains bounded in accordance
with condition (8.112) for x —s o on the path of steepest
descents, 0 £ x <®, and indeed for all x wifhin the
allowable sector, ﬁarg{x}g < 3w,

To this end, putting w = u + iv, we note from

Eq. (8.43) and Fig. 11 that

kx° ke, (8 118,

X —

and, from Eqgs. (8.52) and (8.53%), we deduce that

i

o 1
u{x) (1=n2 coszw)g e nxz/(2kzp)9

and (8.11

WO

]

sinw ————> Xz/(2k2p);
X —» 00

v(x)

whence, substituting inteo (8.117), we have

- - - 1.2 . o
3la(w) - G(-w)| ———3 - 1 sin|3x%(b/p)l 1% (a/e) (g 120
- 7X = 8 L




whose absolute value obviously remains bounded for x real
and X == .

However, according to the theory of the saddle point
method of integration, Section 5.1, the path of integration
in Eq. (5.10) need not coincide with the positive half of the
real axis in the x-plane, but may be taken as any contour
joining the origin to the point at infinity and lying entirely
within the sector %arg%?3%<< %1 as shown in Pig. 9. There-
fore, in the present instance we deduce immediately from

Eq. (8.120) that, within this sector, our factor remains

bounded as

ixz(a+b)/p

tle(w) - ol-w] < e? : (8121

-
A
o

which shows from Egs. (5.12) that condition (8.112) is
satisfied with w(agb) = (a+b)/p;: +that is, according to
Eq. (8.116), the remainder after M terms becomes in this

case

o . 1 =M e 1o
Eng = Oiﬁpl@a/pmb/p)J . 8,122,

and thus 1t is clear that our proposed expansions remain valid
only so long as (a+b) < p. This result merely reflects the
fact that, with our present choice of cuts, the contour
integrals, Eq. (8.26), converge only for finite values of

a and ©b. |

FPurthermore, in Eq. (8,122}, A 1is the square of the

radius of convergence of the power series expansion (5.11)
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for the function B(x); i.e., x% = fxo?, where Xx_ is

the singularity nearest to the origin, pole or branch point,
which the function ¢(x) exhibits in the =x-plane. According
to Eq. (8.62), the radius of convergence for the factor f(x)
defined by Eq. (8.50), which appears in the present integral
U(z)(agb,p)g is given by Ix| = %x2ﬁ = (4k2p)%e This
singularity arises from the branch points of the inverse of

the transformation (8.43), which occur at all the other

saddle points in the w-plane. In Fig. 11, which represents

a portion of the w-plane, these additional saddle points occur
at w = In and, in the x-plane they occur at x = ix29 where
X5 = (4ik20)% as readily deduced from {(8.4%). This situation
1s illustrated in Fig. 13 which displays the conformal trans-
formation from the w-plane, Fig. 11, into the x-plane in
accordance with Eg. (8.43). As pointed out before, the path

of steepest descents 02 in the w-plane now becomes the real
axis in the x-plane, and the shaded region in Fig. 11, which
may be termed the valley of the exponent -%xz because

Ref%x2i > 0 throughout this region, maps into the so-called
allowable sector of the x-plane, iargﬁﬁﬁf < #n. In fact,

the original path of integration which in the A-plane, Fig. 10,
1s merely the real axis. and which in the w-plane, Fig. 11,
becomes the path from -w + i1 o to =-n, from -n to O,

and from O to -i o, now maps into the two half-lines in

the x-plane, from q>e5in/4 to 0O, and from O to

a:e“ln/49 as shown in Fig. 13.
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Fig. 13.- The x-plane displaying the full-period
strip, -m L u ®, of the w-plane (Fig. 11) and the map-

ping of the path of steepest descents C2 unto the real axis.



Finally, in accordance with the conditiors imposed by

Watson's lemma, it would appear from Eg. (8.62) that, for the

/2‘)

expansions corresponding to J'“(a,b,p) and U\2>(a9byp)9

Egs. (8.74) and (8.101) respectively, we ghculd place

x% = (4k2p}% in the form of the remainder, Eq. (8.122). But,
we must not overlook the fact that the bracket in Eq. (8.40)
1(’ 7

contains the Hankel function Ho'

k,p cosw) which exhibits
branch points at A = 0 in PFig. 10 or at w = % $1m in Flg; 11.
And, therefore, the singularity nearest to the origin in the
x-plane, Fig. 13, arises from the Hankel function in question
and occurs at x = % X s where Xy = (21k2p)%0 Accordingly,

.

we must take A

i

(2 k20}% in Eq. (8.122} as properly
representing the radius cf convergence of the power series
expansion (5.11). This result fully confirms the fact that,
for M sufficiently large, the successive terms of the
asymptotib series (8.74) and (8.101) behave as reciprocal

powers of ikzpw

8.4d Extension of Watson's lemma to a double integrali.-

in the present instance we have carried out the asymptotic
expansions (8.74) and (8.101) by applying the doubkle saddle
point method c¢f integration, Section 5.2, and we must now show
in what respect cur carlier extension of Watson's lemma to a
double integral,.Section 5.2a, is still applicable. To this
end, we first call attention to the fact that, initially at
least, the function a@{xyy) in the double integral (5.52)

is assumed to be the product of two factors, ¢.(x,y) = fixigly),




AN

as indicated by Egs. (5.54), (5.55), and (5.56). This assump-
tion, it is recalled, leads to the form of the remainder aftexr

N grouped terms given by Eq. (5.64); that is,

N
A

, AN
IRy = o(% + %} ) (8.12%

1
where A%

is the radius of convergence of the power series
expansion (5.55) for f(x), and w% is the radius of con-
vergence for the corresponding power series expansion (5.56;
for gl(y).

In the present instance the function «@(x,y) which
appears in the double integral (8.48) has the form given by
Eqg. (8.49) wherein the factor f(x) possesses the power
series expansion (8.62) which is valid for ﬁx?z 4 4k,0,
and thus we must now turn our attention to the factor g(x.y!
defined by Eq. (8.54). According to the discussion of
Section 8.2e, the function g(x,y) possesses the double
rower series expansion (8.64), with coefficients (8.65),
which converges for all real values of x and y contained
within the shaded strip of analiticity shown in Fig. 12.
Therefore, we propose to identify the A and 4 1in Egs.
(5.55), (5.56), and hence (8.123), with the x and y
intercepts, respectively, of the curves x = H(y). and
y = h(x) bounding the strip of analiticity; that is, if we

put

[
N
P

1 1 1 1 §
A® = (2k,p)®  and VE = (4k,0)%, (8,1



as shown in Fig. 12, we obtain a rectangle of analiticity
L

bounded by the axes of coordinates and the lines =x = 1% and

y = Wég within which the double power series expansion (8.64)
certainly converges.,

It 1s of interest to point out the origin of the
singularities of the integrand “(x,y! and, 1in particular,
of the function g(x,y) which lead to the above zdentifica-

tion of A and . Referring to Fig. 13, we recognize
1 1 .

[y

AR = (2k2o)2 as the radius of convergence of Ti{x,y)
regarded as an analytic function of x for fixed real y,
C Ly «&®, arising from the singularity nearest to the

origin in the x-plane, which in this case 1s the branch point

of the Hankel function for zero argument that still prevails

RN

in the factor g{x,y): that is, as far as a power series

expansion in x 1is concerned, we confirm the conclusicn of
21

the preceding section. Similarly, we recognize ° = (Ak2pﬁ

W

as the radius cof convergence of . (x,y) regarded as an

R

analytic function of y for fixed real x, 0 < x 7~ »%,
arising from the singularity nearest to the origin in the
y-prlane, which in this case comes from the pair of branch
points introduced into glx.y), Egs. (8.5%4), by the inverse
of the transformation (8.43).

Returning to the i1dentification of A and ¢ given
by Egs. (8.124), we note that the limitaticns imposed on the
primitive expansions (5.55) and (5.56) are certainly satisfied

and, hence, all of our earlier results,; Egs. {5.64) through

(5.66), are still applicable with but one exception; namely.,




in accordance with the discussion of the preceding section,

we now have, instead of (8.123), the form

7 N

(R = 0f—L_ .1
SN -y Y

where A and 44 are given by (8.124) and

in Eq. (8.122). However, we note from Egs.

the present instance A and 4 are essentially of the same

order of magnitude and, in fact, O(k2p)@

/1 W

?

n= (a+b)/p as
(8.124) that in

Therefore, if
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(8,125)

n << 1, which is the case of practical interest, we may write

for the form of the remainder after N grouped terms

7y

NB = O{k2p>_N 9

(8.126)

which is certainly in accord with the behavior of higher order

terms in the asymptotic expansions (8.74) and (8.101), as

already pointed out. This result, Egq. (8.126), is at variance

with our earlier erroneous claim in Part I, Egs. (6.92) and

(6.93)., See Corrections to Part I at the beginning of this

report.

" One final remark seems to be in order at this point.

It is recalled that the form of the remainder given by

Eq. (8.123) was deduced by assuming that

@(X9Y)

double power series expansion for real values of x and Yy

1
within the rectangle 0 < x <A® and 0« y

1
< %%, Actually,

our present function ¢(x,y), Egq. (8.49), has a larger

domain of analiticity which comprises the area in Fig. 12

has a wvalid
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bounded by the axes of coordinates, the boundary curves
1

x = H(y) and y = h(x), and the vertical line x = (4k2p)2
corresponding to the radius of convergence of the expansion
(8.62) for the factor f(x). We suggest that it is this
larger domain of analiticity that accounts for the observed
behavior of the first few terms, as discussed in Section 8.4b,
and which, in spite of the limitation implied by (8.126},
furnishes us with useful results even though in practice

k might be considerably less than unity. We would like to

oP
summarize the situation by observing that, after all, the

form of the remainder given by Eq. (8.123) applies only for

N sufficiently large, and, therefore, if we limit judiciously
the number of terms in our expansions through careful examina-
tion of the tehavior of the first few terms, we may obtain

formulas that are useful beyond all expectations based on the

form of the remainder.

8.4 Verification of van der Pol's result.- As pointed

out in Section 7.2a, it was shown by van der Pcl that the
integral U(z)(ogo,p} can be integrated exactly with the

result, Egqs. (8.10) and (8.26),

r
v(2)(0,0,0) ="§l'” f YzHi(KQ)RdK B
kS -k |

2 8 f“jelKZQ “{'\ (8,127
2oL, T I
(k1-k5)p 3p P

N PO

which we have expressed in our notation. To verify the result
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(8.127) we need only put a =0 and b =0 in the expan-
sion (8.101) taking due account of the values assumed by the
expansion coefficients in this special case, as listed in

Egs. (8.102). In this manner we obtain

. % 1kop ( .
(2) ‘. 2. £5€ ‘ 1 . 2 3 /elKZP\,) ‘ |
U (0,0,0) = - 55 5 1l - ——— ,f;‘- NS ‘—“‘\ }9(83128)
(kl‘kz)(ik29> \ ikzp/ (kl‘k2>p aQ v P /

which agrees exactly with (8.127), thus furnishing an important
and necessary check on our method of attack. See also Eg. (7.35)
and subsequent discussion.

It is important to observe that the result (8.128)
obtained from the expansion (8.101) is exact (i.e., not asymp-
totic) if we assume, as in Eq. {8.103), that all coefficients
Fm(Oyo) vanish for m » 2. That we find agreement with
van der Pol’s result (8.127), which is exact, constitutes in
our mind sufficient proof that the specified condition, Eq.

(8.103), is indeed true for all m > 2, even though we were

able to verify it only for m=2 and m = 3.

8.4f Verification of earlier evaluation of Uiilﬂ“ As
a further check on our present work we find in Eq. (6.4) the

fundamental integral

M§2>(ago) = ,3,2__2“:“2“ H%(xp)xdxs, a = h-z >0, (8.129)
: xS~k

, 1772

C2
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which, according to Egs. (8.16) and (8.23), may be written as

(2 (2] : (2 2 2.
M§2)(agp) = U }(\asosp‘) = - Jf; >(asoyp)/(‘Kl"k2}-

Using the middle form we have at once, from Egq. (8.101), to

two terms

1
7 2-3 qn®(1-n%)7%

wﬁl“’ T e 0 o
!l

2(ik2p}

ik +1kuag1-n2 %,
21kg G r
a,0) rv - 22 P
l 2)\1K o) 1

Mﬁz)(

where we have made use of the first of Egs. (8.78) to compute
El(a,O)g

Now, Eg. (6.102), likewise to two terms reads
3/ 2 lkpCm‘li\ la( l-n2 )'2’

. 3
: 2ikI(1+4K) e
M:EZ)(agp)‘mwu 2

- N \ 2
(kS-%2) (1
\kl} kz) \, 20)
9 ) Q‘\\
i 8+ 24k 15K% - wP(8e9K)
4\ ,V] - - - & “ Fr s e o0 (}‘: 9
3 sxlnnz)glkzp) ;

~in which the factor K, according to Eq. (6,67}, may be

written as

) na _ no
= e 573
p(lmn -na (ik2p)(l-n JE-n"a
. -1

n2y . nq

= R N -
NS N £ f

(1-n%)%(ik,p) . {(l-n )211K2D',

where a = ikja 1in accordance with (8.771. Comparing the

N

(8.130)

o 1E2




€5

expansions (8.131) and (8.13%2) and suppressing the factor in
front which is common to both, we obtain making use of (8.133)

the expansion

(1+K)3/2~§1 _ 8 + 24K + 15K -n (8+9K)Z
\\ 8(1 )(1k2p“\ )

2 2y—%
o, L= (3/2}an A7) ® ... (8.1%4)
1k,p

in exact agreement with the bracket in Eg. (8.131). There

is 1little doubt that the next term in Egq. (6.102) would also
check with our present expansions. This additional check on

our earlier and present expansions also serves to point out
guite forcivly how much simpler our present developments are

in comparison with the earlier asymptotic expansions and thus
fully justifies the additional labor that has gone into develop-

ing the new asymptotic expansious.

8.5 EVALUATION OF v(2)

According to Eq. (8.24) the integral in question,
Eq. (8.11), when evaluated over the path C, can be computed

as

x2k(?) - 1k(?)

