
UC Santa Barbara
Recent Work

Title
The Existence and Uniqueness of Turbulent Solutions of the Stochastic Navier-Stokes 
Equation

Permalink
https://escholarship.org/uc/item/2rf8x747

Author
Birnir, Bjorn

Publication Date
2008-11-03

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2rf8x747
https://escholarship.org
http://www.cdlib.org/


The Existence and Uniqueness of Turbulent
Solutions of the Stochastic Navier-Stokes

Equation

Björn Birnir∗

Center for Complex and Nonlinear Science
and

Department of Mathematics
University of California, Santa Barbara

October 13, 2008

Abstract

The existence and uniqueness of solutions of the Navier-Stokes equation
driven with additive noise in three dimensions is proven, in the presence of a
strong uni-directional mean flow with some rotation. The physical relevance
of this solution and its relation to the classical solution, whose existence and
uniqueness is also proven, is explained. The existence of a unique invariant
measure is established and the properties of this measure are described. The
invariant measure is used to prove Kolmogorov’s scaling in 3-dimensional
turbulence including the celebrated −5/3 power law for the decay of the
power spectrum of a turbulent 3-dimensional flow.

1 Introduction
Kolmogorov’s theory of turbulence published in 1941 [14] set the stage for the
resolution of one of the oldest problems in modern mathematics, that of the math-
∗Email: birnir@math.ucsb.edu
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ematical formulation of the equations for turbulent flow and their statistical solu-
tion. However, to provide a rigorous derivation of Kolomgorov’s statistical theory
of turbulence has proven to be elusive. This has held back improvements of many
application of his theory including application to numerical simulation of turbu-
lent flow. A detailed mathematical theory is expected to have major applications
to current technology once it is fully developed.

There are two main reasons why the mathematical theory of turbulent flow has
been hard to develop. The first is that the Leray’s existence theory [17] of solutions
to the Navier-Stokes equations has reminded open in three dimensions. Thus
the existence and uniqueness of solutions that describe 3-dimensional turbulence
has not been established. The second reason is that although there is universal
agreement that noise plays an essential role in turbulent flow it has not been clear
how to incorporate noise in the Navier-Stokes equations.

In this paper we resolve these two problems and then use the result to develop
Kolmogorov’s theory of turbulence in three dimensions, including the celebrated
−5/3 law for the decay of the power spectrum of turbulent flow in three dimen-
sions. We show that with non-zero mean flow, which is always present in turbulent
flow on a small scale and can be taken be uni-directional, see [4], on such a scale,
see Monin and Yaglom [21, 22], there exist unique weak-solutions of the stochas-
tically driven Navier-Stokes equation. We also have to introduce some rotation
in order to take care of components of the three-dimensional flow that are per-
pendicular to the uni-directional flow. Instabilities are inherent in turbulent flow,
see [21, 22], and we show how the small white noise ubiquitous in nature can be
exponentially magnified in turbulent flow into large noise that drives the velocity
of the fluid. This is the source of additive noise.

In the Lagrangian formulation the flow of a small fluid particle with coordi-
nates X(t) is determined by the equation

dX
dt

= u(X(t), t) (1)

In turbulent flow the path of the fluid particle is going to be influenced by turbulent
noise and the resulting trajectory of the fluid particle is going to resemble a random
walk. It is reasonable to assume that the velocity u is in fact a random variable
and that it satisfies a stochastic equation that can be written as

du =
∂u
∂t

dt +d ft (2)

Here ∂u
∂t is the deterministic acceleration of the fluid and d ft is a random force

modeling the influence of the random fluctuations in turbulent flow on the velocity.
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If we now substitute the right hand side of the deterministic Navier-Stokes in for
the time derivative of u in the equation (3) we get the stochastically driven Navier-
Stokes equation

du = (ν∆u−u ·∇u−∇p)dt +d ft (3)

with the incompressibility condition

∇ ·u = 0

This is the equation that we will analyze in this paper. Once we have solved it
for the stochastic velocity u(x, t), u can be substituted into the equation (1) for the
random motion of the fluid particle.

Another way of introducing the noise into the Navier-Stokes equation is to try
to write down an equation for the random motion of the fluid particle and then
use Itô’s formula to get a Navier-Stokes equation with multiplicative noise, see
Mikulevicius and Rozovksy [20].

Kolmogorov conjectured that the solutions of the equation (3) approached a
statistically stationary state as time increases. In this case an (ensamble) average
of the fluid acceleration vanishes 〈∂u

∂t 〉 = 0. Evidently, 〈ν∆u− u ·∇u−∇p〉 = 0
also and since the viscous term 〈ν∆u〉 is not believed to be important, the pressure
gradient must be balancing the inertial terms in this inertial range, described by
the statistically stationary state.

To prove Kolmogorov’s theory we must model the noise term, and we will
make the assumption

d ft = ∑
k 6=0

h1/2
k dβ

k
t ek (4)

in this paper. This assumes that in the statistically stationary state the system
is driven by noise (fluctuations) that characterize a balance between the noise
producing (amplifying) nonlinear terms in (3), this is a common assumption by
investigators in this field, see for example [27, 16, 18]. Here the eks are basis
vectors that can be taken to be Fourier coefficients, they each come with an in-
dependent Brownian motion βk

t and the h1/2
k are decay vectors that depend on the

characteristics of the flow. In particular, this assumes that the variance of the noise

E(〈d ft ,d ft〉)

is finite. This form of the noise assumes that the motion of the fluid particles
is continuous, an assumption that makes sense on physical grounds. However, it
will still need to be fine-tuned to compare with experimental results, see [5]. If the
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fluid particles moved only under the influence of this noise their velocity would
execute an infinite-dimensional Brownian motion.

The existence theory of the three dimensional Navier-Stokes equations is a
thorny issue that has kept mathematicians occupied for many years. Onsager
[25] pointed out that solutions of the Navier-Stokes equation that possessed Kol-
mogorov’s scaling must be Hölder continuous functions with Hölder’s index of
continuity 1/3. This lead many mathematicians to conclude that solutions of the
Navier-Stokes equation with smooth initial data had to blow up in finite time.
However, the difficulty seem rather to lie with the instabilities inherent in turbu-
lent flow. Problems in turbulence are notoriously unstable and the (nonlinear)
ill-posedness of many problems in turbulence results in the magnification of the
small (white) noise ubiquitous in nature. The noise grows under the influence of
the instabilities and is saturated by nonlinearities in the Navier-Stokes equation
into large (colored) noise that drives the system. In Section 2, the magnification
of the ambient noise will be made explicit. The color given by the decay of the
coefficients h1/2

k is characteristic for the system and to find this decays is now a
part of the problem. In other words we will interpret the noise term (4) as a model
of the intrinsic noise in turbulence. Below we will model the decay of the coef-
ficients h1/2

k so as to give us the existence of unique rough solutions possessing
the Kolmogorov scaling. This view of the problems is analogous to the theory of
surface roughening and the evolution of the surface of the earth by erosion, see
[8]. Many of the technical details are a generalization of the analogous techniques
for one dimensional flow in turbulent rivers, see [6].

In spite of the rotation in the flow the problem solved in this paper is very dif-
ferent from that solved by Babin, Mahalov and Nicolaenko in [1] and [2]. In their
papers the rotation plays the main role whereas the uni-directional flow, along
the axis of the rotation, is the main actor in this paper. It causes oscillations that
permit us to prove the global existence and uniqueness. In this paper the rota-
tion is present for a purely technical reason, to control the velocity components
orthogonal to the uniform flow. The two problems are similar in that the initial
flow is unstable and the turbulent flow becomes three dimensional. However, in
[1] and [2] the three dimensional energy cascade is suppressed and instead there
is an inverse cascade similar to two-dimensional flow, whereas in our work the
full three-dimensional energy cascade is present and plays a major role in the
turbulence production and transfer of energy.

Section 3 contains the definition of the functions spaces we work in and a
priori estimates for the stochastic Navier-Stokes equation (3) analogous to those
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in Leray’s existence theory [17]. These a priori estimates play a central role in our
existence theory.

It turns out that the stronger the turbulence is, as measured by the Reynold’s
number, the easier it is to prove the existence of the solutions, not harder as math-
ematicians have believed until now. The reason is that the turbulent flow is char-
acterized by fast oscillations in the direction of the rotationing flow and the faster
these oscillation are the more effective the mixing of the turbulent fluid is. The
effective ”mixing” of the fluid by the fast oscillations is proven in Section 4. Thus
large mean (uni-directional) flow and rotation implies simpler existence theory.

In Section 5, we prove the existence of solutions to the stochastic Navier-
Stokes equation (3) that are Hölder continuous functions of Hölder index 1/3.
Then we will use these solutions to prove the existence of a unique invariant mea-
sure living on the space of these functions, in Section 7. The existence of this
measure allows us to prove Kolmogorov’s scaling of the structure functions in
turbulence, in Section 7.1. Evidently neither the gradient ∇u of the velocity nor
the vorticity ∇×u are continuous functions of x so one has to be careful with the
sense in which the u solves the equation (3). u must in fact be interpreted to be a
weak (mild) solution of the stochastic Navier-Stokes equation. However, with its
inititial data specified, it is the unique weak solution and it is continuous in time.

2 The Stochastic Initial Value Problem
Consider the Navier-Stokes equation

wt +w ·∇w = ν∆w−∇p(5)
w(x,0) = w0(x)

with the incompressibility conditions

∇ ·w = 0, (6)

where ν is the kinematic viscosity. Eliminating the pressure p using (6) gives the
equation

wt +w ·∇w = ν∆w+∇{∆−1[trace(∇w)2]} (7)

We want to consider turbulent flow driven by a unidirectional mean flow and to do
that we consider the flow to be in a box and impose periodic boundary conditions
on the box. Since we are mostly interested in what happens in the direction along
the unidirectional flow we take our x1 axis to be in that direction.
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We will assume that the unidirectional flow is fast and select an initial condi-
tion of the form

w0(x) = Uo(x1) j1 (8)

where Uo(x1) is the velocity and j1 is a unit vector in the x1 direction. We are
ignoring incompressibility to illustrate how the noise gets magnified, incompress-
ibility will be restored below. Clearly this initial condition is not sufficient because
the fast flow will be unstable and the white noise ubiquitous in nature will grow
into small velocity and pressure oscillations, see for example [3]. To formulate
the problem with small noise we look for a solution of the form

w(x, t) = Uo(x1) j1 +u(x, t) (9)

where u(x, t) is smaller than Uo but not necessarily small. Then u can be approxi-
mated by the solution to the equation (7) linearized about the fast flow Uo j1

ut +Uo∂x1u + U ′ou1 j1 +U0U ′0 j1 = ν∆u+νU ′′o j1

+ ∇{∆−1(U ′0
2 +2U ′0∂xu1)}(10)

u(x,0) = u0(x)

To this equation we must add small forcing by noise ubiquitous in all flow

d f 0 = ∑
k 6=0

c1/2
k dβ

k
t ek (11)

The ek = e2πik·x are (three-dimensional) Fourier components and each comes with
its own independent Brownian motion βk

t . None of the coefficients of the vectors
c1/2

k = (c1/2
1 ,c1/2

2 ,c1/2
3 ) vanish because the small noise is seeded by truly white

noise (white both is space and in time). However, d f 0 is not white in space be-
cause the coefficients c1/2

k must have some decay in k so that the noise term in (10)

makes sense. Notice that c1/2
k 6= h1/2

k . The former coefficients are tiny whereas
the latter can be large.

The difference between laminar and turbulent flow is that the noise is quelled
in laminar flow but in turbulent flow it gets magnified by the instabilities and
grows.

Now we restore incompressibility and consider the Navier-Stokes equation
linearized about the divergence-free initial flow U = U0 j1 +U ′(x1,−x2

2 ,−x3
2 )T ,
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where T denotes transpose and U is construed to be the periodic extension of the
above formula from T3 to R3,

ut + U0∂x1u+U ′

 u1
−u2

2
−u3

2

+U ′

 x1
−x2

2
−x3

2

 ·∇u+U ′U0 j1

+ (U ′)2

 x1
x2
4x3
4

= ν∆u+∇∆
−1(

3
2

U ′2 +2U ′(∂x1u1−∂x2u2−∂x3u3))(12)

u(x,0) = 0

We assume that there is small noise

d f 0 = ∑
k 6=0

c1/2
k dβ

k
t ek

present in the fluid. Then u satisfies the linear stochastic PDE

du = [ν∆u−U0∂x1u−U ′

 u1
−u2

2
−u3

2

−U ′

 x1
−x2

2
−x3

2

 ·∇u−U ′U0 j1

− (U ′)2

 x1
x2
4x3
4

 ·∇u+∇∆
−1(

3
2

U ′2 +2U ′(∂x1u1−∂x2u2−∂x3u3))]dt

+ ∑
k 6=0

c1/2
k dβ

k
t ek(13)

where the term ∑k 6=0 c1/2
k dβk

t ek represents stochastic forcing by the small ambient
noise.

