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Exploring the mental space of autonomous intentional agents

Peter C. Pantelis and Jacob Feldman
(petercp @eden.rutgers.edu, jacob@ruccs.rutgers.edu)
Department of Psychology, Center for Cognitive Science, Rutgers University-New Brunswick
152 Frelinghuysen Road, Piscataway, NJ 08854 USA

Abstract

How do we use the motion of animate objects to make infer-
ences about their intentions? We investigate this question using
displays containing a number of autonomous, independently
programmed agents moving about the screen and interacting
with each other. Each agent behaves according to an indepen-
dent autonomous program, controlled by a small number of
parameters that define its “personality.” We probe subjects’
impressions of the similarities among the behaviors of the var-
ious agents, and then use multidimensional scaling to recover
the subjective parameters defining the mental space of agent
types. The most important variable turns out to be one that de-
termines how the agent reacts to a nearby agent at one critical
distance. A followup experiment suggests that variation along
this parameter contributes to modulating a higher-level percept
of how “hostile” or “friendly” the agents appear to be.

Keywords: animate motion perception; theory of mind; inten-
tionality; action understanding; goal inference.

Introduction

Intelligent agents can and must distinguish between animate
and inanimate objects that they encounter. Even infants make
this distinction, and apparently possess a naive theory of other
beings’ mental states and intentions (Gergely, Nadasdy, Csi-
bra, & Bir6, 1995; Keil, 1994; Johnson, 2000). Socially intel-
ligent agents naturally conceive of other humans as animate,
mentalistic agents with independent perceptions and motiva-
tions. We further benefit from being able to infer the inten-
tions of other agents in the environment. This is essential
for understanding and predicting others’ behavior, a prime
skill both for chess players contemplating their moves, and
gazelles and lions engaging in mutual scrutiny on the African
plain.

This research explores how adult subjects use an observed
agent’s motion to make inferences about its mental archi-
tecture. For this task, motion is only one cue among many
(Gelman, Durgin, & Kaufman, 1995), but it is a particu-
larly salient one, with subjects readily ascribing intentional-
ity even to simple moving geometric figures (Heider & Sim-
mel, 1944). A handful of studies have shown that varying
the motion of simple geometric figures along certain param-
eters (e.g. speed, trajectory) can influence the perception of
animacy and intentions (Dittrich & Lea, 1994; Tremoulet &
Feldman, 2000, 2006). But the factors determining these per-
cepts are still very poorly understood.

Baker, Tenenbaum, and Saxe (2006) and Baker, Saxe, and
Tenenbaum (2009) have proposed a Bayesian framework for
“inverse planning,” that is, inferring or estimating the goals
or intentions of an agent assumed to be rational. Sloman,
Fernbach, and Ewing (2009) use Bayesian belief networks
to describe causal reasoning in the domain of morality. We

too presume a Bayesian formulation of the problem, in which
the goal is to assign a posterior probability to the mental state
(behavioral disposition, goal set, payoff matrix, or some other
representation of the other agent’s mind) A on the basis of its
motion:

p(A|motion) o< p(motion|A)p(A). (1)

Ultimately, such an inference maps a visual input (the motion
observed) onto a distribution of possible agent types. The
prior p(A) is defined over the set of possible agent types,
that is, the space of behavioral dispositions the observer is in
principle willing to entertain as explanations for the observed
motion. The nature and structure of this space have been
discussed only very speculatively in the literature; Barrett,
Todd, Miller, and Blythe (2005) have argued that it prob-
ably includes such natural action classes as chasing, court-
ing, following, guarding, fighting, and playing. Some studies
have presented subjects with scenes constructed to resemble
these different “natural categories” of dyadic interaction, and
demonstrate that subjects are reliably able to categorize these
scenes, even in degraded forms for which motion is the only
salient cue (Barrett et al., 2005; McAleer & Pollick, 2008).

