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DISCLAIMER 
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Executive Summary 

End-use electricity demand forecasts playa critical role in resource planning approaches 
that actively consider both supply- and demand-side options to meet customer energy 
service needs. Yet, in order to forecast peak: demands by end use, utility and state 
planners have had to rely on both simulated and borrowed end-use and class load 
research data. This reliance has introduced additional uncertrlnty into an already 
complicated resource planning process, as questions arise regarding the veracity of these 
inputs. The data now available from· recent end-use metering projects holds the promise 
of reducing these uncertainties and thereby improving the planning process and its 
outcomes. 

This report summarizes findings from a unique project to improve the end-use electricity 
load shape and peak: demand forecasts made by the Pacific Gas and Electric Company 
(pG&E) and the California Energy Commission (CEC). First, the direct incorporation 
of end-use metered data into electricity demand forecasting. models is a new approach that· 
has only been made possible by recent end-use metering projects. Second, and perhaps 
more importantly, the joint-sponsorship of this analysis has led to the development 2f 
consistent sets of forecasting model inputs. That is, the ability to use a common data base 
and similar data treatment conventions for some of the forecasting inputs frees forecasters 
to concentrate on those differences (between" their competing forecasts) that stem from 
real differences of opinion, rather than differences that can be readily ~esolved with 
better data. 

The focus of the analysis is residential space cooling, which represents a large and 
growing demand in the PG&E service territory. Using five years of end-use metered, 
central air conditioner data collected by PG&E from over 300 residences, we developed 
consistent sets of new inputs for both PG&E's and CEC's end-use load shape forecasting 
models. We compared the performance of the new inputs both to the inputs previously 
used by PG&E and CEC, and to a second set of new inputs developed to take advantage 
of a recently added modeling option to the forecasting model. The testing criteria 
included ability to forecast total daily energy use, daily peak: demand, and demand at 4 
P.M. (the most frequeRt hour of PG&E's system peak: demand). "We also tested the new 
inputs with the weather data used by PG&Eand CEC in preparing their forecasts. . . 

We find that the new inputs developed in this project perform significantly better than 
previous inputs used by CEC and generally better than previous inputs used by PG&E. 
We also fiIl:d that, while the use of the new forecasting option did sometimes lead to 
modest. improvements, the additional effort required to take advantage of this option in 
forecasting future data is significant and may not be justified by the results. 
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In testing the new inputs with the same weather data files used by PG&E and CEC in 
their forecasts, we verified that the magnitude of potential implementation issues raised 
by PG&E and CEC was small and made a simple recommendation to address them. 

In the course of the analysis, the project staff, PG&E, and CEC identified several issues 
of interest outside the primary focus of the main body of research. We conducted 
exploratory investigations for several of these issues. Our findings are summarized as 
follows: 

1. We considered explicit inclusion of a "heat-storm" variable in models to 
allocate annual energy use to days of the year, but concluded that inclusion 
is not warranted, at this time, without a more systematic examination of 
related 'problems associated with forecasting energy use on "peak" days. 

2. We examined metered data collected for heat pumps (which rely on the same 
technology as central air conditioners, but also provide cooling), but conclude 
that would be premature to simply add cooling loads from the small sample 
of heat pump compressors to those from the much larger Sample of central air 
conditioners without additional information on the residences and equipment 
being monitored. 

3. We developed a separate set of daily energy models for room air conditioners, 
which confirmed our intuitions regarding differences between patterns of 
central air conditioner versus room air conditioner energy use. However ,the 
comparatively smaller sample of room air conditioners precludes us from 
drawing definitive conclusions as to the ultimate significance these 
differences. 

4. We examined data from several weather stations and concluded that the 
weather station currently used by CEC to model central air conditioning 
energy use in the transitional· climate region 4 performs better than the two 
alternatives considered. 

5., We developed a procedure for systematically evaluating the specification of 
binned hourly load shapes and confirmed the appropriateness of current 
reliance on dry bulb temperature. for this purpose. 

6. We developed separate daily energy models specifically to forecast energy use 
on peak days, which indeed perform better than models developed to forecast 
energy use on all 'days. Nevertheless, we reserve judgement on 'their 
usefulness pending the outcome of a much broader discussion on how the 
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increased effort to take advantage of additional sub-models (such as this one) 
should be balanced by the other forecasting requirements for load shape 
models. 

Our analyses jointly suggest that the need for additional research must be predicated on 
a systematic assessment of competing load shape forecasting objectives (such as 
forecasting system peak, hourly load shapes for 12 typical weeks, minimum load 
conditions, etc.) in light of the resource constraints faced by the forecasting process. At 
that time, the following enhancements should be considered: 

1. More systematic examination of daily load shape bins for possible re­
specification based on other forecasting objectives; our exploratory analysis 
has led to the development of a framework for this activity. 

2. Continued refinement and integration of separate peak day ~odels into the 
overall load shape forecasting process; we have demonstrated the potential 
value of this approach. 

3. Sample weight development based on consideration of current forecasting 
conventions for the specification of the population (e.g., regions versus rate 
classes); all analyses undertaken to date have been based on un-weighted data. 

4. Forecasting weather data file development based on capturing specific 
meteorological phenomena of interest for forecasting (such as heat storms). 
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Chapter 1 

Introduction 

End-use electricity demand forecasts playa critical role in resource planning approaches 
that actively consider both supply-:- and demand-side options to meet customer energy 
,service needs. Yet in order to forecast peak demands by end use, utility and state 
planners have had to rely on both simulated and borrowed end-use data and on class load 
research data. This reliance has introduced additional uncertainty into an already 
complicated resource planning process, as questions arise regarding the veracity of these 
inputs: The data now available from recent end-use metering projects holds the promise 
of reducing these uncertainties and thereby improving the planning process . and its 
outcomes. 

This report summarizes findings from a unique project to improve the end-use electricity 
load shape and peak demand forecasts made by the Pacific Gas and Electric Company 
(pG&E) and the California Energy Commission (CEC). First, the direct incorporation 
of end-use metered data into electricity demand forecasting models is a new approach that 
has only been made possible by recent end-use metering projects. Second, and perhaps 
more importantly; the joint-sponsorship of this analysis has led to the development of a 
common set of forecasting model inputs. That is, the ability to use a common (but not 
identical) data set for some of the forecasting inputs frees forecasters to concentrate on 
those differences (between their competing forecasts) that stem from real differences of 
opinion, rather than differences that can be readily resolved with .better data. 

This report is the second stemming from this jointly-sponsored approach for developing 
improved residential electricity demand forecasts through consistent analyses of a 
common set of end-use metered data. The first report documented procedural efforts to 
prepare the end-use data for analysis and the development of forecasting model inputs for 
an older forecasting model used by CEC (Eto and Moezzi 1992). Since that time, CEC 
has adopted the same forecasting model used by PG&E (although, important differences 

. remain between PG&E's and CEC's model specifications). 

This report summarizes the development of two alternative approaches for' this now 
commonly used model and an evaluation of these alternatives (and those summarized in 
the first report) along with the inputs currently used by PG&Eand CEC. The focus of 
the analysis is residential space cooling, which represents a large and growing demand 
in the PG&E service territory. In Chapter 2, we review the oackground for the project 
by describing the end-use metered data being analyzed, the forecasting model for which 
the new inputs are being developed, and the differences in the use of the models by 
PG&E and CEC. In Chapters 3 and 4, we describe aspects of the development of inputs 
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for one approach to using the forecasting model. In this approach, a forecast of annual 
electricity use for space cooling is first allocated to each day of the year (Chapter 3) and 
then separately allocated to the hours of the day (Chapter 4). In Chapter 5, we describe 
the development of inputs for a recently available alternative to thi,s approach in which 
the annual forecast is· allocated directly to each hour of the year. In Chapter 6, we 
describe our evaluation of all of the approaches. 

Chapter 7 contains the results of exploratory analyses developed in response to the 
interests of PG&E and CEC. These analyses consider issues outside the scope of the 
main research agenda, but which might influence future forecasting enhancements. The 
issues include: 1) the incremental improvement in accuracy resulting from the explicit 
jnclusion of a measure of heat stormsl as an explanatory variable for the allocation of 
annual electricity use to the days of the year; 2) the energy use patterns of heat pumps, 
which employ the same technology as central air conditioners, but also provide heating; 
3) the energy use patterns of room air conditioners, which also employ. the same 
technology as central air conditioners, but whose application is more localized within a 
residence; 4) the impact of using data from different weather sites to explain space 
cooling energy use in one of PG&E's more temperate regions; 5) a systematic 
examination of the current method used to specify binned load shapes; and 6) preliminary 
findings from a direct examination of the energy use characteristics of peak days versus 
average days. 

Chapter 8 draws upon the analyses to suggest additional areas of work identified in the 
course of our research. Appendix A summarizes data handling conventions. Appendices 
B and C contain additional graphical summaries of project results from Chapters 4 and 
6, respectively. Appendix D comments on the use of our research in forecasts made with 
the HELM model. 

1 A heat storm. is a multi-day episode of high ambient temperature. It has been suggested that the 
cumulative effect of several hot days increases the use of electricity for space cooling at a given temperature 
relative to the electricity used on an identically hot day that bas not been preceded by hot days. 
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Chapter 2 

Background 

In the first phase of this project, we analyzed end-use metered data collected by· PG&E 
to develop new inputs for the peak demand forecasting model used historically by CEC 
(see Eto and Moezzi 1992). Since that time, CEC has adopted the peak demand model 
used by PG&E. The goal of this second phase of the project is to use PG&E's space 
cooling data to.develop inputs for·this second model and to compare these inputs to those , 
previously used by PG&E and CEC for this purpose. In this chapter, we review the data 
to be used in the analysis, summarize the basic methods employed by both the now 
commonly used PG&E and CEC model and the older CEC model, and contrast the 
differences between PG&E's andCEC's use of the common model. 

2.1 The PG&E Appliance Metering Project 

PG&E's Appliance Metering Project (AMP) was the first large-scale end-use metering 
project in California (Brodsky and McNicoll 1987). Since 1983, more than 700 single­
family, owner-occupied residences have been continuously metered. In designing the 
project, PG&E was particularly interested in improving its understanding of the 
contribution of space cooling energy use to system loads. As a result, the geographic 
distribution of metered households is concentrated in the hot central valley of California 
where the demand for cooling is greatest 

For each household, two appliances were metered in addition to total household load. 
In the entire sample, a total of sixteen different appliance types were metered. In this 
study, we analyze only the data collected on central air conditioning energy use from 
about 350 households, although exploratory work reported in Chapter 7 considers limited 
aspects of the data collected on heat pump compressors and room air-conditioning energy 
use.2 

PG&E provided LBL with a total of five years of hourly data collected between 1985 and 
1989. PG&E replaced all information that might identify individual customers with a 
seven digit code that identified the households across data sets . 

2 Other end uses were also examined in the first phase of the project including refrigerators, cloth~ 
washing, and clothes drying. See Eto and Moezzi 1992. These results Were used to develop new inputs for the 
older in-house CEC model; PG&E, in its application of HELM, does not consider these end uses explicitly. 
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PG&E has also developed weights to make the sample more representative of the entire 
residential class, and to account for -the stratified nature of the AMP sample. Through 
discussion with the project sponsors, which considered the fact that there are differences 
between PG&E and CEC application of the data that are not reflected in the development 
of sample weights, that sample weights were not developed for the 1985 and 1986 data, 
and that the focus of the LBL analysis is on load shaPe, not energy use, it was agreed 
that these weights would not be used in the present analysis. Therefore, with the 
exception of the weighted mean unit energy consumption or UEC presented in this 
chapter, the results presented in this repon were developed through unweighted analyses 
of the data. Our unweighted analyses are theoretically reflective only of loads for those 
single-family owner-occupied residences metered by the project; furthermore, for these 
loads, we cannot determine what biases may exist as a result of the process used to select 
participants for the project. 

2.2 Electricity Load Shape Forecasting Models 

Current hourly electricity load shape and peak demand models are essentially post­
processors for end-use forecasting models, which separately generate annual forecasts of 
energy use. In this modeling framework, equipment purchase and energy use decisions, 
stock turnover, and other economic and demographic factors are treated as influences 
primarily on annual energy use. The goal of the load shape and peak demand model is 
simply to allocate the estimated annual total load to the hours of the year. 

PG&E and CEC currently use a load shape forecasting model called HELM, developed 
by ICF, Inc. for the Electric Power Research Institute (lCF Resources Inc. 1992). The 
model is very flexible; the user must specify the number of end uses to be forecast as 
well as the method for generation of up to an 8,760-hour forecast of energy use. The 
model supports two alternative approaches for generating this forecast. 

In its standard two-stage application, the user first defines hourly load shapes for a 
limited number of day-types and second, assigns day-types to all the days in a calendar 
year for each end use and forecast year. The model then distributes annual energy use 
(typically, form an end-use forecasting model) to the hours of the year,. using previously 
defined allocation factors. For weather-sensitive end uses, such as cooling, the allocation 
procedure may be based on measures of climatic variables, such as a three-day weighted 

. average of mean daily temperature. In this case, the model also requires a daily weather. 
file for the year. Daily energy use is allocated to the hours of the day using normalized 
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load shapes. 3
. The choice of normalized load shape can be specified as a function of 

weather variables. 

In the latest version of HELM 2.0, the user may bypass the two-stage process by 
specifying load shapes directly on an hourly basis. Choice of this approach replaces both 
the allocation of annual energy to days of the year and the selection of a normalized daily 
load shape. 

Previously, CEC used a peak demand model that was developed in-house in the late 
1970's (Jaske and Paige 1979). The CEC model is more structured than HELM because 
it was designed for use in conjunction with detailed end-use annual energy forecasting 
models that were also developed by CEC. For the residential sector, the CEC model 
requires annual energy forecasts for 14 non-space conditioning and five space 
conditioning end uses for each geographic region considered. In the past, the CEC 
model has been used primarily to produce system peak day load forecasts although the 
model is, in principle, capable of producing forecasts for non-peak days. 

The CEC model, like HELM, allocates a forecast of annual energy use to the hours of 
the year in two steps. For space cooling, a forecast of annual space cooling energy use 
is first allocated to daily energy use using weather data: CEC uses a three-day weighted ' 
average of degree-days. The degree-days are based on a combined dry- and wet-bulb, 
temperature variable called a temperature-humidity index or THI.4 Unlike HELM, the 
CEC model does not spread daily energy use to the hours of the day using a fixed load 
shape. Instead, daily energy use is distributed to the hours of the day as a function of 
time of day and THI (for cooling). or dry-bulb temperature (for heating) in what CEC 
refers to as a time-temperature matrix. 

2.3 PG&E and CEC Peak Demand Forecasting Model Specifications 

Although PG&E and CEC now use the same HELM modeling framework, their use of 
'the model differs in several important ways. PG&E defines seven separate end uses for 
the residential sector: three separate space cooling and three non space cooling end uses 

'-' corresponding to three geographic zones within the company's service territory, and a 

'. 
\ 

3 The sum of hourly loads in one day's normalized load shape is 1. The load in each hour, therefore, 
represents the proportion of total daily energy use in that hour. 

4 THI is defined as follow: THI = 15 + 0.4 * (DBT + WBT), where DBT = dry-bulb temperature and 
WBT = wet-bulb temperature. 
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single combined end use for a fourth geographic zone (pacific Gas and Electric Company 
1991). Figure 2-1 indicates these zones. 

To forecast system peak demands for the PG&E planning area, the CEC model produces 
separate forecasts for five geographic regions (California Energy Commission (CEC) 
1991), as shown in Figure 2-2. Within each region, four space cooling (single-family and 
multi-family central and room air conditioning), six space heating, and ten non-space 
conditioning end uses are separately forecast. . 

Our approach to recognizing differences in the ways in which PG&E and CEC develop 
forecasts for the PG&E service territory is to prepare separate sets of inputs from the 
common data set of end-use metered data. Specifically, individual metered data are first 
aggregated to the appropriate sub-service territory zone (in the case ofPG&E) or region 
(in the case of CEC). The resulting zonal or regional load shapes are then analyzed 
using common procedures to develop a consistent (yet separate) set of inputs for PG&E's 
and CEC's application of the HELM mOdel. 

Descriptive statistics. of the data analyzed in this project are summarized in Table 2-1 and 
Table 2-2. Each table reports unweighted and weighted UECs (in kWh/year), load 
factors, and coincidence factors by the separate forecasting zones or regions used by 
pG&E and CEC in their forecasts. 

Table 2-1 and Table 2-2 also show the geographic distribution of cooling appliances by 
PG&E zone and by CEC region .. Several other forecasting zones and regions are defined 
by PG&E and CEC for forecasting purposes but have little or no cooling requirements 
and, accordingly, have very low central air conditioner saturations. As a result, few 
households were metered.s As a result, we did not conduct analyses for these zones and 
regions. 

-
S PG&E's Zone T contained only 1 metered central air conditioners and CEC's Regions 1 and 5 contained 

only 3 and 6 metered central air conditioners, respectively. 
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Table 2-1. Annual UEC load Factor (IF), and Coincidence Fact9r (CF) for 
Central Air Conditioning, PG&E Zones . 