The solution of this linear equation can be found by use of a Fourier series and
it is

u(x, t) = ∑
k 6=0

Z t

0
e−(4νπ2|k|2+2πiU0k1)(t−s)×(

c1/2
k (1) j1e−U ′(t−s) + c1/2

k (2) j2e
U ′
2 (t−s) + c1/2

k (3) j3e
U ′
2 (t−s)

)
dβ

k
t ek

+ O(|U ′|)
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where c1/2
k (i), i = 1,2,3 denotes the ith entry of the three vector c1/2

k . Now the
expectation of u(x, t) vanishes but the variation is

E(|u|22)(t) = ∑
k 6=0

Z t

0
e−8νπ2|k|2(t−s)×(14)

(ck(1)e−2U ′(t−s) + ck(2)eU ′(t−s) + ck(3)eU ′(t−s))ds
+ O(|U ′|2)

This shows that one one hand the small noise will grow exponentially in time, in
the j1ek direction, if

U ′ < 0 (15)

and if |U ′| > 8π2ν|k| for some k ∈ Z3 \ {0}, but |U ′| is small compared to the
exponentially growing term. If on the other hand

U ′ > 0 (16)

the small noise will grow exponentially in the j2ek and j3ek directions (in function
space), again with |U ′| small compared to the exponentially growing term.

The exponential growth of the noise will, however, only continue for a limited
time. The growth is quickly saturated by the nonlinear terms in the equation and
fluid becomes fully turbulent. We will denote the mean flow in the fully developed
turbulent state by U1 and assume that uniform flow with rotation is of the form

∂x
∂t

= U = U1 j1−Asin(Ωt +θ0) j2 +Acos(Ωt +θ0) j3 (17)

where the rotation can be extended in a periodic fashion from T3 to R3.1 One can
also extend a convection cell pattern from four copies of T3 to R3 but we will not
use that in this paper. This implies that the deterministic particle motion in the
rotating uniform flow is simply

x(t) = [U1 j1 +
A
Ω

cos(Ωt +θ0) j2 +
A
Ω

sin(Ωt +θ0) j3]

By the same reasoning as above we can choose the coordinates so that the mean
flow component U1 j1 (17) is in the x1 direction and this direction is the axis of the
rotation.

1For physical applications, see [12], cylindrical coordinates are more appropriate but cumber-
some.
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The equation (17) represents an assumption, which is however not very restric-
tive. We are assuming the mean flow U1 j1 and the rotation −Asin(Ωt + θ0) j2 +
Acos(Ωt + θ0) j3 are constant as functions of x ∈ R3, but this can easily be re-
laxed. Moreover, on a small scale the rotation can be taken to be constant and it
is going to be present as a constant rotation on this scale, in general, for turbulent
flow. The second assumption that we will make in equation (20) below is more
serious. We are assuming that in the Eulerian representation the acceleration of
the fluid is driven by fixed infinite-dimensional noise for which the fluid velocity
is continuous. Thus Equation (20) contains a hypothesis about the form of the
noise in fully developed turbulence. This form makes sense on physical grounds
and it is now a part of the problem to determine the decay that the coefficients h1/2

k
can have as k→∞. Moreover, we will show in this paper that with this hypothesis
in Equation (20) one can prove Kolmogorov’s scaling in turbulence.

We can now state the problems that we will solve in this paper. First consider
the stirred Navier-Stokes equation

wt +w ·∇w = ν∆w−∇∆
−1trace(∇w)2

− AΩcos(Ωt +θ0) j2−AΩsin(Ωt +θ0) j3(18)
w(x,0) = U1 j1−Asin(θ0) j2 +Acos(θ0) j3

with the incompressibility conditions

∇ ·w = 0 (19)

The source of the small noise (11) can now be thought of as fluctuations in the
stirring rate of the uniform flow in equation (18).

The corresponding stochastic Navier-Stokes equation can be written as

du = (ν∆u−U1∂x1u+Asin(Ωt +θ)∂x2u−Acos(Ωt +θ)∂x3u

−u ·∇u+∇∆
−1[trace(∇u)2])dt + ∑

k 6=0
h1/2

k dβ
k
t ek(20)

where

∂u
∂t

+U1∂x1u−Asin(Ωt +θ)∂x2u+Acos(Ωt +θ)∂x3u+u ·∇u

= ν∆u+∇∆
−1[trace(∇u)2](21)

is the driven Navier-Stokes equation (18) for u = w−U1 j1 + Asin(Ωt + θ) j2−
Acos(Ωt +θ) j3. U1 j1 is the now the constant mean flow of the (fully developed)
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turbulent fluid and ∑k 6=0 h1/2
k dβk

t ek models the noise in fully developed turbulent
flow. We will take the initial condition to be zero u(x,0) = 0 for convenience and
assume that the incompressibility condition

∇ ·u(x, t) = 0

is satisfied. However, the problem is just as easily solved with a nontrivial initial
condition, see Theorem 5.2. The goal is to prove the existence of a unique solution
to (20) but also to determine the smoothest space where these solutions can live
because this will determine the decay of the coefficients h1/2

k in the turbulent noise
in (20). The noise that we end up with models the intrinsic noise in turbulence
and the model is confirmed both by numerical simulations [28], [19] and a direct
calculation of the intrinsic noise in turbulence, see [7].

The initial value problems can also be written as an integral equation

u(x, t) = uo(x, t)−
Z t

0
K(t− s)∗ (u ·∇u−∇∆

−1[trace(∇u)2])ds (22)

where K is the (oscillatory heat) kernal

K ∗ f = ∑
k 6=0

Z t

0
e−(4π2|k|2+2πiU1k1)(t−s)−2πiA(k2,k3)[sin(Ωt+θ)−sin(Ωs+θ)] f̂ (k,s)dsek,

(23)

A(k2,k3) = A
√

k2
2 + k2

3, θ = tan−1(k2
k3

)−θ0 and

uo(x, t) = ∑
k 6=0

h1/2
k

Z t

0
e−(4π2|k|2+2πiU1k1)(t−s)−2πiA(k2,k3)[sin(Ωt+θ)−sin(Ωs+θ)]dβ

k
sek(x)

(24)
is a sum of independent oscillatory processes,

Ak
t =

Z t

0
e−(4π2|k|2+2πiU1k1)(t−s)−2πiA(k2,k3)[sin(Ωt+θ)−sin(Ωs+θ)]dβ

k
s (25)

with mean zero, see for example [26]. These processes are reminiscent of Ornstein-
Uhlenbeck processes and we will call them oscillatory Ornstein-Uhlenbeck-type
processes below.

The mean (average) of the solution uo of the linear equation is zero by the
formula (24) and this implies that the solution u of (20) also has mean (average)
zero

ū(t) =
Z

T3
u(x, t)dx = 0 (26)

10



This also implies that
|w|22 = |U|2 + |u|22 (27)

for w = U + u and U = U1 j1−Asin(Ωt + θ0) j2 + Acos(Ωt + θ0) j3 with |U| =√
U2

1 +A2. We will derive apriori estimates for w in the next section but then
apply them to u in subsequent section using (27).

3 The Function Spaces and a Priori Estimates
In this section we will explain the probabilistic setting and prove some a priori
estimates.

We let (Ω,F ,P), Ω is a set (of events) and F a σ-algebra on Ω, denote a
probability space with P the probability measure of Brownian motion and Ft a
filtration generated by all the Brownian motions βk

t on [t,∞). If f : Ω→ H is a
random variable, mapping Ω into a Hilbert space H, for example H = L2(T3),
then L2(Ω,F ,P;H) is a Hilbert space with norm:

‖ f‖2
L2(Ω,F ,P;H) = E(| f (ω)|22) =

Z
Ω

| f (ω)|22P(dω) =
Z

H
|x|2 f#P(dx)

where E denotes the expectation with respect to P and f#P denotes the pull-back
of the measure P to H. A stochastic process ft in L2 = L2([0,T ];L2(Ω,F ,P;H))
has the norm

‖ ft‖2
L2 =

Z T

0
E(| f (t,ω)|22)dt

and ft has the following properties, see Oksendal [23].

Definition 3.1

1. f (t,ω) : R+×Ω→ R is measurable with respect to B×F where B is the
σ-algebra of the Borel sets on [0,∞), ω ∈Ω,

2. f (t,ω) is adapted to the filtration Ft ,

3.

E(
Z T

0
f 2(t,ω)dt) < ∞.
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We are mostly interested in the Hilbert spaces H = Hm(T3) = W (m,2) that are the
Sobolev spaces based on L2 with the Sobolev norm

‖u‖2
m = |(1−∆

2)m/2u|22

The corresponding norm on L2
m = L2([0,T ];L2(Ω,F ,P;Hm(T3))) is

‖u‖L2
m

=
[Z T

0
E(‖u‖2

m)dt
]1/2

We will abuse notation slightly in this section by writing u instead of w. This
is done for future reference and an easier comparison with Leray’s classical esti-
mates.

Let 〈·, ·〉 denote the inner product on L2(T3). The following a priori estimates
provide the foundation of the probabilistic version of Leray’s theory.

Lemma 3.1 The L2 norms |u|2(ω, t) and |∇u|2(ω, t) satisfy the identity

d|u|22 +2ν|∇u|22dt = 2 ∑
k 6=0
〈u,h1/2

k ek〉dβ
k
t + ∑

k 6=0
hkdt (28)

and the bounds

|u|22(ω, t)≤ |u|22(0)e−2νλ1t +2 ∑
k 6=0

Z t

0
e−2νλ1(t−s)〈u,h1/2

k ek〉dβ
k
s(29)

+
1− e−2νλ1t

2νλ1
∑
k 6=0

hkZ t

0
|∇u|22(ω,s)ds≤ 1

2ν
(|u|22(0)−|U|2)+

1
ν

∑
k 6=0

Z t

0
〈u,h1/2

k ek〉dβ
k
s +

t
2ν

∑
k 6=0

hk

(30)

where λ1 is the smallest eigenvalue of −∆ with vanishing boundary conditions on
the box [0,1]3 and hk = |h1/2

k |
2. U is the velocity vector from the previous section.

The expectations of these norms are also bounded

E(|u|22)(t) ≤ E(|u|22(0))e−2νλ1t +
1− e−2νλ1t

2νλ1
∑
k 6=0

hk(31)

E(
Z t

0
|∇u|22(s)ds) ≤ 1

2ν
[E(|u|22(0))−|U|2]+ t

2ν
∑
k 6=0

hk(32)
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Proof: The identity (28) follows from Leray’s theory and Ito’s Lemma. We apply
Ito’s Lemma to the L2 norm of u squared,

d
Z

T3
|u|2dx = 2

Z
T3

∂u
∂t
·udxdt +2 ∑

k 6=0

Z
T3

u ·h1/2
k ekdxdβ

k
t + ∑

k 6=0
hk

Z
T3

dxdt (33)

where k ∈ Z3 and h1/2
k ∈ R3. Now by use of the Navier-Stokes equation (18)

d|u|22 = 2
Z

T3
ν∆u ·u+(−u ·∇u+∇∆

−1(trace(∇u)2) ·udxdt

+2 ∑
k 6=0

Z
T3

u ·h1/2
k ekdxdβ

k
t + ∑

k 6=0
hkdt

=−2ν|∇u|22dt +2 ∑
k 6=0

Z
T3

u ·h1/2
k ekdxdβ

k
t + ∑

k 6=0
hkdt

since the divergent-free vector u is orthogonal both to the gradient ∇∆−1(trace(∇u)2)
and u ·∇u by the divergence theorem. Notice that the inner product (average) of
u and the stirring force f in equation (18) vanishes, 〈u, f 〉 = ū · f = 0, so f can
be omitted in the computation. The first term in the last expression is obtained by
integration by parts. This is the identity (28). The inequality (29) is obtained by
applying Poincaré’s inequality

λ1|u|22 ≤ |∇u|22 (34)

where λ1 is the smallest eigenvalue of −∆ with vanishing boundary conditions on
the cube [0,1]3. 2 By Poincaré’s inequality

d|u|22 +2νλ1|u|22dt ≤ d|u|22 +2ν|∇u|22dt

= 2 ∑
k 6=0
〈u,h1/2

k ek〉dβ
k
t + ∑

k 6=0
hkdt

Solving the inequality gives (29). (30) is obtained by integrating (28)

|u|22(t)+2ν

Z t

0
|∇u|22(s)ds = |u|22(0)+2 ∑

k 6=0

Z t

0
〈u,h1/2

k ek〉dβ
k
s + t ∑

k 6=0
hk

2We should subtract the mean from u in Poincaré’s inequality because of the periodic boundary
conditions, but the mean just washes out in the estimates.
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and dropping |u−U|22(t) > 0, by use of (27).
Finally we take the expectations of (29) and (30) to obtain respectively (31)

and (32), using that the function 〈u,h1/2
k ek〉(ω, t) is adapted to the filtration Ft .