In contrast to most previous experiments, the scenes we
present to subjects have not been pre-constructed to con-
vey particular categories of interaction. Our aim is to show
subjects a broad array of agent interactions—from a richer
and more general collection of possibilities—in an attempt
to allow subjects’ minds to impose their own structure on
the agent space. The way we produce the desired scenes is
also novel: We program the agents inhabiting these scenes to
behave autonomously, which results in often chaotic multi-
agent interactions that we cannot predict in advance.

In Exps. 1 and 2, we use multidimensional scaling (MDS)
in an attempt to extract the natural clusters and cleavages
present within this stimulus space of intentional behavior.
Exp. 3 is explicitly designed to help clarify the results of
Exps. 1 and 2 by unraveling the “semantics” of the fea-
tures uncovered by the MDS. Displays were programmed
using the breve Simulation Environment (Klein, 2002), an
open-source software package freely available at http://
www.spiderland.org.

Programming Lifelike Automata

In designing and coding the agent behaviors, we aimed to em-
ploy a simple programming scheme that would impose min-
imal structure on the agents’ interactions but, nonetheless,
would be capable of producing a rich variety of lifelike agent
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behaviors.! We programmed the triangular agents to behave
autonomously, each running its own independent program.
Inspired by the work of Braitenberg (1984), we aimed to cre-
ate rule-governed agents which, notwithstanding the simplic-
ity of their programs, yield vivid and lifelike behaviors that
give subjects a strong impression of intentions.

Agent design Rather than presenting subjects with pre-
fabricated animations, we populate simulations with au-
tonomous agents and then allow these simulations to run for a
predetermined length of time (15 seconds). Each agent starts
off in the simulation environment with a randomly-assigned
velocity and location. The agent always orients one vertex of
its triangular body (that which lay on its axis of symmetry)
in the direction of its movement, inducing the impression that
the front end is the agent’s “head” (see Tremoulet & Feldman,
2000). When an agent either collides with another agent or
the edge of the scene, it “bounces off” for one iteration of the
simulation.?

At each iteration of a simulation, an agent finds the nearest
other agent within the scene and then accelerates toward or
away from it to an extent determined by a set of six param-
eters contained in its program. The parameters control the
direction and magnitude of the agent’s acceleration—relative
to the nearest other agent—at six respective distances from
this other agent: 0-5 “units”, 5-10, 10-20, 20-40, 40-70, or >
70. A schematic of these 6 radii around an agent, along with
a snapshot of Experiment 1, is shown in Figure 1.

One example agent might approach another agent from afar
but then veer away as it gets to a closer radius. Others might
consistently accelerate away from another agent. Depend-
ing on how this other agent is programmed, their interaction
might resemble chasing/fleeing, or one pushing the other, or
even one agent circling the other.

We constructed a pool of 12 agents, each with 6 random-
ized parameters within the programming scheme.

Experiment 1
Method

Subjects Eight students between the ages of 18 and 24 par-
ticipated in an approximately one-hour experimental session
in exchange for course credit.

Stimuli Scenes were presented to subjects on a 1440 x 900
LED display, on a 15 inch MacBook Pro laptop with a 2.2
GHz dual core processor. The simulation environment itself
measured 33.0 x 16.5 cm, and the viewing distance was ap-
proximately 45 cm. The programming library employed units

!t is important to note that the programming scheme we employ
here is only one possible choice among many. The design of life-
like agents is a complex and multifaceted problem that extends far
beyond the scope of our research. For us, these simple automata
are merely tools for aiding an empirical study of the perception of
intention.

2In Experiment 1, this sometimes resulted in jerky and unnatural-
looking behaviors at agent collisions, so in Experiments 2 and 3
we changed collision behavior slightly: agents in these experiments
bounced off each other for a full .2 s at some random velocity vector.
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Figure 1: Screenshot from Experiment 1 (colors inverted), with
black circles and numbers superimposed onto the scene to help il-
lustrate the programming scheme for the automata. The black au-
tomaton in this scene accelerates toward or away from the nearest
other agent in the scene. The direction and magnitude of this ac-
celeration depends on the distance to this nearest other agent, with
possible distances divided into six zones. Zone #5 seems to be most
psychologically relevant.
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that were equivalent to 8.7 units/cm. The triangular agents
had bases of 1 unit length and heights of 4 unit length.