V(Z)xa bsp) = ca 7 i , (8.135)
k) -k
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[o2

in terms of the partial derivatives with respect to a and

: ; 2 {) 2 J 5 A i o
of our second auxiliary integral K° '{a,b,p) whose asymptotic

expansion is given by Eq. (8.95), with expansion cosfficients
o

{8.961. Thersfore, we need cnly compute the derivatives Ké“”

and Ké2> and insert their asymptotic expansions into (8.13%%5).

L ; +h2) . )
8.5a Asymptotic expansion for V'"/.- First we rewrite

the expansion (8.95) by inserting for T AgBy

expression in terms of a and © in accordance with the first

its explicit

of Egs. (8.57) and (8.59); thus, we have

1kpp+ikia(l-n2)%E 5

P 2ik,be 14n
2 2 +711
k%) (a,0,0) 5 ;
(ik,0) n
¢ Eylab)  Eylab)
yUél + L + 2 b wee v 8.1
\ <

2(ik,0)  8(ik

where El and E2 are given by Egs. (8.96). Next, we computs
by term-wise differentiation of Eq. (8.136) the asymptotic
2,02} 2,02
2Ka and Klﬁb

inserting them into {(8.135), we exhibit both expansions with

expansions for the terms k and, before

a common factor in front. Proceeding in this manner ws obtain

for V(d>(a9b9p§ the asymptotic expansion
'k i koa(l 2>%
z ikspo+ikqa(l-n®)=®
(2) Zik{e 2P 1+n2 e Fiolab)
‘V« (a9b90) = - . i 7 3 ; Fo(b> IS SRR, S——
(klmké)(1k2p) n” b 21k,p
F‘ <a9b) ) V\T‘;
. -fémm~f§)~ 0(n%k,0) 77 | =5
8(1k,0] : |

oA

~f
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where the expansion coefficients are

2 2\

F,(b) =1~ Bn"(1-n")%;
-— 2 °

_ - 2
Fz(a,b) = F E, + b(E2b-n '2a)’

where El(a,b) and E2(a,b)9 originally reported in Egs.
(8.96), may be written, making use of Egs. (8.57), (8.59),

(8.61), and (8.77), in the various forms that follow:

El(a,b) = 6C2+3(2+n2)/n2+7/4
b _-1'— )
) n-2§6+4n2+n4f3a(1-n2)‘2+5273 (8.139)
= n_2{6+4n2+(3a+52)n4+(3/2)an6+(9/8)an8+0(n10)z;
E,(a,b) = 12004+{}3+6o(2+n2)/n2}02+5o(4+5n2+n4>/n4

+33(2+n°) /2n°+225 /16

il

r - ) ! T -3
n~*J120+168n%m* (48460 (1-n%) "%+20% |+n®[39a(1-n°) "

(W

o - o D
-154(1-n%)"3/2.8° 1 +n® 15421 1-n°) 1410682 (1-0°) F-p%

n‘4{120+168n2+(48+60a+2052)n4+(54a+852)n6

+(390/2+15a2+10a82+8% 108+0(n10)" | (8.140)

1

Finally, substituting the above expansions in powers of nz

into Eqs. (8.138) we obtain the expansion coefficients in the

form
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F (b) = 1-pn+3pn%+(1/8)pn®+(1/16)pnB+0(n0y;
Fl(a,b) = n“2{€+(4-65)n2+(3a=ﬁ+362)n4+‘ﬁB/Z)a-%B
~3aB-6> 0+ ((9/8)a-(5/8)p+48° [nB+0(atO);
. . (8,141}
F,(a,b) = n”#{120+(168-1208)n°+(48+604-108p+60p° )n*

+(540-9B~60ap+245°-2082)n°+(39a-38

~48a8+30a2+60a62+4ﬁ3+lOB4§n8+o(nlo)%@

3

We note from Egs. (8.141) that successive coefficients
of the asymptotic series in the bracket of (8.137) behave as
follows:

Po(b) = 0(1), TFi(a0) =0(n™%), TF,(a,b) = 0o(n™4,

from which we conclude that successive terms of the said
asymptotic series behave as reciprocal powers of n2k2p and
that the remainder in (8.137) is properly estimated as
O(n2k20)m3@ This means that the éefies (8.137) is worthless
for practical purposes and that only asymptotically, ¢ —

or In?

kzpﬁ 3% 1, do we derive any useful information from
its leading term. The difficulty is readily traced to the
presence of a pair of poles in the integrand of K<2}(aybgp)9
Fg. (8.81), which is evident in the power series expansion
(8.88) and which limits the radius of convergence for the

function f(x) as indicated in Eg. (8.91). These poles occur

in the x-plane at x = % X , where x_, from Egs. (8.,4%) and
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(8.86), may be written as

L+ i/e)in? + L], (8.142)

i
it

Wl

) i S : .
x, = QZikzp!; - (1®)"EY = nfkp)

which shows that the pair of poles occur, for @nﬂd << 1, almost
on the real axis and very close to the origin in the x-plane
as shown in PFig. 13,

In accordance with our findings of Section 8.4d, we must

now properly identify A and 4 in the form of the remainder

(9.123) to conform with the present situation; thus, we place

e
2

1 o N
XE ﬁzﬁnZKEQiz and ‘ﬂ% = (4k2p) 9 (8”143>

which implies that, for §n§2 £< 1

;s the rectangle of analiticity
for the function <¢(x,y) has become extremely narrow, Fig. 12.
2 3

Further, since now A% << #%, we may write simply for the

remainder after N grouped terms, instead of (8.123), the form

= 0(x™%) = 0in®k,p! (8.144)

¥
in complete accord with the conclusions of the preceding
paragraph. Finally, we recall that the difficulty arising
from the presence of a pair of poles very close to the saddle
point can be remedied by the technigue of the subtraction of

the pole, Section 5.2¢, which we take up in the next secticn.

8.50 Evaluation of V'P’. - Following the method

3 ;
developed in Chapter V we resolve the integral V(2’(a9b9p)

into the sum of two terms
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v(2) = y(s) | V(P), (8.145)

V(S) denotes the evaluation of the integral V(2),

where
as given by Egq. (8.135), after the removal of the pair of
poles near the saddle point, and V(p) denotes the so-called
contribution from the pole. In the present instance it proves
convenient to evaluate first the contribution from the role
K(p) of the auxiliary integral K(2) and then, making use
of Eq. (8.135), we compute

() kSKép> _ kiKép)

7
k) -k

. (8.146)

Thus, starting from Egq. (8.82) for K(z)(a,byp), and
following the prescriptions of Section 5.2c¢c we have at once,

from Egs. (5.83%) and (5.88),

e
: -3X f 2
(p) _ ikop | e * 4 -y
K = - 2x e e - dx - = C(y)e =Y dy
T o
;;90 - O
ikoo, _%xz . + , .
= - e inCe~2"0 erfc(—1x0/22), (8,147

where x, 1s given by (8.142), and, from Egs. (5.79) and
(5.89),

(%% - x2 _ ?
C(y) = ILim = 5 g@(x,y)k . (8.148)
X —> X 1 X0 J
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and

» - l 2 p .
c(y)e 2 ay . (8.149)

Q
1
Al
O‘}_\;,;ﬁ,ﬁﬂ8

Next, making use of Egs. (8.49), (8.54), (8.83), and (8.148),

we have
o(y) = - #la(wy) - o(=w)) e(xy.¥), (8.150)

from which, with the aid of Egs. (8.55) and (8.47), we have

from (8.149) for the factor C(a,b,p) the expression

(e}

-
117 \ 7 4 i - lyz
Cla,byp) = = 516w )-G(-w )t - 5 Q (4ik,p cosw -y 2)~%e dy
0
2y-%
L1 1k a(l+n .~k .
= i s1n[pk o(l*n ) % 1 ( ) o Hé(kop)e Opg (8.151)

1 N
where k= 1(2(1-4}»1:12)“2 in accordance with Eq. (8.9). Finally,

in preparation for the application of formula (8.146) we

compute, from (8.151), the difference

. 2~ _
k50, - kiC, = -ik, k (l+n

2~ ikia(1+n2)~F-inkpb(1+n2)~%
e

"ikop

><Hg(kop)e (8.152)

Thus, making use of Egs. (8.146), (8.147), and (8.152),




72

we obtain the desired expression for the contribution from

the pole,

2 (102)~% eik2p+ik1a(1+n2)-%-inkgb(1+n2)-%

v(p)(aebsp) = = )
kl(l-n )

. L2
vl (x p)e ¥oP | .| o F%o
A HH UES «
i ,

L bm

1 ) ;
erfc(-ixo/zf)g, (8.15%)

which we now propose to expand asymptotically in order to

compute V(s)(a,bgp) by means of the formula
V\s>1\”v(2> - V(p), (8‘15£)

which follows immediately from (8.145); that is, we obtain the
asymptotic expansion of V(s) by subtracting from‘(80137) the

asymptotic expansion of (8.153).

8.5¢ Asymptotic expansion for V(p>sw To this end,

making use of well-known formulas, we expand the first bracket

in (8.15%) as follows:

. 1
1 -1kgop T, fT§$ 1
H-(k o)e o 2/(ink o)) T ¢ —————
070 C on L T 4(21k )
(8,155
9 75 J
+ 2 + - 3 -+ o @ o \,ig
32(2ik0p) 128(2ik0p) i

which may be written, putting ¢ = (ikzp)_135 and
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s
X, = k2(1+n2) 2. in the form

-ikop 1

N
H%(kop)e w%an102(1+n2)21

9 1.2y 4 75 2y3/2 6 ]
* 158 (1+n)ec™ + 1021 (1+n) Co o+ oo s

The second bracket in (8.153) can be treated likewise

by making use of the formulal

2 ) -1 | 1 .
e? erfc(z)zav(zﬂ%) él - =5 + 32 5 - 12 5t oeeo %, (8,157
! 2z (2z%) (2z°) )
| “ 2 _ _1.2 _ z
which we now apply by putting 2z° = -3x, and z = -1x0/2
obtaining
~3x§ N N T R SN SRR S )
e erfc(-lxo/2 ) ﬁviflxo(n/Z) ﬁ f1+xo +3x T+15x " + seely
e
ic(l+n2>4 | 02 304 . 1506 ! .
- —1—_’_'—-"1‘ (il + ""'é" + 4 + 6 + 0 0 © 7 9 (801:}8}
nQ®(mn/2)% £ g 5 J

where we have made use of Egs. (8.44), (8.86), and (8.87) to
obtain the second form.
Substituting the expansions (8.156) and (8.158) into

Eq. (8.153) we obtain the desired asymptotic expansion for ths

1W( Magnus and F. Oberhettinger, "Formulas and Theorems
for the Special Functions of Mathematical Physics," (Chelsea
Publishing Co., New York, 1949), p. 96.



74

contribution from the pole,

1 ik
21Q B 2P

ikja(1+n2)~F-inkob(1+n2)-%
e
1.
kl(l—n )(lklp>

v(P) (a,p,0) ~ -

: H B H
;x§1 2 1 5+ 2 3 + eoa ¥y (8.159)
2(ikyp) 8(ikyp) b

where the expansion coefficients are

§ o= 032672 o 1 p2(1402)3 ],
Ho =n LP &0 +3n (1+n°) 15
. -6 - - \E 27 1£MY
H =n 6w6n4go4 + % n4<‘;02(l+n2)2 + é% n4(l+n) j; (8.160)
=91 - 3/2
Hy = n 91}20n650 + 3n® E ~4(1+n2 )% j% 6 2(l+n ) + %%L 6\lwn 37 g,
A . ‘ 2 =2 ~ 4 %"x 2 %ﬂ
nd, making use of the fact that n“gj (1+n ) 11 (1+n®)=

which follows from (8.85), we obtain after expanding into

2

powers of n the forms

Hy n_6§§ + %g‘n2 + %%g‘n4 + 0+ f% n° ¢ O(nlojE; (8 res

H, = n‘9{}20 +273m% + 2382t 4 4203 00 4 2 n® o(nlo)Ec

8,5d Evaluation of V(s),- According to Eq. (8.154)

we now compute V(S)(a9b9p) as the difference between the

asymptotic expansions. (8.137) for V(z)(a,b,p) and (8.159)
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for V<p)(a,b9p)o In preparation for the indicated subtraction
we first rewrite (8.137) in the same form as (8.159); that is,
we exhibit successive terms as reciprocal powers of (iklp)

and we extract in front of the expansion the same factor that

multiplies the bracket in (8.159). In this manner we obtain

-1 ik
2iQ =e 2P

ikla(l+n2)‘%~ink2b(l+n2)—%
e

...

k, (1-n%) (1K, p)

V<2)(a9b9p) T -

Sn‘3FO n~4F
K Flasb){— + 5 TS
. ikip  2(ik,p)

where the coefficients F Fl9 and F2 are given by Egs.