All Zones 
mean UEC 1,254 .1,112 1,424 1,60'7 1,0'94 1,294 
wt.mean UEC nfa nfa 1,283 1,429 996 nfa 
n 288 267 337 318 332 30'8 

Zone R 
mean UEC 1,80'2 1,70'0' 2,0'0'2 2,294 1,684 1,90'5 
wt.mean UEC nfa nfa 1,653 1,911 1,519 nfa 
st.dev. UEC 565 543 718 70'1 60'1 678 
n 86 82 117 . 113 111 10'2 
load factor 0'.0'63 0'.0'31 0'.0'73 0'.0'74 0'.0'67 nfa 
coincidence 

factor 0'.92 0'.94' 0'.83 0'.91 0'.90' nfa 

Zone S 
mean UEC 1,277 1,188 1,367 1,538 1,0'18 1,265 
wt.mean UEC nfa nfa 1,270' 1,380' 895 nfa 
st.dev. UEC 553 495 576 580' 479 438 
n 116 10'2 132 118 123 118 
load factor 0'.0'48 0'.0'49 0'.0'57 0'.0'54 0'.0'42 nfa 
coincidence 

factor 0'.91 0'.92 0'.89 0'.93 0'.91 nfa 

Zone X 
/mean UEC 682 497 70'9 790' 521 629 

wt.mean UEC nfa nfa 717 753 50'0' nfa 
st.dev. UEC 249 239 737 443 254 
n 80' 80' 86 86 97 86 
load factor 0'.0'29 0'.0'29 0'.0'38 0'.0'33 0'.0'28 nfa 
coincidence 

factor· 0'.90' 0'.91 0'.92 0'.92 0'.90' nfa 

For a description of PG&E zones R,S and X, please refer to Rgure 2-1. Zone Tis the coastal regions 
where air conditioning use is relatively negligible. 
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Table 2-2. Annual UEC. Load Factor (LF). and Coincidence Factor (CF) for 
Central Air Conditioning. CEC Regions 

All Regions 
mean 1,254 1,112 1,424 1,607 1,094 1,294 
wt.mean nfa nfa 1,283 1,429 996 nfa 
n 288 267 337 318 332 308 

Region 2 
LF .04 .04 .05 .05 ,04 nfa 
CF .01 .01 .01 .01 .01 nfa 
mean 1,149 1,098 1,250 1,400 989 
wt.mean nfa nfa 1,104 1,227 885 nfa 
std.dev. 443 373 486 449 362 445 
n 48 42 56 49 50 49 
load factor 0.044 0.043 0.051 0.051 0.038 nfa 
coincidence 

factor 0.88 0.90 0.89 0.90 0.90 nfa 

Region 3 
LF .06 .06 .07 .07 .06 nfa 
CF .01 .01 .01 .01 .01 nfa 
mean 1,606 1,499 1,816 1,982 1,378 1,651 
wt.mean nfa nfa 1,531 1,697 1,236 nfa 
std.dev. 552 526 676 646 527 626 
n 118 107 147 138 141 130 
load factor 0.058 0.057 0.072 0.067 0.058 nfa 
coincidence 

factor 0.93 0.94 0.84 0.92 0.91 nfa 

Region 4 
LF .04 .04 .05 .04 .03 nfa 
CF .01 .01 .01 .01 .01 nfa 
mean 946 724 936 1,051 688 849 
wt.mean nfa nfa 922 956 652 nfa 
std.dev. 480 425 779 586 435 563 
n 103 98 108 105 120 107 
load factor 0.035 0.038 0.049 0.038 0.033 nfa 
coincidence 

factor 0.91 0.92 0.93 0.93 0.90 nfa 
For 8 description of CEC regions 2,3,8nd 4 ple8se refer to Rgure 2-2. 
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Chapter 3 

Daily Energy Model 

The principal forecasting method offered by HELM is to forecast hourly energy in two 
stages. First, HELM allocates estimates of annual energy use to each day of the year. 
Second, the model allocates the resulting daily energy estimates to hours of the day . For 
_ weather-sensitive end uses, such as air conditioning, the allocation of annual to daily 
energy is based on daily values of weather variables according to a "weather response 
function" (WRF), and on calendric characteristics such as season and day of the week. 
This is the method PG&E and CEC have historically used to produce their forecast. In 
this chapter we describe how we used the PG&E Appliance Metering Project (AMP) 
central air conditioning data to develop specifications for the annual-to-daily energy 
allocation component of this HELM method. 6 The bases for these specifications are 
season~specific linear regression models which use weather data measured at sites in the 
PG&E service territory to model regional or zonal daily averages of AMP central air 
conditioner loads. 

In this chapter we first discuss aspects of the load and corresponding weather data, as 
well as the spatial and temporal aggregation of these-data for the purposes of daily load 
modelling. We then discuss the procedures used to develop daily _ energy regression 
models for use in HELM and describe some of our results. The second component of 
this forecasting method, that of allocating daily energy to hours of the day,.is discussed 
in Chapter 4. Model evaluation issues are presented in Chapter 6. 

Load Data 

Many households in the AMP sample have dual-purpose central space conditioning 
systems that combine electric central cooling with gas central heating. For some of these 
households, the metering equipment used records the demands of both the compressor 
used for cooling and the circulation system used for both heating and cooling. Thus, not 
all recorded central-air conditioner loads can be attributed to the cooling end use: a small 

6 As described in Chapter 2, the AMP sample contains data for three types of appliances associated with the 
cooling end use: central air conditioner, room air conditioner, and heat pump compressor. In this chapter we 
model central air conditioner data only. Heat pump compressors employ the same technology for cooling as do 
central air conditioners, but modeling heat pump compressor data is complicated by the fact that heat pump 
compressors are used for heating as well as cooling. Although we did not develop regression models using heat 
pump compressor data, we discuss some aspects of these data in Chapter 7. We did develop regression models 
for room air conditioner loads for two zones and one region; these results are also presented in Chapter 7. 
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fraction of the loads may be for heating circulation. PG&E Load Research estimates that 
the average circulation system uses about 1.2 kWh per day during the heating season 
(Brodsky and McNiooll 1987). CEC considers heating ventilation loads as part of the 
heating, rather than cooling, end use. 

To eliminate non-cooling electricity consumption, we developed two rules for treating 
observed values. We set the cooling end use load for central air conditioner to zero for 
the Winter season (November to March), thus excluding fan loads for heating, as well 
as any use of the central air conditioner for cooling which might have occurred during 
these five months. FOI the remaining months, we modeled cooling load as zero for all 
days in which the average daily dry-bulb temperature fell below a <specified threshold 
based on previous PG&E research (62.2, 66.1, and 58.6 degrees for PG&E Zones R, 
S, and X respectively, and 62.2, 66.1, and 58.6 degrees for CEC Regions 2, 3, and 4, 
respectively).7 

As a result, the annual energy use ,modeled as cooling is less than the central air 
conditioner UEC, because the former excludes loads in Winter and loads occurring on 
cool days, whereas the latter includes all recorded central air conditioner loads. In· the 
AMP sample the average percentage of annual UEC occurring in November through 

- February is 10.2, 12.3, and 7.9 percent for PG&E Zones R, S, and X respectively. 8 

3.2 Weather Station Assignment and Explanatory Variable Definition 

As described in Chapter 2, we used two separate sets of geographic aggregation for our 
analyses, one by PG&E Zone (zones R, S, and X), and one by CEC Region (regions 2, 
3, and 4), with each metered residence assigned to one zone and to one region. Each 
PG&E zone is associated with a weather station maintained by PG&E, and each CEC 
region is associated with a National Oceanic and Atmospheric Administration (NOAA) 
weather station, according to assignments give by PG&E and CEC, respectively. PG&E 
weather stations at Fresno, Sacramento, and San Ramon are /used for zones R, S, and X, 

_ respectively, and NOAA weather stations at Fresno, Sacramento, and San Jose/Sunnyvale 

7 Our examination of data for individual residen~s indicates that some cooling loads may occur on these 
days. However, we did not model them, as they contributed negligible loads to the region- or zone-wide 
average load shape. These loads might be accounted for by computing seasonal average load (instead of 0) or as 
a miscellaneous or healing end use. 

8 We noticed that a relatively high percentage of the higher winter loads assigned to the central air 
conditioner end use occurred in late December. 
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are used for CEC regions 2, 3, and 4, respectively. See Table 3-1. The correspondence 
between the two sets of geographic aggregations is discussed in Appendix A. 

Half-hourly measurements of dry-bulb temperature and relative humidity are recorded 
for each PG&E weather station. Hourly measurements of dry-bulb temperature, wet-bulb 
temperature, wind· speed, cloud cover, and a number of other meteorological 
characteristics are recorded at each NOAA station. From these primary data sets we 
developed a set of secondary weather variables to be used as potential explanatory. 
variables in daily energy models. For the PG&E stations, we based these weather 
variables on hourly averages of measured half-hourly dry-bulb temperature and of 
relative humidity. For the NOAA stations, we based these weather variables on measured 
hourly \dry-bulb and wet-bulb temperature. 

I 

Table 3-2 lists the set of daily weather variables we derived from the hourly NOAA and 
PG&E weather data, and provides definitions for each variable. The variables include 
average dry-bulb temperature, maximum and minimum hourly dry-bulb temperature, 
(MXDRY and MNDRY) degree-days of the temperature-humidity index base 680F (THI­
DD; see also Appendix A), and a series of daily sums of cooling degree hours using 
temperature bases from 750F to 950F in five degree increments. For our regression 
models, we considered as possible covariates not only the value of each variable on the 
day modeled, but the value of the variables one and two days previous. Recent weather 
variability may also influence cooling demand. We did not examine this phenomena in 
detail, but attempted to capture some of this effect in the variable TV ARMX, defined as 
the variance of the maximum dry-bulb temperature over the three days up to and 
including the day modeled ,9 and the components of another measurement of temperature 
variables developed by Ignelzi and Way (1988), and subsequently used by Kristov 
(1991); we call these variables SCEI (MNDRY * MXDRY1) and SCE2 (MNDRYI * 
MXDRY2).10 . 

9 Ignelzi and Way (1988) instead use a temperature variance variable pr()portional to TV ARM AX * 
MXDRY. . 

10 In the CEC-sponsored California Weather Index Development project, Kristov (1991) addressed the use 
of various meteorological variables for use in modeling weather-sensitive loads. Kristov (1991) describes 
investigations of several weather indices developed to support energy load modeling applicable to California, 
and shows results of .tests of these indices for modeling SMUD and PG&E system data, as well as 1989 AMP 
average central air conditioner load data, for .both daily and hourly load modeling. The primary meteorological 
data used were NOAA measurements of dry-bulb temperature, dew point, wind speed,. and cloud cover; 
secondary measures included THI, cooling degree days, and variables based on principal components analyses 
of the primary variables. 
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3.3. Calendric Aggregation 

We disaggregated data into four seasons: Winter (November through March), Spring 
(April and May), Summer (June through August), and Fall (September and October), 
based on an examination of the monthly distributions of daily average temperature. ll We 
will use these same seasonal definitions for the derivation of load shape libraries 
(discussed in Chapter 4). We investigated, but did not use, day-of-week or day types 
(Weekday vs. Weekend/Holiday) to model daily energy, since we detected only very 
small or nonexistent effects. However, while none of our final models for daily load use 
day type. as an explanatory variable, we did develop distinct load shape libraries for 

, Weekday and for Weekend (see Chapter 4), which is consistent with the current PG&E 
practice of developing daily weather response functions irrespective of day type. 12 

3.4 Linear Regression Models 

In the past,PG&E modeled cooling loads as a function of linear and· quadratic terms of 
a three-day weighted average dry bulb temperature (W A VGDRY) where for day i: 

WAVGDRY[zl = 0.6 * AVGDRY[ll + 0.3 * AVGDRY[i-1] + 0.1 * AVGDRY[i-2], 

where A VGDRY = average dry-bulb temperature, 

so that the regression model is: 

SUMLOAD[ll = ex+ ~* WAVGDRY[ll + y* WAVGDRY[i]2 + error, 

where ex, ~ and y are coefficients estimated using ordinary least squared regression on 
total daily energy use, SUMLOAD. 

To revise these regression models, we used an automatic variable selection procedure 
known as stepwise regression to help select a "good" (in terms of variance explained by 
the model; that is, r-squared) linear model for SUMLOAD, using as potential 

11 We also estimated models for the CEC regions for an Extended Summer season defined as the four month 
period June through September. This Extended Summer season corresponds to a definition used in some past 
work, e.g., PG&E's 1989 WRFs. 

12 In previous forecasts, PG&E has used two day types (Weekday and Weekend) and one season, defined as 
the twelve months of the year, with the load shapes libraries and weather response functions derived on the 
basis on load data for summer (June through September) months only. 
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explanatory variables the covariates listed in Table 3-2. To initialize the stepwise 
procedure, one specifies a response variable (here SUMLOAD), a set of variables to be 
used as potential explanatory variables in the regression model (here the daily weather 
variables described in Table 3-2), and an "F-to-enter" and "F-to-remove" which specify 
the degree of explanatory capability an individual covariate must meet to be entered or 
omitted from the regression equation at any step. Variables are added one at a time to 
the current model. After each addition, the F-value of all variables in the model is 
evaluated; any variable with an F-statistic less than the specified "F-to-remove" value is 
omitted. The stepwise procedure ends when all variables in the model have F-statistics 
greater than F-to-remove value, and all variables outside the model have F-statistics 
lower than the F-to-enter value. We used an F-value of 0.15 for both F-to-enter and F­
to-remove. 13 In developing the final HELM input files, we reduced the dimensionality 
of most of the models resulting from the stepwise regression procedure, as discussed 
below. . 

While the stepwise procedure \ results in sets of covariates which have relatively high 
explanatory capability, results must be interpreted with caution: (1) the procedure is not 
optimal, in thatit does not necessarily result in the subset of a given size which has the 
highest possible r-squared (that is, for a fixed model dimensionality, the procedure does 
not necessarily optimize the set of explanatory variables in terms of maximizing 
explanatory capability); and (2) many alternative sets of variables may have nearly the 
same r-squared as the final subset resulting from the stepwise procedure. Still, the 
procedure is useful in comparing sets of variables to be used in predictive models. 

Because these regression equations were to be used in HELM, we considered the 
following practical issues in our model specifications: (1) HELM PC 2.0 limits the 
number of weather variables which can be specified in models for-weather-sensitive end 
uses to six,I4 and. (2) although it is possible to specify different 'sets of weather variables 
for each season in the model for each season, it is awkward to do so. For these reasons, 
we constrained the number of variables in the regression model specified in the HELM 
input files to six and used the same variables for each season. To select these variables, 
we examined the variables in the season-specific models,' and the marginal r-squared 
contribution of each variable according to the stepwise procedure. We first chose those 
variables ranked highest in terms of marginal r-squared for the Summer regression 
models and then augmented these basic models according to the variables selected for the 
Fall and Spring Seasons. 

13 The SAS default value for F-to-enter and F-to-remove is 0.15. 

14 Quadratic and higber powers of eacb of these six variables may be used, in addition to the linear term. 
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Tables 3-3 and 3-4 shows the variables included in the resulting HELM regression 
models for CEC regions 2, 3, and 4 and for PG&E zones R,S, and X, respectively. 
These represent the WRFs used in HELM, which were derived from a stepwise linear 
regression procedure using the full set of variable listed in the left column. Each column 
gives the regression coefficients for all variables included in the WRF. The regression 
coefficients are provided for comparative purposes only; please refer to the HELM input 
files for higher precision in regression coefficient values. 

The tables also show r-squared for these models, and, for comparison, the r-squared 
from models achieved by the subset stepwise procedure. With the caveat that it is 
insufficient to judge models only by comparing r-squared, we list for comparison the r­
squared values for the PG&E WRF-format regressions (load as a function of 
WA VGDRY . and WA VDRYSQ, as discussed above), and for the regressions of 
THISUM, THISUM1, and THISUM2 on SUMLOAD as formerly used by previous CEC 
forecasts. The PG&E WRF-format regressions have nearly as high r-squared as do the 
stepwise.regression models; this is particularly impressive considering that the stepwise 
regression models were developed by explicitly maximizing r-squared. 

In general, fits are best for CEC region 2 and for PG&E zone S, both of which represent 
the Sacramento area. For example, for CEC region 2 Summer, a model with just two 
explanatory variables, THISUM and CDDSUM90, explains 92 percent of the variance 
of load about the mean. The fits for CEC region 4 and PG&E zone X are considerably 
poorer than the fits for the other regions and zones. The poorer fits for CEC Region 4 
and PG&E Zone X are not surprising, since these two areas are relatively mild, and may 
be more climatically diverse than the other areas as well. In Chapter 7 we re-estimate 
daily load regression models for CEC region 4, using an alternative set of weather data 

. to construct explanatory variables. 