QED

The following amplification of Leray’s a priori estimates will play an important
role in the a priori estimates of the solution of the stochastic Navier-Stokes equa-
tion below.

Lemma 3.2 Let u 1
2B

= u(x, t + 1
2B) denote the translation of u in time by the

number 1
2B . Then the L2 norms of the differences |u− u 1

2B
|2(ω, t) and |∇u−

∇u 1
2B
|2(ω, t) satisfy the identity

d|u−u 1
2B
|22 +2ν|∇u−∇u 1

2B
|22dt = 2 ∑

k 6=0
〈u−u 1

2B
,h1/2

k ek〉d(βk
t −β

k
t+ 1

2B
) (35)

and the bounds

|u−u 1
2B
|22(ω, t) ≤ |u−u 1

2B
|22(0)e−2νλ1t

+ 2 ∑
k 6=0

Z t

0
e−2νλ1(t−s)〈u−u 1

2B
,h1/2

k ek〉d(βk
s −β

k
t+ 1

2B
)(36)

Z t

0
|∇u−∇u 1

2B
|22(ω,s)ds ≤ 1

2ν
|u−u 1

2B
|22(0)

+
1
ν

∑
k 6=0

Z t

0
〈u−u 1

2B
,h1/2

k ek〉d(βk
s −β

k
t+ 1

2B
)(37)

where λ1 is the smallest eigenvalue of −∆ with vanishing boundary conditions on
the box [0,1]3 and hk = |h1/2

k |
2. The expectations of these norms are also bounded

E(|u−∇u 1
2B
|22)(t) ≤ E(|u−∇u 1

2B
|22(0))e−2νλ1t(38)

E(
Z t

0
|∇u−∇u 1

2B
|22(s)ds) ≤ 1

2ν
E(|u−∇u 1

2B
|22(0))(39)

by the expectations of the initial data of the differences.
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Proof: The Navier-Stokes equation for u− u 1
2B

is obtained from (18) and the
stochastic Navier-Stokes for u−u 1

2B
is

d(u−u 1
2B

) = [ν∆(u−u 1
2B

)− (u ·∇u− (u ·∇u) 1
2B

) + ∇∆
−1(trace(∇u)2− trace(∇u)2

1
2B

)]dt

+ ∑
k 6=0

h1/2
k ek(x)d(βk

t −β
k
t+ 1

2B
)

We apply Ito’s Lemma to the L2 norm of u−u 1
2B

squared,

d
Z

T3
|u−u 1

2B
|2dx = 2

Z
T3

∂(u−u 1
2B

)

∂t
· (u−u 1

2B
)dxdt

+ 2 ∑
k 6=0

Z
T3

(u−u 1
2B

) ·h1/2
k ekdxd(βk

t −β
k
t+ 1

2B
)(40)

where k ∈ Z3 and h1/2
k ∈ R3, again the stirring force f − f 1

2B
washes out. Now by

use of the Navier-Stokes equation (18)

d|u−u 1
2B

)|22 = 2
Z

T3
ν∆(u−u 1

2B
) · (u−u 1

2B
)+

[(−u ·∇u+∇∆
−1(trace(∇u)2)− (−u ·∇u+∇∆

−1(trace(∇u)2) 1
2B

)] · (u−u 1
2B

)dxdt

+ 2 ∑
k 6=0

Z
T3

(u−u 1
2B

) ·h1/2
k ekdxd(βk

t −β
k
t+ 1

2B
) =−2ν|∇u−u 1

2B
|22dt

+ 2 ∑
k 6=0

Z
T3

(u−u 1
2B

) ·h1/2
k ekdxd(βk

t −β
k
t+ 1

2B
)

It is easily checked that u 1
2B

is divergence free and since the divergent-free vector

u−u 1
2B

is orthogonal both to the gradients ∇∆−1(trace(∇u)2), ∇∆−1(trace(∇u)2) 1
2B

and inertial terms u ·∇u, (u ·∇u) 1
2B

by the divergence theorem, these terms inte-
grate to zero. The first term in the last expression is obtained by integration by
parts. This is the identity (35). The remainder of the proof is similar to the rest of
the proof of Lemma 3.1. QED

Remark 3.1 Notice that in the notation of the previous section |w−w 1
2B
|22 =

|u−u 1
2B
|22 because the constant velocity U cancels out.
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4 An Estimate of the Turbulent Solutions
The mechanism of the turbulence production are fast oscillations driving large
turbulent noise, that was initially seeded by small white noise. These fast oscilla-
tions are generated by the fast constant flow U = U1, where we have dropped the
subscript 1, and the flow is rotating with amplitude A and angular velocity Ω. The
frequency of these oscillations increases with U and AΩ. The bigger U and A are
the more efficient this turbulence production mechanism becomes. Next lemma
plays a key role in the proof of the useful estimate of the turbulent solution. It is
a version of the Riemann-Lebesgue Lemma which captures the averaging effect
(mixing) of the oscillations.

Lemma 4.1 Let the Fourier transform in time be

w̃ =
Z T

0
w(s)e−2πi(k1U+A(k2,k3)Ω)sds

where A(k2,k3) = A
√

k2
2 + k2

3 and w = w(k, t), k = (k1,k2,k3) is a vector with

three components. If T is an even integer multiple of 1
k1U+A(k2,k3)Ω

, then

w̃ = ð̃w (41)

where

ðw =
1
2
(w(s)−w(s+

1
2[k1U +A(k2,k3)Ω]

)) =
1
2

Z s

s+ 1
2|k1U+A(k2,k3)Ω|

∂w
∂r

dr (42)

and ðw satisfies the estimate

|ðw| ≤ 1
4|k1U +A(k2,k3)Ω|

ess sup[s,s+ 1
2(k1U1+A(k2,k3)Ω) ]

|∂w
∂s
| (43)

Proof: The proof is similar to the proof of the Riemann-Lebesgue lemma for the
Fourier transform in time, let B(k) = k1U +A(k2,k3)Ω,

w̃(k) =
Z T

0
w(s)e−2πiBsds

=−
Z T

0
w(s)e−2πiB(s− 1

2B )ds

=−
Z T

0
w(s+

1
2B

)e−2πiBsds
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where we have used in the last step that w is a periodic function on the interval
[0,T ]. Taking the average of the first and the last expression we get

w̃ =
1
2

Z T

0
(w(s)−w(s+

1
2B

))e−2πiBsds = ð̃w

Now

|ðw| =
1
2
|(w(s)−w(s+

1
2B

))|

≤ 1
2

Z s+ 1
2B

s
|∂w

∂r
|dr

≤ 1
4|B|

ess sup[s,s+ 1
2B ]|

∂w
∂s
|

by the mean-value theorem. QED

Corollary 4.1 If T is not an even integer multiple of 1
B(k) = 1

k1U+A(k2,k3)Ω
, then

w̃ = ð̃w− 1
2

Z 0

− 1
2B

w(s+
1

2B
)e−2πiBsds+

1
2

Z T

T− 1
2B

w(s+
1

2B
)e−2πiBsds (44)

where w̃ satisfies the estimate

|w̃| ≤ |ð̃w|+ 1
|B|

ess sup[− 1
2B ,0]∩[T− 1

2B ,T ]|w(s+
1

2B
)| (45)

Proof: The proof is the same as of the Lemma except for the step

w̃(k) =
R T

0 w(s)e−2πiBsds =−
R T

0 w(s)e−2πiB(s− 1
2B )ds =

−
R T

0 w(s+ 1
2B)e−2πiBsds−

R 0
− 1

2B
w(s+ 1

2B)e−2πiBsds+
R T

T− 1
2B

w(s+ 1
2B)e−2πiBsds

QED

The lemma allows us to estimate the Fourier transform (in t) of w in terms of
the time derivative of w, with a gain of (k1U + A(k2,k3)Ω)−1. Below we will
use it in an estimate showing that the limit of ðw is zero when |B(k)| = |(k1U +
A(k2,k3)Ω)| → ∞.
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Lemma 4.2 The integralZ t

0
(2π|k|)pe−(4π2ν|k|2+2πi[B(k)(t−s)+g])ds

where B(k) = k1U +A(k2,k3)Ω, is bounded by

(2π)p
Z t

0
|k|pe−4π2ν|k|2(t−s)ds≤C t1− p

2 (46)

for 0≤ p < 2, where C is a constant. In particular,Z t

t−δ

(2π|k|)pe−(4π2ν|k|2+2πi[B(k)(t−s)+g])ds≤C δ
1− p

2 . (47)

Proof: We estimate the integralZ t

0
|k|pe−4π2ν|k|2(t−s)ds =

Z t

0
|k|pe−4π2ν|k|2rdr

≤ (
p

4π2 )
p
2 e−p

Z t

0
r−

p
2 dr = Ct1− p

2 ,

where

k =
1

2π

√
p
r

is the value of k where the integrand achives its maximum. QED

Lemma 4.3 Suppose that for k1 < 0 and
√

k2
2+k2

3
|k1| 6= 0 or ∞, the constants U, A

and Ω satisfy the non-resonance condition∣∣∣∣∣∣ U
AΩ

+

√
k2

2 + k2
3

k1

∣∣∣∣∣∣≥ C
|k1|r

(48)

where C is a constant and 0 < r < 1; then for all k = (k1,k2,k2) 6= 0,

|Uk1 +AΩ

√
k2

2 + k2
3| 6= 0 (49)

and
lim
|k|→∞

|Uk1 +AΩ

√
k2

2 + k2
3|= ∞. (50)

Moreover,

|Uk1 +AΩ

√
k2

2 + k2
3| ≥ B = min(U,AΩ,CAΩ). (51)
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Proof: If k1 > 1, then

|Uk1 +AΩ

√
k2

2 + k2
3|= U |k1|+AΩ

√
k2

2 + k2
3 > 0

so (49) and (50) hold. If k1 < 0, then by (48)

|Uk1 +AΩ

√
k2

2 + k2
3| ≥C ΩA|k1|1−r > 0

and
lim
|k|→∞

|Uk1 +AΩ

√
k2

2 + k2
3| ≥C ΩA lim

|k1|→∞

|k1|1−r = ∞

if |k1| → ∞. If on the other hand |k1| < ∞ when |k| → ∞ then (50) also holds.
When k1 = 0, (49) and (50) are obvious and also if k2 = k3 = 0.

The lower bound (51) is read of

|Uk1 +AΩ

√
k2

2 + k2
3|

when k1 ≥ 1. Then it is either U or AΩ. When k1 = 0 then it is AΩ and by (48),
when k1 ≤−1 it greater than or equal CAΩ. QED

The next question to ask is in which space do the turbulent solutions live?
This was determined by Onsager in 1945 [24]. He pointed out that if the solutions
satisfy the Kolmogorov scaling down to the smallest scales, they must be Hölder
continuous function with Hölder exponent 1/3. In three dimensions this means
that they live in the Sobolev space H

11
6 +ε based on L2(T3).

If q
p is a rational number let q

p
+ denote any real number s > q

p .

Theorem 4.1 Let the velocity U = U1 of the mean flow and the product AΩ of
the amplitude A and the frequency Ω of the rotation be sufficiently large, in the
uniform rotating flow (17), with U, AΩ also satisfying the non-resonance condi-
tions (48). Then the solution of the integral equation (22) is uniformely bounded
in L2

11
6

+ ,

ess supt∈[0,∞)E(‖u‖2
11
6

+)(t)≤ (1−C(
1

B2 +δ
1
6
−
))−1

[
∑
k 6=0

3(1+(2π|k|) 11
3

+
)

8π2ν|k|2
hk +

C′

B

]
(52)

where B = min(|U |,AΩ,CAΩ) is large, δ small and C, C′ are constants.
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Corollary 4.2 Onsager’s Conjecture The solutions of the integral equation (22)
are Hölder continuous with exponent 1/3.

Remark 4.1 The estimate (52) provides the answer to the question we posed in
Section 2 how fast the coefficients h1/2

k had to decay in Fourier space. They have

to decay sufficiently fast for the expectation of the H
11
6

+
= W ( 11

6
+
, 2) Sobolev

norm of the initial function uo, to be finite. This expectation appear on the right
hand side of (52). In other words the L2

11
6

+ norm of the initial function uo has to

be finite.