0"
(8.141) and where the factor F(a,b} has the form

) e 2.5 2\ ~51 . L2\ ~%
, 1 ikja i{1-n“)2-(1+n“)"% [+inkob(1+n“) _
Fla,b) = (1+n2)Q§e =L j 2 . (8.163%)

Combining the expansions (8.162) and (8.159) in
accordance with Eq. (8.154) we obtain for the integral

V(S)(aybgp) the four-term asymptotic expansion
-1 1k
(s) 21Q ®e >

Tt l()ag‘bgp)v‘w - I
kl(lmn )(1klp)

ikla(1+n2)“%-ink2b(1+n2)~%

<

(8,164)
\ H -n"2FF_  H,-n"%FF, H,-n"2FF y
x 5 l + o o + l % '1" 2 ‘% + o o c( 9
| ik p 2(ik,p) 8(1kyp) f

in which the only remaining problem is the evaluation of the

indicated expansion coefficients which must be expanded in
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F and P

"
are given by Egs. (8.141), whereas the coefficients H

powers of nzg Here, the coefficients F

o’ 2

Hl9

are similarly listed in (8.161). Thus, we need only

O’

and H2

the power series expansion of the factor F(a,b), Eq. (8.163},

which we carry out by successive steps yielding finally

. | N2 1l ( 2% _4
Fla,b) = 1 +<:8’= +pn® s -z -+ 4B +3 8%
(8. 16"
/23 3,1 17 g 1 g2 1 g3}6 8,
\To2s 16 % 2% TPy f rg R n 0
In further preparation for the evaluation of the
expansion coefficients in (8.164) we compute, making use of
Egs. (8.141) and (8.165), the expansions
=3 S ) P G- I S G R
n “FF, n‘,l*sn e R R
[ 23 3 1 1 .2 1 .36 . .8
Tozz 1% 2P ye P -3k n s 0l
(8,16x
-4 -6l 37 2 197 4 /75 2\ 6 8
n FF. = n "6 + 2= n" + =2 = |- = g = m” 4+ 0in"
1 — 4 64 {512 b ’
“Som = =9 lon . 2 , 2985 4 . 4209 6 8"
n"’FF, = n 35;20+273n + 2222 2% 4 2293 0% 4 0(®)

And, combining Egs. (8.166) and (8.161) in accordance with
(8.164) we obtain for the expansion coefficients the

expressions
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H - n™ FF = < 2 L1441 62)n

o} o 128 2 2
7 3 1 1 .2 1.3\ 3 5
- - = a + = B + = - = } + ;
(1024 16 Tz Pragh 3T ol
(8.167)
- 2 2
H, - n"*FF, = (g%% - a - B > + 0(n%);
Hy, - n-BFF2 = O(n-l)a
Accordingly, making use of Egs. (8.167) in the expansion
(8.164), we write for the contribution over the saddle point
the asymptotic expansion
. -4 1kop
(s) 2107 %e ikya(1+n2)~%-inkob(1+n2)~%
\ (a;b,p) ~ ) e
ka(1-n")(ik,p)
1 1 .
(8.,1€8)
» G, (a,D) G,(a,b) o(n™h)
X< 1 + + 5 + 3 F ey
128(iklp) 1024(ik1p) (iklp) J

where the expansion coefficients are

]

Gl(a,b) (9+64a+6462)n -(% - 24a+646+852 - l%§ 53>n3 + O(n5);
(8,169)

G,(2,b) = (75 - 512a - 512p%) + 0(n®).
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8.5e¢ Behavior c¢f the first few terms.- From an analysis

of the coefficients (8.167) we can zonclude that the general
behavior of successive terms in the bracket of the expansion

(8,168), as to order of magnitude, is as follows:

0(n) 01} on™ty  o@m™® o)
N S-S S Sy Sy S
ikq0 (1k1p) (1k1p) {lklp) (1klp)
which can be rewritten thus
( ¢ ) ‘ y
1 s O(n) + 0(1) 11 s 0(1) . 0(1) + 0(1) N :

o o v .2- . - 2 .. N % o 2 @ g
1kqp (1kyp) b ikyp (1k,p) (1k2p;3 ,

which clearly indicates that the asymptotic series in the
btracket of (8.168) eventually behaves like reciprocal powers
of (ikzp) in full agreement with the predictions of Watson's
lemma as presented in Section 8.4d and Eg. (8.12¢). 1t is
seen that the first three terms of the bracket can be written
in terms of reciprocal powers of (1klp)h exactly as we found
in Part I for the corresponding expansions of B(2>tnmzyoyp}

and kiV‘S}(hngo,p)g kut 1t 1s now clearly established thatn

our series for U(2>Qagbgp) and V(S}(agbgp) do_not behave
eventually as reciprocal powers 6f (iklp} as had teen
erroneously claimed. See Corrections to Part I at the tegin-
ning of this report.

Thus, finally, if we follow the criterion that an

asymptotic series ought to be stopped after the term which
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exhibits the smallest absolute value, then we should write
for V(S)(agbgp)g at least for an§2(<< 1, the two-term

expansion formula

_1 ik
2iQ e 2P

eikla(1+n2)-%;ink2b(1+n2)“%
k, (1-n*) (ikyp) |

V(S)(a,b,p) =

2, . 3 )
, n(9+64a+64p°) + 0(n”) - . =2
xy{l + 128(iklp) —= 4 O(1klp) A})9 | (8,170}

where the estimate of the remainder is possibly smaller than
the actual error. Since the second term in the bracket of
(8,170) is practically negligible in comparison with unity,
we may find that in many cases the leading term of (8.170)

gives an adequate representation for the integral V(S)(agbgpﬁw







IX. RESULTS FOR THE NON-CONDUCTING MEDIUM

The present Chapter parallels Chapter VII for the con-
ducting medium except that we omit the solution for the case
in which the point of observation and the source are both on
the inteéface between the two media, h =0 and 2z = 0, which
has been discussed already in some detail in Section 7.2. The
special case 2z = 0 for the point of observation on the inter-
face, with the source at the depth h 1in the conducting medium,
is discussed briefly in various sections when it is desired to
verify the fact that the results for the non-conducting medium
agree with the results for the conducting medium as determined
by the boundary conditions.

The expansions for the fundamental integrals U(2) and
V(2), obtained in Chapter VIII, are particularized for points
of observation in the non-conducting medium by setting the para-
meters a =h and b = z. As pointed out in Chapter VIII, the
expansions for the fundamental integrals appropriate to the
conducting medium are obtained by setting the parameters
a=h-2 and b = 0; however, since we have already obtained

in Part I, even though laboriously, adequate results for the

81
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conducting medium utilizing a different method of expansion,
we do not here take advantage of the simpler developments to
recalculate results for the conducting medium.

The method of evaluation of the fundamental integrals
presented in Chapter VIII entalls the following necessary

restrictions on the parameters, namely:

Inj < 1, ke ol > 1

2/0 < 1, n/e < 1.

It is important to note that we claim that our results are
adequate for |klp§j> 1, that is, for a horizontal range
greater than a wavelength in the conducting medium, rather
than for the more restrictive condition kzp‘>»l, which means
a horizontal range greater than a wavelength in the non-conducting
medium, as might have been deduced from the conditions imposed
by Watson's lemma. As pointed out in Chapter VIII, this appar-
ent circumvention of Watson‘s lemma is a consequence of the
resulting behavior of the first few terms of our asymptotic
expansions, of which we have availed ourselves by Judiciously
limiting the number of terms retained, thereby minimizing the
error of our asymptotic expansions and thus extending the range
of applicability of our formulas.

If we impose, in addition to the necessary restrictions
(9.1), the additional restrictions kyz <<1 and k,h << 1,
then we achieve considerable simplification in our formulas.

This means that the formulas developed in the present Chapter
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are all restricted to heights of the point of observation and
depths of the source which are much less than a wavelength in
the non-conducting medium (Fig. 1). However, at low fre-
quencies, this does not constitute any serious practical
restriction. Considering the terms in our series which are
to be neglected, the present restriction means that we drop
terms of O(k2z) and O(kzh) when compared with unity and
that we treat. klz and klh asvbeing of 0(1). Thus, our
present resulté apply to points of observation in the non-

conducting medium for which the horizontal range p amounts

to several conducting medium wavelengths, while the vertical

height 2z above the interface is much less than one non-

conducting medium wavelength, but might very well be several

conducting medium wavelengths.

Accordingly, we can take the expansions of the funda-
mental integrals obtained in Chapter VIII, setting a = h and
b = z and neglecting terms of O(k2z) and O(k2h) as com-
pared with unity. Then, neglecting integrals of the type Il,
which are exponentially attenuated and therefore negligible,
and substituting into the appropriate formulas of Chapter III
we can obtain the Cartesian components of the Hertzian vector
and the cylindrical components of the electromagnetic field
vectors, from which one can deduce in turn the components of
the time average Poynting‘s vector. However, the most general
formulas obtained in this way are much too complicated to be

of direct practical value; and i1t has been found advisable, as

was done in Chapter VII, to develop formulas utilizing additional
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sprroximations valid for‘different horizontal ranges, in order
to obtain simpler results in which numerical substitutions may
ve readily made. In particular, as in Chapter VII, we consider
the three ranges: p —> ® oOr |n2k2p| > 1, Inzkzpi«< 1< k_2p9
and k2p <1 <f|k1p|, where each range satisfies the condition
]klp|‘> 1. Actually, the simpler expressions given for the
components of the electric and magnetic fields and for the
Poynting's vector correspond to the more restricted ranges:
0o —> o or ]n2k2p|'>> 1, |n2k2p| <<1 <K<K kyp, and
k2ol<< 1 <%<|klp|; which means that, for the transition ranges
k,p=~ 1 and |n2k2p];z 1 one must re-examine the results with-
out making the additional approximations which invalidate the
simpler results of this Chapter in these transition regions.

In Section 9.5 is presented, we believe for the first
time, an evaluation of the fundamental integral V2, Eq. (8.19),
in the form of a convergent infinite series which i1s valid for
k20~<< l, such as was given by the Lien approximation for
points of observation in the conducting medium, Section 7.4a.
The asymptotic expansion for V2 obtained by the saddle point
netnoa of integration, which is valid for Iklplj> 1, 1is shown

¢ agree with this evaluation in the range of overlap,

koo << 1 <'|klp|; and, therefore, we are able to check our
solution for the non-conducting medium with the same complete-
ness that was possible for the solution in the conducting medium.
Since this convergent power series evaluation of V2 is valid
Tor k2p << 1 and the saddle point method of evaluation is

valid for |klp]>. 1, we are able to obtain results for all
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values of the horizontal range from p =0 to p —> ®,

In Section 9.6 we present a numerical example using the
same values of the parameters given in Section 7.5 for the
range kzp‘<< 1 <k(|klp\, the results béing obtainable either
from the converging series evaluation of V2 or from the sad-

dle point method of integration.

9.1 IMPOSITION OF THE CONDITION lk;p| > 1

Considering the original resolution of the fundamental
integrals into the sum of two integrals, Eq. (8.26), one about
the branch cut Cl designated by Il and the other about the
branch cut 02 designated by 12 (Fig. 10), we may readily
determine that all of the integrals of the type I1 are
iklp>

negligible, being exponentially attenuated and of Of(e .

where |k;pl > 1 and k, = Ikl]ein/4. This conclusion may

be verified by actually evaluating the I1 integrals by the
saddle point method of integration, which we did in Part I and
thus have not repeated here. Thus, in accordance with

Egs. (8.18) and (8.19), we obtain for ]klp| > 1 the approxi-

mations of the fundamental integrals

U, == U£2) = 0% (n,2,0);
, (9.2)
v, Véz) = kgv(2>(h9z,o),

which should be compared with the corresponding results for

points of observation in the conducting medium, Egqs. (7.1).
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9.la Hertzian vector and field components for

lglpl > 1.- Making use of Egs. (3.6) and (3.9), which express
the Cartesian components of the Hertzian vector in terms of
the fundamental integrals U2 and V2, and employing the
approximations (9.2) which also apply to the derivatives of

the fundamental integrals, we obtain

T =~ v (@),

’

x2
4nk2q2
{(9.3)
T o _ ipcosd 1(.6__-6_)V<2>
22 4mk,n, 8p \dz  dh :

Similarly, from Egs. (3.20), (3.21), and (3.22), the
approximate expressions for the electric field components
appropriate for Iklpl > 1 become, making use of Egs. (9.2),

. 2.,(2

E, = cosd —— + U ;

P 4T dp

; (2)
lwp,p 1 0V (2)

E ~ - sin _—_—+ U 3 .

42 > g { iy ] (9.4)
iwpbp 62V(2)

Ez2 ~ ——— cosgf —— ,

47 dhop

where the factor k2/r]2 has been replaced by Wh » And
similarly, from Egs. (3.27), (3.28), and (3.29), the appro-

priate approximate expressions for the magnetic field components
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become

by = s (® 3 (s sy
p2 ~ 4m dz o 9p \dz dh r’

(2) 2 -
p cosd \dU G) d 9
lez I { + 5 (—— - —)V(Z)% ; (9.5)
41 0z op 0z oh J
u p sing aU(2)
z2 ~ 7 4T 3p

It may be noted again, as pointed out in Sections 3.2b
and 3.3b, that it is possible to express the Hertzian vector
and the field components exclusively in terms of V(h,z,p),
which is achieved by eliminating U(h,z,p) with the aid of
any one of Egs. (8.12) through (8:15), but no special advan-

tage accrues from this procedure.

9.1b Evaluation of U(2) for Iklpl > l.- This evalua-

tion has already been carried out in Section 8.4a, Egs. (8.108)
and (8.109); and it is now merely a matter of setting a =nh
and b = z and choosing the simplest form which will yield
useful results. Thus, treating klh ‘and klz as being of
0(1), which is equivalent to saying that we may neglect k2h
and kzz as compared with unity, we find that each term of
the asymptotic series for U(z) may be expanded in a power

2

series in n2o Since |n] is a very small quantity (see

Table I, page I-47), this expansion of the terms of the series

for U(2) affords us a means of quickly determining what
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simplifications may be made without impairing the validity of
our results.

For the range o —> ® or |nk,pl > 1 it will be
found that it is possible to obtain simpler results without
having to expand in powers of n2; and since only the leading
term survives in this range, we retain the leading term of
U(z) without further approximations. The second term of the
asymptotic series for U(Z) is written neglecting terms of
O(n4) as compared with unity, and the third term, the last
term retained, is written neglecting terms of O(ng) as
compared with unity. In this way we obtain from Egs. (8.108)

and (8.109),

1
ik,p+ik h(1-n)% .
. 2 1 -
pl@) . 2ie — n[1-6(1-n%)7 |
kl(l'n )p

-2 - B - 20 (5a-tp-30p436%-67) + 00| (iy0) !