3.5 Assessing Model Fit 

While r-squared can provide a useful summary measure 'of a model's explanatory 
. capability, it has several limitations, and does not describe all aspects of interest in 

assessing model fit. Among the chief limitations of r-squared are: (1) it does not 
necessarily represent the predictive capability of the model for the aspects of most 
interest; for example, the model may give biased estimates for peak load days, but r­
squared alone will not indicate this; and (2) r-squared describes model fit using the same 
data used to develop the model as to assess it; out-of-sample assessment of the model 
may provide a better indication of how well the model can work for forecasting purposes. 
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For these reasons, it is valuable to develop intuitions regarding these findings by 
reviewing graphical summaries. Figure 3-1 is a time-series plot of model residuals 
(observed minus fitted values of daily average central cooling energy) for CEC regions 
2, 3, and 4 over a period of five years. For each region, the residuals are the result of 
three separate regressions, one for each of Spring, Summer, and Fall seasons. The gaps 
in the plot are for the winter season (November through March) for which daily cooling 
loads are assumed to be zero. 

The plots for CEC regions 3 and 4 show some striking patterns. In particular, the 
regression models for region 2 tend to overpredict loads in 1985 and 1986, and 
underpredict loads in 1988, with consistent overprediction for a substantial period in 
summer 1989. The models for region 4 tend to overpredict in 1986 and 1989, and 
underpredict in 1988 and in mid-summer 1985. We do not know how to explain the 
fairly major response shifts shown for region 3, or the extent to which the patterns in 
AMP sample load indicate patterns in regional load, but the effect may be important in 
assessing the value of forecasts. 15 

. IS Such annual shifts have implications for the time period over which models are developed. One possi~le 
treatment of this effect, for modeling purposes, is to express all loads as deviations from the' annual means, as 
'suggested by Kristov (Kristov 1991) .. 
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Table 3-1. Weather Stations Assigned to PG&E Zones and CEC Regions for 
Cooling End-Use Models Based on 1985-1989 AMP Data 

S ................ . 
R 
X 

2 ................ . 
3 
4 

8760 

Sacramento . . . . . . . . 
Fresno .......... . 
San Ramon ....... . 

Sacramento 
Fresno .......... . 
Sunnyvale 1985 ... . 
San Jose 1986~1989 

*Annual CDH-75 =E max (dry-bulbtemperature [h] - 75, 0) 
/0-1 

18 

24437 
13138 
5942 

14134 
25445 
2401 
5385 
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Table 3-2. Variables Used in Daily Regressions 

.. 
Fall (Sep and Oct) 

I THI = '5 + 0.4 • (dry-bulb temperature + wet-bulb temperature) 
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Table 3-3. Summary of Regression Results for eEe Regions 2,3,and 4' 
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Table 3-4. Summary of Regression Results for PG&E Zones 1 S,R, and X 

I TheBS ooeftio"ient. are provided for oomparstive purposes. Please refer to HELM input ,118. for Mgher preoision in regrBssion ooefficient values. 
, (ns' next to 8 ooaffioie'nt indioate. that the ooefficient was not significant aooording to 8 Helt of lave I 0.10. 
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Figure 3-1. Time series plot of residuals from Daily WRFs for 
CEC Regions 2, 3, and 4, 1 ~85-1989 (winter omitted). 

"' 

800 

800 

1000 

1990 

~ . 



Chapter 4 

Binned Hourly En~rgy Load $hapes 

In this chapter we describe how we developed specifications for HELM's allocation of 
daily central cooling energy estimates to the hours of the day. 16 HELM performs the 
allocation by assigning each day to a fixed 24-hour load shape according to season, day 
of week, and· weather measurements for that day. Below, we discUcss how we derived 
libraries of fixed load shapes from the AMP sample data using bin definitions previously 

. specified by PG&E. We continue discussion of our work on binned load shape libraries· 
in Chapter 7, where we assess the variability of the load shapes within a bin and also 
describe our initial investigation of possible alternative bin definitions. 

4.1 Approach 

The principle behind defining load shape bins is to use characteristics external to load 
data, such as weather and day of the week, to separate days· into groups such that load 
shapes are similar within a group, relative to load shapes in other groups. Grouping, of 
course, will depend on the measure or measures of similarity used, which in tum should 
depend on which aspects of the load shape are of most importance in forecasting. All 
binning described in this chapter is based on load shape descriptions in which hourly load 
is given as a proportion of total daily load; we refer to these as load profiles or 
normalized load shapes. Load shapes for a bin are computed using HELM's algorithm, 
described below, which is based on the use of load duration curves. 

PG&E previously developed load shape bin definitions for zones R, S, and X using only 
1989 AMP data and PG&E weather data. Bin definitions were based on three-day 
weighted daily average dry bulb temperature described in Chapter 3. The bins were 
developed using HELM PC 1.0, and were based on data for an extended summer season, 
June through September. The bins were developed using a manual iterative procedure, 
in which bin temperature ranges were successively modified towards minimizing the sum 
of the hourly standard errors within a bin. Table 4-1 shows the adopted bin definitions. 

16 The daily energy estimates are computed according to daily Weather Response Functions, which are 
described in Chapter 3. 
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LBL extended these definitions to a changed summer season definition (June through 
August) and to the Spring (April and May) and Fall (September and October) seasons in 
order to develop load shape for HELM input files. We used A VGDRY rather than 
WA VGDRY to make bin assignments. (See Table 3-2 for formal definitions of these 
quantities.) We also extended these definitions to the CEC Regions. We applied PG&E 
zone R bin defmitions to CEC region 3, PG&E zone S bin definitions to region 2, and 
PG&E zone X definitions to CEC region 4. For cases in which the extended definition 
resulted in a bin with too few days being assigned, the bin was cOmbined with the bin 
directly below it. This occurred in four cases for PG&E zones and in two cases for CEC 
regions. 

Data for all days assigned to a bin are used to compute a representative load shape for 
the bin. HELM's algorithm for computing this representative load shape is based on the 
use of a load duration curve. The procedure is described in detail in the HELM Manual 
(ICF Resources Inc. 1992). In brief, the algorithm is as follows: (1) determine the set 
of days falling into a bin, (2) normalize the loads in each day in the set by dividing each 
observed hourly load by the total daily load (optional), (3) compute an average load 
shape based by averaging the loads for each hour across the days in the set, (4) compute 
the load duration curve for each day by reordering the loads in each day from highest to 
lowest load, (5) compute the average load duration curve by averaging the hour~y values 
of the daily load. duration curves for all days in the set, and fmally, (6) derive the load 
shape representation by reordering the loads in the load duration curve according to the 
relative magnitUdes in the average load shape (e.g., the hour of the peak in the average 
load curve is assigned the magnitudes of the average peak hour in the load duration 
curve) 

4.2 Results 

The resulting load shape libraries are represented graphically in Appendix B. Figures B-1 
through B-3 present the load shapes for PG&E zone R for Spring, Summer, and Fall 
respectively. Figures B-4 through B-6 present PG&E zone S; Figures B-7 through B-9 
present PG&E zone X; Figures B-I0 through B-12 present CEC region 2; Figures B-13 
through B-15 present CEC region 3; and Figures B-16 through B-18 present CEC region 
4. Note that some load profiles in cooler bins (e.g., the load profile for the 66.2-75 0 bin 
for Spring in PG&E zone R) show small "bumps" in early morning hours. These bumps 
may correspond to ventilation loads for heating. 17 The Region 4 load shapes for Fall and 
Spring (B-16 and B-18) ate somewhat irregular, suggesting perhaps bins could be further 

17 It is our understanding that previously PG&E smoothed these bumps away using a smoothing feature 
provided in HELM. 
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collapsed, especially since the Summer load shapes for the region (B-17) vary little by 
temperature bin. However, the load shapes for the mildest of the PG&E zones, X, are 
relatively smooth, and do .vary considerable by temperature bin. 

Table 4-1. Cooling Load Bins by PG&E Zone for Spring, Summer and Fall 
Seasons· 

R ......... ;...... 0.0-66.2 .......... . 
66.2-75.0 
75.0-80.0 
80.0-85.0 
85.0-87.5' 
87.5~100.0 

5 ................ 0.0-62.1 .......... . 
62.1-70.0. 
70.0-75.0 
75.0-80.0 
80.0-85.03 

85.0-100.0 

x ..... ~ . . . . . . . . .. 0.0-58.6 ........... . 
58.6-67.5 
67.5-72.5 
72.5-77.5 

·77.5-100.0 

0.0-66.2 
66.2-75.0 
75.0-80.0 
80.0-85.02 

85.0-87.5 
87.5-100.0 

0.0-62.1 
62.1-70.0 
70.0-75.0 
75.0-80.0 

0.0-58.6 
58.6-70.0 

• these bins were used to develop load shape representation libraries for HELM daily models 
1 except for Spring: range extended to S5-100 
2 except for Spring: range extended to SO-100; and Fall: range extended to SO-S7.5 
3 except for Spring: range extended to SO-100 
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Table 4-2. Cooling Load Bins by CEC Region for Spring, Summer and Fall 
Seasons· 

2 ................ 0.0-66.2 .......... . 
66.2-75.0 
75.0-80.0 
80.0-85.0 
85.0-87.5' 
87.5-100.0 

3 ................ 0.0-62.1 .......... . 
62.1-70.0 
70.0-75.0 
75.0-80.0 
80.0-85.02 

85.0-100.0 

4 ................ 0.0-58.6 .......... . 
58.6-67.5 
67.5-72.5 
72.5-77.5 
77.5-100.0 

0.0-66.2 
66.2-75.0 
75.0-80.0 
80.0-85.0 
85.0-87.5 
87.5-100.0 

0.0-62.1 
62.1-70.0 
70.0-75.0 
75.0-80.0 

0.0-58.6 
58.6-70.0 

• these bins were used to develop load shape libraries for HELM daily models 
1 except for Spring: range extended to 80-100 
2 except for Spring: range extended to 80-100 
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Chapter 5 

Hourly Energy Models 

In this chapter, we examine models now available in HELM that directly allocate annual 
cooling energy .to hours of the year. This procedure is an alternative to the two-stage 
allocation procedure, which has been used by PG&E and CEC, and for which we 
developed models in Chapters 3 and 4. The models we examine are ) based on linear 
regressions developed using hourly weather data to model hourly average metered AMP 
central air conditioner loads. Our approach is to first consider a variety of model 
. specifications using CEC region 3 Summer data. 18 Based on these investigations, we 
then proceed to develop models for Summer season cooling end use for CEC regions 2 
and 4. 19 Formal model assessment issues are left to Chapter 6. Additional exploratory 
issues considered in the development of the models are also discussed in this Chapter. 

HELM Hourly Weather Response Functions 

The most recent version of HELM PC (Version 2.0) offers the capability to develop and 
use hourly Weather Response Functions as well as daily Weather Response Functions 
(WRFs). Hourly models allow for a more explicit connection between diurnal weather 
patterns and cooling load than do daily models, since daily models also require a separate 
procedure to allocate daily energy use to the hours of the day. 20 

The format HELM uses for the hourly WRFs parallels that used for the daily WRFs. 
HELM allows the user to model hourly load as a linear function of weather variables, 
where models may be specified separately according to user-defined seasons and 
day types. 21 HELM interprets the hourly loads resulting from the WRF as a relative 

18 We selected CEC Region 3 for our exploratory analyses because it is the region (among the CEC 
Regions) with the highest average central air conditioner UEC. 

19 Hourly models were not developed initially for PG&E Zones R,S, and X pending the outcome of the 
. overall evaluation of this approach in Chapter 6 . 

:20 A time-series based approach to hourly load modeling is theoretically appealing:, however, HELM does 
not directly provide for such an approach; we did not ~vestigate the development of such models. 

21 The model for a given combination of season and daytype may be piecewise linear, consisting of several 
segments, with each segment defined according to the values of weather variables, with different parameter 
coefficients specified for each segment .. 
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percentage of total energy within a forecast period, which is typically a calendar year. 
These relative percentages are subsequently scaled to reflect an exogenously specified 
(from an annual energy forecasting model) total energy use for the period specified in 
the HELM Forecast file. For flexibility, we developed our models outside of the HELM 
framework using SAS, and subsequently reformatted the resulting model specifications 
as HELM input files. 

5 .2 Weather and Load Data 

Table 5-1 lists the covariates considered for our hourly models. We based this list, in 
part, on the weather variables considered in the hourly models examined by Kristov 
(1991).22,23 Note that the variables wind speed (WNDSPD) and cloud cover (CLDCVR), 
which were not considered in the constructipn of our daily Weather Response Functions, 
are available only for NOAA stations and not for PG&E weather stations. We include 
Temperature-Humidity Index (THI) in several forms: THI (for THI base 0), THI-base-68 
(THIB, defined as the greater of THI minus 68, or 0), as well as the six-hour lagged 
sums of THIB24 (THIBSUM6) and the squared value of THIB (THIBSQ) .. Some other 
possible transformations of the basic weather variables (e.g., different bases for THI) are 
discussed below. 

As discussed in Chapter 3, some of the AMP central air conditioner load data includes 
small ventilation loads incurred during heating operation. Although the models examined 
in this chapter are based on Summer data only, this load data may also include such 

22 Note that the models we discuss are developed on the basis of five years of data (1985-1989), whereas 
Kristov (1991) examines a similar set of models using one year of data (1989). 

23 In linear regression models for hourly average AMP loads, Kristov found that using all four primary 
weather variables (dry-bulb temperature, dew point, cloud cover, and wind speed) had considerably more 
explanatory power than THI alone, and that adding lagged THI information greatly improved the explanatory 
power of both the four-variable and the THI-alone regression models. Kristov considered two types of daily 
regressions, one modeling total daily load (SUMLOAD) and one modeling maximum hourly load 
(LOADMAX). In general, fits were better for LOADMAX than for LOADSUM, which has implications for 
modeling peak loads, in particular. Kristov. found that models using the 24-hour sum of THI-base-68 (THISUM) 
for the present day and for the two previous days (as motivated by the CEC's current practice for their Peak 
Demand Forecast model), and similarly, models using the 24-hour sum of cooling degree day base 75 
(CDDSUM) for the current day and the two previous days, provided the highest explanatory capability for the 
linear regression models, among the five models considered. 

24 Kristov also used a lag period of six. Based on our examination of the partial autocorrelation estimates of 
residuals from Modell, six hours appeared to be an appropriate lag period (although the "best" lag period 
could vary depending on hour of the day). 
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ventilation loads, particularly in the early morning or late evening hours. Load shape 
repre~entations (Figure B-ll, B-14 and B-l7) indiCate such occurrences are minor for 
Summer but they may be more important for Plodeling milder seasons and regions, for 
example some load shapes for Spring region 2 (Figure B-10) shows an 8 a.m. "bump". 

5.3 Exploratory Regression Results for CEC Region 3 

Using previous research and forecasting practices as a guide, we examined four linear· 
regression models, in each case using only data for Summer (June through August) in 
CEC region 3.25 The data for each hour were modeled separately. Tables 5-2 through 5-4 
summarize results for the first three models; representing 72 separate regressions (24 
hours for each of three sets of explanatory variables). The tables show model r-squared 
and note variables for which the regression coefficient was statistically significan~ at or 
below the 0.05 level. 

Modell. Load = f (WETBLB, DRYBLB, CLDCVR, WNDSPD, error) 

This model uses the four basic NOAA weather measurements routinely available on 
hourly weather data tapes. Table 5-2 summarizes Model 1 results. For all hours, r­
squared is considerably lower than those for the other models considered below. Model 
fit, in terms of r-squared, is best for the late afternoon and evening hours. For example, 
r-squared in each of the hourly models for 5 p.m. through 10 p.m. is above 0.75. 
Examination of residuals reveals that part of the reason for the relatively poor fits is that 
in each model, load is considered linear in temperature throughout the range of observed 
temperatures, whereas in reality cooling load is near zero for most hours below a 
sufficiently cool threshold. That is, load increases in temperature only in the weather 
range in which cooling loads occur. 

Except for the intercept, coefficients are positive (if they are significantly different than 
zero). The regression coefficient for cloud cover (CLDCVR) is significantly different 
than zero in all hours after 10 a. m. but is significantly different than zero in no hours 
before 10 a.m. The regression coefficient for wind speed (WNDSPD) is significantly 
different than zero at the 0.05 level for only a few hours: 5 a.m., 8 a.m., 9 p.m., 10 
p.m., and IIp.m., with a positive coefficient for each of these hours. The addition of 

. two. variables WNDSPD and CLDCVR together explain less than 1. percent additional 
variance in load over a model with WETBLB and DRYBLB alone (that is, ·WNDSPD 

2S It may be more appropriate to use a regression procedure which accounts for the autocorrelation of the 
residuals, as did Kristov (1991). However, appropriate software was not available at the time of analysis. 
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and CLDCVR together have a marginal r-squared of less than 0.01 relative to the 
WETBLB and DRYBLB model.) 

Model 2. Load = f (THIB, THIBSUM6, error) . 