Proof: We write the integral equation (22) in the form

u(x, t) = ∑k 6=0[h
1/2
k Ak

t −
R t

0 e−({4π2ν|k|2+2πi[k1U1+A(k2,k3)Ω]}(t−s)+2πig(k,t,s))

×(û ·∇u− ̂∇∆−1(tr(∇u)2))(k,s)ds]ek(x)

where ek = e2πik·x are the Fourier components and the Ak
t are the oscillatory Ornstein-

Uhlenbeck-type processes (25) and tr(∇u)2 denotes the trace of the matrix (∇u)2.
The Fourier transform of the term ∇∆−1(tr(∇u)2) is just −ik

2π|k|2
̂tr(∇u)2 and we will

write the integral equation in the form

u(x, t) = ∑
k 6=0

[h1/2
k Ak

t −
Z t

0
e−[4π2ν|k|2+2πiB(k)](t−s)−2πig(k,t,s)

× (û ·∇u+
ik

2π|k|2
̂(tr(∇u)2))(k,s)ds]ek(x)(53)

where B(k) = Uk1 +A(k2,k3)Ω, from here on with

g(k, t,s) = A(k2,k3)[Ω(t− s)− (sin(Ωt +θ)− sin(Ωs+θ))] (54)

We will also assume the trivial non-resonance conditions that A and Ω are suffi-
ciently incommensurate for the rest of the paper.

We split the t integral into the integral from 0 to t − δ, where δ is a small
number, and the integral from t−δ to t. This is done to first avoid the singularities
of the spatial derivatives of the heat kernal at s = t and then to deal with these
singularities in the latter integral. Now the first estimate is relatively straight-
forward. The L2 norm of

∑
k 6=0

Z t

t−δ

e−{(4π2ν|k|2+2πiB)(t−s)+2πig(k,t,s)}(−û ·∇u)ds ek
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is

∑
k 6=0
|
Z t

t−δ

e−{(4π2ν|k|2+2πiB)(t−s)+2πig(k,t,s)}(−û ·∇u)ds|2 ≤ δ ∑
k 6=0

Z t

t−δ

|û ·∇u|22(k)ds

≤ δ

Z t

t−δ

|u ·∇u|22ds ≤ δ ess sup[t−δ,t]|u|2∞
Z t

t−δ

|∇u|22ds

≤ (
δ

ν

Z t

t−δ

〈u,h1/2
k ek〉dβ

k
s +

δ2

2ν
∑
k 6=0

hk) ess sup[t−δ,t]‖u‖ 3
2

+(s)(55)

since by the Gagliardo-Nirenberg inequalities

|u|∞ ≤C‖u‖ 3
2

+,

where δ is independent of U1 and C is a constant, and by the a priori estimate in
Lemma 3.1. Similarly, the L2 norm of

∑
k 6=0

Z t

t−δ

e−{(4π2ν|k|2+2πiB)(t−s)+2πig(k,t,s)}(
ik

2π|k|2
̂(tr(∇u)2))ds ek

is

∑
k 6=0
|
Z t

t−δ

e−{(4π2ν|k|2+2πiB)(t−s)+2πig(k,t,s)}(
ik

2π|k|2
̂(tr(∇u)2))ds|2(56)

≤ δ ∑
k 6=0

Z t

t−δ

|( ik
2π|k|2

̂(tr(∇u)2))|22(k)ds

≤ δ

2π

Z t

t−δ

||w||∇u||22ds ≤ δ

2π
ess sup[t−δ,t]|w|2∞

Z t

t−δ

|∇u|22ds

≤ (
δ

2πν

Z t

t−δ

〈u,h1/2
k ek〉dβ

k
s +

δ2

4πν
∑
k 6=0

hk) ess sup[t−δ,t]‖u‖2
3
2

+(s)(57)

where w = ∑k 6=0
k
|k|2 |k⊗ û(k,s)|ek, |w|2 = |u|2.

The other integrals are estimated by use of Lemma 4.1. The integralZ t−δ

0
e−{(4π2ν|k|2+2πiB)(t−s)+2πig(k,t,s)}û ·∇uds
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can be estimated by Lemma 4.1, when t− δ is an even integer multiple of 1
B , we

get that Z t−δ

0
e−{(4π2ν|k|2+2πiB)(t−s)+2πig(k,t,s)}û ·∇u(s)ds =

1
2

Z t−δ

0
[e−{4π2ν|k|2(t−s)+2πig(k,t,s)}û ·∇u(s)

− e−{(4π2ν|k|2+2πiB)(t−(s+ 1
2B ))+2πig(k,t,s+ 1

2B )}û ·∇u(s+
1

2B
)]e−2πiB(t−s)ds

=
1
2

Z t−δ

0
[(e−{4π2ν|k|2(t−s)+2πig(k,t,s)}

− e−{4π2ν|k|2(t−(s+ 1
2B ))+2πig(k,t,s+ 1

2B )})û ·∇u(s)]e−2πiB(t−s)ds

+
1
2

Z t−δ

0
{e−(4π2ν|k|2(t−(s+ 1

2B ))+2πig(k,t,s+ 1
2B )}([û(s)−

̂
u(s+

1
2B

)]∗ ∇̂u(s)

+
̂

u(s+
1

2B
)∗ [∇̂u(s)−

̂
∇u(s+

1
2B

)])}e−2πiB(t−s)ds

The first term in the last line above is estimated by Schwartzes inequality

|
Z t−δ

0
[(e−{4π2ν|k|2(t−s)+2πig(k,t,s)}

− e−{4π2ν|k|2(t−(s+ 1
2B ))+2πig(k,t,s+ 1

2B )})û ·∇u(s)]e−2πiB(t−s)ds|2

≤
Z t−δ

0
|e−{2π2ν|k|2(t−s)+2πig(k,t,s)}

− e−{2π2ν|k|2(t−(s+ 1
B ))+2πig(k,t,s+ 1

2B )}|2|u|22(s) ds
Z t−δ

0
e−4π2ν|k|2(t−s)|∇u|22(s)ds

≤ e−2π2ν|k|δ
Z t−δ

0
|e−{2π2ν|k|2(t−s)+2πig(k,t,s)}− e−{2π2ν|k|2(t−(s+ 1

B ))+2πig(k,t,s+ 1
2B )}|2ds

×
Z t−δ

0
e−2π2ν|k|2(t−s)|∇u|22(s)ds ess sups∈[0,t−δ]|u|22(s)

≤ Ce−2π2ν|k|δ

B2

Z t−δ

0
e−2πν|k|2(t−s)|∇u|22(s)ds ess sups∈[0,t−δ]|u|22(s)
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by Lemma 4.1. Similarly the second term is estimated by

|
Z t−δ

0
e−(4π2ν|k|2(t−(s+ 1

2B ))+2πig(k,t,s+ 1
2B )}([û(s)−

̂
u(s+

1
2B

)]∗ ∇̂u(s)e−2πiB(t−s)ds|2

≤ e−4π2ν|k|2(δ− 1
2B )

Z t−δ

0
|u(s)−u(s+

1
2B

)|22ds
Z t−δ

0
e−4π2ν|k|2s|∇u|22(s)ds

using the Cauchy-Schwartz inequality both on the convolution and the time-integral,
and the third term is estimated by

|
Z t−δ

0
e−(4π2ν|k|2(t−(s+ 1

2B ))+2πig(k,t,s+ 1
2B )}(

̂
u(s+

1
2B

)∗ [∇̂u(s)−
̂

∇u(s+
1

2B
)]e−2πiB(t−s)ds|2

≤ e−8π2ν|k|(δ− 1
2B )

8νπ2|k|2
Z t−δ

0
|∇u(s)−∇u(s+

1
2B

)|22ds ess sups∈[0,t]|u|22(s+
1

2B
)

Now the terms

H =
Z t−δ

0
|u(s)−u(s+

1
2B

)|22ds
Z t−δ

0
e−4π2ν|k|2s|∇u|22(s)ds

and

K =
Z t−δ

0
|∇u(s)−∇u(s+

1
2B

)|22ds ess sups∈[0,t]|u|22(s+
1

2B
)

are estimated by use of Lemma 3.2 and Lemma 4.4. Thus the a priori bounds
on the L2 norms of u and ∇u and their differences in those two lemmas and in
Lemmas 3.1 and 4.5 give the inequality

|
R t−δ

0 e−{(4π2ν|k|2+2πiB)(t−s)+2πig(k,t,s)}û ·∇u(s)ds|2

≤Ce−4π2ν|k|2(δ− 1
2B ) ess sups∈[0,t](

C
B2 +H +K +d(k))

and an estimate of its right hand side. The terms H and K are estimated in Lemma
4.6 and the expectation of d(k) vanishes.

Now consider the pressure term. By use of Lemma 4.1, we get thatZ t−δ

0
e−{4π2ν|k|2+2πiB)(t−s)+2πig(k,t,s)} ik

2π|k|2
̂tr(∇u)2ds =

1
2

Z t−δ

0
{e−{4π2ν|k|2(t−s)+2πig(k,t,s)} ik

2π|k|2
̂tr(∇u)2(s)

− e−{4π2ν|k|2(t−(s+ 1
2B ))+2πig(k,t,s+ 1

2B )} ik
2π|k|2

̂tr(∇u)2(s+
1

2B
)}e−2πiB(t−s)ds
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=
1
2

Z t−δ

0
{e−{4π2ν|k|2(t−s)+2πig(k,t,s)}

− e−{4π2ν|k|2(t−(s+ 1
2B ))+2πig(k,t,s+ 1

2B )}} ik
2π|k|2

̂tr(∇u)2(s)ds

+
1
2

Z t−δ

0
e−{4π2ν|k|2(t−(s+ 1

2B ))+2πig(k,t,s+ 1
2B )}

× ik
2π|k|2

tr[(∇̂u(s)−
̂

∇u(s+
1

2B
))∗ (∇̂u(s)+

̂
∇u(s+

1
2B

))]e−2πiB(t−s)ds

The first term in the last expression above is estimated as

|
Z t−δ

0
{e−{4π2ν|k|2(t−s)+2πig(k,t,s)}

− e−{4π2ν|k|2(t−(s+ 1
2B ))+2πig(k,t,s+ 1

2B )}} ik
2π|k|2

̂tr(∇u)2(s)ds|2

≤
Z t−δ

0
|e−{2π2ν|k|2(t−s)+2πig(k,t,s)}

− e−{2π2ν|k|2(t−(s+ 1
B ))+2πig(k,t,s+ 1

2B )}|2|w|22(s)ds
Z t−δ

0
e−4πν|k|2(t−s)|∇u|22(s)ds

≤ e−2π2ν|k|δ
Z t−δ

0
|e−{2π2ν|k|2(t−s)+2πig(k,t,s)}

− e−{2π2ν|k|2(t−(s+ 1
B ))+2πig(k,t,s+ 1

2B )}|2ds
Z t−δ

0
e−2πν|k|2(t−s)|∇u|22(s)ds

× ess sups∈[0,t−δ]|u|22(s)

≤ Ce−2π2ν|k|δ

B2

Z t−δ

0
e−2πν|k|2(t−s)|∇u|22(s)ds ess sups∈[0,t−δ]|u|22(s)

where w is the same function as above and by Lemma 4.1. The second term is
estimated by

|
Z t−δ

0
e−{4π2ν|k|2(t−(s+ 1

2B ))+2πig(k,t,s+ 1
2B )}

× ik
2π|k|2

tr[(∇̂u(s)−
̂

∇u(s+
1

2B
))∗ (∇̂u(s)+

̂
∇u(s+

1
2B

))]e−2πiB(t−s)ds|2

≤ e−4π2ν|k|(δ− 1
2B )

Z t−δ

0
|∇u(s)−∇u(s+

1
2B

)|22ds
Z t−(δ− 1

2B )

0
e−4π2ν|k|2s|∇u|22(s)ds
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Thus

|
R t−δ

0 e−{(4π2ν|k|2+2πiB)(t−s)+2πig(k,t,s)} ik
2π|k|2

̂tr(∇u)2ds|2

≤Ce−4π2ν|k|2(δ− 1
2B ) ess sups∈[0,t](

C
|B(k)|2 +L+d(k))

where the expectation of d(k) vanishes and the term

L =
Z t−δ

0
|∇u(s)−∇u(s+

1
2B

)|22ds
Z t−(δ− 1

2B )

0
e−4π2ν|k|2s|∇u|22(s)ds

is estimated in Lemma 4.6, again by the a priori bounds on the L2 norms of u and
∇u and their differences in Lemma 3.1 and Lemma 4.5, and Lemmas 3.2 and 4.4.