- 30 [3a-38-3ap+3p°-p+0(n") | (1ky0) 72 } \

where according to Egs. (8.77), setting a =h and b = z,
a=jkﬂ1 and 5=1Kﬁ- (9L

By inspecting Eq. (9.6) and assuming k-h and k.z

1 1
are of 0(1l) it may be seen that terms of O(n3/klp) and

O(n/klp)2 have been neglected as compared with unity, which

may be verified as being proper by referring to Table I,
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page 1-47, and recalling that |k1p|‘> 1. As a final comment
on our working formula for U(z), Eq. (9.6), we assume as in

Eq. (8.108) that the remainder after the three terms of the
)—3

o

asymptotic series presented is of O(iklp

9.1¢c Evaluation of V(2) for |klpl > 1l.- In order to
achieve simpler formulas we include two results for V(z)(h,z,p),
one of which is valid for p —> @ or |n2k2p| > 1 and is
presented in the next section, while the other is valid for
in2k2p| ~ 1 < lkypl and is presented here. Thus, collecting
results from Section 8.5, Egs. (8.145) and (80153), setting

a =h and b = z, we have

V(2>(hsz9p> = V(p)(h,z,p) + V(S)(h9z9p)’ (9.8)
where V(s> may be obtained from Egs. (8.168) and (8.169),
while
(P 2Q—% ikgp+in-1koh-inkoz
= - e
k2 (1-n%)p
(9.9)
T 3 -ikep g, T 3 x5 3
X {(3nik_p)=e H-(k_p) H—i(n/Z) X e Cerfe’-ix /2 )};
- ) o‘"o ] ) )
where we have, from Eq. (8.9),
K, = k2(1+n2)-%; (9.10)

from Eq. (8.87),



Q = 2n—2 [(l+n2)% - l:] ; .‘ 0,140

and, from Egs. (8.86) and (8.84),

x2 = in?k,p(14n2)"3Q = 21 (k,-k )p . (9.12)
o} 2 2 70
In order to obtain the working formula for V(s> from
Eqs. (8.168) and (8.169), setting a =h and b = z, we
proceed as in the previous section. Thus, treating klh and
k.z as being of 0(1), which is equivalent to neglecting

1

k2h and k2z as compared with unity, we take the second and
third terms of the three-term asymptotic series for V(S)9
Egs. (8.169), whose coefficients are already expanded in
powers of nZ. Neglecting terms of O(n3/klp) and O(n/klp)2
as compared with unity, as was done to obtain our working

formula for U(2), we obtain the working formula for V(S>y

1
2Q7% ikpp+in—lkgh-inkqz

WO
N

f 1,19 2 2 ] i - EZ5 2 iy fan 0y=2
xfll +-gnE§I +a+B“+0(n) (1klp) +5 515 a=B +0(n )J(lkjy} ;
where o and B are given by Egs. (9.7). For a discussion of
the remainder in the above asymptotic series, see Section 8.5«

The evaluation of U(2) as given by Eg. (9.6) plus the
two evaluations of V(z), the one given by Egs. (9.8), (9.9).

and (9.13), and the other being given in the next section by
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Eq. (9.15), are sufficient to yield by substitution into the
formulas of Section 9.la the Hertzian vector, the field compo-
nents, and the time average Poynting's vector for the three
principal ranges of the parameters which we consider for
iklpl‘> l. However, in order to simplify our results so that
numerical substitutions may be readily made, we consider in
the following sections further approximations appropriate to

particular ranges of the parameters.

9.2 ASYMPTOTIC RESULTS FOR o — @ or inszOl > 1

This range 1s properly characterized by the fact that
Sommerfeld's numerical distance, ZEq. (7.45), is large and
consequently this range is primarily of academic interest,
not only for the present low freguency case but also for radio
frequencies. However, even though it i1s not possible to make
actual physical measurements in this region, the character of
the solution at infinity helps to establish a reasonable over-
all picture which may be of assistance in regions that are of
pracfical interest.

The formulas presented below refer thus to the asymptotic
range o —> o and, consequently, are adequately represented
by the leading terms of the corresponding asymptotic expan-

sions. In particular, for V(z)

we need only take the leading
term of the expansion before the removal of the pole since now
ln2k2p) >y 1. In any case, however, we are governed by the

conditions (9.1l) and, therefore, as p —> o we must have
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z/0 =» 0 and h/p — 0 since both 2z and h must remai:

finite.

9.2a Fundamental integrals for p — o or !nzk?pj‘xﬁ%vm

The expression of the fundamental integral U(2) appropriate Tor
the present asymptotic range, p — o, 1is obtained from the
first term of Eq. (9.6), the second and third terms being

negligibly small in this case. Thus,

. . 2
5 2in [1—1k12(1—n )%] ik,p+ik-h(1-n2)%
U( ) ~ e 2 l {/O 14\
2 2 S L ¥ )
kl(l—n )p

The corresponding expression of the fundamental integral VAR

is obtalned directly from the results of Chapter VII1I before
the removal of the pole from the integrand. From Egs. {8.137;
and (8.138), preserving only the first term and setting a = h

and b = z, we obtain

e 2 2\37 . : i
V(2)f~ 21[}—1n klz(l-n ) ] e1k2p+1klh(1-n2)z e
kg(l—nz)p2 o

These results, Egs. (9.14) and (9.15), mav be checkead
directly with the corresponding asymptotic results for the
conducting medium by comparing the respective integrals for

z = 0. Thus, from Egqs. (2.67) and (2.69), we have

Uy =U,, z=0, (0 18}
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and from Egs. (2.68) and (2.70), we have
5 z = 03 (9.17)

and, in particular, evaluating the integrals over the path

02 we obtain, for =z = 0,

U§2) = Méz) = U(z)(hyogp)s
(9.18)
kizvﬁz) = v(®)(n,0,p).

Using Egs. (9.18) we find that the asymptotic results for the
non-conducting medium, Egs. (9.14) and (9.15), agree with the
corresponding results for the conducting medium, Egs. (7.10)
and (7.6). It is interesting to note that the asymptotic form
of U(2), Eq. (9.14), may be obtained directly from the
asymptotic form of V(2>, Eg. (9.15), by applying any one

of Egs. (8.12) through (8.15).

9.2b Hertzian vector for p — 00 or ln2k2pl > 1.~

The form of the Cartesian components of the Hertzian vector
suitable for the present range of parameters may be obtained
by substituting U(z) as given by Eq. (9.14) and V(2) as
given by Eg. (9.15) into Egs. (9.3) and performing the dif-
ferentiations. Thus, retaining only the leading terms, we

have
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1
T ip[l-iklZ(l-nz)ﬂ eik2p+iklh(1-n2)? ]
N - Pl
x2 27 ':rl«:z(l—nz)p2
(9.19)
_J;‘ a1
ip cosg [L+n®-1n%k 2(1-0°)%| ikyp+ikyn(1-n2)?
TTZZ A - = 2 % 3 2 e )
2nq“k2(1-n )*n”p
where use has been made of the relation k212 = ifnZ o
Apart from the cosg <factor the relative order of
magnitude of the two components of the Hertzian vector is
(ﬁzz/lﬁxz) = O(l/n3)7 (9020)

which indicates that in the low frequency case, as p —> 0,
the field may be described primarily in terms of the =z com-
ponents of the Hertzian vector as was found to be the case for
the conducting medium, Egs. (7.11). Since the 2z component,
as shown in the static 1limit, Sections 4.4 and 4.5, is asso-
clated with a secondary source distributed over the boundary
surface between the conducting and non-conducting media, the
entire field in both the conducting and nbn—conducting media
may be primarily ascribed to a surface phenomenon. Using

the boundary conditions, the first of Egs. (2.15) and (2.16),
we find that the components of the Hertzian vector as given
by Egs. (9.19) for the non-conducting medium check with the
corresponding components as given by Egs. (7.11) for the

conducting medium.
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9.2¢c Electric field components for ¢ — o oI

| 2k ol > 1l.- The form of the electric field components suitable
2

for the present asymptotic range, p — @, may be obtained
by substituting U<2) as given by Egq. (9.14) and V<2> as
given by Eq. (9.15) into Egs. (9.4), performing the differentia-

tions; and preserving only the leading terms to yield

1
p cosg ikpp+ikyh(1-n?)%

E 'N__——?e .
p2 2nq2p ’

. 215 . 2.% 1
p singn [i-lkIZ(lun )2 ] ik,p+ik h(1-n2)% )
e (9.21)

E s
g2 2nq2<1_n2>p2

oL 2 : 2,51 .
p cosd|1-in"kyz(1-n")% | eik2p+iklh(1~n2)%

Fa2 2nq2n(1-n2)%p2
where we have used the relation me/kg = l/q?@ These
identical results, Egs. (9.21), can also be obtained by sub-
stituting the Hertzian vector, Egs. (9.19), into Egs. (3.13)
and preserving only the leading terms.,

Apart from the sind and cosd factors, it may be
seen that for points near the interface between the two media

the electric field components stand in the relative order of

magnitude

(B p/Bgp/F,p) = O(n/n’/1), (9.22)
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which may be compared with the results for the conducting medium,
page I-190. That is, putting Ez2 = 0(1) we have, in matrix
notation, the order of magnitude comparison for the electric

field components belonging to the two media,

3 2
Epl Eﬁl EZl n n n \

=0 | ); (9.23)
E n n3 1

02 E¢2 By

from which we see that the corresponding horizontal components
are of the same order of magnitude, whereas the vertical com-
ponents stand in the ratio (Ez2/Ezl) = O(l/nz)9 all of which
follows readily from the boundary conditions.

The electric field components, Egs. (9.21), for the
non-conducting mediuﬁfare seen to agree with -the correéesponding
electric field components, Egs. (7.12), for the conducting

medium upon using the following boundary conditions:

E =&

(9.24)

. -

where the first two conditions arise from the continuity of the
horizontal components of the electric field and the last condi-
tion, which expresses the discontinuity of the =z component

of the electric field caused by a surface charge distribution,
may be determined from the last of Egs. (3.13) and the boundary
conditions (2.15) and (2.16).



It 1s interesting to note that the nature of the electric
field as given by Egs. (9.21) changes drastically when we consider
values of 2z of the order of, but necessarily less than, p.
Thus, considering jn2k2z| >1 we find that the £ and 2z
components are much larger than their values near the interface,
and that compared with the g and 2z components the radial
component is now negligibly small. The electric field is seen
to take on more of the character of a free space radiating
field for these large values of 2z. Since a discussion of the
field on the hemisphere at infinity can be best carried out by
using another asymptotic evaluation of the fundamental integrals
in terms of R = (p2+zz)% instead of p, we will restrict
ourselves here primarily to a discussion for points of observa-
tion near the interface, keeping in mind that the character of
the solution will be quite different for points of observation

sufficiently far removed from the interface.

9.2d Magnetic field components for p — @ oOr

‘n2k201q> 1l.- The form of the magnetic field components suitable
for the present range, o —> o, may be obtained by substi-
tuting U(2) as given by Egq. (9.14) and V(2> as given by
Eq. (9.15) into Egs. (9.5), performing the differentiations,

and preserving only the leading terms to yield

1
np sing  ikpp+ikjh(1-n®)Z
e

H o~
2n(1~n2)%p2

p2
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p COS¢[ﬁ ~ink Z(l—n ) ] 1k2p+1k1h(1_n2)f
e

Hgo ~ = 2 ;

2n(1=n )2np

2 . 2
n°p 51n¢[;-1k12(1-n )%] ik2p+iklh(l-n2)%
e
21(1-n°)p°

o

These same results can also be obtained by substituting the

Hertzian vector, Egs. (9.19), into Egs. (3.23) and preserving

only the leading terms.

(9.25)

Apart from the factors singd and cosg and considering

points of observation near the interface, it may be seen that

magnetic field components stand in the relative order of

magnitude
(H,/Hyp/H,,) = 0(n°/1/27),

which is seen to be identical to the corresponding result

for the magnetic field components in the conducting medium,

page 1-191; or, in matrix notation, letting ,H¢2 = 0(1), we

have

3 2 3
le Hgfl Hzl\ n 1 n \
=0

o2 Hyo Héz// n® 1 o’ /

The magnetic field components for the non-conducting

medium, Egs. (9.25), are seen to agree with the corresponding

(9.26)

(9.27)

magnetic field components for the conducting medium, Egs. (7.13),
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upon using the boundary condition that the magnetic field be
continuous across the boundary, 2z = 0, between the conducting
and non-conducting media.

As for the electric field components we find that the
character of the magnetic field chaﬁges drastically when we
let 2z ©be of the order of, but necessarily less than, p.
The magnetic field for the present asymptotic range, p — @,
is seen to take on more of the character of a free space

radiating field for these large values of z.

9.2e¢e Power flow for o —> ® or |n2k2pl > l.- Con=-

fining our attention to points of observation near the inter-
face, which means that we treat klz as being of 0(1), thus
allowing us to neglect kzz in comparisoh with unity, the
time average Poynting's vector, {sh = %Re<{E X Hf} ,
becomes upon substituting the asymptotic forms of the field
components, Egs. (9.21) and (9.25), and neglecting terms of

O(n2) as compared with unity,

1
coL 2
22in!p° sind cosd | -2h/5
<$¢2> ~ st d ot [}_22/5]‘8 ; (9.28)

2 2
p° cos“d em2hﬂF
- ,
8o nl2p*
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where & = (Z/wpbﬁ)% is the skin depth and where the relation
2%q2 = ¢ &|n| has been used.

| For points of observation near the interface the
relative orders of magnitude of the net power flow in the
three coordinate directions then become, apart from the trig-

onometric factors,

((Sp0y 7 (8400 / $goy ) = 0(1/1m1*/1ml), (9.29)

showing that most of the power flow is radial and parallel to
the interface between the two media. It may be noted by
examining the orders of magnitude of the field components,

Egs. (9.22) and (9.26), that the ¢ component of the time
average Poynting'’s vector, <S¢2} , would have been expected
to be of O(|n!2) as compared with the p component, <Sp2> 3
but it is found upon computation that the jni2 term is pure
imaginary and represents only reactive power flow; therefore,
the lnl4 term is the largest term representing net power flow.
A similar situation occurs in the conducting medium for

<Spl> , Egs. (7.16), where the next larger term, not shown,

is of O(ln|2) times the term retained and represents an
actual power flow. Comparing the present asymptotic results
for the non-conducting medium with the corresponding results
for the conducting medium, page I-191, we have in matrix

notation, letting <sp2> = 0(1),
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/<Sp1> Gory  Gad f jmi* mt oy \
| | ,

k\ <\S02> <Sg{2> <Sz2\>/'# \ 1 In| * 5n

where the trigonometric factors have not been included,

The 2z component of the net power flow, Egs. (9.28),
is negative and 1s seen to be identical to the =z component of
the net power flow in the conducting medium for 2z = O,

Egs. (7.16). This result was to be anticipated from the con-
tinuity of the tangential field components across the inter-
face. Thus, we conclude that the energy which supplies the
conducting medium with a field for p — ® comes essentially
from the non-conducting medium directly above the point of
observation in the conducting medium.