This model is motivated by the use of the weather index THI used by CEC's Peak 
Demand Forecasting Model (which uses THI both in allocation of annual energy to the 
daily energy and in allocation of daily energy to hourly energy). Table 5-3 summarizes 
Model 2 results. 

THI, as a fixed function of wet-bulb and dry-bulb temperature, allows less flexibility in 
modeling than using wet-bulb and dry-bulb temperature independently. We found, as did 
·Kristov (1991), that using THI alone as an explanatory variable resulted in considerably 
lower r-squared than.those of Model 1. But by using THIB (THI -base-68, the maximum 
of THI minus 68, or zero), we obtained higher values of r-squared than for Modell 

. (results for the model using THIB only are not shown). In this case, the use of a 
"degree-day" concept successfully addressed the problem noted in discussing Modell 
of limiting model fit to temperature ranges with observed cooling loads. 

Model 2 includes THIB, and in addition, THmSUM6, which is the sum of THIB over 
the six hours preceding the hour modeled. The two THI-based variables of Model 2 . 
together achieve higher values for r-squared than do the Model 1 variables: Considerably 
higher for low-load morning hours and moderately higher for afternoon and evening 
hours (e.g., r-squared of 0.84 for 6 p.m. as opposed to the Modell r-squared of 0.81). 

Model 3. Load = f (THIB, THIBSUM6, THIBSQ, DA YTYPE, error) 

Model 3 incorporates two new variables to those of Model 2: a DA YTYPE variable 
(Weekday, or Weekend/Holiday), and the square of THI-base-68 , THIB68SQ. Table 5-4 
summarizes Model 3 results. These additions lead to considerably higher values of r­
squared, particularly in the afternoon and evening hours, which is when the highest loads 
occur. For example, the r-squared values for 6 p.m., 7 p.m. and 8 p.m. are 0.87,0.88, 
and 0.88, respectively, for Model 3, versus 0.84, 0.84, and 0.82, respectively, for 
Model 2. 

The coefficient for DA YTYPE is significantly different from zero (again at significance 
level at or below 0.05) only for 12 midnight and the hours between 1 p.m. and 5 p.m. 
inclusive, with a negative coefficient for Weekdays (lower loads) than on Weekends for 
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these hours. 26 27 The lagged six-hour sum of THI-base-68, THIB68SUM6, is 
significantly different than zero (p < = 0.0001) for 'all hour models. 

Model 4. Load = f(WETBLB, DRYBLB70, CLDCVR, WNDSPD, THmsQ, 
THIBSUM6, error), 

We also examined a fourth model but do not summarize results in a table. This model 
represents Model I with modifications to address some of the deficiencies noted above: 
DRYBLB70 (the maxiinum of DRYBLB minus 70, or zero) replaces DRYBLB, and 
second-order (THIBSQ) and lagged (THmSUM6) weather information are added. 
Nevertheless, the r-squared for this model is only slightly better (by 0.01 or less) than 
those for Model 3. 

Based on- these results, Model 3 seems to represent the best model among those. 
considered above, considering fit, parsimony, and the limitations of the weather data 
base. With respect to Model 4, which had a very slightly higher t:-squared, two of the 

. weather variables (CLDCVR and WNDSPD) are not available from the PG&E weather" 
stations, which would be needed to model hourly loads for the PG&E zones. In addition, 
it is also likely that the choice of base tempe!ature for DRYBULB70 w01,lld also change 
for other CEC regions ·and PG&E zones. 

5.4 Regression Results for the Remaining CEC Regions 

We then estimated regression coefficients for CEC regions 2 and 4 using the structure 
of Model 3. Tables 5-5 and 5,.6 summarize Model 3 fit for these CEC Regions (as noted 
above, Model 3 results for CEC region 3 are summarized in Table 5-4). Figure 5-1 
presents the coefficients from the models developed for all three CEC regions 
graphically. This figure shows all coefficients for each hour, whether or not the 
coefficient was found to be statistically significant. the coefficients for each covariate 
show characteristic diurnal patterns across the regions, but in general interpretation of 
the coefficients is complicated by the fact that THIBSQ "(covariate of the third column) 
is a function of. THIB68 (covariate of the second column) . 

26 Since DA YTYPE is a binary-valued variable, it has the same effect as allowing tWo different intercepts 
for the model (one for Weekday, and one for WeekendlHoliday). 

27 We also introduced, but ultimately did not include, day of the week as a variable m Model 3. Between 2 
p.m. and 6 p.m. there appears to be a significant contrast between mid-week and Saturday effects. However, 
this addition only explains about an additional 1 percent variance for each hour as compared to Model 3. 
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For each of the three CEC regions, model r-squared are fairly high from early afternoon 
to evening. R-squared for the late afternoon and early evening models (between 4 p.m. 
and 8 p.m.) is lowest for CEC region 4. For both CEC region 2 and CEC region 4, 
model r-squared is remarkably low for some hours of the day: less than 0.50 and as low 
as 0.24 between 4 a.m. and 10 a.m. for CEC region 2, and less than 0.50 between 6 
a.m. and 9 a.m. for CEC region 4. These.1ow r-squared values are in part a consequence 
of the low occurrence of cooling loads in these hours and perhaps heating· ventilation 
loads. Given the small proportion of cooling loads which occur during these early 
morning hours, the low r-squared values are probably of little concern. 

In Chapter 6, the results of our evaluation of these models is presented. 

5.5 Additional Thoughts on Hourly Model Development 

The use of hourly weather response functions is a relatively new application for HELM. 
We have taken this opportunity to consider an alternative approach and issues that ·stem 
from the basic analysis presented above. 

5.5.1 Pooled-Hours Models vs. Hours-Separate Models 

As an alternative to the hours-separate models presented above, we also pooled all hours . 
and estimated coefficients for each of the four models, using Summer data for CEC 
region 3. In this regression, we allowed the intercept term to vary depending on hour of 
the day, but otherwise the data were taken without regard to hour (that is, an analysis of 
covariance model with first-order effects of the categorical variable HOUR.) This pooled­
hours model restricts the (multidimensional) regression plane to be the same for all 
hours, except for a shift in location of the plane corresponding to the coefficient for hour 
(an intercept term).28 In contrast, among a set of hours-separate models the regression 
plane can vary freely. Table 5-7 summarizes these models. Although the r-squared for 
these models is high (0.92 for example, for Model 3 with hour as a categorical variable) 
the models do not predict loads as well as do the hours-separate models. 

Defining prediction error as the sum of squared residuals for a given set of hours, we 
compared the hours-pooled to the hours-separate models. Prediction error for the hours­
pooled model is, of course, necessarily higher than for the corresponding hourly 

28 In a simple linear regression (one covariate) the slope of the regression line would remain the same but 
shift in position along the direction of the y-axis. 
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regression model For example, the prediction error for 7 p.m. is 38.4 for the hour­
specific Model 3, but 41.5 (or 8 percent higher) for the hours-pooled Model 3. 

These findings underscore the problem of relying too heavily on r-squared as the sole 
basis of judging models.29 In this case, a series of individual hourly models, each with . 
lower r-squared, has better predictive capabilities than a single, pooled model with higher 
r-squared. This observation, in tum, motivates our· examination of the comparative 
predictive capabilities of all of the models in Chapter 6. 

5.5.2 Long-Term Temporal Patterns in Model Residuals 

In our examination of residuals from the annual regression models (Chapter 3), we noted 
some strong temporal patterns. These patterns were also observed in our analysis of 
hourly loads. 

Figure 5-2 shows the annual distribution of residuals from Model 3 for 7p.m. load; the 
solid horizontal line at zero indicates the average residual. The distribution of residuals 
varies dramatically from year to year: . the third quartile of the distribution of residuals 
in 1986 is at about zero, which is the same level of the first quartile of the distribution 
of residuals in 1988: 75 % of the 1986 7 p.m. loads are over-predicted by the hourly 
model, whereas 75 % of the 1988 7 p.m. loads are underpredicted by the hourly model. 
Figure 5-2 also shows the time-ordered values of the 7 p.m. residuals together with a 
smoothed line through the data. Residual patterns for other hours' are similar. Note that 
Summer 1988 was particularly hot, which may motivate behavioral factors or correlate 
with other factors not adequately captured by our regression model. But when we 
examined patterns of Model 3 residuals for CEC Regions 2 ,and 4, we did not find 
similar patterns. Of course, strong residual patterns could also be a reflection of data 
anomaiies, rather than of shifts in regional loads . 

29 For example, in a simple linear model: if the true model is Ey [i] = a + b (x[i] - x), with 

Var (y) = 0 2 : r increases as r decreases, b increases, and E '(x[l]_x»2 In increases. 
I 
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Table 5-1. Variables Used in Hourly Central Air Conditioner Load Regressions 

HOUR ......• 

LOAD ....... . 
AVGDRY 
CLDCVR' 
DAYTYPE 

DRYSUM6 ... . 
DRYTMP .... . 
THI ........ . 
THiS ....... . 
THISSQ ..... . 

THISSUM6 .... 

Hour of day (1 through 24) 

Regional average load for HOUR 
A verage daily dry bulb temperature for day 
Amount of sky covered by cloud layers (0-10) 
Weekday or Weekend/Holiday 

HOUR-l 

. E DRYTMP[h] 
h-HOUR-6 

Dry-bulb temperature 
Temperature-Humidity Index [15 + 0.4 x (DRYTMP + WETTMP)] ; 
Max (THI-68, 0) 
THIS· THIB 

HOUR-l 

E THIB[h] 
h-HOUR-6 

WETTMP ..... Wet-bulb temperature 
WNDSPD' . . . . . Wind speed in knots 

1 Not available from PG&E weather stations 
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Table 5-2. Summary of Model 1 * Hourly Regressions for CEC Region 3 
Summer Season 

1 nfa 
2 nfa 
3 .J .J 0.59 
4 .J .J 0.55 
5 .J .J .J 0.50 
6 .J .J 0.46 
7 .J .J 0.42 
8 .J .J .J 0.47 
9 .J .J .J 0.51 
10 .J .J 0.50 
11 .J .J .J 0.54 
12 .J .J .J 0.58 
13 .J .J .J 0.63 
14 .J .J . .J 0.69 
15 .J .J .J 0.72 
16 .J .J .J 0.75 
17 .J .J .J 0.77 
18 .J .J .J 0.81 
19 .J .J .J 0.82 
20 .J .J .J .J 0.81 
21 .J .J .J .J 0.81 
22 .J .J .J .J 0.77 
23 .J .J .J .J 0.73 
24 ~ .J .J .J 0.68 

• Model 1: Load ,,;, f (WETBLB. DRYBLB. CLDCVR. WNDSPD. error) 
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Table 5-3. Summary of Model 2* Hourly Regressions for CEC Region 3. 
Summer Season 

1 

'" '" 
0.76 

2 

'" '" 
0.72 

3 

'" '" 
0.74 

4 '" '" 
0.73 

5 

'" '" 
0;69 

6 '" '" 
0.67 

7 '" '" 
0.65 

8 

'" '" 
0.66 

9 '" '" 
0.73 

10 

'" '" 
0.74 

11 .J '" 
0.78 

12 .J 0.80 
13 .J '" 

0.82 
14 .J '" 

0.83 
15 

'" 
0.83 

16 

'" 
0.83 

17 .J 0.82 
18 .J '" 

0.84 
19 .J '" 

0.84 
20 .J '" 

0.82 
21 

'" 
0.83 

22 .J '" 
0.82 

23 .J '" 
0.80 

24 .J '" 
0.77 

* Model 2: Load =f (THIS, THISS6M6, error) 
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Table 5-4. Summary of Model 3* Hourly Regressions for CEC Region 3 
Summer Season 

1 ..J ..J ..J 0.82 
2 ..J ..J ..J 0.80 
3 ..J ..J 0.77 
4 ..J ..J 0.75 
5 ..J ..J 0.71 
6 ..J ..J 0.68 
7 ..J ..J 0.66 
8 ..J ..J 0.67 
9 oJ .J 0.75 
10 .J .J 0.75· 
11 .J .J 0.78 
12 ..J" 0.81 
13 ..J ..J .J 0.83 
14 .J ..J ..J .J 0.84 
15 ..J ..J ..J .J 0.84 
16 .J .J ..J ..J 0.86 
17 . .J .J ..J .J 0.85 
18 ..J ..J ..J 0.87 
19 .J ..J .J 0.88 
20 ..J .J .J 0.88 
21 ..J .J ..J 0.89 
22 .J .J .J 0.88 
23 .J ..J .J 0.87 
24 .J .J .J 0.84 

* Model 3: Load = f (DAYTYPE, THIB, THIBSQ, THIBSUM6, error) 

.\ 
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Table 5.,5. Summary of Model 3* Hourly Regressions for CEC Region 2 
Summer Season 

1 :/ .J .J 0.66 
2 .J .J .J r 0.56 
3 .J .J .J 0.54 
4 .J .J .J 0.41 
5 .J .J .J 0.33 
6 .J ;.j .J 0.24 
7 .J .J 0.29 

.8 .J 0.24 
9 .J .J .J 0.32 
10 .J .J 0.45 
11 .J .J 0.63 
12 .J .J 0.69 
13 .J .J .J 0.77 
14 .J .J .J 0.82 
15 .J .J .J 0.85 
16 .J .J .J 0.86 
17 .J .J .J 0.86 
18 . .J .J .J 0.88 
19 .J .J .J 0.88 
20 .J .J .J 0.88 
21 .J .J 0.86 
22 .J .J 0.84 
23 .J . .J 0.79 
24 .J .J .J 0.74 

It Model 3: Load = f (DAYTYPE, THIB, THIBsa, THIBSUM6, error) 
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Table 5-6. Summary of Model 3* Hourly Regressions for CEC Region 4· 
Summer Season 

1 

'" '" '" 0.72 
2 

'" '" '" 
0.68 

3 

'" '" '" 0.66 
4 

'" '" '" 
0.71 

5 

'" 
0.53 

6 '" '" '" 
0.47 

7 

'" 
0.32 

8 '" 0.37 
9 

'" '" '" 0.58 
10 '" '" '" 0.71 
11 '" '" 0.74 
12 

'" .J 0.77 
13 '" '" 

.J 0.79 
14 

'" '" '" 
0.82 

15 '" '" .J 0.83 
16 

'" '" '" 
0.83 

17 

'" '" '" 0.82 
18 '" '" '" 

0.80 
19 '" '" .J 0.79 
20 

'" '" '" 
0.81 

21 .J .J 0.86 
22 '" .J 0.86 
23 '" '" '" 0.83 
24 '" .J '" 0.74 

* Model 3: Load = f (DAYTYPE, THIB, THIBSQ, THIBSUM6, error) 
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Table 5-7. Summary of Hours-pooled Regression Results for Summer 
CEC Region 3 

HOUR·, DRYTMP, 
Model 1. CLDCVR, WNDSPD 0.77 

Model 2. HOUR·, THIB, 0.85 
THIBSUM6, 

HOUR·,DAYTYPE, 
Model 3. THIB,THIBSO, 0.92 

THIBSUM6 

HOUR, WETTMP, 
CLDCVR, WN DSPD, 

Model 4. THIBSUM6, THIBSO 0.92 

* HOUR is a categoricar ("factor") variable in these models. 
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Table 5-8. Comparison of Prediction Errors in Selected Hours for Model 3 
Based on Peak Day Subset to Model 3 Based o'n All Summer Days, for CEC 
Region 3 

Regression Model: 
Load = f(THIB, THIBSO, THIBSUM6,error) 16 17 18 19 

Hourly models based on all Summer days2 5.3 5.3 5.4 ' 5.5 
Hourly models based on peak day subset 3.6 3.4 2.5 2.4 

(r-squared) (0.60) (0.61) (0.64) . (0.69) 

1 Peak Day Subset is = days with 50 = highest = values of Daily Energy/Annual Energy, 1985~ 
1989, based on PG&E system load data provided by CEC 

2 see Table 5-4 for summary,of regression results for these models 
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Annual distribution of residual from 7 p.m. hourly model 
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Figure 5-2; Temporal Patterns in Residuals for 7 p.m. Hourly Load Model. 
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Chapter 6 

Comparison of Cooling End Use Models 

. In this chapter, we compare load shape predictions from a variety of models for the 
cooling end use. From the present report, we compare predictions from: (1) the daily 
WRFs along with the corresponding binned load shapes, discussed in Chapters 3 and 4; 
and (2) the hourly WRFs, discussed in Chapter 5. From previous LBL work (Eto and 
Moezzi 1992), we also compare (3) CEC's Peak Demand Forecasting Model using the 
grand time-temperature matrix developed by LBL from 1985-1989 AMP data; and (4) 

. CEC's Peak Demand Forecasting Model using region-specific time-temperature matrices 
developed by LBL from 1985-1989 AMP data. Finally, from PG&E's. and CEC's 
existing peak models, we compare (5) PG&E's daily WRFs used with corresponding 
PG&E-developed binned load shapes; and (6) CEC'sPeak Demand Forecasting Model 
using CEC's time-temperature matrix. 