Procedure Ineach 15 s scene, the subject observed 7 agents
interacting: 3 red, 3 blue, and 1 white. The reds behaved
according to the same parameters as the other reds, the blues
according to a different set of parameters, and the lone white
according to a third set of parameters. The agents were drawn
from a larger 12 agent pool; thus, there were 220 possible
triads of these 12 agents.3> For each scene, one of these 220
triads was selected at random, and each of the three programs
in the selected triad was randomly assigned to either red, blue,
or white. Each subject saw 220 such scenes, exhausting the
possible triads.

Subjects were openly encouraged to construe the triangular
agents as animate. At the end of each scene, they were asked
“Is the white agent behaving more like a red, or more like a
blue?” They answered by clicking on a button in a dialog box.

We constructed a 12 x 12 symmetric distance matrix for
each subject, to be fed into the individual differences multi-
dimensional scaling (MDS) algorithm (INDSCAL/ALSCAL;
Takane, Young, & Leeuw, 1977). Within this matrix, an agent
was assigned a distance of 0 from itself. As two different
agents appeared in the same trial of an experimental session
10 times, the distance in this matrix between any two agents
was initially set at 11.

3Strictly speaking, because the status of the white agent in each
trial is special, and, as a result, during a given trial the subject cannot
respond that he actually believes the blue and red agents to be most
alike, 660 possible arrangements actually exist. Rather than show
all 660 possibilities, we randomized the procedure so that no agent
type would be more or less likely to be “white” during a trial. Nev-
ertheless, this presents a source of noise in the data, and we altered
the procedure in Experiment 2 to address this issue.
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Figure 2: The 2-dimensional MDS solution for the 12 agents, fitting
data from Experiment 1.

If the subject chose “red,” then the agent whose program-
ming was used for the red agents in this trial was made to
be closer together (more similar) in this distance matrix with
that of the white agent, and likewise for if the subject chose
“blue.” That is, the distance between these two agents in the
matrix was reduced by 1. Previous studies have used similar
methodologies to gauge subject similarity ratings of visual
stimuli (e.g., Kahana & Bennett, 1994; Pantelis, van Vugt,
Sekuler, Wilson, & Kahana, 2008).

Results and Discussion

We derived a 2-dimensional (2D) MDS solution in order to
visualize the space of agents that subjects (on average) per-
ceived (see Figure 2). For this amount of points in the space,
the INDSCAL algorithm allows for fits of 2-5 dimensions.
Deriving higher-dimension solutions will always result in bet-
ter fits to the experimental data.* However, a higher num-
ber of dimensions would be even more difficult to interpret
than the 2 condensed dimensions we present, and even a 5-
dimensional fit would probably be a condensed version of the
true amount of psychologically relevant dimensions in this
agent space (which could hypothetically be even higher than
the total number of agents in our sample).

A 2D solution allows for the easiest visualization of the
inter-agent distances, an important motivation for using the
MDS analysis in the first place. If interesting structure
emerged only in higher-dimensional fits for these data, this
might have justified using these MDS solutions. However,
we actually found the clearest and most interesting structure
within a 2D fit.

The most striking aspect of the space is its ring-like struc-
ture, similar to what one would observe in a 2D MDS plot
of the color wheel (see Shepard, 1980). The significance
of this ring structure was not immediately clear, in part be-
cause MDS dimensions are in general not self-explanatory

4While we examined a scree plot of the pooled data from Experi-
ments 1 and 2, we do not display it here due to space considerations.
This scree plot does not demonstrate a clear “elbow” favoring one
particular number of dimensions over another.