A symmetry between the ¢ and 2z components of the

electric and magnetic fields exists, namely
s v
ep X E2 = %2H29 (9.31)

where ep is a unit vector directed in the outward radial
direction and @é = 1/42 = kz/weo, as defined by Egs. (2.3),
which may be readily verified by inspecting Egs. (9.21) and
(9.25). This implies a cylindrical wave proceeding outward
from the 2z axis and properly describes the major part of

the power flow asymptotically, p —» @ . This result may be
contrasted with the description of the field for the conducting

medium, Eq. (7.30) and subseguent discussion.
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It is interesting to note that this cylindrical wave
picture as provided by Eq. (9.31) is even more applicable for
large values of 2z since the relative importance of the
radial components of the electric and magnetic field decreases
for very large values of z. Thus, for -ln2k221'> 1 Dbut
z < p, the electric field is given‘essentially by the 4
and 2z components; for from Egs. (9.21), neglecting unity as

compared with klz or n2klz, we have

2 : , _ L
k;pz sing e1k2p+1klh(l—n2)§a

E .\ re -

g2 2n6n(1—n2)%p2 ’
(9.32)

2
k3pz oS ik,p+ik h(1-n2)%
fga ™~ T 27 © )
T3 np
where use of the relation l/Yl2 = - ik2/h2¢' has been made.

The magnetic field components for this asymptotic case p — @
and ln2k2zi >1, but z <p, may be obtained from Egs.

(9.32) by using the relation (9.31). The time average Poynting's
vector as obtained from Egqs. (9.32) and (9.31) becomes, for
points of observation far above the interface between the two

media,

2 2 2 2 2
5 W z°p° cos g S
<2p> - ©

8n2p4

’ (9.33%)

where only the p component survives and n2 has been dropped

as compared with unity in the exponent. This result, Eq. (9.33),



103

may be contrasted with the power flow near the interface between
the two media, Egs. (9.28),

From the electric and magnetic field components,
Egs. (9.21) and (9.25), and the relative order of magnitude of
the x and z components of the Hertzian vector, Egs. (9.20),
we readily see that the field arises primarily from the ”ﬁzz
component of the Hertzian vector, the ;ﬂéz component yielding
a negligible field by comparison. Since ﬂ;z may be asso-
ciated with a secondary source distributed over the boundary
between the conduoting'and non-conducting media, we conclude
that, for p — o0, the best description of the field near
the interface is that of a true surface wave. Indeed, apart
from an amplitude factor which represents the source and the
cylindrical nature of the field, we may refer to Stratton's
discussion2 of a surface wave. Considering only the single
z component of E, Egs. (9.21), and the single & component
of H, Egs. (9.25), which according to Egs. (9.22) and (9.26)

essentially describe the field for p — o, we may make the

approximate replacement

-inkoz i
e 2%~ 1 - in2klz(1~n2)§ (9.34)
for points of observation near the interface. Thus, fitting

Stratton’s description and including the time variation, we

have

2Jo A. Stratton, "Electromagnetic Theory," (McGraw-Hill
Book Co., New York, 1941), Sections 9.13 and 9.14, pp. 516~
5240
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ikpp-inkoz-iwt
Ce

Hﬁz ~ ’ (9°3€z>

where

1
ikyh(1-n?)=
p cosgd e 1h( )

C = - T (9,
2n(1—n2)§np2

"
(63
g

is a factor indicating the nature of the source and the cylindri-
cal structure of the surface wave. The electric field which is
of the same nature may be obtained from Egq. (9.35) by using.

Eq. (9.31).

Examining the exponential factor in Egq. (9.35) we see
that it represents an inhomogeneous plane wave in which the
equiphase planes are tilted forward from the vertical by the
small angle tan—l(ln]/Z%) and the equiamplitude planes are
parallel to the interface separating the two media. From
Eqs. (9.28) it may be seen that the time average Poynting's
vector makes the same small angle, tan—l(|nl/2%), down with
respect to the horizontal. In conclusion, the field for
o —> ® or ]n2k2p| > 1 may be described essentially as a
true surface wave for points of observation near the interface
separating the two media, but must be described as more of a
free space radiating type field when the point of observation

is far above the interface.



9.3 RESULTS FOR THE RANGE |n%k,p| <1 <k

This range 1s for a point of observation farther than
an air wavelength radially from the source while Sommerfeld’s
numerical distance, Eg. (7.44), is small in comparison with
unity. Although this range is not of primary interest in the
present low frequency case, it 1s included here for the sake
of completeness and for the purpose of comparing our results
with the solution on the surface, which includes in part the
range in which the Sommerfeld fbrmula, Eq. (7.46), applies.
In order to establish an overall picture, the electric and

magnetic field components and the time average Poynting's
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vector have been obtained for the mid-range ]n2k203<<]u<{ k,p,

which was not done in Part I for points of observation in the

conducting medium.

It is important to note that the results for the present

range of parameters will be strictly limited to points of
observation near the interface., That is, we assume klh and
klz are of order unity, or more precisely we may neglect

k2h and k2z as compared with unity.

9,3a Fundamental integrals for inzkzpi < 1< kKyp o=

The expression for UK2> as given by Eq. (9.14) is also

adequate for the present range of parameters, since the U(Z)
integral, Eq. (8.10), possesses no pole in the integrand, and

no further approximation need be considered here. For the

present range of parameters the pole occurring in the integrand
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of V(2) requires that we choose the evaluation of V(Z) as
presented by Egs. (9.8), (9.9), and (9.13). In particular,
we need only retain the first term of V(S), Eq. (9.13), as
suggested at the end of Section 8.5e. Rather than retain
V(p), Eq. (9.9), in its exact and complicated form, we find
that we may simplify our result for V(z) = V(p) + V(S) by
making further approximations of V(p). Thus, there are three
possible ways in which V(p) may be approximated for the
present range of parameters, leading to three approximations
of V(Z).

First, we may regard k2p as being much greater than

unity but |n2k2p| not much less than unity, which may be

written |n2k2p|4< 1 <<k,p. For this case the Hankel function

appearing in Eq. (9.9) for V(p) may be expanded asymptotically,

but the error function complement is retained unaltered. Thus,

using the leading term of the asymptotic series for V(s)9
Eg. (9.13), and the leading term of the asymptotic series for

the Hankel function, we obtain

1
2Q7*= ikop+in=lkoh-inkyz
e

(2)
' ~ —_—
kf(1-n*)o

2 1
X<1 + :’L(1t/.2)"3°:xoe-_%XO erfc(—ixo/ZE)}'g

where k_ , Q, and x_ are defined by Egs. (9.10), (9.11),
and (9.12), respectively. This result, Eg. (9.37), may be

checked by noting that it reduces to the Sommerfeld formula,

(65.37)
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Eq. (7.46), upon setting z = 0, h = 0, neglecting n° as
compared with unity and multiplying by ki as prescribed by
Eq. (8.17).

The second approximation of V(p) which is also
appropriate to the present range of parameters may be obtained
by considering k2p very much greater than unity and In2k2pl
very much less than unity, which may be written
|n2k2p[ << 1 <K< k2po This range of parameters includes a
considerable range of values for the radial distance p as
may be ascertained from Table I, page I-47. In addition to
expanding asymptotically the Hankel function appearing in
Egq. (9.9) for V(p)9 we may now expand the error function
complement about the zero of its argument. Thus, using the
leading term of the asymptotic series for V(S), Eq. (9.13),
and the leading terms of the asymptotic series for the Hankel
function and of the power series for the error function

complement appearing in Eq. (9.9) for V(p>, we obtain

-
2(2) 2Q72 ikpp+in=lkoh-inkyz

Y e

2(1-n*)p

ky

(9.38)
- 2 '?
1 -5X
X’%l + i(n/2)§xoe ° ]
Finally, a third approximation of V(p) which is also

appropriate to the present range of parameters may be obtained

by considering k2p not much greater than unity and |n2k2p]
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much less than unity, which may be written ln2k2p%<<<l < kypo
For this case we retain the Hankel function appearing in

Eq. (9.9) for V(p) while we do expand the error function
complement about the zero of its argument. Thus, using the
first term of V(S), Eq. (9.13), and the first term of the
power series expansion of the error function complement, we

obtain

V(2) 2Q—% eik2p+in‘1koh—inkoz
15 (1-n*)p
(9.39)

v 1 -ikpp '
x{l - $mnQ”k pe 2 Hé(kop)} .

Using the second of Egs. (9.18) we may obtain a valuable
check on the results of the present section by comparing with
the corresponding results for the conducting medium, Section
7.1lc. Thus, setting 2z = 0 in Egs. (7.17) and (9.37) and
similarly in Egs. (7.18) and (9.39) we obtain agreement accord-
ing to the second of Egs. (9.18). The apparent differences
involve terms with the factor X = O(nh/p) which have been
dropped in the present ordering of terms for the non-conducting

medium.

9.3b Hertzian vector for \n2k2pl <1< ky,p.- Since

the form of U(2), Eq. (9.14), is the same for the present

range of parameters as for the previous asymptotic case,

Section 9.2a, and since the x component of the Hertzian
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vector, ?7&2, is given by the first of Egs. (9.3), we need
merely copy the first of Egs. (9.19) to obtain the expression

of 7?%2 appropriate to the present range of parameters. The
expression for the 2z component of the Hertzian vector ap-
propriate for the present range of parameters may be obtained

by substituting V(2 as given by Egs. (9.8), (9.9), and

(9.13) into the second of Egs. (9.3) for TTZZD In particular,
we wish to limit ourselves to the mid-range \n2k2p\ << 1 K k2p,
so that we are entitled to make the additional simplifying

approximations which led to Egq. (9.38) for V(Z). Thus, we
obtain, for |n2k2pl<<< 1<< kyp5

o 2.7 !
1p[1-iky2(1-n")% | ikpp+ikin(1-n2)®
. e .

i1, ~
x2 2nfrx2(l-n2)p2 ’
1
-F . ] .
\ p cosgd Q° 2%  ikpp+in~tk,h-ink,z ‘
M, ~ - e © © (9.40)

2n<r(1cn4)np

i i —-3x
><%l + i(n/2)2xoe ®

where k_, Q and x_  are defined by Egs. (9.10), (9.11),
and (9.12), respectively. If one were to compute (rg2 by
substituting the approximate expression (9.38) for V(Z) into
the second of Egs. (9.3) and performing the differentiation
one would obtain a result which is in error by a term of

O(nz)o Thus, if terms of O(nz) are to be neglected as com-

pared with unity the simpler procedure of using the approximate
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expression (9.38) for V(Z) is legitimate; otherwise, it is
necessary to use the expression of V(Q) = V(p) + V(s) in
which V(p), Eq. (9.9), is expressed exactly and then make
the additional simplifying approximations after the differen-
tiation indicated in the second of Egs. (9.3) has been
performed.

Comparing the orders of magnitude of Tsz and TTZZ,

as given by Egs. (9.35), we obtain aside from the cosgd factor,
(TT,,/TT.») = 0[k,p/(1-iky2)] , (9.41)

which indicates that, for the present range of parameters and
for points of observation near the interface, the field may
again be described primarily in terms of the 2z component of
the Hertzian vector. Since the Hertzian vector was not
computed in this range for points of observation in the con-
ducting medium, no direct check with the solution in the

conducting medium is available for Egs. (9.40).

9.3c Field components for |n2k2p1 <1< k,p.- In
order to present simple results we limit ourselves to the
important mid-range \n2k2p|'<< 1l <« k2p and neglect n2
as compared with unity. Thus, we may substitute U(2) as
given by Eq. (9.14) and V(2) as given by the approximate
expression (9.38) directly into Egs. (9.4) and (9.5) and then

neglect n2 as compared with unity to obtain the electric

and magnetic field components. Or else, substituting the
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(
exact expression for V‘2>, Egs. (9.8), (9.9), and (9.13),

considering only the leading term of V<S), into Egs. (9.4)
and (9.5) for the field components, performing the indicated
differentiations, expanding the Hankel function asymptotically
and the error function complement about the zero of its argument,
and finally neglecting n2 as compared with unity, leads to

. the same identical expressions for the electric and magnetic
field components. Thus, we obtain for the electric field

components appropriate to the present range of parameters,

5n2kzpl << 1 << kyp, the expressions

2
kop cosd .. 4 ikpp+ikih
E , = - 22 1+ in(%nikzp)ﬂe S
P 2rnap < -
kgp sind 2 . 17 ikop+ikih
Eyp ~ » 1 - #ikyz + 3in(inik,p)® e .
2nG P ikzp‘ : 5
(9.42)
kgp cosg 1 .7 _1kop+ikih
E o~ = ~==- xli + in(%nik2p)§be
2 2nyp n - ‘
Comparing orders of magnitude of the electric field
1
components, neglecting in(%nikzp)§ as compared with unity,
we have, aside from the trigonometric factors,
’ 3 - : . -—sl -
(Byo/Egp/Eyp) = 0|n/(2-1ky2) (kyp) /1) . (9.43)

The ordering of the three components is the same as for the

asymptotic range, p —%» o or lnzkzplf> 1, Eqg. (9.22),



112

but now the ¢ component is relatively larger. As was the case
for the Hertzian vector, it is not possible to check Egs. (9.42)
for the electric field components directly with the solution
for the conducting medium, since the electric field components
in this range were not calculated in Part I.