When t−δ is not an even integer multiple of 1
B(k) we get the additional terms in

Corollary 4.1. However these are estimated exactly as the integrals from t−δ to t
and simply add another term multiplied by δ2 if we choose 1

|B| = supk 6=0
1
|B(k)| < δ.

Now we assemble the estimates. Up to terms that vanish when the expectation
is taken, the L2 norm of u is bounded by

|u|22 ≤ 3 ∑
k 6=0

hk|Ak
t |2

+ 3 ∑
k 6=0
|
Z t−δ

0
e−({4π2ν|k|2+2πi[k1U1+A(k2,k3)Ω]}(t−s)+2πig(k,t,s))

× (û ·∇u− ̂∇∆−1(tr(∇u)2))(k,s)ds|2 +δ
2Cess sups∈[t−δ,t]‖u‖2

11
6

+(58)

≤ 3 ∑
k 6=0

hk|Ak
t |2

+ ∑
k 6=0

e−4π2ν|k|(δ− 1
2B )[

C′

|B(k)|2
+H +K +L](s)+δ

2Cess sups∈[t−δ,t]‖u‖2
11
6

+

≤ 3 ∑
k 6=0

hk|Ak
t |2 +C(

1
B2 +δ

2)ess sups∈[0,t]‖u‖2
11
6

+ +
C′

B

by Lemma 4.6.
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We now act on the integral equation (53) with the operator ∇(11/6)+ , to esti-
mate the derivative ∇(11/6)+u

∇
(11/6)+u(x, t) = ∑

k 6=0
[(2πi|k|)(11/6)+h1/2

k Ak
t

−
Z t

0
(2πi|k|)(11/6)+e−[4π2ν|k|2+2πiB(k)](t−s)−2πig(k,t,s)(59)

× (û ·∇u+
ik

2π|k|2
̂(tr(∇u)2))(k,s)ds]ek(x)

where B(k) and g(k, t,s) are as in (53). An estimate similar to Equation (58) now
gives

|∇(11/6)+u|22 ≤ 3 ∑
k 6=0

(2π|k|)(11/3)+hk|Ak
t |2

+ 3 ∑
k 6=0

(|
Z t−δ

0
|k|

11
6

+
e−({4π2ν|k|2+2πi[k1U1+A(k2,k3)Ω]}(t−s)+2πig(k,t,s))

× (û ·∇u− ̂∇∆−1(tr(∇u)2))(k,s)ds|2

+ δ
1
6
−
Cess sups∈[t−δ,t]‖u‖2

11
6

+(60)

≤ 3 ∑
k 6=0

(2π|k|)(11/3)+hk|Ak
t |2 + ess sups∈[0,t−δ][

C′

B2 +H +K +L](s)

+ δ
1
6
−
C ess sups∈[t−δ,t]‖u‖2

11
6

+(61)

≤ 3 ∑
k 6=0

(2π|k|)(11/3)+hk|Ak
t |2 + C(

1
B2 +δ

1
6
−
)ess sups∈[0,t]‖u‖2

11
6

+ +
C′

B

again by Lemma 4.6.
Combining the estimates (58) and (61) we now get that

‖u‖2
11
6

+ ≤ 3 ∑
k 6=0

(1+(2π|k|)
11
3

+
)hk|Ak

t |2 +C(
1

B2 +δ
1
6
−
)ess sups∈[0,t]‖u‖2

11
6

+ +
C′

B

where 1
B and δ can be made arbitrarily small. Then taking the expectation we get

(1−C(
1

B2 +δ
1
6
−
))E(ess sup[0,t]‖u‖2

11
6

+)≤ 3 ∑
k 6=0

(1+(2π|k|)
11
3

+
)hkE(|Ak

t |2)+
C′

B
(62)
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and evaluating the last expectation

∑
k 6=0

(1+(2π|k|)
11
3

+
)hkE(|Ak

t |2) = ∑
k 6=0

(1+(2π|k|) 11
3

+
)

8π2ν|k|2
hk

gives the estimate

(1−C(
1

B2 +δ
1
6
−
))E(ess sup[0,t]‖u‖2

11
6

+)≤ 3 ∑
k 6=0

(1+(2π|k|) 11
3

+
)

8π2ν|k|2
hk +

C′

B

By making δ and 1
B sufficiently small we conclude that (52) holds for all t. QED

We consider the integral equation

u(x, t) = ∑
k 6=0

[h1/2
k Ak

t −
Z t

0
e−[4π2ν|k|2+2πiB(k)](t−s)−2πig(k,t,s)

× (û ·∇u+
ik

2π|k|2
̂(tr(∇u)2))(k,s)ds]ek(x)

where B(k) =Uk1 +A(k2,k3)Ω. The following three lemmas are used in the proof
of Theorem 4.1.

Lemma 4.4 The initial condition (u−u 1
2B

)(0) satisfies the estimate

|u−u 1
2B(k)
|22(0)≤ 2 ∑

j 6=0
|A j

1
2B(k)
|2 +

C
|B(k)|2

ess supt∈[0, 1
2B ]‖u‖

2
11
6

+ (63)

Proof: We use the integral equation

u − u 1
2B

= ∑
k 6=0

[h1/2
k (Ak

t −Ak
t+ 1

2B
)

− (
Z t

0
e−[4π2ν|k|2+2πiB(k)](t−s)−2πig(k,t,s)× (û ·∇u+

ik
2π|k|2

̂(tr(∇u)2))(k,s)ds

−
Z t+ 1

2B

0
e−[4π2ν|k|2+2πiB(k)](t+ 1

2B−s)−2πig(k,t+ 1
2B ,s)

× (û ·∇u+
ik

2π|k|2
̂(tr(∇u)2))(k,s)ds]ek(x)
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where B(k) = Uk1 +A(k2,k3)Ω. At t = 0,

|u−u 1
2B
|2(0) = |u 1

2B
|2(0) = 2 ∑

j 6=0
h j|A j

1
2B
|2 +

C
|B(k)|2

ess supt∈[0, 1
2B ]‖u‖

2
11
6

+

by similar estimates as above. QED

Lemma 4.5 The identity (28) in Lemma 3.1 can be modified for a > 0

d(eνat |u|22)+2νeνat |∇u|22dt = νaeνat |u|22dt +2eνat
∑
k 6=0
〈u,h1/2

k ek〉dβ
k
t +eνat

∑
k 6=0

hkdt

(64)
and produces the estimates

|u|22(t)≤ |u|22(0)(e−νat +
ae−2νλ1t

(a−2λ1)
)+2 ∑

k 6=0

Z t

0
e−νa(t−s)〈u,h1/2

k ek〉dβ
k
s

(65)

+ 2 ∑
k 6=0

Z t

0
e−νa(t−s)

Z s

0
e−2νλ1(s−r)〈u,h1/2

k ek〉dβ
k
rds+

1
ν
(
1
a

+
1

2λ1
) ∑

k 6=0
hk

and Z t

0
e−νa(t−s)|∇u|22(s)ds≤ 1

2ν
(|u|22(0)−|U|2)(e−νat +

ae−2νλ1t

(a−2λ1)
)

+
1
ν

∑
k 6=0

Z t

0
e−νa(t−s)〈u,h1/2

k ek〉dβ
k
s(66)

+
1
ν

∑
k 6=0

Z t

0
e−νa(t−s)

Z s

0
e−2νλ1(s−r)〈u,h1/2

k ek〉dβ
k
rds+

1
2ν2 (

1
a

+
1

2λ1
) ∑

k 6=0
hk

where λ1 is the smallest eigenvalue of −∆ with vanishing boundary conditions on
the box [0,1]3 and hk = |h1/2

k |
2.

Proof: We multiply the identity (28) in Lemma 3.1 by eνat to get (64). Then
integration gives the equality

|u|22(t) + 2ν

Z t

0
e−νa(t−s)|∇u|22(s)ds = |u|22(0)e−νat +νa

Z t

0
e−νa(t−s)|u|22(s)ds

+ 2 ∑
k 6=0

Z t

0
e−νa(t−s)〈u,h1/2

k ek〉dβ
k
s +

(1− e−νa(t−s))
νa ∑

k 6=0
hk
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Now substituting the estimate (29), from Lemma 3.1, for |u|22 on the right hand
side gives the two inequalities (65) and (66) as in Lemma 3.1. QED

Lemma 4.6 The functions H,K,L in the proof of Theorem 4.1 satisfy the estimate

E(H +K +L) ≤ C
|B(k)|2

E(ess supt∈[0, 1
2B ]‖u‖

2
11
6

+)+
C′

B
(67)

with B = min(U,AΩ,CAΩ).

The proof of the lemma is a straight-forward computation that involves long for-
mulas for H,K and L and is placed in the Appendix.

Remark 4.2 Corollary 4.2 is the resolution of a famous question in turbulence: Is
turbulence always caused by the blow-up of the velocity u ? The answer according
to Theorem 5.1 is no; the solutions are not singular. However, they are not smooth
either, contrary to the belief, stemming from Leray’s theory [17], that if solutions
are not singular then they are smooth. By Corollary 4.2 the solutions are Hölder
continuous with exponent 1/3 in three dimensions. This confirms a conjecture
made by Onsager [25] in 1945. In particular the gradient ∇u and vorticity ∇× u
are not continuous in general.

Remark 4.3 U and AΩ do not have to be made very large for the estimate (52)
to be satisfied, because B(k)→ ∞ as |k| → ∞. How big U and AΩ have to be for
(52) to hold is probably best answered by a numerical simulation.

We can now prove that ess supt∈[0,∞)‖u(t)‖2
11
6

+ is bounded with probability

close to one.

Lemma 4.7 For all ε > 0 there exists an R such that,

P(ess supt∈[0,∞)‖u(t)‖2
11
6

+ < R) > 1− ε (68)

Proof: By Chebychev’s inequality and the estimate (52) we get that

P(ess supt∈[0,∞)‖u(t)‖2
11
6

+ ≥ R) <
C
R

< ε

for R sufficiently large. QED
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5 Existence of Turbulent Solutions
In this section we prove the existence of the turbulent solutions of the initial value
problem (20). The following theorem states the existence of turbulent solutions
in three dimensions. First we write the initial value problem (20) as the integral
equation (69),

u(x, t) = uo(x, t)−
Z t

0
K(t− s)∗ [u ·∇u−∇∆

−1tr(∇u)2]ds (69)

Here K is the oscillatory heat kernal (23) and

uo(x, t) = ∑
k 6=0

h1/2
k Ak

t ek(x)

the Ak
t s being the oscillatory Ornstein-Uhlenbeck-type processes from Equation

(24).

Theorem 5.1 If the uniform flow U and product of the amplitude and frequency
AΩ, of the rotation, are sufficiently large, B = min(|U |,AΩ,CAΩ), δ is small and
the non-resonance conditions (48) are satisfied, so that the a priori bound (52)
holds, then the integral equation (69) has unique global solution u(x, t) in the

space C([0,∞);L2(Ω,F ,P;H
11
6

+
)), u is adapted to the filtration generated by the

stochastic process
uo(x, t) = ∑

k 6=0
h1/2

k Ak
t ek

and

E(
Z t

0
‖u‖2

11
6

+ds)≤ (1−C(
1

B2 +δ
1
6
−
))−1

[
∑
k 6=0

3(1+(2π|k|) 11
3

+
)

8π2ν|k|2
hk +

C′

B

]
t (70)

Proof: We start as in the proof of Theorem 4.1 and first prove that the integral
equation (69) maps a bounded subset of L∞([0, t];H

11
6

+
) into itself. Consider

|u|22 ≤ 2|uo|22 + 2 ∑
k 6=0

(|
Z t

0
e−({4π2ν|k|2+2πi[k1U1+A(k2,k3)Ω]}(t−s)+2πig(k,t,s))

× (û ·∇u− ̂∇∆−1(tr(∇u)2))(k,s)ds|2)

≤ 2|uo|22 +Ct2ess sups∈[0,t]‖∇u‖2
11
6

+
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by Lemma 4.2, Sobolev’s inequality and the Gagliardo-Nirenberg inequalities,
where g is given by (54). Similarly

|∇
11
6

+
u|22 ≤ 2|∇

11
6

+
uo|22 + 2 ∑

k 6=0
(
Z t

0
(2π|k|)

11
6

+
e−[4νπ2|k|2+2πiB(k)](t−s)−2πig(k,t,s)

× (û ·∇u+ û ·∇u+
ik

2π|k|
tr(̂∇u)2)(k,s)ds|2)