The comparisons are conducted by examining the differences between the sample average 
loads developed from the AMP data and the loads predicted by each model. Separate 
evaluations are conducted for each geographic forecasting aggregation (one for each of 
the three PG&E zones and one for each of the three CEC regions). Note that not all 
models were developed for each PG&E zone or CEC region. 

This chapter is organized in six sections. First, we discuss model-specific implementation 
. issues that provide additional information on the methods used to develop model 
predictions for comparison to the AMP sample loads. Second, we describe the overall 
approach used to compare the models, including a discussion of the measures we 
developed to assess the performance of the models. In the third section, we present our 
findings Jor the models developed to forecast load shapes for CEC regions, while in the 
fourth section we present findings for the models developed to forecast load shapes for 
PG&E zones. Fifth, we identify considerations that influence the interpretation of results. 
Sixth, we summarize our findings. I 
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6.1 Computation of Predicted Loads 

In this section, we describe how we computed· the predictions3o used for model 
comparison. Tables 6-1 and 6-2 indicate the models being compared for CEC regions 
and PG&E zones, respectively. Note that not all models were developed or available for 
each CEC region and PG&E zone. Also recall that, for the models reported on in 
Chapters 3 and 4, separate seasonal models were estimated for each CEC region and 
PG&E zone. 

6.1.1 LBL Daily Regressions with LBL Load Shape Libraries (LBL WRF) 

Using the models developed in Chapter 3, we computed daily energy estimates for each 
CEC region (models summarized in Table 3-3) and for each PG&E zone (models 
summariZed in Table 3-4). We computed hourly load estimates by scaling the appropriate 
binned load shape (defined for each CEC region and PG&E zone by Season, Day type, 
and A VGDRY) by the daily energy estimate from the regression model. We refer to this 
model as LBLWRF. Recall that some days were not used in the regressions: (1) days 
in winter (November through March) season; and (2) days with average' dry bulb 
temperature below the minimum specified for the regression (62.1 for CEC region 2 and 
PG&E zone S, 66.2 for CEC region 3 and PG&E zone R, and 58.6 for CEC region 4 
and PG&E zone X). Predicted cooling load for these days is always zero, following 
PG&E convention. The five-year sum (omitting winters) of predicted loads for this 
model will therefore be less than for the AMP sample to which it is compared, because 
days below a certain temperature are modeled as zero but in fact the AMP sample may 

. report small non-zero loads ~:m these days31. 

30 Throughout this chapter, we use the term prediction loosely to indicate loads estimated by model on the 
basis of observed data, although they are technically not predictions since the same data is used to develop the 
models as to evaluate them. A more accurate term for such estimates might be backcasts. 

31 For accounting purposes, one could model the omitted days with a season-specific mean for those 
computed days. Under such a procedure, sample and model total energy would match (ignoring winter). 
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6.1.2 LBL Hourly Weather Response Function (LBLHWRF) 

Using the hourly WRFs of Model 3 (reported on in Chapter 5), we computed a second 
set of hourly load estimates. Model 3 consists of 24 separate hourly models for each 
CEC region for each of three seasons (spring, Summer, and fall, using the same season 
definitions given in Chapter 3).32 We derived daily load estimates for this model by 
adding together the 24 hourly estimates for each day. We refer to this model as 
LBLHWRF. The five-year sum (omitting winters) of predicted loads for this model is 
necessarily the same as that of the AMP sample. 

These models were developed for CEC regions only, not for PG&E zones, pending the 
outcome of the evaluation presented in this chapter. 

6.1.3 CEC Peak Demand Forecasting Approach with LBL Matrix (LBLMA T) 

LBL has previously developed space conditioning models for an older forecasting model 
used by CEC, called'the CEC Peak Demand Forecasting Model (Eto and Moezzi 1992). 
This approach is similar to that of LBL WRF. First, an allocation of energy is made from 
year to day. Second, an allocation is made form day to hour., In this approach, a time- . 
temperature matrix replaces the use of binned load shapes for the allocation of daily 
energy to hours of the day. ' 

To generate daily hourly load shapes, we used a time-temperature matrix developed by 
LBL from AMP data. This matrix was developed using 1985-1989 AMP data from all 
regions to develop a "raw" matrix, and subsequently smoothing the surface of the 
resulting matrix. The development of this matrix has been described previously (Eto and 
Moezzi 1992). The matrix is used to generate a load shape for a day by assigning 24 
values from the matrix, corresponding to 24 hourly values of THI. The resulting load 
shape is converted from the units in which the matrix is expressed (kWh/hour) into a 
load profile by dividing by the sum of the 24 hourly loads, so that the load for each hour 
is expressed as a percentage of the total daily load. 

This load profile is then re-scaled by multiplying each' hourly value (normalized to sum 
to one) by a daily energy estimate computed in a separate phase of the model. LBL did 
not examine the methods used in this second phase of the CEC model. Accordingly, we 
rely on CEC's current specification of the daily energy allocation in its Peak Demand 
Forecasting Model and used them to develop predictions for CEC regions. 

32 Chapter 5 included summaries of results only for the summer season models. 
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The CEC Peak Demand Forecasting Model for the residential sector allocates estimates 
of annual conditioning energy consumption to daily consumption according to the relative 
values of WTHI-DD for the day and long-term average annual THI-DD (see Table 3-2 
for definitions of these variables). For a given day i, the allocation is as follows: 

Daily Energy[z1 = (WTHISUM[i]/ATHISUM) * AC 

where 

WTHISUM[z1 

THISUM 

ATHISUM 
AC 

O.6*THISUM[z1 + O.3*THISUM[i-l] + O.I*THISUM[i-2] 
24 

. :E max (THI [h] - 68,0) 
11=1 

Long-term annual average sum of THISUM for the year 
Annual electricity consumption. for central air conditioner 
[kWh/y] 

For our model evaluations, we modified the procedure by (1) replacing ATHISUM by 
the sum of daily WTHISUM between 1985 and 1989; and (2) defining AC as the five­
year (1985-1989) UEC for central air conditioner load, computed from the AMP sample. 
Thus, for day i we scale the load profile generated from the time-temperature matrix by 
the factor: 

Daily Energy[z1 =['W11iISUM[z1 / E 11:lISUMJj1] * E UEC[y] 
jdJays(SS -S9) )IE(SS -S9) 

Once again, these factors are defined separately for each CEC region (e.g. using data 
from the NOAA Fresno weather station and the UEC for CEC region 3 AMP sample to 
derive estimates for CEC region 3). 

The modified computations necessarily produce a UEC which matches sample UEC for 
the five years combined33

• Note that this energy allocation procedure is not directly 
based on modeling sample loads, whereas both LBLWRF and LBLHWRF are based the 

/ . 

33 We considered re-scaling separately for each year, rather than using a five-year total, but rejected this 
since for appropriate comparison, regression model results would also have to be re-~led to produce one-year 
UECs (which is unreasonable). . 
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AMP sample data34
• This model produces daily energy estimates that, when summed, 

equal the corresponding five-year observed energy totals from the AMP sample 
(including winter). AccOrding to this 'model, the peak load occurs on the day with the 
highest value of WTHISUM. 

6.1.4 CEC Peak Demand Forecasting Model with LBL Raw region-:Specific Matrices 
(LBLRAW) 

Using different time-temperature matrices, but the same daily energy allocation procedure 
as that described for LBLMAT, we derived another set of hourly and daily load 
predictions for CEC regions 2, 3, and 4. For each region, we used a time-temperature 
matrix based on data from that region alone, e.g. to model CEC region 2 we used a 
matrix which. was derived on.the basis of 1985-1989 AMP data for residences .assigned 
to CEC region 2. We used "raw" (unsmoothed) matrices for these computations, 
whereas for the LBLMAT predictions we used a smoothed matrix. 

These models were developed for CEC regions only, not for PG&E zones. 

6.1.5 CEC Peak Demand Forecasting Model with CEC Matrix (CECMA T) . 

Using the time-temperature matrix currently used by CEC (not developed by LBL), along 
with the same daily energy allocation procedure described previously for LBLMAT (also 
developed by CEC), we derived CECMAT predictions. Once again, these.models were 
developed for CEC regions but not PG&E zones. 

6.1.6 PG&E Daily Regressions with PG&E Load Shape Libraries (PGEWRF) 

We generated hourly load predictions for PG&E zones for 1985-1989 from PG&E's 
current HELM input files of daily WRFs and corresponding binned load shapes (which 
were developed byPG&E on the basis of 1989 AMP data)Y We re-scal.ed the energy 
estimates (which were expressed in units of PG&E sector-wide energy) to produce the 

'\ 
34 One might also consider using the load shape derived from the time-temperature matrix itself, rather than 

the current practice of normalizing it and re-scaling it with this "external" allocation procedure. 

35 Estimates were received by LBL from CEC 3/26/92 (with letter dated 1124/92) in the files 
CZRRESAC. T, CZSRESAC. T, and CZXRESAC. T. ' 
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same total energy as did the LBL WRF above36
• Estimates were provided for all hours 

within the five-year period, whereas LBL WRF estimates are missing for some hours, 
because of missing weather data. 

These models were developed for PG&E zones but not for the CEC regions. 

6.2 Methods of Comparison 

The basic approach for the comparisons was to develop, for each model, a prediction of 
hourly load for each hour of the five year period for which AMP data were obtained. 37 

We then compute the difference or residual between the "model-predicted loads and the 
average loads from the AMP sample (by CEC region or PG&E zone, as appropriate). 

We selected three measures upon which to base our evaluations: (1) daily energy use; (2) 
maximum hourly load; and (3) 4 p.m. load. Figure 6-1 illustrates how the last two 
measures were calculated. Note that the hour of the predicted maximum hourly load may 

" be different than the hour for observed maximum hourly load. We perform an hour­
specific comparison for 4 p.m. because 4 p.m. is often the hour ofPG&E's system peak 
load in the summer. 

We use boxplots to describe the distribution of residuals for each model and for each of 
the three measures, separately by season and geographic aggregation. A boxplot is a 
graphical representation which provides a concise description of a distribution. While 

" a histogram describes a distribution by showing the frequency or relative frequency for 
set bins defined by the range of the variable, a boxplot, in contrast, describes a 
distribution by indicating which values of the variable correspond to set percentiles of-the 
cumulative distribution, for example, the first quartile (which equals the twenty-fifth 
percentile). The most advantageous aspect of a boxplot representation is that it provides 
for easy side-by-s~de comparison of distributions. 

Figure 6-2 is an example of this form of presentation. Each boxplot is comprised of a 
box with lower and upper ends at the first and third quartiles of the distribution; a white 
line inside the box indicates the median of the distribution. Connected to the box are 

36 That is, the hourly load estimates received were expressed as sector loads. We re-scaled these data to 
match observed VEC by allocating UEC proportionally to sector loads. This re-scaling and subsequent 
comparisons may bias results, since sector load tends to increase with time, whereas sample average load does 
not. 

37 Recall that we did not model cooling loads for Winter, implicitly setting these loads to zero. 
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"whiskers", which are drawn at the nearest value not further than 1.5 times the 
interquartile range from the nearer quartile, indicating the spread of the bulk of the data. 
Points lying outside this range are marked individually (by horizontalli,nes) on the plot, 
so that the full range of the data is represented on the plot. 

Generally speaking,. there are two aspects of goodness of fit represented by the box plot: 
First, the location of the median load indicates the central value of difference between 
the predicted and observed values; with fifty percent of the residuals above (in signed 
value) than this median value, and fif~y percent below the median value. Since we are 
examining residuals, a median v~ue at 0 indicates that the prediction corresponding to 
this residual matched the observed value exactly. We would thus deduce that the "central 
tendency" of the predictions is to predict observed values accurately. Second, the height 
of the box and whiskers indicates how "tight" is the fit in terms of dispersion around th 
mean, other things being equal, a tight dispersion is better than a wide dispersion of 
residuals. In an absolute sense, the location of the median is probably more important. 
On the other hand, if the dispersion of residuals is relatively tight, there may bea 
systematic bias which can be corrected, thereby moving the mean closer to zero. 

Since model performance on peak days is of particular importance for forecasting 
applications, we make a separate comparison for a handful of system peak load days (in 
addition to making modei comparisons by season). We identified 50 system 'peak load 
days based on daily 1985-1989 PG&E system load data provided by CEC and called 
these days the Peak Day Subset. A system peak load day was defined by computing the 
ratio of daily system load to the annual system load for each day of the year and then 
selecting the days with the fifty highest values of this ratio over the five year period. 38 

Note that as a result, the peak day subset may not contain the 50 highest cooling peak 
loads. This method of day selection has the advantage of being "external" to the data; 
that is, the criteria for selection of days is independent of the sample data. 

Results of the ModeL Comparisons for CEC Regions 

As indicated on Table 6-1, five models were compared for the three CEC regions: (1) 
LBL's daily Weather Response Functions and binned load shapes (LBLWRF); (2) LBL's 
hourly Weather Response Functions (LBLHWRF); (3) LBL's grand, smoothed THI 
matrix with CEC's daily energy allocation procedure (LBLMAT); (4) LBL's raw, un­
smoothed, regional THI matrices with CEC's daily energy allocation procedure 
(LBLRAW); and (5) CEC's current THI matrix and daily energy allocation procedure 

38 We "standardized" loads in this manner to adjust for the generaUy increasing annual system load over the 
five years. 
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(CECMAT). Since the last three models rely on the same CEC daily energy allocation 
procedure, the residuals from the predictions of daily energy use are identical. 
Accordingly, we report only a single residual for these three models in the comparisons 
of daily energy use (labelled MATRIX). . 

Model comparisons are presented in a standardized fashion to facilitate evaluation. A 
single page of comparisons presenting results for each of the three performance measures 
(daily energy use, peak hourly load, and 4 p.m. load) for all regions (2, 3, and 4) for 
the peak day subset (Figure 6-3). We describe results for the system peak days separately 
from those for the three seasons. For ease of presentation, the results for the three 
seasons are discussed here, but the graphic summaries are contained in Appendix C. 

6.3.1 Model Performance for System Peak Days· 

Figure 6-3 shows the distributions of residuals among days in the Peak Day Subset (the 
days with the fifty highest ratios of system to annual load between 1985 and 1989). The 
plots are arranged so that each column corresponds to a CEC region and each row 
corresponds to one of the three measurements of prediction accuracy. Note that residuals 
are not restricted to have mean zero within this subset (since the restriction to mean zero 
is for all data within a Season or all data in the five-year subset,but not necessarily for 
any subset thereof). 

The matrix-based models tend to underpredict daily energy among the Peak Day Subset 
substantially, particularly for CEC regions 2 and 3. This tendency towards 
underpredictiori again carries through to the CECMAT, LBLMAT, and LBLRA W 
predictions of maximum hourly load andA p.m. load. LBLWRF (except for CEC region 
2) and LBLHWRF also tend to underpredictdaily energy among the Peak Day Subset, 
but give much closer predictions than do the matrix-based modelS. LBLWRF tends to 
give the best predictions of maximum hourly load and 4 p.m. load for CEC regions 2 
and 3 among the models compared, although LBLHWRF does nearly as well. 

We examined model predictions for the two days with the highest ratio of daily system 
load to annual system load: 18 July 1988, and the following day, 19 July 1988. Table 
6-3 lists, for these two days and each CEC region and model, predicted daily load, the 
residual corresponding to that prediction (in comparison to the corresponding AMP 
sample average load), and the rank of the absolute value of the residual among those for 
the approximately 460 summer season estimates generated by the model for the region. 
The matrix -based approach gives its highest underpredictions on these two peak days 
(e.g. the biggest undeprediction among 1985-1989 estimates for CEC regions 2 and 3 on· 
July 18, 1988). Both LBLWRF and LBLWRF also show large underpredictions for these 
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days, relative to the models' predictions for other days. Pr~ictions are particularly low 
for CEC region 3 on July 19, 1988. 

6.3.2 Overall Model Performance for Three Seasons· 

Figure C-1 shows the distribution of model residuals for CEC region 2 for each of the 
three measures of model predictions compared (daily energy, maximum hourly load, and 
4 p.m. load) by season. The data for each statistic are plotted on the same scale (across 
season and across CEC regions), so the boxplots may be easily compared. Themedian 
daily energy residual for the matrlx-basedmodels (which allocate daily energy 
proportionately to WTHIDD) is below zero for all seasons, indicating a tendency to 
overpredict energy (recall that the average prediction is necessarily near zero as a 
consequence of model scaling, see discussion in Section 6.5). For the summer season 
in particular, the matrix-based models yield some large underpredictions of sample loads. 
The regression-based approaches, LBLHWRF and LBL WRF, perform about the same, 
both predict considerably better than the matrix-based approach. The tendency of the 
matrix-based approaches to overpredict daily energy carries through to the other two 
characteristics compared (since both of these are generated by scaling relative hourly 
loads by daily energy estimates). Thus, for maximum hourly load and 4 p.m. load, 
LBLHWRF and LBLWRF "again perform substantially better than the matrix-based 
approaches (showing relatively small spreads), with LBLWRF performing slightly better 
than LBLHWRF for most comparisons. . . 