Next, substituting U(Z) as given by Egq. (9.14) and
V(z) as given by Egq. (9.38) into Egs. (9.5) and neglecting
n2 as compared with unity, we obtain the magnetic field
components appropriate to the present range of parameters,

|0k, << 1 << kyo,

ik,np sing 2 7 ikop+ikih
H, ~ 2 l} + %in(%nikzp)%le gprimin
e 21p ik,p o
ik, np cosgd ik ikih
2 . . 1kop+i
Hyp ~ - @ + 1n(%ﬂ1k29)%]e S (9.44)
P
ik.np sind n : ik ik-h
2 . 1Kop+1Ky
sz ~ . [1 - 1k-lz]e

2Tp ikgp

Comparing orders of magnitude of the magnetic field
components, neglecting in(%nikzp)% as compared with unity,

we have, not including the singd and cosg factors,
(Hyo/Hyp/B,p) = O[1/kpp/n(1-ik 2)] . (9.45)

Again the ordering of the components does not differ from the

asymptotic case, p —> ® of |n2k2plj> 1, Eg. (9.26), but
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now the g component is relatively smaller. Since the
magnetic field components were not calculated in Part I for
the present range of parameters, we are again unable to make
a direct check of the continuity of the magnetic field across

the boundary.

9.3d_ Power flow for In°k,pl <1 < k,p.- Again

limiting our discussion to the important mid-range

|n2k2pl-<< 1 <k:k2p and to points of observation near the
interface; in particular, neglecting k2h and kzz as
compared with unity, and neglectihg n2 as compared with
unity, we may substitute the field components as given by

Egs. (9.42) and (9.44) into the time average Poynting's vector,
{SY = 3Re{E X Hf} , to obtain the net power flow. Thus,

we obtain

k2p2 0052¢

<S°2> T er?g 2

o-2h/E

’

3k2p2 sind cosg |n| f T \% e—2h/3 .
!

S ~ = | — ; (9.46)
< ¢2> 8nzq”p2 22 Ek2p/

kgp2 cos2¢ in| e’2hﬁ§

S ~ -
< 22> 8n2@‘p2 5% ’

where & = (2/wa@)% is the skin depth. By examining the

relative orders of magnitude of the electric and magnetic

field components, Egs. (9.43) and (9.45), it might be
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concluded that the g component of the time average Poynting's
vector should be of O{}/n(k2p)%] times greater than the value
actually found above; this comes about from the fact that the
leading term of the g component of the Poynting's vector is
pure imaginary and, when the real part is taken to obtain the
time average Poynting's vector, this leading term vanishes
leaving the next higher order term.

The relative orders of magnitude of the components of
the net power flow per unit cross sectional area in the three

coordinate directions become

(<Sop> / <Sgp> / <S55 ) = O[L/Im1 (o) ¥/ 1mi] , (9.47)

where the trigonometric factors have not been included.
Comparing this result, Eq. (9.47), with the corresponding
result, Eq. (9.29), for the asymptotic range, p — ® or
|n2k2p|'> 1, we find that the ordering of the components has
not changed, but now the g component is relatively larger.
Considering only the largest of the magnetic field
components, Egqs. (9.44), and the largest of the electric field
components, Egs. (9.42), namely H¢2 and E,,, neglecting
in(%nikzp)% as compared with unity and reinstating explicitly
the exponential factor e-inkZZ which arises from the integral
V(s), Eq. (9.38), it is seen that the field may again be
essentially described as a true surface wave as in the

asymptotic case p — o or ln2k2p] > 1, Section 9.2e.

In particular, we may write including the time variation
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qeikzpminkgz—imt

H,,dz ~ [ 2l (9048>

where

ik1h
ik,np cosg e 1
cr = » (9.49)
o

is a factor indicating the nature of the source and the
cylindrical structure of the surface wave. The electric
field, Ez2’ has the same exponential behavior and may be
obtained from Eq. (9.48) by using Egq. (9.31). Although the
exponent in Eq. (9.48) describes an inhomogeneous plane wave
as in the previous asymptotic case, the factor in front is

no longer the same, as may be seen by comparing Egs. (9.49)
and (9.36). We thus conclude that, for points of observa-
tion near the interface, the field may be described primarily
as a true surface wave for horizontal distances much greater

than a wavelength in air,

9.4 RESULTS FOR THE RANGE k,p < 1 <§Eklpﬂ

This range is the one of primary interest to us in
the present low frequency investigation and constitutes the
practical range of parameters. This range implies that the
horizontal distance of the point of observation, Fig. 1,

amounts to several wavelengths in the conducting medium but

is only a fraction of a wavelength in air as measured from
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the source. In addition, we consider the point of observation
and the depth of the source as being near the interface between
the two media; in particular, we treat klh and klz as
being of 0(1) which, more precisely, means that we may
neglect k2h and kzz as compared with unity, the depth of
the source and the height of the point of observation being
much less than a wavelength in air. Since the asymptotic
evaluation of the fundamental integrals necessarily requires
that 2/p and h/p be less than unity, we need consider no
additional restrictions on h and 2z when the horizontal
range is very much less than a wavelength in air, or when
k2p << 1.

Since the leading terms of our asymptotic expansions
for the fundamental integrals do not always turn out to be
the largest terms for this range of parameters, we develop a
direct power series in ikzp by expanding as well the exponen-
tial term eik2p. This procedure is only possible by virtue
of the fact that we have restricted our asymptotic series to
three terms, stopping short of the terms which behave as
reciprocal powers of (ikzp)o Complete verification of the
validity of this procedure is established in Section 9.5 where
our asymptotic results for k2p<<<1l <flklpl are found to

agree with an independent evaluation valid for O < kzp-<< 1.

9,4a Fundamental integrals for kop < 1 <5Ek1QL.-
Considering U(Z) as given by the three-term asymptotic

expansion (9.6) we find that the leading term is no longer
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the largest for the present range of parameters; and, thus, to
properly order terms we extract the factor nl/En(iklp)zj from
the bracket. Next, we expand the exponential factor eikZp
since k2p < 1l; and, finally, we expand the resulting expres-
sion into a power series in n29 retaining only the first

power in n° and treating ksh and k z as being of 0(1),

to obtain

.2
2in ik1h
002~ S T (- (1-8) + #0°[3(5a-36-308+38°-67)

kzp
(9.50)
¢ y(2+5a-7p-50p+682-287)]}
where a and B are defined by Egs. (9.7) and where we have
set vy = ikzp; that is, collecting parameters
a = iklh9 B = iklzg Y = ik2p . (9.51)

In obtaining the result (9.50) we have neglected terms of
order n3, 749 and n272 which are negligible in comparison
with 7.

Considering V<2> = V(p> + V(S) we may obtain the
expression of V<p> appropriate for the present range of
parameters from Eq. (9.9) by expanding the Hankel function
about the zero of its argument and the error function complement

about the zero of its argument and neglecting n2 as compared

with unity. To obtain V(S) appropriate for the present range
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of parameters we proceed in a manner identical to that used to
obtain the appropriate expression of U(e), Eq. (9.50). Thus,
from Eq. (9.13) we first extract the factor l/(ikzp)z, in
order to be able to better order the terms; we next expand

ik
the exponential factor e 2P into powers of ik2p since

k2p < 1l; and, finally, we expand into a power series in n2,
preserving only the first power in n2 and treating klh and
k,z as being of 0(1). 1In this way, combining V(p) and V(s)

according to Eq. (9.8), we obtain

2

2n~ ikih ¢

()~ 773 ¢© ' %v2(1+v+%—72) + 0y’ log(2/77k,p)
k,p
> L
(9.52)
.2 75 .2 39 >
+ %0 (512 a-F +128Y} ’
where Yl = 1,78107 ... and where a, P, and Yy are given

by Egs. (9.51). In obtaining this result, Eq. (9.52), we

have neglected terms in y5, ny49 and n272 as compared

. . 2
with terms in Yy~ .

We may check our result for U(2), Eq. (9.50), by
comparing with the results for the conducting medium using the
first of Egs. (9.18). The proper expression of M£2) appro-
priate for the present ordering of the parameters may be ob-
tained from Egs. (6.102) and (6.103) by extracting the factor
in(l—n2)2(iklp){]—19 noting that K = n2a/Y for z = 0,
and expanding in powers of n2 treating a or iklh as being

of 0(1l). In this way it is possible to demonstrate the complete
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agreement between M§2) and U(2) on the interface'for the
present range of parameters; the only reason that M§2) as
given by Eq. (7.22) appears not to check with U<2) on the
interface is a consequence of the fact that Eq. (7.22) was
deduced assuming cot6, of 0(1) and neglecting terms of
O(nz)o In a similar fashion, using the second of Egs. (9.18)
we find complete agreement between V§2) and V(2) for
z = 0 when V§2) = W<p) + W(S), as given by Egs. (6.121),
(6.125), (6.133), and (6.134), is expanded in powers of n2e
The apparent discrepancy between Egq. (7.25) for V§2) and
Eq. (9.52) for V(2) is again a consequence of having con-
sidered cot@2 as being of 0(1) and having neglected terms
of O(n2) in order to derive Eq. (7.25).

If we neglect terms in n2, ny, and 72, the

fundamental integrals, Egs. (9.50) and (9.52), reduce to the

simpler forms

2 ) i
pl?) o - 2T - ik zle ;

(9.53)

> 1 ikih
V(2),v _E-i} + nik,p log(Z/Ylkzp)}e 1 R
klp

where yl = 1.78107 cooo

9.4b Hertzian vector for k,p <1 < lk pl .- Substi-
tuting Eq. (9.50) into the first of Egs. (9.3) we obtain the

expression of the x component of the Hertzian vector appropriate
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to the present practical range,

ipeiklh
——— 7 {r(1-2v") (1-8) + #n° [5(30-38-3ap+36°-57)
P

TT [aY 3
2Tc.f3"k2

x2

(9.54)

+ Y(2+5a-7ﬁ-5aﬁ+662—263)]} ’

where a, P, and y are defined by Egs. (9.51). Considering
the first of the boundary conditions (2.15), the first of

Egs. (7.2) for TI and the first of Egs. (9.3) for TT

x1’ x2’
and the fact that M§2) = U(2) for 2z =0 as indicated in

the previous section, we see that TTX2 checks exactly with
TTxl' The reason that Eq. (7.26) for TTxl does not apparently
check with TTxZ for z = 0 1is again a consequence of the fact
that Eq. (7.26) was derived assuming coto, = 0(1) and neg-
lecting n2 as compared with unity, whereas Egq. (9.54) has been
derived preserviﬁg n2 terms, treating klh and klz as of
0(1), or more precisely, neglecting k2h and k2z as'compared
with unity.

The 2z component of the Hertzian vector is obtained by
substituting V(z) = V(p> + V(S), as given by Egs. (9.9) and
(9.13), into the second of Egs. (9.3) and then making the same
approximations that yielded Eq. (9.52) for V(2) in the

pfevious section. Thus, neglecting terms in y4, nyB,

3

n272, and n in comparison with vy, we obtain
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p cosg ei -
2n(fk2np -
(9.55)

+ —%nz [3(—5-—3—5— + a~28+52) + y(léj—l- + a~68+262)(m R
512 512 /)

where. a, P, and 7 are given by Egs. (9.51). As a check
on this result we use the first of the boundary conditions (2.16)
and compare with the 2z component of the Hertzian vector for
the conducting medium, TTzl, the second of Egs. (7.26). We
find complete agreement if we neglect terms in n2, treating
kh and kyz as of 0(1l); but we do not obtain complete
agreement for the coefficient of n20 A more detailed analysis
of the results for the conducting medium still shows a lack of
agreement to within O(n2) for the present method of ordering
the parameters. Since two distinct types of asymptotic series
have been developed for the two media, it is not surprising
that such a small discrepancy should show up in the approximate
coefficient of nzu Indeed; although it would not be Jjustified,
we might alter the coefficient of n2 appearing in Egq. (9.55)
simply by including portions of higher order terms in the
asymptotic series for 17;20 Since the asymptotic seriés
developed for the 2z component of the Hertzian vector in the
conducting medium, TTzl’ involves the function KX, Eq. (6.67),
which includes p dimplicitly, some such rearrangement of terms

must occur. It is, perhaps, significant that no such dis-

crepancy for the fundamental integrals evaluated in the two media
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by the two different methods occurs as was verified in -
Section 9.4a.

If we now, in addition, neglect terms in n2, y3,
and ny2 as compared with vy, the components of the Hertzian

vector from Egs. (9.54) and (9.55), reduce to the simpler

expressions

p(l-iky2) ikjh

x2 2n0‘k§p3 ’
(9.56)
. ip cosd ikjh
TTpo ~ 2 ° ’
2n0‘k2np

which upon using the boundary conditions (2.16) are seen to

agree for 2z = 0 with the corresponding components of the

Hertzian vector for the conducting medium as given by Egs. (7.26a).
Comparing orders of magnitude of the two components of

the Hertzian vector, Egs. (9.56), we find, apart from the

cosg factor,
(TTZZ/T]—XZ) = O[klp/(l—ik].Z)] ) (9057)

which is the same result we found for the mid-range
|n2k2p| << 1 << kyp, Eq. (9.41). Again we see that the
z component of the Hertzian vector is the most important

component.




123

9.4c_ Field components for k,p <1 < lkipl .~ The

expressions for the electric field components appropriate to
the present practical range of parameters may be obtained by
substituting U(2) as given by Egq. (9.6) and V(z) = V(p) + V(S)
as given by Egs. (9.9) and (9.13) into Egs. (9.4) and then making
the approximations that led to Egq. (9.52) in Section 9.4a.

4 3 3

Thus, neglecting terms in ¢y, n272? n and ny”, we obtain

p cosg ikih ¢
Ep2rv —3 e 1 {1 + B + %72(1-6) + %Y3(2-B) + ny
2N T P
- %nz{g%% + 3a + 6B + 4af + 262 + 53
+v(—l—ﬂ—a-35-3as—62-ﬁ3jﬂ' ;
512 1)
p sind 1  ikh L 2 2
Byp v e —— {v(l-ﬂ )(2-6) + ny
2T g P ik2p
(9.58)
+ %n2[?<g%% + 4a - 3B - 3af + 452 - 53)
+ ¥ 1149 | 6q - 98 - S5ap + 852 - 233) L ;
512 ]
/
p cosd 1 ikjh .2 2
E,p ~v == 3 = © {Y(l"EY ) + ny
2N g P n

2[5(535 | 2 637 , o - 2\]
+ 4n [3(512 + a + B) + 7(512 + 2B + 2B )]} R

s
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where a, B, and 7y are defined by Egs. (9.51). Using the
boundary conditions specified by Egs. (9.24), we find agreement
between Egs. (9.58), for the electricbfield in the non-conducting
medium, and the corresponding Egs. (7.28), for the electric field
in the conducting medium, to within terms of O(n2) for the
present method of ordering parameters. A more detailed analysis
of the results for the conducting medium still shows a small
lack of agreement to within O(nz); and this must be attributed
to the fact that two types of asymptotic series were used to |
obtain results in the two media as explained in the previous
section.