Table 1: Correlations (r[10]) between programmed parameters
(rows) and MDS dimensions (columns). Bold font represents p <
.01

MDS Dimension 1 MDS Dimension 2

Parameter 1  -.070 384
Parameter 2 -.275 -.074
Parameter 3  .527 .199
Parameter 4 411 -.375
Parameter 5 -.801 .093
Parameter 6 .459 197

but rather pull out subjectively primitive parameters. Exp. 3,
presented below, was designed to help clarify the nature of
the parameter exhibited in this ring.

The goal of the present experiments was not, per se, to
see how the somewhat arbitrary parameters with which we
programmed the agents mapped to subjects’ percepts of the
agents’ behaviors. Rather, we had aimed to infer the struc-
ture of the perceptual space itself. Nonetheless, relating these
parameters to the MDS dimensions was a useful step in un-
derstanding the 2D MDS space.

Subjects’ perception of the agents’ behaviors arises from
some complex interaction of its underlying programming and
the chaotic interaction with other agents that arises during
each unique simulation. This contributed to there being many
individual differences between subjects’ results; few sub-
jects’ distance matrices showed obvious correlation. How-
ever, one of the 6 parameters with which we programmed
each agent was indeed strongly correlated with one of the
MDS coordinates (see Table 1). This parameter controlled
how an agent behaved when the nearest other agent was be-
tween 40 and 70 units (4.6 to 8.1 cm) away from it. This
finding is addressed further in the Experiment 2 discussion.

Experiment 2

In Exp. 2, we adjusted the basic methodology of Exp. 1 in
hopes of reducing the amount of noise in the data. The most
significant change was to allow the subject to control one of
the agents in each simulation via the mouse. The chance to
interact with the simulated agents would, we expected, allow
the subject to glean more information about the other agents’
behaviors during the short 15-second display time and thus
promote stronger impressions of the agents’ “personalities”
than was possible in Exp. 1.

Method

Subjects Seven students between the ages of 18 and 23 par-
ticipated in an approximately one-hour experimental session
in exchange for course credit.

Stimuli We presented scenes to subjects on an eMac with a
17 inch (16 inches viewable) monitor and a 1152 x 864 dis-
play. The monitor refresh rate was 80 Hz and the computer
had a 1.25 GHz processor. The simulation environment it-
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self measured 25.4 x 16.5 cm, and the viewing distance was
approximately 45 cm.

Exp. 2’s scenes were populated with triangular agents of
the same size and programmed under the same scheme as in
Exp. 1. We used the same pool of 12 agents from Exp. 1,
each which had been created with 6 randomized parameters
within the programming scheme.

Additionally, the subject controlled one agent with the
mouse: a white circular agent 4 units in diameter. The au-
tomatic agents reacted to the subject-controlled agent in the
same manner as any other triangular agent in the simulation.

Procedure Ineach 15 s scene, the subject observed 6 agents
and controlled 1 agent. 2 agents were red, 2 were green, 2
were blue, and the subject-controlled agent was white. The
reds would behave according to the same parameters as the
other reds, the greens according to a different set of parame-
ters, and the blues according to a third set of parameters. The
agents were drawn from a larger 12 agent pool; thus, there
were 220 possible triads of these 12 agent programs. For
each scene, one of these 220 triads was selected at random,
and then each of the three programs in the selected triad was
randomly assigned to either red, green, or blue. Each subject
saw 220 such scenes, exhausting the possible triads.

Subjects were openly encouraged to construe the triangular
agents as animate, and were instructed that how agents of a
certain color behaved during one trial would have nothing to
do with how they behaved in subsequent trials. At the end
of each scene, they were asked to determine which color of
agent behaved least like the other two—that is, which was
most different: red, green, or blue? They responded by key
press, at which point the next trial began.

Asin Exp. 1, we constructed a 12 x 12 symmetric distance
matrix for each subject, to be fed into the individual differ-
ences multi-dimensional scaling (MDS) algorithm. For each
trial, the two non-chosen agents in the odd-one-out procedure
were made more similar within this distance matrix.

Results and Discussion

Dimension 2
°

0
Dimension 1

Figure 3: The 2-dimensional MDS solution for the 12 agents, fitting
data from Experiment 2.