≤ 2|∇
11
6

+
uo|22 +C t

1
6
−

ess sup[0,t]‖u‖2
11
6

+

by Lemma 4.2, Sobolev’s inequality and the Gagliardo-Nirenberg inequalities.
Adding those two inequalities we get the inequality

ess sup[0,t]‖u‖2
11
6

+(ω)≤ 2 ess sup[0,t]‖uo‖2
11
6

+(ω)+C t
1
6
−

ess sup[0,t]‖u‖2
11
6

+(ω)

(71)
Now suppose that

ess sup[0,t]‖uo‖2
11
6

+ ≤
K
2

where K is a constant. Then

ess sup[0,t]‖u‖2
11
6

+ ≤ 2 ess sup[0,t]‖uo‖2
11
6

+ +C t
1
6
−

ess sup[0,t]‖u‖4
11
6

+

≤ K +Ct
1
6
−

2K < 2K(72)

by induction, for t sufficiently small, and the integral equation (69) maps the
bounded set {u|ess sup[0,t]‖u‖2

11
6

+ < 2K} in L∞([0, t];H
11
6

+
) into itself, for every

ω ∈Ω.
We let w = u−v and α = u+v where u and v are two solutions of the integral

equation. We start by writing

w(x, t) =−∑
k 6=0

[
Z t

0
e−[4νπ2|k|2+2πiB(k)](t−s)−2πig(k,t,s)(ŵ ·∇α+ α̂ ·∇w

+
ik

2π|k|2
tr ̂(∇w)(∇α))(k,s)ds]ek(x)

where ek = e2πik·x, B(k) = Uk1 + A(k2,k3)Ω and g is given by the formula (54).
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Then by Lemma 4.2

|w|22 ≤ ∑
k 6=0
|
Z t

0
e−[4νπ2|k|2+2πiB(k)](t−s)−2πig(k,t,s)(ŵ ·∇α+ α̂ ·∇w

+
ik

2π|k|2
tr ̂(∇w)(∇α))(k,s)ds|2

≤C t2 ess sup[0,t](|w|2∞|∇α|22 + |α|2∞|∇w|22 + |∇α|24|∇w|24)
≤C t2 ess sup[0,t]‖α‖2

11
6

+‖w‖2
11
6

+

Similarly

|∇
11
6

+
w|22 ≤ ∑

k 6=0
|
Z t

0
(2π|k|)

11
6

+
e−[4νπ2|k|2+2πiB(k)](t−s)−2πig(k,t,s)(ŵ ·∇α+ α̂ ·∇w

+
ik

2π|k|
tr ̂(∇w)(∇α))(k,s)ds|2

≤C t
1
6
−

ess sup[0,t](|w|2∞|∇α|22 + |α|2∞|∇w|22 + |∇α|22|∇w|22)

≤C t
1
6
−

ess sup[0,t]‖α‖2
11
6

+‖w‖2
11
6

+

by Lemma 4.2, Sobolev’s inequality and the Gagliardo-Nirenberg inequalities.
Combining those two estimates we get that

ess sup[0,t]‖wn+1‖2
11
6

+ ≤C t
1
6
−

ess sup[0,t]‖αn‖2
11
6

+ess sup[0,t]‖wn‖2
11
6

+ (73)

for the iteration based on the integral equation (69), and t small. Now the ‖αn‖2
11
6

+s

are bounded by a constant, independent of n, by (72), for every ω ∈Ω. Thus

ess sup[0,t]‖wn+1‖2
11
6

+(ω)≤C t
1
6
−

ess sup[0,t]‖wn‖2
11
6

+(ω) (74)

By an application of the contraction mapping principle we get that there exists a
random variable τ taking its values for almost every ω in the interval (0, t], with t

small, such that the integral equation (69) defines a contraction on C([0,τ];H
11
6

+
).

This proves the local existence of unique solutions to (69).
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However, we do not yet have the existence of unique solution in
C([0,τ);L2(Ω,F ,P;H

11
6

+
)) where we need it to be, in order to apply the a priori

estimate (52). To obtain this consider the sequence of Picard iterates of (69)

un+1 =
n

∑
k=0

(uk+1−uk)+u0

This sequence satisfies the estimate

‖un+1‖ 11
6

+ =
1−θn

1−θ
‖u1−u0‖ 11

6
+ +‖u0‖ 11

6
+

where θ =
√

Cτ1/12 < 1. The difference of two iterates satisfies

‖um−un‖ 11
6

+ ≤ θn(1−θm−n)
1−θ

‖u1−u0‖ 11
6

+

and the expectation satisfies

E(‖um−un‖2
11
6

+)≤ θ2n(1−θm−n)2

(1−θ)2 4K

Thus the sequence of iterates is Cauchy in L2
11
6

+ = L2(Ω,F ,P;H
11
6

+
) and con-

verges to a unique solution of (69) in L2
11
6

+ . A standard argument, see [23], now

shows that the limits u ∈ C([0,τ];H
11
6

+
) and u ∈ C([0,τ];L2

11
6

+) agree for almost

every ω ∈Ω.
The global existence uses the bound (52) in Theorem 4.1. Namely, since the

norm in L2
11
6

+ = L2(Ω,F ,P;H
11
6

+
) is bounded a priori for all t, the interval of

local existence can be extended to the whole positive t axis R+. QED

We now add the initial condition u(x,0) = u0(x), with mean zero, to the integral
equation (69).

Theorem 5.2 If the uniform flow U and the product of the amplitude AΩ and
frequency of the rotation, B = min(|U |,AΩ,CAΩ), are sufficiently large, δ small,
and the non-resonance conditions (48) are satisfied, so that the a priori bound
(52) holds, then the integral equation

u(x, t) = K(t)∗u0(x)+uo(x, t)−
Z t

0
K(t− s)∗ (u ·∇u−∇∆

−1(∇u)2) ds, (75)
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where K is the oscillating kernal in (23), and the initial data satisfies the bound

E(‖u0(x)‖2
11
6

+)≤ (1−C(
1

B2 +δ
1
6
−
))−1

[
∑
k 6=0

(1+(2π|k|) 11
3

+
)

8π2ν|k|2
hk

]
(76)

has unique global solution u(x, t) in the space C([0,∞);L2(Ω,F ,P;H
11
6

+
)), u is

adapted to the filtration generated by the stochastic process

uo(x, t) = ∑
k 6=0

h1/2
k Ak

t ek

and

E(
Z t

0
‖u‖2

11
6

+ds)≤ (1−C(
1

B2 +δ
1
6
−
))−1

[
∑
k 6=0

(1+(2π|k|) 11
3

+
)

π2ν|k|2
hk +

C′

B

]
t. (77)

Proof: The proof of the theorem is exactly the same as the proof of Theorem 5.1
once the a priori bound (52) is established. Consider the inequality (62)

‖u‖2
11
6

+ ≤ 3 ∑
k 6=0

(1+(2π|k|)
11
3

+
)hk|Ak

t |2 +C(
1

B2 +δ
1
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)ess sups∈[0,t]‖u‖2
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+

The same estimate becomes

‖u‖2
11
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+ ≤ 4‖u0‖2
11
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+ +4 ∑
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(1+(2π|k|)
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+
)hk|Ak

t |2 +C(
1

B2 +δ
1
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−
)ess sups∈[0,t]‖u‖2

11
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+

with the initial data inserted. Now the same argument as in the proof of Theorem
4.1 gives the a priori bound,

E(ess sups∈[0,t]‖u‖2
11
6

+) ≤

(1−C(
1

B2 +δ
1
6
−
))−1[4E(‖u0(x)‖2

11
6

+) + 4[∑
k 6=0

(1+(2π|k|) 11
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+
)

8π2ν|k|2
hk]+

C′

B
]

≤ (1 − C(
1

B2 +δ
1
6
−
))−1

[
∑
k 6=0

(1+(2π|k|) 11
3

+
)

π2ν|k|2
hk +

C′

B

]

QED
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Corollary 5.1 For any initial data u0 ∈ L̇2(T3), the L2 space with mean zero,
satisfying (76), and any t0 > 0, there exists a mean flow U, an amplitude and
angular velocity AΩ, and δ small, such that (75) has a unique solution in
C([t0,∞);L2(Ω,F ,P;H

11
6

+
)).

Proof: For t > 0, K(t)∗u0(x) is smooth. Now apply Theorem 5.2 QED

Next we prove a Gronwall estimate that will be used in later sections.

Lemma 5.1 Let u be a solution of (69) with an initial function uo(x, t)= ∑k 6=0 h1/2
k Ak

t ek

and initial condition u0(x) and y a solution of

yt +U ·∇y = ν∆y− y ·∇y+∇∆
−1tr(∇y)2 + f (78)

with initial condition y0(x), then

‖u− y‖2
11
6

+(t) ≤ [3‖u0− y0‖2
11
6

+ +3‖∑
k 6=0

h1/2
k Ak

t ek−K ∗ f‖2
11
6

+

+ δ
2C1ess sups∈[t−δ,t](‖u‖2

11
6

+ +‖y‖2
11
6

+)]e
C2

R t−δ

0 (1+‖u‖2
11
6

++‖y‖2
11
6

+)ds
(79)

where C1 and C2 are constants and δ can be made arbitrarily small. The Ak
t s are

the oscillatory Ornstein-Uhlenbeck-type processes (25) and K is the oscillatory
kernal in (23).

Proof: We subtract the integral equation for y from that of u

u = u0 + ∑
k 6=0

h1/2
k Ak

t ek +K ∗ (−u ·∇u+∇∆
−1tr(∇u)2)

y = y0 +K ∗ f +K ∗ (−y ·∇y+∇∆
−1tr(∇y)2)

Thus

‖u− y‖2
11
6

+(t) ≤ [3‖u0− y0‖2
11
6

+ +3‖∑
k 6=0

h1/2
k Ak

t ek−K ∗ f‖2
11
6

+

+ 3‖K ∗ (−w∇u− y∇w+∇∆
−1tr∇α ·∇w)‖2

11
6

+]
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where w = u− y and α = u+ y. Now the same estimates as in Theorem 4.1 give

‖u− y‖2
11
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+(t) ≤ 3‖u0− y0‖2
11
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+ +3‖∑
k 6=0

h1/2
k Ak

t ek−K ∗ f‖2
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+ C1δ
2ess sups∈[t−δ,t](‖u‖2

11
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+ +‖y‖2
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+)

+ C2

Z t−δ

0
(1+‖u‖2

11
6

+ +‖y‖2
11
6

+)(‖u− y‖2
11
6

+)ds

Then Grönwall’s inequality gives (79). QED

6 The Existence of the Classical (Laminar) Solution
Now suppose that we remove the noise from the equation (20) but add a nontriv-
ial initial condition. Then we are solving the deterministic problem initial value
problem (21)

∂u
∂t

+U1∂x1u−Asin(Ωt +θ)∂x2u + Acos(Ωt +θ)∂x3u+u ·∇u

= ν∆u+∇∆
−1[trace(∇u)2](80)

u(x,0) = u0(x)

This is the driven Navier-Stokes equation (18) for u = w−U1 j1 + Asin(Ωt +
θ) j2−Acos(Ωt + θ) j3, but now with the initial data u0(x). We write the initial
value problem as an integral equation

u(x, t) = K(t)∗u0(x)−
Z t

0
K(t− s)∗ (u ·∇u−∇∆

−1tr(∇u)2) ds, (81)

where K is the oscillating kernel (23). Now a similar proof as that of Theorem 4.1
give us the following a priori estimate.

Theorem 6.1 Let the velocity U =U1 of the mean flow and the product of the am-
plitude AΩ and frequency of the rotation, B = min(|U |,AΩ,CAΩ), be sufficiently
large, in the uniform rotating flow (17), and δ small, with U, AΩ also satisfying
the non-resonance conditions (48). Then if the initial condition u0(x) in the Picard
iteration of the integral equation (81) lies in H1(T3), has mean zero, and satisfies

‖K ∗u0‖2
n(t) <

1
2
|U|,
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for U = U1 j1−Asin(Ωt +θ) j2 +Acos(Ωt +θ) j3, then the solution of the integral
equation (22) is uniformely bounded in Hn(T3), for all 3

2
+ ≤ n < 2. In particular,

ess supt∈[0,∞)|u|∞(t) < C1(1−C2(
1

B2 +δ
(2−n)−))−1|U|, (82)

where C1 and C2 are constants.

The proof of this theorem is similar to that of Theorem 4.1. The bound on the
initial data guarantees that the integral representation is valid or that the initial
data does not cancel the uniform (rotating) flow. K ∗u0 is smooth for t > 0 so we
can operate on it with ∇n for any n > 0 not only n≤ 11

6
+

as was the case with the
initial function uo in Theorem 4.1. The lower limit n≥ 3

2
+

comes form Gagliardo-
Nirenberg inequalities, this is the smallest Sobolev norm bounding |u|∞. The
bound is computed as in Theorom 4.1.