Figure C-2 shows the distribution of model residuals for CEC region 3. Results are 
similar to those for CEC region 2. Again, the daily energy allocation procedure used 
for the matrix-based estimates leads to some large underpredictions of daily energy in 
summer. 

Figure C-3 shows the distribution of model residuals for CEC region 4, which is the 
mildest of the three climate regions. In this case, the matrix-based approaches perform 
somewhat better than they did for CEC regions 2 and 3. For example, daily energy 
predictions for the matrix-based approach are about as good as those for LBLWRF and 
LBLHWRF for summer. Among the models compared, however, LBLHWRF performs 
the best for predicting both 4 p.m. load and maximum hourly load. 
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6.4 Results of Model Comparisons for PG&E Zones 

As indicated on Table 6-2, two models were compared for the three PG&E zones: (1) 
LBL's daily Weather Response Functions and corresponding binned load shapes; and (2) 
PG&E's daily WRFs with corresponding binned load shapes. The presentation of results 
follows the structure used for the presentation of CEC results. 

6.4.1 Model Performance for System Peak Days 

Figure 6-4 shows the distribution of model residuals for the Peak Day Subset, for each 
of the three PG&E zones. For PG&E zone R, LBL WRF gives unbiased predictions for 
these days, whereas PGEWRF tends to overpredict. For PG&E zone S, both models 
tend to undepredict slightly daily energy and 4 p.m. load. The distribution of residuals 
for PGEWRF are in most cases only slightly broader, if at all, than the corresponding 
distributions for LBL WRF. 

6.4.2 Overall Model Performance for Three Seasons 

Figures C-4 through C-6 show the distribution of model residuals for the three PG&E 
zones, by season. Recall that LBLWRF necessarily has a residual distribution centered 
on zero, whereas PGEWRF does not (due to the energy scaling mentione9 in Section 6.1 
and commented ori in Section 6.5). 

For PG&E zone R (Figure C-4) , PGEWRF tends to overpredict daily energy, and 
correspondingly overpredict maximum hourly load and 4 p.m. load. For this zone and 
for each of the three statistics, LBL WRF yields, a considerably tighter distribution of 
residuals than those from PGEWRF. For PG&E zone S (Figure C-5), the most notable 
result is the poor predictions from both LBLWRF and PGEWRF for summer. LBLWRF 
works slightly better than PGEWRF for spring and fall, primarily because of occasional, 
large overpredictions by PGEWRF. For PG&E zone X (Figure C-6), PGEWRF gives 
unbiased predictions overall for all statistics in spring and summer, with again a tendency 
to overpredict fall loads. While LBL WRF again gives noticeably higher distributions of 
residuals than PGEWRF for this zone, the difference in LBLWRF and PGEWRF 
performance is relatively small, which is somewhat surprising considering the fact that 
PGEWRF was developed on a small subset of the AMP data. 

In summary, LBL WRF gives better predictions than PGEWRF, for all zones, with 
PGEWRF having a tendency to overpredict loads. As noted in Section 6.1, PGEWRF 
estimates are available for all hours 1985-1989, which implies that missing weather data 
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were filled in some cases; this may give a disadvantage to PGEWRI: in our evaluations, 
since no estimates (and hence no comparisons) were made for LBLWRF on days with 
missing' weather data. 39 

6.5 Interpretation of Results 

In general, the distribution of residuals from a good predictive model would be centered 
at zero and be clustered relatively tightly about zero.' However, the results of the 
evaluations in this chapter must be interpreted cautiously, since (1) the location of the 
distribution (Le. where it is centered relative to zero) is a consequence of the scaling 
procedures used, which in some cases restricts the location to be near zero; and (2) 
model "predictions" are not truly predictions in the purest sense of the word, since the 
'same data used to develop the model. was also used to evaluate the predictions (except 
for the daily energy allocation procedure of the matrix-based models). 

6.5.1 Energy Scaling 

As descJjbed in Section 6.1, we scaled the output from each model to correspond to a 
fixed total energy computed over the five years of AMP data. In practice, energy 
allocations are based on externally-specified scaling factors, e.g. in the HELM forecast 
file. 40 Because of this scaling, the average difference between observed and predicted 
values for matrix-based model estimates must be zero when averaged across the entire 
five-year period. That is, the prediction is necessarily on average an unbiased estimate 
of the observed load, because of the method by which predictions were constructed. This 
restriction is appropriate because energy scaling is a procedure distinct from the portions 
of the models we examined.41 

Standard linear regressions always result in regression residuals which overall have a 
mean of zero. Since the same data were used to build regression models as to generate 
predictions, the average residual for each season's LBLHWRF model is zero (e.g., the 

39, Omitting comparisons for both models on days with missing weather data (or deriving LBLWRF 
estimates for those days, as was apparently done for the PGEWRF model) may provide a fairer comparison of 
the models. 

40 If one were forecasting AMP sample averages, forecasts would, of course, be biased high or low (or 
unbiased) depending the accuracy of the energy estimates used for the forecasts. 

41 Since winter season was omitted from our comparisons, however, the mean residual over the days 
compared may not be exactly zero. 
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mean residual for 1985-1989 summer season combined for CEC region 3 predictions is 
zero). Also as a result of the regression technique, the average residual for each 
season's LBLWRF model are slightly above zero (but not exactly zero, because 
LBL WRF assigns cool days a load of zero, whereas the AMP sample indicate small non­
zero loads on even some of the coolest days). Since the PGEWRF estimates were re­
scaled to yield the observed AMP sample UEC, mean residuals for this model are also 
zero, when averaged across the five years (including winter). 

Thus, by design, the average model residual for the models compared should be zero or 
nearly so. Consequently, model predictions should be compared on the basis of (1) the 
spread of residuals about the mean (e.g., the variance, range, etc.) when comparison are 
mode overall days; and (2) both location and spread for residuals for peak load days, 
since this evaluation does not restrict estimates to be unbiased among peak days. 

6.5.2 Cross-Validation 

Our evaluations use the same data to assess models as were used to construct them: (1) 
the LBL matrix models (LBLMAT, LBLRA W) and LBL daily WRF model with binned 
load shapes (LBLWRF) , and the LBL hourly WRF model (LBLHRWF) were all 
developed on the basis of 1985-1989 AMP sample data; (2) the PGE daily WRF and 
corresponding binned load shapes was developed on the basis of 1989 data; and (3) as 
described above, the energy scaling for all models is restricted to match that in the AMP 
sample. To the extent that the same data are used for model development as for model 
assessment, results may be more favorable than if the assessment were conducted out-of­
sample. 

One approach to address this issue would be to use cross-validation; that is, use one part 
of the AMP sample to build models and a different part to assess them42

• While this 
approach would lead to more robust models from the standpoint of predicting sample 
loads, it remains a step removed from the ultimate forecasting objective, which is to 
forecast system, not sample, cooling loads. We . return to this issue in Chapter 8. 

42 This would be fairly complicated however, and, in our opinion, less important than assessing other 
aspects of model performance relative to forecasting systemwide cooling loads. 
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6.6 Summary 

We have evaluated the performance of a vanety of models for forecasting cooling load 
shapes for CEC regions and PG&E zones. Within the context of this evaluation, we find 
that the LBL models developed in this project perform better than previous approaches 
used by CEC (including those developed previously by LBL for CEC using AMP data) 
and PG&E .. Between the LBL daily Weather Response Functions and associated binned 
load shapes and the LBL hourly Weather Response Functions, we fmd that, while the 
hourly models yield slightly better results for a few measures of model performance in 
some regions/zones and seasons (notably 4 p.m. loads), the daily models perform as 
reliably or better than the hourly models in most cases. Hence we consider the daily 
models at least as reliable as the hourly models overall. Generally speaking, the models 
do not perform as well in the more temperate region 4 and zone X. 
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· Table 6-1. Models Compared for CEC regional Load Shape Forecasting 

LBL daily WRF Response LBL Binned Load PG&E AMP-
Functions Shapes region! Season2 

LBL hourly WRF LBL Hourly Weather Response Functions PG&E AMP-
region! Season3 

CEC matrix CEC Weighted THI CEC THI Matrix CEC 

LBL smoothed CEC Weighted THI LBL Grand THI PG&E AMP - All 
matrix .. Matrix regions 1 

LBL raw matrix CEC Weighted THI LBL uRawu region . PG&E AMP-
Matrix region 1 

1 see Eto and Moezzi (1992) for a description of the development of this model 
2. see Chapter 3 and 4 of this report for a description of the development of this model 
3. see Chapter 5 for a description of the development of this model 
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·Table 6-2. Models Compared for PG&E Zonai Load Shape Forecasting 

PG&E Daily 
PG&E daily Weather Response PG&E Binned Load PG&E· 
WRF Functions Shapes 

LBL Daily Weather 
LBL daily WRF ·Response LBL Binned Load PG&E AMP-

Functions Shapes region! Season 1 

1 see Chapter 3 and 4 of this report for a description of the development of this model 
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Table 6-3. Comparison of Model Performance on Top' Two System Load 
Days 1985-1989', by CEC region 

July 18, matrix 2 13.8 20.4 1 
1988 

LBLWRF 2 33.1 1.0 246 
LBLHWRF 2 29.0 5.1 15 

matrix 3 16.9 22.9 1 
LBLWRF 3 35.2 4.6 48 
LBLHWRF 3 35.4 4.4 57 

matrix 4 14.1 15.9 2 
LBLWRF 4 32.4 -2.4 147 
LBLHWRF 4 23.4 6.5 8 

July 19, matrix 2 11.7 13.9 4 
1998· 

LBLWRF 2 25.4 0.3 389/' 
LBLHWRF 2 20.5 5.1 14 

matrix 3 15.0 20.5 3 
LBLWRF 3 27.0 8.5 1 
LBLHWRF 3 26.4 9.0 2 

matrix 4 5.3 10.4 16 
LBLWRF 4 13.0 2.6 133 
LBLHWRF 4 14.3 1.3 155 

1 days with two highest values of daily system load/annual system load 
2 AMP load - predicted load 
3 rank of absolute value of difference, out of 460 predictions for summer (1 = 

largest absolute difference) 
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Figure 6-1. Measures of Hourly Fit 
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Chapter 7 

Exploratory Analyses 

Chapters 3 through 6 summarize findings from the major areas of research conducted in 
the project. In meetings held during the analysis process, both PG&E and CEC 
identified areas of mutual interest; which were outside the primary focus of research. 
In this Chapter, we report our findings from 'exploratory analyses for a few of these 
areas, including (1) explicit specification of heat storms for modeling daily cooling loads; 
(2) inclusion of heat pump compressor Cooling loads in modeling daily central air 
conditioner energy use; (3) modeling daily room air conditioner cooling loads; (4) the 
use of alternative weather data for modeling daily cooling loads in CEC region 4; (5) 
alternative bin specifications for the hourly load shape libraries; and (6) separate 
modeling of peak days. Each topic is written in the form of a short, memorandum. 
Chapter 8 summarizes outstanding issues remaining from these' analyses and other areas 
for future research. 

. 7.1 Heat Storms 

In order to capture explicitly the additional effects that sustain'ed, extremely hot periods 
of weather might have on loads, we investigated the possibility of adding an explicit 
"heat storm" variable to our linear regression models for daily central air conditioner 
loads. We found some evidence that including a such a variable did modestly improve 
the load predictions made by daily regression models, but that the effect is probably not 
large enough to warrant incorporation into forecasting models. 

7 .1.1 Motivation 

There is anecdotal evidence that the responsiveness of cooling loads to weather may be 
different during prolonged periods . Of hot weather than on isolated hot days. Both 
thermodynamic (thermal mass) and behavioral explanations have been offered in support 
of this evidence. 

With respect to forecasting, Ignelzi found significant heat storm effects in their linear 
regression model for Southern California Edison's (SCE) system load. They defmed a' 
heat storm as four or more consecutive days with maximum average temperatures greater 
than 95. Separate variables were included for the sequence of each heat storm in a 
season (Le., there were separate variables for the first, second, and any subsequent heat 
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storm). The coefficient of each of the three heat storm variables was significant and 
positive, with the first heat storm having the largest coefficient and the third and 
subsequent heat storms having the smallest coefficient. 

With respect to the daily energy models presented in Chapter 3, the lagged cooling 
degree day variables (e.g., CDD95SM1, CDD95SM2 in Table 3-1), the three-day lagged' 
average dry-bulb temperature variable WAVGDRY in PG&E's daily weather response 
functions, and the three-day lagged THI variable WTHI-DD in the CEC Peak Demand 
Forecasting model are, in fact, alternative approaches for capturing heat storm effects. 

7.1.2 Approach 

We considered two issues: first, we examined alternative definitions of heat storms 
based on a combination of temperature thresholds and'duration and determined the 
number of occurrences of each type for PG&E zones R, S, and X. Second, for the 
historic periods of heat storms identified by these definitions, we examined the residuals 
from our regression models of daily central air cooling loads (Chapter 3). 

7.1.3 Findings 

Table 7-1 shows the number of periods lasting at least four days for PG&E weather 
stations in Fresno (zone R) and Sacramento (zone S) and lasting at least three days for 
the PG&E weather station in San Ramon43 for zone X in which the average daily 
temperature was greater than 75, 80, 85, 90, and 95 degrees, for each historic year, 
1985 through 1989.44 We adopted the convention that a new heat storm began only after 
the previous heat storm had ended (e.g., a six-day period of temperatures above 80 
counts as only one heat storm). 

Table 7-2 reports findings for an alternative heat storm definition based on the frequency 
of four-day (Fresno and Sacramento) and three-day (San Ramon) periods with maximum 
hourly temperatures (rather than average daily temperature) greater than 90,95, and 100 
degrees. 

43 There were no heat storms of length greater than three days at San Ramon for the selected temperature 
thresholds. 

44 Days for which temperature data were missing were considered to be below the heat storm threshold. 
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We investigated the potential explanatory capability (for predicting daily cooling loads) 
of several of these heat storm definitions by examining the residuals from the final daily 
WRFs for these zones (summarized in Table 3-4) for each day of a heat storm. The 
motivation for this approach is that justification for the addition of an explicit heat storm 
variable should be based on there being a clear pattern in the residuals from the daily 
energy models during heat storms. That is, such a clear pattern in the residuals would 
be precisely the phenomena that a heat storm variable would be used to signal (and 
thereby "explain" by eliminating the residuals). . 

. Figure 7-1· shows, as an e~ample, the distribution of residuals for PG&E zone R (the 
hottest region) for three different heat storms definitions: daily average temperature 
greater than 80, greater than 85, and greater than 90. The first box-plot includes the 
residuals for all days with temperature below the indicated limit for all summer days 
from all five· years of the data. The second box includes the residuals for all days with 
temperature above the limit on the·given day but below the lower limit.on the preceding 
day. The third box includes the residuals for all days with two consecutive daily average. 
temperatures above the limit and proceeded by a day with an average temperature below 
the limit. For example, residuals for the third day of a four-day heat storm are in boxplot 
for length 3, and those for the fourth day are in the boxplot for length 4. The last box 
groups together the residuals for all days of a greater than the indicated number (10, 5, 
and 3, respectively). 

The first set of box-plots shows that while the distribution is fair~y symmetric about zero 
for the 486 summer days with average dry bulb temperature less than 80, the regression 

. over-predicts for sustained periods with average dry bulb temperature greater than 80, 

. except for periods of length at least 10, when the regression tends to slightly under­
predict daily loads. The final set of box-plots indicates that the WRF for very hot days 
in PG&E zone R tends to under-predict loads, but does not indicate a heat storm effect 
beyond this general tendency to under-predict.· . . \ 

These figures suggest that prolonged periods of particularly hot weather in PG&E zone 
R may lead to slightly higher average cooling loads than would be expected on a typical 
day with similar weather, but the effect, in the context of our PG&E zone R Weather 
Response Function, does not appear to be a large one and might to some extent be 
thought of as meaning "peak days have higher then predicted loads." Results might be 
different in the milder zones (S and X) or CEC regions (2 and 4). 
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7. 1.4 Conclusion 

Our results for the hot PG&E zone R suggest that adding a heat storm variable to the 
daily Weather Response Function is not likely to substantially improve daily cooling load 
forecasts. Because of the importance of predictiqg and understanding peak day loads, 
it will remain appropriate to examine heat storm effects, but most likely in conjunction 
with other possible determinants of peak days .. Our previous analyses (in Chapter 6) for 
example, did indicate a general tendency for LBLWRF, in the comparably hot CEC 
region 3 to underpredict loads slightly on hot days. This suggests it may be worthwhile 
to examine this tendency in greater detail. We take up the issue of peak day forecasts 
again in Section 7.6 and in Chapter 8.' . 