Table 2: Correlations (r[10]) between programmed parameters

(rows) and MDS dimensions (columns). Bold font represents p <
.05

MDS Dimension 1

MDS Dimension 2

Parameter 1  -.129 -.147
Parameter 2 -.529 -.050
Parameter 3 .096 .195
Parameter 4 .548 .200
Parameter 5 -.310 -.619
Parameter 6 .249 233

Once again, we derived a 2D MDS solution in order to
visualize the space of agents that subjects (on average) per-
ceived, and we once again observed a ring-like structure in
the space (Fig. 3).

The MDS solutions for the two experiments—processed
representations of subjects’ raw similarity matrices—were
correlated with each other. Dim. 1 of Experiment 1’s MDS
was strongly correlated with Dim. 2 of Experiment 2’s MDS
[7(10) =.713,p < .01]. Dim. 2 of Experiment 1’s MDS was
weakly (and negatively) correlated with Dim. 1 of Experi-
ment 2’s MDS [r(10) = —.551, p = .063]. (The direction of
these correlations is arbitrary and unimportant, but helpful in
relating the 2D MDS spaces presented in Figures 2 and 3.)
These correlations provide some assurance of the robustness
and psychological reality of the subjective mental spaces that
we have uncovered.

As shown in Table 2, Dim. 2 in Experiment 2 correlated
significantly with parameter 5 of the agents’ programming.
This is consistent with the results of Experiment 1, where
Dim. 1 had been correlated with this same parameter. Appar-
ently, how an automaton reacted to (i.e. accelerated toward
or away from the direction of) the nearest other agent in the
simulation when that agent was 40-70 units away (10 to 17.5
times the length of an agent) was a psychologically important
variable.

We wondered if the prominence of this parameter in sub-
jects’ judgments was actually an artifact of the frequency with
which interactions at this distance actually occurred in the
displays. But the data do not bear this out. Because the entire
displays were recorded (10 frames/second), we could assess
the proportion of the time the inter-agent distance between
any automaton and its nearest other agent was within each
of the six intervals corresponding to the six underlying pro-
grammed parameters. The two most common distances be-
tween an automaton and its nearest other agent during a sim-
ulation were 0-5 units (0-1.25 agent lengths) and 20-40 units
(5-10 agent lengths). 40-70 units (10-17.5 agent lengths) was
only the fourth most common inter-agent distance. The piv-
otal role of this inter-agent distance is not an artifact, but
rather reflects a genuine cognitive focus on behavioral inter-
actions at this distance.
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Experiment 3

The results of the first two experiments were qualitatively
similar, and we therefore choose to pool data from all 15 sub-
jects for the following analysis and discussion. The 2D MDS
solution for these pooled subjects reveals an even cleaner ring
structure (see Figure 4). But what does it mean as we travel
around this ring?

In the combined MDS, Dim. 1 is connected to how an
agent behaves when the closest other agent is between 10-
17.5 agent lengths away (i.e. programmed parameter #5).
Agents low on Dim. 1 all tend to accelerate away from the
nearest other agent; agents high on Dim. 1 tend to accelerate
toward the nearest other agent. The meaning behind Dim. 2
is less straightforward. While this dimension is clearly not
independent from Dim. 1, it is uncorrelated with any of the
programmed agent parameters. Hence we turn to further psy-
chophysics to provide evidence about its meaning.

We hypothesize that a potential “friendly” versus “hostile”
dimension emerges from the interaction of these two MDS
dimensions. This hypothesized dimension would be neither
orthogonal nor redundant with whether an agent accelerates
toward or away from another agent at a certain distance—say,
the distance with which programmed parameter #5 is con-
cerned. When an agent moves in the direction of another, it
may, for instance, appear to be aggressive or merely curious.

Method

Subjects Seven students between the ages of 18 and 24 par-
ticipated in an approximately half-hour session in exchange
for course credit.