We can prove the existence of a smooth classical solution with the a priori
estimate (82).

Theorem 6.2 If

‖K ∗u0‖2
n(t) <

1
2
|U| (83)

for all 3
2
+ ≤ n < 2 and t > 0, where the uniform flow U and the amplitude times

frequency AΩ of the rotation, B = min(|U |,AΩ,CAΩ), are sufficiently large, δ is
small, and the non-resonance conditions (48) are satisfied, so that the a priori
bound (82) holds, then the integral equation (81) has a unique global solution
u(x, t) in the space C((0,∞);C∞(T3)), satisfying the boundZ t

0
|u|∞(s)ds < C1(1−C2(

1
B2 +δ

(2−n)−))−1|U| t (84)

Proof: With the bound

ess supt∈[0,∞)|u|∞(t) < C

from Theorem 6.1 it is easy to show that

supt∈[0,∞)|∇u|2(t) < C

also. It is well-know that this implies the existence of unique strong solutions to
the Navier-Stokes equations and that these solutions are smooth. QED
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It seems contradictory that one can have two solutions of the same initial
value problem (18), namely the laminar solution in Theorem 6.2 and the turbu-
lent (stochastic) solution in Theorem 5.2. A consideration of a typical simulation
for turbulent flow show that there is no contradiction and both of those solutions
play a role although the latter is of greater physical importance.

Consider a simulation where we have modeled the torus as a box with periodic
boundary conditions and we start with quiescent flow but gradually increase the
uniform flow velocity U and the amplitude and angular velocity of the rotation
AΩ. To begin with the flow is laminar and it continues to be laminar although the
Reynolds number R = B

ν
becomes greater than 2000 which is the typical boundary

for fully developed turbulence. But then suddenly a small ambient noise such as
(11) grows exponentially as explained in Section 2 and the flow immediately be-
comes fully turbulent. We have witnessed the transition from the classical laminar
solution in Theorem 6.2 (laminar flow) to the turbulent solution in Theorem 5.2
(turbulent flow).

The above transition can also seen in many experiments, see for example [10,
9], but usually at lower Reynolds numbers. As discussed in the introduction the
laminar solution is not blowing up but it is unstable at high Reynolds numbers
and a sudden noise-induced roughening of it takes place, as it undergoes a phase
transition into fully developed turbulence.

7 The Existence of the Invariant Measure
In this section we will consider the stochastic Navier-Stokes equation

dw = (ν∆w−w ·∇w+∇∆
−1tr(∇w)2)dt + ∑

k 6=0
h1/2

k dβ
k
t ek (85)

with initial data

w(x,0) = U1 j1−Asin(Ωt +θ) j2 +Acos(Ωt +θ) j3 +u0(x)

We will use that the solutions u(x, t), where w(x, t) = U j1−Asin(Ωt + θ) j2 +
Acos(Ωt +θ) j3 +u(x, t), exist in L(Ω,F ,P;H

11
6

+
), by Theorem 5.2. H

11
6

+
(T3) =

W ( 11
6

+
,2) is the Sobolev space based on L2. By Theorem 5.2 the equation (85)

defines a flow on the complete metric space

W = {u∈L(Ω,F ,P;H
11
6

+
)|E(‖u‖2

11
6

+)≤ (1−C(
1

B2 +δ
1
6
−
))−1[∑

k 6=0

(1+(2π|k|) 11
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+
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π2ν|k|2
hk +
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B
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This is the physical situation we are interested in, namely fully developed turbu-
lence with nontrivial mean flow and rotation, see (20), and it applies to many if
not most turbulent fluids, see [21, 22].

Since by Corollary 5.1, we can even take the initial data u0(x) ∈ L̇2(T3),3 the
integral equation

u(x, t) = K(t)∗u0(x)+uo(x, t)−
Z t

0
K(t− s)∗ (u ·∇u−∇∆

−1tr(∇u)2) ds, (86)

with u0 ∈ L̇2(T3) and uo = ∑k 6=0 h1/2
k Ak

t ek, defines a map from a bounded set in
L̇2(T3) onto W . We define V to be the preimage of W in L̇2(T3). V is also a
complete metric space with the distance on V defined by the L̇2(T3) norm.

More concretely, we can consider the initial value problem on V ,

du = (ν∆u − U∂x1u+Asin(Ωt +θ)∂x2u−Acos(Ωt +θ)∂x3u

− u ·∇u+∇∆
−1tr(∇u)2)dt + ∑

k 6=0
h1/2

k dβ
k
t ek(87)

u(x,0) = u0(x) ∈V ⊂ L̇2(T3)

Then by Theorem 5.2 and Corollary 5.1 the initial value problem (87) defines a
flow on V .

If φ is a bounded function on V then the invariant measure dµ for the SPDE
(20) is given by the limit

lim
t→∞

E(φ(u(ω, t))) =
Z

V
φ(u)dµ(u) (88)

In this section we proof that this limit exists and is unique. We prove below that
the limit exist in the H

11
6

+
(T3) norm on W but since it dominates the L̇2(T3) norm

on V the conclusions will follow for V .

Theorem 7.1 The integral equation (75) possesses a unique invariant measure.

Corollary 7.1 The invariant measure dµ is ergodic and strongly mixing.

The corollary follows immediately from Doob’s Theorem on invariant measures,
see for example [26].

3dot denotes mean zero
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We prove the theorem in three lemmas. First we define a transition probability

Pt(u0,Γ) = L(u(u0, t))(Γ), Γ⊂ E ,

where L is the law of u(t), u0 is the initial condition and E is the natural σ algebra
of V . The action of Pt on the bounded function φ on V can be written as

Ptφ = BM(φ(u(u0, t))) =
Z

V
φ(u)πt(u0,du),

BM denoting the Brownian mean over the Brownian motions in equation (87) and
πt is the corresponding measure on V . Then

RT (u0, ·) =
1
T

Z T

0
Pt(u0, ·)dt

is a probability measure on V . By the Krylov-Bogoliubov theorem, see [26], if the
sequence of measures RT is tight then the invariant measure dµ is the weak limit

dµ(·) = lim
T→∞

1
T

Z T

0
Pt(u0, ·)dt

Namely,

R∗T dν(Γ) =
Z

V
RT (u0,Γ)dν(u0)

and
< R∗T ν,φ >=

Z
V

φ(u0)RT (u0,Γ)dν(u0)→
Z

V
φ(u0)dµ(u0)

as T → ∞.

Lemma 7.1 The sequence of measures

1
T

Z T

0
Pt(u0, ·)dt (89)

is tight.

Proof: By the inequality (52)

1
T

Z T

0
E(‖u‖2

11
6

+)(t)dt ≤C
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The complete metric space W is relatively compact in V so it suffices to show that
u(t) lies in a bounded set in W almost surely, or for all ε > 0 there exists an R such
that,

1
T

Z T

0
P(‖u(t)‖2

11
6

+ < R)dt > 1− ε

for T ≥ 1. But this follows from Chebychev’s inequality, similarly as in Lemma
4.7, namely,

1
T

Z T

0
P(‖u(t)‖2

11
6

+ ≥ R)dt ≤ 1
R

C < ε

for R sufficiently large. By Corollary 5.1 we can take the initial data in V . This
proves that the sequence of measures (89) is tight. QED

Next we prove the strong Feller property, see [26].

Lemma 7.2 The Markovian semigroup Pt generated by the integral equation (75)
on V is strongly Feller.

Proof: Let U = U j1−Asin(Ωt + θ) j2 + Acos(Ωt + θ) j3 denote the velocity of
the uniform flow with rotation (17). Consider the variational equation,

wt = ν∆w− (U+u) ·∇w − w ·∇u+2∇∆
−1tr(∇u∇w)(90)

w(0) = δ(x)

for the functional derivative w(x, t) = ∂u(x,t)
∂u(y,0) . We first show that the equation (90)

generates a contraction semigroup. Consider the linear operators Aw = ν∆w and

Sw =−(U+u) ·∇w−w ·∇u+2∇∆
−1tr(∇u ·∇w)

on the space L2(Ω,F ,P;L2(T3)). A generates a contraction semigroup and we
now show that S is A bounded or that there exists a constant C such that

‖Sw‖2 ≤C‖w‖2 +
1
2
‖Aw‖2

where ‖ · ‖2 denotes the norm on L2(Ω,F ,P;L2(T3)). First we show that there
exists a constant C such that

|Sw|2 ≤C|w|2 +
1

2
√

2
|Aw|2
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where | · |2 denotes the usual L2 norm. By Minkowski’s inequality

|Sw|2 ≤ |(U+u) ·∇w|2 + |w ·∇u|2 +2|∇∆
−1tr(∇u ·∇w)|2

≤ (|U|+ |u|∞)|∇w|2 + |∇u|4|w|4 +
1
π
|∇u|4|∇w|4

≤ (|U|+‖u‖ 11
6

+)|∇w|2 +C‖u‖ 11
6

+‖w‖ 11
6

+

by Schwartzes and Sobolev’s inequalities

≤C(|U|+‖u‖ 11
6

+)|w|2 +
1

2
√

2
|ν∆w|2

by interpolation. Now dividing by |w|2 we get

|S|2 ≤C(|U|+‖u‖ 11
6

+)+
1

2
√

2
|A|2

where |·|2 now denotes the operator norm for each ω. We square the last inequality
and take the expectation, this gives

E(|S|22)≤ 2C2E((|U|+‖u‖ 11
6

+)2)+
1
4
|A|22 ≤C′+

1
4
|A|22

since A is deterministic and by the a priori estimate (52). We also used the in-
equality (a + b)2 ≤ 2a2 + 2b2 and C′ is a new constant. Then taking the square
root of the last inequality and multiplying through by ‖w‖2 gives

‖Sw‖2 ≤C′‖w‖2 +
1
2
‖Aw‖2

using again that A is deterministic and the inequality
√

a2 +b2 ≤ a + b for a and
b positive. This shows that S is A bounded. Moreover in the space of divergence
free function S is dissipative, namely

〈w,Sw〉=−〈w,(U+u) ·∇w〉−〈w,w ·∇u〉+2〈u,∇∆
−1tr(∇u∇w)〉= 0

by use of the periodic boundary conditions. Since S is dissapative and A bounded
A+S also generates a contration semigroup e(A+S)t , see Kato [13], and

‖e(A+S)t‖ ≤ 1 (91)
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The solution w of the variational equation (90) is just the kernal of the semigroup
e(A+S)t and evidently by (91)

|w(x, t)| ≤ 1 (92)

The rest of the proof follows McKean [18],

Ptφ(u)−Ptφ(v) =
Z

L2(T3)
φ(z)(πt(u,dz)−πt(v,dz))

=
Z

T3

Z
T3

BM{φ
Z 1

0
w(x = xt , t)(u− v)dr}dxdy

where BM denotes the Brownian mean. Thus

|Ptφ(u)−Ptφ(v)| ≤ |φ|∞|u− v|2
≤ |φ|∞‖(u− v)‖ 11

6
+(93)

since |w| ≤ 1. QED

Finally we prove irreducibility, see [26], of Pt . The proof of this lemma is an
application of stochastic control theory.

Lemma 7.3 The Markovian semigroup Pt generated by the integral equation (75)
is irreducible.

Proof: We first consider the linear deterministic equation

zt +U ·∇z = ν∆z+w(x, t)
z(x,0) = 0, z(x,T ) = b(x)(94)

and the deterministic equation

yt +U ·∇y = ν∆y− y ·∇y+∇∆
−1tr(∇y)2 +Qh(x, t)

y(x,0) = 0, y(x,T ) = b(x)(95)

where Q : H−1→ H
11
6

+
, both spaces have mean zero and kernel Q is empty. We

will define the operator Q by a map from the coefficients (vectors) in an element
∑k 6=0 fkek in H−1(T3) to the coefficients in the sum ∑k 6=0 h1/2

k Ak
t ek, where the Ak

t
are the oscillatory Ornstein-Uhlenbeck-type processes from (25). This map can
be defined by an invertible matrix h1/2

k = Qk fk, for example Qk = |k|−pI3 where
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I3 is the three by three identity matrix and p is a positive rational number, since
all the coefficients in the latter sum satisfy h1/2

k 6= 0. Then it is easy to check that
kernel Q = 0.

We can pick a function w ∈C([0,T ];W ) such that z(x,T ) = b(x) and a corre-
sponding function h∈ L2([0,T ];H−1(T3)). Namely, Qh = z ·∇z−∇∆−1tr(∇z)2 +
w, since the kernel of Q is empty; then y = z is a solution of the deterministic
Navier-Stokes equation (95) above. This means that (95) is exactly controllable
on W , see Curtain and Zwartz [11].