68 

r 



Table 7-1. Annual Number of Heat Storms for PG&E Weather Stations, as, 
Defined by Daily Average Dry Bulb Temperature 
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Table 7-2. Annual Number of Heat Storms for PG&E Weather Stations, as 
Defined by Day's Maximum Hourly Dry Bulb Temperature 
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7.2 Heat Pump Compressor 

We investigated differences between heat pump compressor loads and central air 
conditioner loads in the AMP sample at the level of daily and monthly energy use. We 
found aggregate loads to be roughly comparable between the two appliance types, 
adjusting for the difference in average square footage of the residences in which the two 
different appliance types were metered. 

7.2.1 Motivation 

Heat pump compressors use the same technology to provide cooling as do central air 
conditioners, but metered data from heat pump compressors cannot simply be included 
with those from central air conditioners because heat pump compressors provide heating 
as well as cooling, whereas central air conditioners provide only cooling (save for small 
heating ventilation loads). Nevertheless, the heat pump compressor data contain 
potentially valuable information on cooling loads, which may be useful for forecasts.· 
For example, if the use of heat pumps in the cooling mode differs significantly from the 
use of cooling-only central air conditioners, explicit recognition of these differences in 
the forecast may be warranted. 

7.2.2 Approach 

A comparison between heat pump compressor and central air conditioner data is 
complicated by several factors. First, as mentioned, heat pump compressors are used 
to meet heating loads whereas central air conditioners do not. Second, while over 350 
central air conditioners were metered in the AMP sample, less than 50 heat pump 
compressors were metered; the small sample size for heat pump compressors tends to 
make population load estimates relatively imprecise. Third, residences with heat pump 
compressors metered are on average larger than those with central air conditioner 
metered: for the 1985-1986 AMP participants, the size of the average home with a 
central air conditioner was 1750 square feet, whereaS the average square footage of a 
home with a heat pump was 2200 (Brodsky and McNicolll987) or 26% larger. Fourth, 
the total household electricity consumption of homes with heat pump compressors is 
twice that of average homes (Brodsky and McNico111987). .. 

We limited our analysis to simple comparisons of energy use on a· monthly and daily 
basis. For example, the small sample size for heat pump compressors would made 
estimation of hourly or daily Weather Response Functions solely on the basis of heat 
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pump compressor data impractical. Table 7-3 reports the number of heat pump 
compressors metered by geographic region. (The comparable counts for central air 
conditioners are presented in Table 2-1 and 2-2.) 

7.2.3 Findings 

Table 7-4 reports the monthly heat pump compressor UEC (averaged over 1985-1989) 
for the regions with at least 10 heat pump compressors metered on average (eliminating 
PG&E wne X and CEC region 4), along with average monthly centralair conditioner 
UECs. For the summer months, heat pump compressor UECs are very close to the 
central air conditioner UECs for PG&E zone S, and about 10-20 percent higher than 
central air conditioner UECs in PG&E zone R and CEC region 3; this is consistent with 
what one would expect, based on the somewhat larger average area of homes with heat 
pump compressors. 

We also compared heat pump compressor loads to central air conditioner loads on a daily 
basis. Figure 7-2 is a time series plot of the" daily difference between heat pump 
compressor load and central air conditioner load, as a fraction of the heat pump 
compressor load, for PG&E zone R and S. Only days with appreciable cooling (central 
air conditioner load greater than 5 kWh/day are included). The 1987 data shows the 
greatest difference, but this difference should probably be disregarded since in the copy 
of the~ AMP data we used for analyses, half of the expected PG&E zone R heat pump 
compressor data is missing. Spikes above the line suggest possible heating. Particularly 
for PG&E zone R, there is appreciable variability in the day-to-daY relative differences 
in heat pump compressor and central air conditioner load. Part of this variability may 
be due to the small sample sizes for heat pump compressor. 

7.2.4 Conclusion 

For PG&E zone R and S, differences between heat pump compressor UECs and central 
air conditioner UECs are about what one would expect, given differences in the sizes of 
residences sampled for the two appliances. Comparison on a daily basis shows 
substantial variation in the differences in sample average loads between the two 
appliances, in part, due to the likely presence of heating. Without more information on 
the capacity of the heat pumps and central air conditioners, as well as better identification 
of heating versus cOoling operation, we believe it is premature to either combine heat 
pump compressor data with central air conditioner data or develop separate cooling 
WRFs for heat putpp compressors. 
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Table 7-3. Number of Heat Pump Compressors Metered by CEC Region and 
PG&E Zones 

2 4 
3 32 
4 4 

PG&E zone 
R 20 
S 20 
X 3 

1 LBL is apparently missing much of the AMP heat pump compressor data for 1987. 

Table 7-4. Average Monthly UECs for Heat Pump Compressor (HPC) and 
Central 'Air Conditioner (CAC) for CEC .Region 3, PG&E Zone R, and PG&E 
Zone S 

January 468 51 
February 291 36 
March 231 29 
April 112 24 
May 122 82 
June 273 229 
July 505 492 
August 338 378 
September 163 142 
October 92 34 
November 219 30 
December 441 54 

Source: AMP measurement <1985-1989) 
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7.3' Room Air Conditioner 

We developed linear regression models for daily room air conditioner loads for those 
zones and regions with sufficient data (pG&E zoneS and X, and CEC region 4). 

7.3.1 Motivation 

Room air conditioners are estimated to contribute a small but not insignificant proportion 
of residential cooling loads, with a relatively larger contribution in milder areas. CEC, 
which forecasts these loads separately from central air conditioners, previously forecast 
that room air conditioners accounted for 8.4 percent of the combined central and room 
air conditioner residential cooling loads (excluding cooling loads from evaporative 
coolers) for all sectors combined, and 5.1 percent, 18.2 percent, and 13.7 percent, 
respectively for regions 3, 2 and all others, respectively.45 

Relatively few room air conditioners were metered in the AMP sample. As with the 
heat pump compressors, the small sample sizes tend to make computations based on 
sample data less reliable. Despite this imprecision, models based on the rqom air 
conditioner data alone are likely to perform better than those based on central air 
conditioner data. 

7.3.2 Approach 

We mOdeled average room air conditioner load for each of those regions/zones with at 
least 20 or more metered units using a stepwise variable selection for linear regression 
based on the same explanatory variables used for the development of the Daily Weather 
Response Functions for daily central air conditi~ner load. . 

4S PG&E estimates an 8.6 % system saturation for room air conditioners, as compared to 24.7% for central 
air conditioners and 2% for heat pumps (Brodsky 1987). In CEC's Revised ER-92 Forecast for 1989 for 
PG&E residential air conditioning (single-family, multi-family, and mobile home residences treated separately 
and then combined), room air conditioners contributed 50.7 GWh as compared to central air conditioner 934.5 
GWh in region 3, 29.9 GWh (room air conditioner) as compared to 134.1 GWh (central air conditioner) in 
region 2, and 42.5GWh (room air conditioner) as compared to 266.7 GWh (central air conditioner) in "All 
Other" regions. 
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7.3.3 Findings 

Tables 7-5 and 7-6 (taken from Eto 1992) shows 1985-1989 AMP sample average annual 
and average morithly UEC for room air.,conditioners for CEC regions and PG&E zones. 
Room air conditioner DEC is generally less than half of the central air conditionerUEC, 
for each of the areas compared. These tables also show the number of metered air 
conditioners by CEC region and by PG&E zone. The AMP data base includes metered 
data for 65 room air conditioners for some portion of tpe five year period 1985-1989. 
The metered room air conditioners are concentrated in the cooler geographic areas: for 
the PG&E zone aggregations, 36 in zone X and 20 in zone S, and for the CEC region 
aggregations, 39 in region 4, and 13 in region 3. 

Table 7-7 summarizes the results of the stepwise-model (again' using F-to-enter/F-to­
delete 0.15). indicating which variables were included in the model and the model r­
squared. Model r-squared for the seasonal models are in most cases lower than the r--, 
squared of the corresponding models for central air conditioner load: 0.72 for room air 
conditioner model vs. 0.84 for central air conditioner model for PG&E zone S summer, 
0.85 for room air conditioner model vs. 0.91 for central air conditioner model for PG&E 
zone X summer. and 0.78 for room air conditioner model vs. the lower 0.74 for central 
air conditioner for CEC region 4 summer. The poorer fits for room air conditioner may 
be partially a result of the relatively smaller sample sizes. 

The sets of explanatory variables included in the models for room air conditioner are 
quite different than those included in the corresponding models for central air 
condition~r. These differences in variables selected are not necessarily reflective of 
behavioral differences; as discussed in Chapter 3, caution should be used in drawing 
conclusions from' subsets of variables selected by the stepwise procedure. 

However, differences in the specification of the models developed from the central air 
conditioner data and those developed from the room air conditioner data do not 
~ecessarily indicate that a re-scaled central air conditioner model would not be 
appropriate for modeling room air conditioner loads. To assess whether it would .be 
worthwhile to develop and use separate models for room air conditioner, the prediction 
errors resulting from using a re-scaled central air conditioner models should be compared 
to prediction errors from models developed from the room air conditioner data itself. 46 

46 Units would be re-scaled to reflect room air conditioner UEC instead of central air conditioner UEC. 
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7.3.4 Conclusion 

We developed regression models for daily room air conditioner load for PG&E zones S 
and X and for CEC region 4 using the stepwise regression procedure. The resulting 
models were somewhat different than the corresponding models for central air 
conditioner loads. We did not conduct analyses that would allow us to conclude 
definitively that these models are more appropriate for forecasting room air conditioner 
loads than is the use of re-scaled central air conditioner models. 

1\< 
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Table 7-5. Annual UEC for Room Air Conditioning, CEC regions 

all regions 
mean 344 363 , 476 668 477 475 
wt.mean nla nla nla nla 514 nla 
n 41 40 50 51 48 46 
region 3 
mean 371 595 578 754 343 521 
wt.mean nla nla nla nla 325 nla 
std.dev. 188 254 262 307 208 261 

" " 

n 10 9 8 10 10 9 
region 4 
mean 296 226 ." 433 502 3~3 373 
wt.mean nla nla nla nla 381 nla 
std.dev. 134 120 474 181 151 275 
n 103 98 108 105 120 107 

Source: AMP measuraments (1985-1989) 

.. 
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Table 7-6. Annual UEC for Room Air Conditioning PG&E zones 

all regions 
mean 344 363 476 668 477 475 
wt. mean n/a nla n/a n/a 514 n/a 
n 41 40 50 51 48 46 
zone S 
mean 465 617 633 980 629 680 
wt. mean n/a n/a n/a n/a 651 n/a 
std. dev. 201 253 250 325 249 
n 12 11 14 18 17 14 
zone X 
mean 286 217 425 495 395 369 
wt. mean n/a n/a n/a n/a 362 n/a 
std. dev. 130 120 487 186 149 
n 23 23 31 27 26 26 

Source: AMP measurements (1985-1989) 

.. 
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Table 7-7. $ummary of Regression Results for Daily Room Air Conditioner Load 



7.4 Alternate Weather for Modeling CEC Region 4 

We investigated the use of alternative weather data for modeling . CEC region 4 daily 
central air conditioner loads, as a possible means of importing model fit. We found that 
the weather data used in the original Weather Response Functions reported in Chapter 
3 (1985 Sunnyvale, 1986-1989 San Jose) resulted in the highest model r-squared of the 
three sets of weather data tested. 

7.4.1 Motivation 

Both the daily and hourly Wea~er Response Functions for central air conditioner loads 
had considerably poorer fits for CEC region 4 than for CEC regions 2 and 3. For 
example, the summer seasonWRF for daily central air conditioner loads in region 4 has 
an r-squared of 0.74 as opposed to 0.92for the region 2 model and 0.89 for the region 
3 model. The residences metered in that region have, on average, the lowest annual 
central air conditioner UEC among regions 2, 3, and 4 (849 kWh/year in region 4 as 
compared to 1174 in region 2 and'165l in region 3; see Table 2-1). 

Region 4 also has milder weather than region 2 and region 3, so this relatively poor fit 
is not unexpected; both because of expectations about customer behavior and because the 
characteristics of the statistical modeling techniques. In addition, region 4 may be more 
climatically diverse than the other regions, so that the weather reported at anyone 
weather station may be less representative of the weather at the metered sites. 

7.4.2 Approach 
, 

We used weather data recorde4 at other sites within region 4 to develop new daily 
Weather Response Functions. The regression models developed in Chapters 3 and 4 for 
region 4 were based using four years of weather data from the San Jose station (1986-
1989), and one year of data from the Sunnyvale station (1985) since San Jose weather 
data was not available for that year. We re-ran the stepwise regression procedure with 
two alternative sets of weather data: data recorded at the NOAA Sunnyvale station for 
all five years, and data recorded by PG&E at its San Ramon weather station. For 
comparability, regression results are based on 1986-1989 data only for each of the three 
stations. We used r-squared to compare the fits of the models. We also restricted the 
number of first-order explanatory variables to six, as required by HELM .. 
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7.4.3 Findings 

Table 7-8 shows, for each station, the season-specific r-squared for the linear regressions 
resulting from th,e stepwise procedure. R-squared is the highest using· San Jose weather 
for both the summer and fall season. Using San Ramon weather data results in a 
substantial loss of fit, except for the fall season (r-squared using San Ramon weather is 

. 0.63 as opposed to 0.59 using San Jose weather and 0.53 using Sunnyvale weather). 
Thus, of the three alternative sets of weather data considered for this region, data from 
the San Jose station, which was used in developing the WRFs reported in Chapter 3, 
provide the best fit. 

7.4.4 Conclusion 

Our preliminary investigation into the use of different weather stations indicates that the, 
current practice of relying on San Jose weather remains the best choice for modeling'~ 
region 4 central air conditioning loads. 

Table 7-8. Comparison of CEC region 4 Daily Central Air Conditioner Load 
Regression Model Fits for Three Alternative Weather Stations 

. San Jose NOAA 0.92 0.83 0.59 
Station 

Sunnyvale NOAA 0.86 0.79 0.53 , 
Station 

SanRamon PG&E 0.67 0.55 0.63 
Station 

(all regressions are based on 1986-1989 data) 
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7.5 Alternative Definitions of Hourly Load Shape Bins 

. We examined the variability ofloads within the bins previously defined by PG&E (which 
were used in the. analysis presented in Chapter 4) in order .to gain insight into the 
potential value of alternative bin definitions. 

7.5.1 Motivation 

The definitions. for the bins of hourly load shapes developed in Chapter 4 were adopted 
from previous work by PG&E. PG&E's definitions stemmed from in-house analysis of 
only 1989 cooling load data. The number and definition of the bins for hourly load 
shapes stems on the one hand from practical limitations of the HELM model and 
available weather data, which restrict the total number of bins and the variables eligible 
for use in defining them. Within these limitations, the primary theoretical issue relates 
to the observed ,variability of loads within a bin. As mentioned in Chapter 4, ideally, 
bins are defined towards maximizing the variability across bins, while minimizing the 

. variability within them. The questions we begin to address in this section are: 1) how 
well the current binned load shapes represent the load shape for particular days within 
the bin, and 2) the potential of alternative bin definitions to reduce the variability within 
bins. The essence of the issue of describing load shape variability within a bin is: how 
different is a single day's load shape within a given bin likely to be from the load shape 
used to represent the bin? This difference can be described in many ways; a good 
parsimonious description should depend on which aspects of the load shape are most 
important. From a forecasting viewpoint, two important load shape aspects are the 
maximum hourly load in a day, and the coincident end-use load for the hour of system 
peak load (4 p.m.). 

7.5.2 Approach 

We first examined the variability of hourly loads within a bin, using the current bin 
definitions which are specified using A VGDRY. We then explored whether alternative 
bin definitions, either using AVGDRY or some other weather variable, could reduce the 
variability within a load shape bin. We evaluated the capability of four different daily 
weather measures (THISUM, MXDRY and CDDSUM80) to group days using the 
following procedure: (1) define a univariate description of the load shape; (2) select a 
weather variable to use in bin definitions; (3) use regression tree analysis with the 
selected weather variable and load shape variable to determine bin cut-points; and (4) 
graphically examine the variability of the load shape defined within each bin. 
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7.5.3 Findings 

Figure 7-3 shows the variability in hourly load percentages for each bin for CEC region 
3 for each of the six weekday bins (six plots, each with 24 boxes showing hourly load 
distributions).47 The distribution of percentage load for each hour is illustrated by a box; 
the white bar in the box indicates the median of the distribution, the lower and upper 
ends of each box represents the first and third quartile of the distribution; the range of 
the data is indicated by horizontal bars below and above the box; values a factor of more 
than 1.5 times the interquartile range from the nearest quartile are indicated by detached 
lines .. 

The range of 7 p.m. load (typically the peak hour for cooling) for CEC region 3 for 
weekdays in the hottest bin is between 0.083 and 0.124, with an interquartile range of 
0.095 to 0.108 (57 days). For the next warmest bin, the distribution of 7 p.m. load is . 
slightly "tighter" and somewhat higher, with range between 0.092 and 0.128, and; 
interquartile range of 0.106 to O. H 7. In general hourly distributions become' 
increasingly dispersed with decreasing temperature. For all bins, the maximum median 
of the hourly distributions occurs at 7 p.m. 