The expressions for the magnetic field components
appropriate for the present practical range of parameters may
be obtained by substituting U(2) as given by Eq. (9.6) and
v(2) - v(®) 4 y(8) 49 given by Egs. (9.9) and (9.13) into

Egs. (9.5) and then making the approximations that led to
4

Eg. (9.52) in Section 9.4a. Thus, neglecting terms in 7y,
n2729 n3, and nyB, we obtain
P sinﬁ iklh 1,2 2
Hyp ~ ———7g ¢ gY(l—zY ) + zny
nkonp :
1 L
. 2, (2071 2 5245 } A1
+ 3n {?<1024 + - 4B + 26) +-y<i024 + 3a - 9p + 45)}» ;
i ik1h
2nk p3 3
1
(9.59)
21469 2 653 2 1
- $n° 322 + 3q + 2B° + y[==2 + a - 2B + ;
3 [512 R AR ]}

'
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{ 1.2y 3 27,
g 7Y = ——5—7 © ‘i(lupgy Y(1-B) + 3n [? - Ta + 5B

+ Taf - 68° + 28 - svca-b-aﬁ+s2n%s35}} :

where a,. B, and 7y are defined by Egs. (9.51). Using the
boundary condition that the magnetic field be continuous across
the interface between the two media, we find agreement between
Egs. (9.59), for the magnetic field components in the non-
conducting medium, and the corresponding magnetic field com-
ponents, Egs. (7.29), in the conducting medium to within terms
of O(nz) for the present method of ordering the parameters.
A more detailed analysis of the results for the conducting
medium again shows, as in the case of the 2z component of the
Hertzian vector and of the electric field components; a lack
of agreement to within terms of O(n2) for the present method
of ordering the parameters; and we again assign this small dis-
crepancy to the difference between the two types of asymptotic
series developed for the solution in the two media.

Neglecting terms in ny, n2, and 72 the electric
field components as given by Egs. (9.58) reduce to the very

simple expressions

P oos¢(1+iklz) ikyh
e

E 3 H

p2 ™

2N I p
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P sinﬁ(Z—iklz) eiklh

E Fad H (9060)
¢2 21tcrp3 ’
p cosg . ikh
Ez2 ~ - (1k1p)e 1 )

2n 90

which upon comparing with Egs. (7.28a) and setting 2z = 0O
are seen to satisfy the boundary conditions, Egs. (9.24).
Comparing orders of magnitude of the electric field components,

omitting the sing and cosg factors, we obtain
(B p/Egp/Epp) = o[(1+ik1z)/(2-ik1z)/ik1§] , (9.61)

which may be contrasted with the results for the asymptotic
range, P —> © Or In2k2p| > 1, Eg. (9.22), and the results
for the mid-range, |n2k2p| <<1 << kyp, Eq. (9.43). Comparing
Eqs. (9.60) for the electric field in the non-conducting medium
with Egs. (7.28a) for the electric field in the conducting
medium, we find that the significant difference is that EZ2
is of the O(l/n2) times larger than Ezl’ as we would of
course anticipate from the boundary conditions, Egs. (9.24).

We may similarly reduce the expressions for the magnetic
field components, Egs. (9.59), to the following simple expres-

sions by neglecting terms in ny, n2, and 72,

ip sind ikjh
———

3
nklp

Hp2:v
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ip cosg Jikih

H/,, ~ - ; (9.62)
g2 2nklp3
ip sind 3(1—iklz) ikih
H o - e
z2 3 . y
2nk1p 1klp

which may be seen to satisfy the boundary condition of con-
tinuity of the magnetic field across the boundary upon

comparison with Egs. (7.29a), setting 2z = O. Comparing the
orders of magnitude of the magnetic field components, Egqs. (9.62),

omitting the sing and cosd factors, we obtain

(Hyp/Byp/Hyp) = 0]2/1/3(1-1k)2) (ikp) ], (9.63)

which may be contrasted with the results for the asymptotic
range, 0 — @ Or In2k2p| > 1, Egq. (9.26), and the
results for the mid-range |n2k2p|<<< 1 << kyp, Eq. (9.45).
This same ordering of the components of the magnetic field
occurs for points of observation in the conducting medium, as
may be seen by comparing Eg. (9.63) with Egs. (7.29a) and as

could have been anticipated from the boundary conditions.

9.4d Power flow for k,p <1 < lkjpl.- Limiting our

discussion to points of observation near the interface, that
is, treating kh and k;z as being of 0(1) or, more
precisely, neglecting k2h and kzz as compared with unity,

and neglecting terms of order nk,p, n2, and (k2p)2 as



128

compared with unity, the time average Poynting's vector,

<S} = %Ren{E XCH*} , appropriate for the present practical
range of parameters, is obtained by using the electric field
components as given by Egs. (9.60) and the magnetic field

components as given by Egs. (9.62); thus,

k2p2 0032¢

20-20/8 |

2 .
k,P singd cosg |n|\ _-2n/5

S0y ~ : (9.64)
< 552> 6l o o5 ¢
k.02 (cos2d *+ 4sin®g) )
G,y ~ - 2P o-2h/8
22 2 4 5 2 °
8n° gp 2 (k2p)

Inspecting the p component of the power flow, the first of
Egqs. (9.64), for the present practical range of parameters,
we find that it is identical in form to the expression obtained
for the mid-range, \n2k2p|‘<< 1 << k,p, the first of Egs.
(9.46). The =z component of the power flow may be seen to
be identical to the 2z component of the power flow in the
conducting medium, as derived from Egs. (7,285) and (7.29a);
a result which could have been anticipated from the boundary
conditions that the horizontal electric and magnetic field
components be continuous across the interface between the two
media,

The relative orders of magnitude of the net power

flow per unit cross-sectional area in the three coordinate
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directions, omitting the trigonometric factors, become
( <8,0) / {Sgoy / £S,0% ) = 0](ky0) /10 (k,0)%/ 101 (9.65)
p2 g2 z2/ - T2 2' J e °

It is seen, by inspecting Eg. (9.65), that the relative orders
of magnitude of the components of the time average Poynting's
vector are very much dependent upon the horizontal range p,
within the present practical range of parameters. Thus, for

k not much less than unity, that is, for a point of observa-

oP
tion almost a wavelength in the non-conducting medium radially
away from the source, the radial flow of energy predominates,

the vertical and angular flow being both of O0(lni) by
comparison; whereas, in the case of lklpl not much greater
than unity, that is; for a horizontal range not much greater
than a wavelength in the conducting medium, the vertical flow

of energy predominates, the angular flow being of O(in|2) and
the radial flow being of O(In]B) by comparison.

In conclusion, it may be noted from Eg. (9.57) and
subsequent equations that the entire field for the present range
of practical interest, k2p‘< 1 <‘\klp)9 may be primarily
ascribed to the 2z component of the Hertzian vector and there-
fore is due primarily to a surface phenomenon; although it may
be noted from Eq. (9.57) that, as the horizontal range decreases,
the x component of the Hertzian vector plays an increasingly
more important part until the point is reached when Iklp! is

not much greater than unity, the x and 2z components of the

Hertzian vector then playing almost equivalent roles. For the
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present range of parameters it is not possible to describe the
field in terms of a true surface wave as was done for horizontal
ranges greater than a wavelength in air, k2p > 1, in

Sections 9.2 and 9.3; but we may still describe the field as
arising primarily from a secondary source distributed over the
boundary surface. As we found for points of observation greater
than a wavelength in air radially away from the source, k2p > 1,
we again find for the present practical range, k2p <1 <:§klp],
that the energy supplied to thé conducting medium comes essentially
from the non-conducting medium directly above the point of ob-
servation in the conducting medium, as may be concluded from

the continuity of the time average Poynting's vector across the

interface.

9.5 RESULTS FOR THE RANGE O < kzp <1

The corresponding discussion in Part I, Section 7.4,
was concerned with the limiting case in which we put k2 = 03
however,‘since the solution obtained by setting k2 =0 1is
equivalent to obtalining an approximate solution which is
adequate for the range 0« k2p < 1, that is for points of
observation much less than a wavelength in the non-conducting
medium radially away from the source, we feel that the title
of the present section for the non—conductiﬁg medium describes
the contents more accurately than the title of Section 7.4.
As was adequately demonstrated for the conducting medium,

Section 7.4, putting k2 = 0 1in our fundamental integral V1
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leads to the proper approximate solution, the Lien approximation,
in the region O <fk2p « 1. Thus, to generate an equivalent
approximate solution for the non-conducting medium for the
range 0 < k2p-<< l, we again set k2 = 0 1in our fundamental
integral V, Eg. (8.11), letting a =h and b = z. The
result of this evaluation is then used to obtain a valuable
check on our asymptotic series expansion of . V(z)(h,z,p) which
is found to agree with the present approximation, obtained by
setting k2 = 0, 1in the region Qf overlap, k2p<<<:l <’§klp%9
in which both results are applicable. Thus, in exactly the
same manner as was used to verify the range of applicability
of our asymptotic solution in the conducting medium, we verify
the important fact that our asymptotically derived results for
the non-conducting medium are also valid for all points of
observation greater than a few wavelengths in the conducting
medium radially away from the source, \klp\'> 1. As further
checks on our approximate evaluation of V(h,z,p), obtained
by setting k2 = 0, we note that it properly reduces to the
static limit, Chapter IV, Eq. (4.4), for }klp\<<< 1 and that
it agrees with the corresponding solution, the Lien approxima-
tion, for the conducting medium when we set 2z = 0 and use

the last of Egs. (9.18).

9.5a Evaluation of V(h,z,p), letting k, = 0.- In

2

order to obtain an approximate solution for the range of

parameters 0K k2p<<<’l, that is, for points of observation

much less than a wavelength in air radially away from the source,
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we set k, = O in the expression for V(h,z,p), obtained
from Egq. (8.11) after putting a =h and b = z. Thus,
replacing the Hankel function Hi(Xp) appearing in Eg. (8.11)
by the Bessel function JO(Ap), according to the scheme

indicated by Eq. (2.85) and accompanying discussion, we define

@
[ e‘Ylh'YZZ
A,=2 Lim : 5\ 3, (A0)AdA
k2 —> 0 k1Y2 + k2yl;
J
o}
(9.66)
@
- | -yih-Az
- 27?2 | e 3, (Ap)an ,
o
which implies
Lim {V(h,z,p)}-cz f&2 , (9.67)
as pointed out in the similar situation in Section 7.4,
Eqm (7059)0
In order to reduce our integral (9.66) to known
integrals, we expand e—>‘Z in powers of Az and interchange
the process of summation and integration to obtain
00 (o)
2 (-1)"2" -y1h A
A2 = —2' - Ame Yl JO(Ap)d}\ . (9068)
k m!
l o
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The process of expanding in powers of Az 1is valid for alil
A and z; and, therefore, the interchange of the processes
of summation and integration is also valid. We next resolve

the series into the sum of an odd and even series to obtain

00 00
2m
A 2 2 2m_=Y1h
= : L AT e J_(Aaplda
e ig (2m) ¢ { °
)
m=o0 o
(9.69)
® o
! 2m+1
2 Z \2m, 118 (hp)dn.
- — e 0
kl (2m+1)?! |
A j
m=o0 ©
The factor x2m may now be removed by the process of dif-
ferentiation,
2 2\ -71h 2 Y1h
“‘5"*‘1‘1) e =T e (9.70)
oh

which yields, upon application to Eg. (9.69),
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%0 @
m
A - Z ) + k2> e 1% (ho)an
2K (2m) 1 \an? 1 0
YA I
m=0 o}
(9.71)
@ : o0
> Y;“ Z2m+l a2 ” m ~y1h
- — 5 + k] e I (Ap)rdn ,
kl i (2m+1)¢ \dh
m=0 o
where the remaining integrals to be evaluated have known
expressions in closed form.
The second integral in Egq. (9.71) may be obtained
from the Sommerfeld formula, Eq. (2.66), yielding
o0
ik1R
185 (ae)adn ° (9.72)
e = - — 712
| o' NP d3h R ’
o}
where we define
1
R = (p° + b))% . (9.73)

And the first integral in Eq. (9.72) may be obtained from the

Lien formula, Egs. (7.60) and (7.61), where we substitute
2 2

Y% = A - kl’ yielding
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¢0]
“"Y h
{ e 1y (r0)an = %Al(pgh)
)
(o]
(9.74)

-~ £, (i o) 5 (g mel))

where R 1is defined by Egq. (9.73). The Lien formula (9.74),

which we have also expressed in Egs. (7.60) and (7.61), was

3 4 and is identical to a

5

first used by Foster” and later by Lien
formula appearing without proof in Magnus and Oberhettinger.

Dr. Oberhettinger was kind enough to indicate a proof
to us personally; and, in order to dispel any question as to

the validity of Egq. (9.74), we include his proof here. Con-

sidering the integral
P 1 -mn
} y7te T (hodan (9.75)
o}

from which the integral in Eq. (9.74) may be readily obtained

-1 =Yk
by differentiating with respect to h, we replace Ylle 1

by using the definition of K%(x) and its integral

-~

3R. m. Foster, Bell System Tech. J. 10, 408-419 (1931).

4Rs H. Lien, Journal of App. Physics 24, 1-5 (1953).