Now we compare y and the solution u of the integral eqution (69). By Lemma
5.1 we get that

‖u− y‖2
11
6

+(t) ≤ [3‖u0− y0‖2
11
6

+ +3‖∑
k 6=0

h1/2
k Ak

t ek−Qh‖2
11
6

+

+ δ
2C1ess sups∈[t−δ,t](‖u‖2

11
6

+ +‖y‖2
11
6

+)2]e
C2

R t−δ

0 (1+‖u‖2
11
6

++‖y‖2
11
6

+)ds

By Lemma 4.7, for γ > 0

P(‖u‖2
11
6

+ +‖y‖2
11
6

+)≤ R) > 1− γ

2

if
E(‖u‖2

11
6

+ +‖y‖2
11
6

+)/R≤ γ

2
Then

E(‖u− y‖2
11
6

+(T ))≤ [3E(‖∑
k 6=0

h1/2
k Ak

T ek−Qh‖2
11
6

+)+δ
2C1R2]eC2(1+R)(T−δ)

≤ εγ

4
(96)

if δ is small enough, since ∑k 6=0 h1/2
k Ak

t ek is an oscillatory Ornstein-Uhlenbeck-
type process with a non-degenerate covariance whose (Gaussian) measure is full
in L2([0,T ];H

11
6

+
). This implies that the probability

P(‖u(T )−b‖ 11
6

+ ≤ ε and ‖u‖2
11
6

+ +‖y‖2
11
6

+)≤ R)≥

P
(
‖u(T )− y(T )‖ 11

6
+ ≤ ε

2
and ‖y(T )−b(T )‖ 11

6
+ ≤ ε

2
and ‖u‖2

11
6

+ +‖y‖2
11
6

+ ≤ R
)

≥ 1− γ

2
− γ

2
= 1− γ > 0
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by (96) and Chebychev’s inequality, since (95) is exactly controllable. It also
implies that

P(|u(T )−b|22)≤ ε) > 0

QED

Proof of Theorem 7.1 and Corollary 7.1

Proof: Theorem 7.1 and Corollary 7.1 are now easily proven in the following
manner. If the Markovian semigroup Pt is strongly Feller and invariant, as it is by
Lemmas 7.2 and 7.3, it is also t-regular. This means that the probability measures
P(uo(s), ·) are all equivalent for s ≥ t, and then by Doob’s Theorem for invariant
measures, see [26], the invariant measure is unique and strongly mixing. QED

7.1 Kolmogorov’s Scaling
In 1941, Kolmogorov [14] formulated his famous scaling theory of the inertial
range in turbulence, stating that the second-order structure function, scales as

S2(x) = 〈|u(y+ x)−u(y)|2〉 ∼ (ε|x|)2/3,

where y,y+x are points in a turbulent flow field, u is the component of the velocity
in the direction of x, ε is the mean rate of energy dissipation, and the angle brack-
ets denote an (ensamble) average. A Fourier transform yields the Kolmogorov-
Obukhov power spectrum in the inertial range

E(k) = Cε
2/3k−5/3,

where C is a constant, k is the wave number and E(k) denotes the energy density
in Fourier space. These results form the basis of turbulence theory. The following
theorem proves the basic statement in Kolmogorov’s statistical theory of turbu-
lence.

Theorem 7.2 The second structure function of turbulence satisfies the estimate

S2(x, t) = E[|u(x+ y, t)−u(y, t)|22]

=
Z

V
|u(x+ y, t)−u(y, t)|22dµ(u)≤ C|x · (L− x)|2/3(97)

where C is a constant and L is a three vector giving the dimensions of the torus
T3.
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Proof: The proof is basically an amplification of Corollary 4.2. We write the
difference as a Fourier series

u(x+ y, t)−u(y, t) = ∑
k 6=0

û(k)e2πik·y(e2πik·x−1)

By the Cauchy-Schwartz inequality

|u(x+ y, t)−u(y, t)| ≤ (∑
k 6=0
|k|3+2γ|û(k)|2)1/2(∑

k 6=0
|k|−3−2γ|e2πik·x−1|2)1/2

≤ ‖u‖ 3
2 +γ

(∑
k 6=0
|k|−3−2γ|e2πik·x−1|2)1/2

We use the integral test to estimate the last series

(∑
k 6=0
|k|−3−2γ|e2πik·x−1|2)≤C

Z
R3
|k|−3−2γ|e2πik·x−1|2dk

= C(4π
2

Z
|k|≤ 1

|x|

|x|2|k|2|k|−3−2γdk +4
Z
|k|≥ 1

|x|

|k|−3−2γdk)

= C(4π
2 |x|2γ

2−2γ
+4
|x|2γ

2γ
)

for x j ≤ L j/2, j = 1,2,3. Now squaring and taking the expectation we get that

E[|u(x+ y, t)−u(y, t)|2]≤CE[‖u‖2
3
2 +γ

] |x|2γ

for x j ≤ L j/2, j = 1,2,3. Moreover by making the same estimate for the variable
z = L− x, where the three-vector L has the entries L j, j = 1,2,3, we get the
estimate

E[|u(z+ y, t)−u(y, t)|2]≤CE[‖u‖2
3
2 +γ

] |L− x|2γ

for x j ≥ L j/2, j = 1,2,3. Combining the two estimates we obtain the estimate

E[|u(x+ y, t)−u(y, t)|2]≤CE[‖u‖2
3
2 +γ

] |x · (L− x)|2γ

and then choosing γ = 1
3
+

and applying the estimated (52) to E[‖u‖2
11
6

+] we get

the estimate (97). QED

Remark 7.1 The estimate (97) is not sharp due to intermittency, as pointed out
by Landau and discussed by Kolmogorov [15].
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Theorem 7.3 There exist solutions of the stochastic Navier-Stokes equation (20)
with an expectation of the H

11
6

+
norm that is uniformely bounded for every t ∈R+,

but whose expectation of the H2− norm is infinite for every t ∈ R+.

Proof: Suppose that the expectation of the H
11
6 + norm of u is finite by Theorem

4.1. Then a similar argument as lead to inequality (62) gives the inequality

‖u‖2
11
6 +σ

≥ 9 ∑
k 6=0

(1+(2π|k|)
11
3 +2σ)hk|Ak

t |2

− C(ε+δ
1
6−σ)ess sups∈[0,t](‖u‖4

11
6 + +‖u‖6

11
6 +)(98)

with ε = 1
B2 and δ small. Now if

E[∑
k 6=0

(1+(2π|k|)
11
3 +2σ)hk|Ak

t |2] = ∑
k 6=0

(1+(2π|k|) 11
3 +2σ)

4π2|k|2
hk = ∞

for 0 < σ < 1
6 then it follows that

E[‖u‖2
11
6 +σ

] = ∞

also. QED

A Appendix
Lemma A.1 (4.6) The functions H,K,L in the proof of Theorem 4.1 satisfy the
estimate

E(H +K +L) ≤ C
|B(k)|2

E(ess supt∈[0, 1
2B ]‖u‖

2
11
6

+)+
C′

B
(99)

with B = min(U,AΩ,CAΩ).

Proof: First notice that by Lemma 3.1, E(K) is bounded by the same quan-
tity as 4ν2λ1E(H) and by Lemma 3.2, E(L) is bounded by the same quantity as
2νλ1E(H). This implies that the bound on E(H + K + L) is the same as that on
(1+2νλ1(1+2ν))E(H) and it suffices to estimate E(H).
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The functions H is computed by multiplying together the a priori estimates in
Lemmas 3.1, 3.2, 4.4 and 4.5, using (63) and that u(0) = 0,

H = (
Z t−δ

0
|u(s)−u(s+

1
2B

)|22ds
Z t−δ

0
e−4π2ν|k|2s|∇u|22(s)ds)

≤ (
1

2νλ1
|u−u 1

2B
|22(0)

+ 2 ∑
k 6=0

Z t−δ

0

Z s

0
e2λ12ν(s−r)〈u−u 1

2B
,h1/2

k ek〉d(βk
r −β

k
r+ 1

2B
)ds)

Z t−δ

0
e−4π2ν|k|2s|∇u|22(s)ds)

≤ (
1

νλ1
∑
j 6=0
|A j

1
2B(k)
|2 +

C
|B(k)|

ess supt∈[0, 1
2B ]‖u‖

2
11
6

+

Z 1
2B

0
|∇u|22(s)ds

+ 2 ∑
j 6=0

Z t−δ

0

Z s

0
e−2νλ1(s−r)〈u−u 1

2B
,h1/2

j e j〉d(β j
r−β

j
r+ 1

2B(k)
)ds)

× (
1

2ν2 ∑
k 6=0

(
1

4π2|k|2
+

1
2λ1

)hk +
1
ν

∑
k 6=0

Z t−δ

0
e−4π2|k|2ν(t−s)

Z s

0
e−2νλ1(s−r)〈u,h1/2

k ek〉dβ
k
r ds

+
1
ν

∑
k 6=0

Z t−δ

0
e−4π2|k|2ν(t−s)〈u,h1/2

k ek〉dβ
k
s)

Thus using the a priori estimate in Lemma 3.1 and rearranging the terms we get
that

H =

≤ (
1

νλ1
∑
j 6=0
|A j

1
2B(k)
|2 +

C
|B|

ess supt∈[0, 1
2B(k) ]
‖u‖2

11
6

+(
1

4|B|ν ∑
k 6=0

hk +
1
ν

∑
k 6=0

Z 1
2B

0
〈u,h1/2

k ek〉dβ
k
s)

+ 2 ∑
j 6=0

Z t−δ

0

Z s

0
e−2νλ1(s−r)〈u−u 1

2B
,h1/2

j e j〉d(β j
r−β

j
r+ 1

2B(k)
)ds)

× (
1

2ν2 ∑
k 6=0

(
1

4π2|k|2
+

1
2λ1

)hk +
1
ν

∑
k 6=0

Z t−δ

0
e−4π2|k|2ν(t−s)

Z s

0
e−2νλ1(s−r)〈u,h1/2

k ek〉dβ
k
r ds

+
1
ν

∑
k 6=0

Z t−δ

0
e−4π2|k|2ν(t−s)〈u,h1/2

k ek〉dβ
k
s)
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=
1

2ν2 ∑
k 6=0

(
1

4π2|k|2
+

1
2λ1

)hk(
1

νλ1
∑
j 6=0
|A j

1
2B(k)
|2 +

C
|B|

ess supt∈[0, 1
2B(k) ]
‖u‖2

11
6

+
1

4|B|ν ∑
k 6=0

hk))

+
C
|B|

ess supt∈[0, 1
2B(k) ]
‖u‖2

11
6

+
1
ν

∑
k 6=0

Z 1
2B

0
〈u,h1/2

k ek〉dβ
k
s(

1
ν

∑
k 6=0

Z t−δ

0
e−4π2|k|2ν(t−s)〈u,h1/2

k ek〉dβ
k
s

+
1
ν

∑
k 6=0

Z t−δ

0
e−4π2|k|2ν(t−s)

Z s

0
e−2νλ1(s−r)〈u,h1/2

k ek〉dβ
k
r ds)+D

where D are terms that vanish when the expectation is applied. Now applying the
expectation we get

E(H) ≤ 1
8ν3λ1

∑
k 6=0

(
1

4π2|k|2
+

1
2λ1

)hk ∑
k 6=0

hk
1
|B(k)|

+
C
|B|2

E(ess supt∈[0, 1
2B(k) ]
‖u‖2

11
6

+)

+
C
|B|

1
ν
(∑

k 6=0

Z 1
2B

0
e−4π2|k|2ν(t−s)E(ess supt∈[0, 1

2B(k) ]
‖u‖2

11
6

+〈u,h1/2
k ek〉2) ds

+ ∑
k 6=0

Z t−δ

0
e−4π2|k|2ν(t−s)

Z 1
2B

0
e−2νλ1(s−r)E(ess supt∈[0, 1

2B(k) ]
‖u‖2

11
6

+〈u,h1/2
k ek〉2) ds)

by the Ito isometry. Bringing the sum into the expectation in the last two integrals
and estimating |u|22 by Lemma 3.1, we get that

E(ess supt∈[0, 1
2B ]‖u‖

2
11
6

+ ∑
k 6=0
〈u,h1/2

k ek〉2)≤ 2E(ess supt∈[0, 1
2B ]‖u‖

2
11
6

+|u|22)

≤ 1
νλ1

E(ess supt∈[0, 1
2B ]‖u‖

2
11
6

+) ∑
k 6=0

hk

We substitute this estimate into the integrals and get that

E(H)≤ C
|B|2

E(ess supt∈[0, 1
2B ]‖u‖

2
11
6

+)+
C′

|B|
with new constants C and C′. QED
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