Stimuli and Procedure We presented scenes to subjects
under the same viewing conditions as Exp. 1. We again pop-
ulated the simulations with the pool of 12 agents employed in
Exps. 1 and 2. During each trial, the subject watched 7 agents
interacting for 15 seconds. Six of the agents were colored
red and behaved under programs randomly selected from the
pool of 12. The seventh, critical agent was colored blue, and
the subject was instructed to attend to it. At the end of each
trial, the subject was asked, “On a scale of 1-5, 1 being most
hostile, and 5 being most friendly, how do you rate the blue
agent?” The subject indicated his response on the keyboard.
Each of the 12 agents in the pool was assigned the blue color
for 8 of the session’s trials, for a total of 96 trials presented in
random order.

Results We first normalized each subject’s responses, then
calculated each subject’s mean normalized response for each
of the 12 agents observed over the experimental session.
Then, averaging across subjects, we were able to get a sense
of how friendly versus hostile subjects perceived each of the
12 autonomous agents. Figure 4 shows, on a gradient from
red to green, what these perceptions were. The most hostile
agents seem to be those which were high on MDS Dim. 1 and
low on Dim. 2, while the friendlier agents tended to be low
on Dim. 1 and high on Dim. 2. Agents low on both dimen-

Figure 4: Pooled 2-dimensional MDS from Experiments 1 and 2.
The 2D space is rotated about the origin so that the cosine of the
agent angle (relative to the horizontal) best predicts how subjects
rated the agents along the “hostility” versus “friendliness” dimen-
sion. “Hostility” versus “friendliness” is represented for each agent
here with a color gradient from red (most hostile) to green (most
friendly), with yellow being neutral.

sions were quite neutral. Fig. 4 shows the space in a rotated
coordinate frame so that the horizontal dimension optimally
reflects the friendliness vs. hostility dimension. (All of the
inter-agent distances and relationships have been preserved;
only the “ring” has been rotated.) In the rotated space the
projection of each agent’s position onto the horizontal (i.e.
the cosine of its angle relative to the horizontal) reflects its
position along the friendly/hostile dimension. We regressed
the subjects’ mean friendliness rating against this variable and
found a close fit (r(10) = —.768, p < .01, Figure 5). These
data corroborate our hypothesis that the ring variable essen-
tially reflects the degree of perceived friendliness or hostility
each agent exhibited.

General Discussion and Conclusions

These experiments were designed to probe the underlying
structure of the agent space perceived by subjects as they
watched autonomously programmed agents interacting in a
dynamic scene. In Experiments 1 and 2, the MDS ap-
proach succeeded in revealing certain aspects of this percep-
tual space: a ring-like structure, which—in Experiment 3—
we attempted to connect to a dimension of perceived hostility
versus friendliness in the agents. One of the low-level param-
eters controlling the behaviors of the agents contributed to
this more abstract percept: that which controlled inter-agent
reactive behavior at one critical distance. We conclude that
this reflected one perceptually critical inter-agent zone upon
which subjects based their interpretations of the agents’ in-
tentional behavior.

From the results of Experiment 3, we further conclude that
“hostility” versus “friendliness,” or something akin to this di-
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Figure 5: Cosine of the agent’s angle in MDS space (see Fig. 4),
plotted against how subjects, on average, rated them (from hostile to
friendly). Best linear fit is drawn in red.

chotomy, appears to produce an especially salient partition in
subjects’ perceptual space. In other words, after first surmis-
ing that an object in the world has intentions (i.e., is animate),
a next step for the cognitive machinery might be an attempt
to guess whether these intentions are bad or good.

This work represents one step in what we hope is a fruit-
ful new direction. Programming agents automonously, and
asking how subjects’ interpretations of these agents’ behav-
ior relates to the actual programs they are carrying out, allows
one to pursue a true “psychophysics of intention,” in which
we explore the relationship between the perceived intention
and the “actual” intention present in the agent’s autonomous
program. In future experiments, employing displays of po-
tentially far more complex behavioral interactions, we hope
to uncover correspondingly more complex structures in the
intentionality percept.
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