5Wo Magnus and F. Oberhettinger, "Formulas and Theorems
for the Special Functions of Mathematical Physics," (Chelsea
Publishing Co., New York, 1949), p. 133.
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. . . 6
representation appearing in Watson. Thus,

_1 -11h 1
yite 1Y = (2n/77,) %K, (1;h)

(9.76)

@
2,2 .2
—t-h2(A2-k2) /4t
= (n/27%) ( £=3/2¢ (AZ-k1)/4% 4,
o

Substituting this result, Eq. (9.76), under the
integral sign of Eq. (9.75), interchanging the order of
integrations, integrating with respect to A using a formui:.

in Watson7 which in our notation may be written as

@
2,2 11 9 _.2 )
§ 3, (hp)e BN/ Ahay o adyEnlemP /2Ry (024 /on?), (5.7
J
o

and finally making the substitution
t = kJh°/2v,

noting that v —»ico for t =0 since k5 = ilk,|?, we

may express our integral, Eq. (9.75), in the form

(0]

i
1 3v-k2(p%+2h°) /av
%»‘g v 1e2 1P )/ Io(k§p2/4v)dv . (
0

G

6G. N, Watson, "A Treatise on the Theory of Bessel Func-
tions," (The Macmillan Co., New York, 1944), 2nd edition,
p. 183, Eq. (15).

TLoc. ¢it., p. 394, Bq. (15).
R R

-3
S~

. 18)
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And thus we finally obtain, upon using a formula in Watson98
and indicating the differentiation with respect to h,; the
result given by Egq. (9.74).

Substituting the values of the two integrals appearing
in Eq. (9.71) as given by Egs. (9.72) and (9.74), we obtain
the convergent infinite series approximation of V(h,z,p),

according to Egq. (9.67),

00
¢! m ik+R
A 1 52 5 §' 720 ”/\E pplm+l 5 1K1
2 = "'—2‘ __7 + kl AL -.~1(p9h) + X _ 9
k3 ) @(2m>x (2m+1)! 8 R
Y AR -
m:o (\9079>

where l&l(pgh) is defined by Eg. (9.74) and R is defined

by Eq. (9.73). This result may be checked in three different
ways. First, we compare it with the static solution for points
of observation much less than a wavelength in the conducting
medium radially away from the source, \klp\~<<§l; in

rarticular, we show that

Tim {ki[&;}x - Lim %kiVé/ké% (9.80)

kl -3 0 ) w—> 0 \ V.

as may be derived from Egs. (9.67), (8.19), and (4.4). Second,
making use of the fact that Vl(h-z,p) = k%V(h—z,ng)9 we show

8Loca cit., p. 439, Eq. (2), where we let

Z = k) (R+h) and z = ¥k (R-h), R = p%4h°.
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that this result for /XZ satisfies

‘Al = kiAZ, z = O. (9.81)

And, third, in the next section we compare this result with
the asymptotic series for V(2) in the region k2p<3< 1 <:]klm
in which both results are applicable.

Thus, to derive the limit of ki[&z as kl —3 0 we

obtain from Eq. (9.79)

®
2m 2m
) ( Z :
mim JxCAL = X Lim \A (p,h)
ke —= o los ks — o0 -
1 1
m=0

(9.82)

22°% 5 1

+. e ——rey.  e—— oz

(2m+1)! d3h R

where, from Eq. (9.74),
Lim §Al<p,hﬂ% = 2/R . (9.83)
kl —> 0
Substituting Eq. (9.83) into Eg. (9.82), we then obtain
o 00
. e’ m m m m
a 1 ) 1 2
Lim k?!\?&:Z\ ““ﬁ“=2§7i‘_‘“ﬁ’“‘1( =“""’(9084)
: —4 m! oh R (—/ m! | 02 le Rl

kl —>-0 m=o0 m=0 2=0
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4
where R, = [p2 + (z+h)2j§c This result, Eq. (9.84), also
follows directly from the defining equation for kil&zg Eq.
(9.66), by setting k; = 0 and using a formula in Watsono9
Thus comparing Eq. (9.84) with the static 1limit solution as
obtained directly in Chapter IV, Eq. (4.4), and noting that

Lim {ki/k§5 = (Gi+65)/oé’ we complete our check by noting
w —> o0

that Eq. (9.80) is satisfied.

The second check is obtained by setting 2z = 0 1in
Eq. (9.79) which gives the m = 0 term as the only non-vanishing
term, and Eq. (9.81) follows immediately. An interesting and
particularly simple form for 1&2 may be obtained for the
important special case in which the source is at the interface
betweeﬁ the two media. Thus, setting h = 0O in the defining
10

equation for z&z, Eq. (9.66), and using a formula in Watson,

we obtain

by = (2/68) (0%45%)7E. (9.85)

As still another check on our series evaluation of 1&29
Eq. (9.79), we set h = 0 after performing the differentiations

to obtain for the first two terms

A‘z:%\E%HLﬁLMI , (9.86)

9

Loc. cit., p. 384, Eq. (1).
1070c. cit., p. 384, Eq. (1).
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which agrees with Eq. (9.85) to within O(z4/p5)°

9.5b Comparison of 1&2 with V(2) for

g2p << 1 '<IleLo- The present comparison in the practical
range of interest, k2p <1 <’|k1pl, not only serves to check
the evaluation of 1&2, Eq. (9.79), but also yields an impor-
tant verification of the range of validity that we have claimed
for our asymptotic evaluation of the fundamental integral

V =~ V(2)(h,z9p)o The appropriate expression for the
asymptotic evaluation of V(2) for the range of parameters

k,p << 1 <:lklp| may be obtained from Egs. (9.8), (9.9), and
(9.13) by setting n = 0; thus, noting that in this limit

V(2) = V(s)9 we obtain

v(2) 33—-—_-{1 + %[—Zi -a - 62](iklp)'é} ; (9.87)

where o = iklh and B = iklzo The expression of lxz
appropriate for the range k2pv<<:l <f}k1pi may be obtained
from Eq. (9.79) by making use of the asymptotic expansion of

le(p,h), Egs. (7.62), (7.66), and (7.67) and neglecting all

) ikje .
terms in e since lklpl > 1; thus,
o0
2m 2 m
1 z a 2 (2)
A~ . < + k \_fx (p,h) . (9.88)
e if (em)s \on® 1/ 1 ’
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Substituting the first two terms of the asymptotic expansion of

j&iz)(p,h) as given by Eq. (7.67), where x; =R -h and

1
X, =R + h, and R = (p2+h2)§, as defined by Eg. (9.73), and
neglecting terms of O(iklp)-6, we obtain

5 ikih 5
e 27, . -
<A§ A,__?___.{ - %la + B ](1klp)
klp
| (9.89)
+ %[%az + 38% + 6ap® + B4J(iklp)'4j :
Comparing our two results, Egs. (9.87) and (9.89), it
may be seen that they differ, to within the number of terms
retained for V(z), by the amount
75 ik ik-h
2(vi2) A~ Lo (9.90)

. 3
512 (ikqyp)

which may be compared with the identical situation for the
conducting medium, Eq. (7.71). It may be noted that Egs. (7.69)
and (7.70) may be rewritten by letting cote, = ikl(h_z)/(iklp)
and rearranging terms into even powers of (iklp)_19 thus
showing that the agreement obtained for the non-conducting
medium 1is as good as the agreement obtained for the conducting
medium. We have, therefore, established the fact that our
asymptotic solution for V = V(z)(hgz,p) blends smoothly

with a completely independent solution which is valid in a

region of overlap k2p<9< 1< Iklpl and which, in particular,
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is valid for all horizontal ranges much less than a wavelength in
the non-conducting medium, O K kp < 1o

Since the asymptotic form of 1\2, Eq. (9.89), may be
used to compute the Hertzian vector and the electric and magnetic
field components appropriate to the practical range,

kp<< 1 <'|k1p|, it is well to point out here two additional

2
checks on this formula. First, setting 2z = O and using Eq. (9.81)
we obtain agreement with the corresponding asymptotic expression
for the conducting medium, 1\1, as given by Eg. (7.69),

setting 2z = 0. A second check on the validity of the asymptotic
form of ‘AQ’ Eq. (9.89), may be obtained by setting h = 0

and noting that the result differs by the small amount
—922/4k§p5 (9.91)

from the non-asymptotic result, Eq. (9.85), thus indicating that

Eq. (9.89) is adequate for relatively small values of k,p.

9.5¢ Hertzian vector and field components for k2 = 0.~

Besides setting k2 = 0 or assuming the equivalent restriction
k2p <<1, we wish t0 restrict our attention to points of
observation greater than a wavelength in the conducting medium
radially away from the source; thus, we are concerned here with
the practical range of interest k2p'<< 1l <« Iklpio The Hertzian
vector appropriate for this range may be obtained from

j\z ~ V(2)(h,z,p) as given by Eq. (9.89), deriving an approx-

imate expression for U(2)(h,z,p) by using any one of Egs. (8.12)
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through (8.15), and substituting into Egs. (9.3); thus, we have

2T p(1l-ik;z) Jkh
‘ ’
2 'x2 2ncrp3 |
(9.92)
CTT o~ ik,p cosg eiklh
2 z2 2nq’p2

The electric field components for the present practical
range of interest may be obtained from Egs. (9.58) by setting
k, = 0, or else by using 1\29 Eq. (9.89), as an approxima-
tion of V<2)9 substituting into any one of Egs. (8.12) through
(8,15) to obtain an approximation of U(Z), and substituting

these results into Egs. (9.4); thus, we obtain

i i ‘
——3 (2-ikjz)e ; (9.93)

Similarly, by setting k2 = 0 in Egs. (9.59) or by using

:Aé and Egs. (9.5), we obtain for the magnetic field components
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ip sind eiklh

]
nklp3

ip cosd ikjh
e

1P
ip sin 3 ikih
szrv _ 1P 3¢ ) (1 - iklz)e L
anlp iklp

These results, Egs. (9.92), (9.93), and (9.94), are seen
to be identical to Egs. (9.56), (9.60), and (9.62) respectively,
which were derived using only the asymptotic evaluations of
V<2)(hgz,p) and U(2)(h,z,p) and simplifying the results by
making approximations appropriate to the practical range of
interest, k2p <1 <:]klp]9 and in which no use was made of
the device of setting k, = 0. Formulas (9.92), (9.93), and
(9.94) for the Hertzian vector and for the field components
appropriate for the practical range k2p << 1 <:Iklp{ have
actually been established by two completely independent methods,
thus yielding a necessary and important check on our working

formulas.

9.6 NUMERICAL EXAMPLE

The results of the present Chapter for the non-conducting
medium are now illustrated for the important range of paramseters,

kzp << 1 <?f|klp], which is the range of greatest practical
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interest in the present low frequency case, by using a numerical
example for which the parameters are chosen as in Section 7.5,
Egs. (7.78) and (7.79). Considering the present section and
Section 7.5 together, our numerical example gives the field
components in both media produced by a dipole source embedded

in the conducting medium.

Apart from the exponential factor e—iklz, z £ 0, the
solution in the conducting medium is not particularly sensitive
to changes in 2z; however, the présent solution in the non-
conducting medium requires that we delineate the region of
applicability in 2z as well as in p. Considering that our
results were cbtained under the necessary restriction 2z/p <1
and in addition we chose to treat klz and klh as being
of 0(1l), which is equivalent to neglecting k2h and kzz
as compared with unity, we find that when the horizontal range
is at the approximate minimum of 50 meters the value of =z
must be less than 50 meters and we find that, in order for
k2zf<<:l or for z to be much less than wavelength in the
non-conducting medium, 2z must be less than 5000 meters.

Thus, it is sufficient for this numerical example if 2z < 50 meters,
quite independent of the value of p. However, if larger values

of 2 need be considered then we have the less restricting
condition 2z < p which suffices for the present practical range

of parameters by virtue of the fact that we have also restricted

p to values much less than a wavelength in the non-conducting

medium.,
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Following the discussion of Section 7.5, we find that
to within an accuracy of 0.5% for k,p <Tlo'l<< 1 < 10 é;lklpig

the electric field components from Egs. (9.60) or (9.93) become

E nzg—ggig (1-z/8 +1 z/&)e(i_l)hﬁs

P2 27 0’p3

4

By ~ L A RSN L L (9.95)
27T Gp3

pcosfl -1 (i-1)n/e

E
2ncfp2 s

z2

where & = (2/wPDq)% is the skin depth and where 1z < p.
Similarly, the magnetic field components from Egs. (9.62)
or (9.94) become

§p cosg (i-1)b/8

3 (1+i)e (9.96)

H e
g2 4mp

3i32p sind

z2 4npdf

H

(1+2/8 - 1 z/&)e(i_l)h/?

where 2z 1is again restricted to values less than p.. The

size of the error committed in these approximate results,
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Egs. (9.95) and (9.96), may be obtained from the more accurate
formulas given by Egqs. (9.58) and (9.59), respectively. Thus,

we have neglected !n;z = lOag9 Iny] < 10_59 and

gygz = (kzp)z < ZLO"’2 as compared with unity.

Introducing the function f(p,h) = (p/x pB)emhA?
volts/meter which is defined in a manner similar to Eq. (7.84),

we obtain for the magnitudes of the electric field components,

from Egs. (9.95),
L21%
|Ep2|,w %f(p,h)!} - 2(z/8) + 2(2/8)°) cosg ;
|Egol ~ %f(mh)[cl + 4(z/8) + 2(2/&‘)2]? sing ; (9.97)

|E22|fu 2°%f(p,h)(p/§) cosd .

Similarly, from Egs. (9.96), the magnitudes of the magnetic

field components become
Hoal ~ 2258 £(0,2) sing ;
ol ~ (@8/2%/2)2(p,2) cosd ; (9.98)
2 21
Iszirv (3¢8 /4p)f(pgz)[; + 2(z/8) + 2(2/8) } sind .

By examining Egqs. (9.95) and (9.96), we find that the
horizontal field components for this present practical range,

kzp << 1 <<:lklp19 vary inversely as the cube of the horizontal
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range o, the 2z component of the electric field varies
inversely as the square of the horizontal range, and the 2z
component of the magnetic field is negligibly small, varying
inversely as the fourth power of the horizontal range. The
field components are all exponentially attenuated as a function
of the depth of the source only. These results, Egs. (9.97)
and (9.98), may be compared and checked with the corresponding
results for the conducting medium, Egs. (7.85), by putting

z = 0 and using the boundary conditions.
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