Table 7-9 shows the distribution of the hour in which the maximum load occurred for 
region 3 summer days, by day-type (weekday vs. weekend), and weather (all days, days 
with THISUM greater than 100, days with THISUM greater than 200, and THISUM 
greater than 250). The table shows that the distribution of peak hours is differerit 
between weekdays and weekends, but does not change much with increasing THISUM. 
The weekday peak is typically at 7 p.m; (56.6 percent of all summer days), but is also 
often at 6 p.m. (27.2 percent of all summer days), with a somewhat higher percentage 
of 7 p.m. peaks on hotter weekdays48. Six p.m. peaks are more frequent on weekends, 
accounting for 41.4 percent of the peak hours over alt'weekend days, as compared to 
36.8 percent for 7 p.m. This difference in weekday and weekend profiles supports the . 
current practice of developing separating weekdays and weekends in deriving load shape 
libraries (although results may be different for other CEC regions or PG&E zones). 

Using maximum hourly load as a univariate description of load shape, we examined the 
use of four weather variables for their capability to separate load shapes. Current PG&E 

47 Since the hours of the day are considered independently, this depiction does not describe all aspects of 
load shape variability. 

48 Recall that in the convention used by PG&E, loads are recorded at the end of the period during which 
they occurred (so that the 7 p.m. load, which is computed by averaging the 6:30and-7:00 p.m. balf-hourly 
loads) is the load between 6 p.m. and 7 p.m. . 
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bins are defined separately by day type (weekday vs. weekend). As previously noted, 
this practice seems well-justified, so we examined weekday and weekend load shapes 
separately as well. 

We used a technique called regression tree analysis to suggest cut-points to use for 
binning (Chambers and Hastie 1992). This technique models data by using binary 
recursive partitioning according to the values of covariates such that at each node the data 
are split so that the· response variable (here percentage load in maximum hour) are 
maximally distinguished between the two branches of the split. We built trees for each 
of four weather variables: daily average dry bulb temperature (DRYTMP in Table 3-1), 
the sum over 24 hours of THIB (see Table 5-1), CDDSM80 (see Table 3-1), and 
maximum hourly dry bulb temperature (MXDRY in Table 3-1) and used the trees to 

. suggest cut-points by which the load data could be binned. 

We first examined the bins defined by partitioning on the basis ofDRYTMP. Figure 7-4 
shows the distribution of maximum hourly load for each of seven bins which together 
divide the observed range of DRYTMP, using summer weekday data for CEC region 
3. For comparison, Figure 7-4 also shows the distribution of maximum hourly load for 
PG&E's existing bin definitions for summer weekday in CEC region 3. Ideally, the 
distribution for each bin will be narrow, with relatively little overlap with adjoining bins. 
The existing PG&E bins definitions seem to accomplish this distinction as well as the 
bins suggested by regression tree analysis; this is particularly notable since the new bin 
definitions were constructed on the basis of maximum hourly load, whereas the PG&E 
bin definitions were not. 

Figure 7-5 shows.the distribution of maximum hourly load for bins defined on the basis 
of the three other weather variables examined: MXDRY, THISUM68, and CDDSM80. 
Surprisingly,. the bins defined on the basis ofMXDRY are the poorest among the weather 
variables examined. The bins defined on the basis of THISUM68 work quite well, but 
are not convincingly better than the existing PG&E bin definitions. 

7.5.4 Conclusions 

Load shapes show a fair amount of variability within bins using the existing PG&E bin 
definitions. However, of the three alternative weather variables we used to defme load 
shape bins, nonewas able to distinguish load shapes significantly better than DRYTMP 
does for the existing bin definitions. The variable THISUM68 showed the most promise 
for improving bin definitions. 
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Table 7-9. Distribution of Hour of Day in Which Maximum Load Occurred for 
Region 3 Summer AMP Sample Average Load Shapes, by Day Type and 

24 

THISUM-68 . <E max(THI [h]-68,O)) 
hel 

4 p.m. or earlier 4.6 0.0 0.0 0.0 
5 p.m. 4.2 3.4 3.2 0.0 
6 p.m. 27.2 25.5 23.0 39.1 
7 p.m. 56.6 67.0 70.6 60.9 
8 p.m. 6.3 4.0 3.2 0.0 
9 p.m. 'or later 1.2 0.0 0.0 0.0 
number of days 523 321 187 23 

4 p.m. or earlier 9.2 0.0 0.0 0.0 
5 p.m. 4.6 3.9 6.9 0.0 
6 p.m. 41.4 47.1 41.4 50.0 
7 p.m. 36.8 43.1 44.8 50.0 
8 p.m. 8.0 5.9 6.9 0.0 
9 p.m. or later 0.0 0.0 0.0 0.0 
number of days 87 51 29 2 
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Figure 7-3. Distribution of Hourly Central Air Conditioner Loads by Bin for CEC Region 3 Weekdays. 
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7.6 Separate Modeling of Peak Days 

We made an initial assessment of the potential benefits of modeling peak days separately 
from other days, using summer data for CEC region 3. This assessment is closely 
related to the analysis of heat storm effects (Section 7.1) and one of our 
recommendations for future research (Chapter 8). 

7.6.1 Motivation 

Modeling peak day loads is of primary importance in developing load forecasts. Peak 
days may be different than average days both because they have extreme values, and 
(from a different perspective) because response to weather on the hottest days may not 
necessarily be related to weather on cooler days in a straightforward or identifiable­
manner. In our model assessment phase (Chapter 6), we made separate assessments of 
performance for the Peak Day Subset of the various models considered in this report,and 
compared this performance to model performance for all summer days. This comparison 
indicated that the distribution of residuals for peak days' may be considerable different 
than those for typical summer days. . 

In the linear regression models we developed, as well as in models used in the past by 
PG&E and CEC, peak days and average days are combined. As an alternative, it may 
be useful to consider modeling peak days separately from average days. 

7.6.2 Approach 

We re-estimated the hourly weather response function Model 3 (see Chapter 5) for each 
of the 24 hours of the day, 'using region 3 data for days in the Peak Day Subset, and 
compared its performance to that of the hourly models developed in Chapter 5 from data 
for the entire summer season in region 3 . 

. 7.6.3 Findings 

Table 7-10 shows a comparison of the results from some of these hourly models (the 4 
p.m., 5 p.m., 6 p.m., and 7 p.m. models) to the corresponding results of the CEC 
region 3 summer LBLHWRF (LBL's hourly regression models) for the Peak Day Subset. 
The table shows the Prediction Error within the Peak Day Subset for these models. 
While this Prediction Error (p:E.) is expected to be lower for the Peak Day Subset 
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· models, the difference is appreciable, e.g. the hourly 4 p.m. model developed from all 
summer days yields a P.E. of 5.3, as compared to a P.E. of 3.6 for the hourly 4 p.m. 
model developed from the Peak Day Subset alone. 

7.6.4 Conclusions 

These results, although not conclusive, suggest that the difference between peak days and 
average days may warrant separate treatment in the forecasting process. 

Table 7-10. Comparison of Prediction Errors in Selected Hours for Model 3 
Based on Peak Day Subset to model 3 Based on All Summer Days, for CEC 
Region 3 

Regression Model: 
Load=f(THIB, THIBSQ, THIBSUM6, error) 

Hourly models based on all Summer days2 

Hourly models based on peak day subset 
(r-squared) 

5.3 

3.6 
(0.60) 

5.3 

3.4 
(0.61 ) 

5.4 

2.5 
(0.64) 

5.5 

2.4 
(0.69) 

1 Peak Day Subset is=days with 50 = highest =values of Daily Energy/Annual Energy, 1985-1989, 
based on PG&E system load data provided by CEC 

2 see Table 5-4 for summary of regression results for these models 
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8.1 

Chapter 8 

Directions for Future Research 

Throughout the analyses undertaken in this project, issues have been identified as 
candidates for future research. For those that could be readily addressed, albeit in a 
preliminary fashion, exploratory analyses were conducted and results were -reported in 
Chapter 7~ In this chapter, we summarize two-particularly important issues remaining 
from Chapter 7: (1) respecification of binned load shapes (straightforward); and (2) 
issues underlying the heat storm and peak day analysis (complicated). We also identify 
two additional, more general issues for future research: (3) representativeness of the 
AMP sample with respect to the population; (4) potential differences between weather 
conditions recorded during the sampling period and those used in the forecasting process 

_ Before describing these issues, it is important to preface our comments with a general 
statement regarding their relative importance. That is, we believe to be that the' 
availability of metered end-use data to support model development represents a 
tremendous improvement over previous analyses. One should, therefore, view the issues 
raised as ones which we now have the lUXUry to address. That is," prior to the 
availability of these data, the significance of these issues was moot since there was no 
possibility of resolution. 

In establishing priorities· for these activities, we believe strongly that the need for 
additional research must be predicated on a systematic assessment of competing load 
shape forecasting objectives (such as forecasting system peak, hourly load shapes for 12 
typical weeks, minimum load conditions, etc.) in light of the resource constraints faced 
by the f()recasting process. 

Respecification of Binned" Load Shapes 

In Chapter 6 we concluded that the LBL daily Weather Response Functions and binned 
load shapes generally performed better than did the LBL hourly Weather "Response 
Functions and significantly better than did the other approaches. In Chapter 7, we 
developed a framework for considering alternative bin definitions for the daily approach. 
Within this framework we explored the use of a single measure of load shape, maximum 
peak demand, as a means for creating new bin definitions. 

In view of the performance of LBL daily Weather Response Functions, we believe 
additional work to consider alternative approaches for defining bins is warranted. 
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8.2 Peak Demand versus Load Shape Forecasting 

In several parts of the report, we took up the issue of peak demand forecasting, as 
distinct from load shape forecasting: In Chapter 6, we evaluated the performance of our 
models separately for system peak load days and found that, generally speaking, our 
models underpredicted loads on these days. In Chapter 7, we evaluated the inclusion of 
heat storms into the daily energy models and the development of separate models to 
forecast peak load days. We believe that ultimate resolution of these issues requires 
directly addressing the tension inherent in forecasting peak demands, after first 
constraining load shape models with separately-derived annual energy forecasts.' 

The annual forecasts of energy use that are input into the load shape models represent 
a constraint on the load shape forecast. For forecasting average load shapes, this 
constraint is quite reasonable. For forecasting system peak demands, the continuing 
appropriateness of this constraint should be examined. For example, given a fixed annual 
energy forecast, allocation of additional energy to peak demand days (either by inclusion 
of a heat storm effect or separate modeling of peak days) results in less energy being 
available for allocation to average demand days . 

. As indicated in the introduction to this section, however, we believe it is appropriate to 
start this process by first re-visiting the objectives of load shape forecasts in larger 
context of resource planning to determine the relative importance of (A) system peak 
demand forecasts, (B) average load shape forecasts, and (C) other issues, such as 
forecasts of minimum load conditions. Only after the importance of the system peak 
demand forecast, relative to other applications of the load shape· model, ·is established 
will it be appropriate to consider further model enhancements to address peak demand 
issues. 

8.3 Sample Weight Development 

Upon direction from project sponsors, all project analyses have been based on un­
weighted aggregations of the AMP sample data. There remain un-answered questions as 
to the representativeness of the sample with respect to the PG&E population, as 
represented in the CEC forecasting framework. 

We believe that having completed an analysis of the un-weighted data, it is appropriate 
to examine the potential additional value of including sample weights in subsequent 
analyses. , Specifically, we recommend examining existing sample weights and, if 
appropriate, developing new sample weights for forecasting purposes. It is likely that 
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separate sets of sample weights would be required for use by PG&E and CEC, in view 
of differences in their forecasting applications. 

8.4 Weather Data for Forecasting 

The weather observed in the metering period is likely to be different from that used in 
the forecasting process. Several specific issues arise as a result: (A) how similar (or 
different) is the weather data used in forecasting from that observed in the metered data; 
(B) to the extent there are differences, what is their significance for the forecasts. 

A separate and· more general issue is (C) how should weather data developed for 
forecasting. This issue, in tum, is also related to previously discussed issue (Section 8.2) 
regarding the relative importance of various load-shape forecasting objectives for system 
resource planning. 

" 
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'Appendix A 

Data Handling Conventions 

Prior to our analysis, we developed a number of conventions for handling data. These 
included the assignment of individual households to the CEC and PG&E geographic, 
regions or zones used in our analysis, the aggregation of half-hourly loads to hours and 
the alignment of these loads with the weather data, and definition of day types and 
treatment of missing values. 49 

A.I Geographic Coding 

We used two'distinct sets of geographic aggregations: a set of five climate regions used 
by CEC, and a set of four climate zones used by PG&E. Table A-I shows the number' 
of central and room air conditioners' metered for each geographic aggregation. Several 
regions do not have significant numbers of metered data (e.g., in the case of central and 
room air conditioning, CECregion 1 and 5, and PG&E zone T); correspondingly we 
used only three of CEC's climate regions (regions 2, 3, and 4) and three of PG&E's 
climate Zones (zones R, S, and X). We refer to these geographic aggregations as CEC 
regions and PG&E zones, respectively. Maps of the geographic aggregations are 
included in Chapter 2. . 

To make CEC region assignments, we used the zip code of the residence (which PG&E 
provided to LBL in the file LBLID .DA T) and then selected a CEC region according to 
the zip code/climate region correspondence given to us by CEC in the file ZIPzone.DAT. 
We reviewed these initial assignments by comparing the county of each zip code as given 
in ZIPzone.DAT to the county as given by U.S. census and postal information to 

\ . " 

determine cases for which there was a discrepancy in county coding. Based on zip code 
location and our inspection of the CEC map of geographic climate zones, reassigned 
residences in 41 zip codes . 

. Each residence was also assigned to one of fourPG&E zones, R, S, T, or X with 
corresponding PG&E weather stations Fresno, Sacramento, Salinas, and San Ramon. 
These assignments were made according to the LBLID-zone assignments provided by 
PG&E in the file CLIMzone.LBL. 

49 LBL reviewed some of AMP data for an earlier project (see Eto and Moezzi 1992) 
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A. 2 Weather Data 

We used two sets of weather data in this study, one set derived from NOAA weather 
data, and a second set of data from PG&E weather stations. Each CEC region is 
associated with a NOAA weather station. Each PG&E zone is associated with a PG&E 
weather station. See Table 3-1. . 

CEC provided LBL with a weather data set derived from NOAA weather fIles. This data 
set consists of hourly measurements for 1985-1989 for each of several weather variables 
at six weather stations: Blue Canyon, Fresno, San Jose, San Francisco, Sacramento, and 
Sunnyvale. The weather variables reported in this c::lata set are: wet-bulb temperature, 
dry-bulb temperature, dew point temperature, relative humidity, wind speed, and cloud 
cover (not all of which were used in our analyses). Other meteorological measurements 
are reported in the NOAA weather fIles but were not used in our analyses. According 
to NOAA documentation, hourly weather data are observed within ten minutes to the 
hour for which the data are reported. The Blue Canyon weather station is' assigned to 
CEC region 1, the Sacramento weather station is assigned to CEC region, the Fresno 
weather station is assigned to CEC region 3, the San Jose (1986-1989) and Sunnyvale 
(1985) weather stations are assigned to CEC region 4, and the San Francisco Airport 
weather station is assigned to CEC region 5 (but CEC regions 1 and 5 w~re not analyzed 
in this study). 

Each of the annual PG&E weather data sets we received for 1985-1989 contains half­
hourly measurements of dry-bulb. temperature and relative humidity for 25 weather 
stations. In this report we use data from only three of these stations, Fresno, 
Sacramento, and San Ramon. We considered daily average temperature missing if fewer 
than 24 of the 48 possible half-hourly temperatures were reported for that day. 

For each station-hour of the NOAA data, we computed an index of climatic severity 
called the temperature-humidity index (THI). This index was used in developing the 
time-temperature matrices and in the allocation of annual to peak day energy use. The 
definition we used to compute THI is: 

TEll = 0.4 * (dry-bulb temperature + wei-bulb temperature)' + 15, 

with dry-bulb and wet-bulb temperatures given in degrees Fahrenheit. For some of our 
analyses we also used THI degree-days, or THI-DD, as it is used in CEC's Peak 
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Demand Forecasting Model to allocate annual demand to peak day demand. We 
computed THI-DD with a base temperature of 68 degrees: 

24 

THI-DD [day k] = E max{THI [hour i, day k]-68,0} 
i=1 

THI-DD serves as a measure of those hours that contribute to cooling loads (CEC defmes 
these as hours with THI temperatures in excess of 68° Fahrenheit). 

A.3 PG&E End-Use Load Data 

Load data for 1985 and 1986 were obtained from PG&E in 1989 as SAS data sets 
AMPLBL1 and AMPLBL2. These data sets contained half-hourly loads for both· 
conditioning and non-conditioning appliances and for total household. Cooling load data 
for 1987, 1988, and 1989 were received from PG&E in the SAS data sets CECRES87, 
CECRES88 , and LBLRES89. Data for 1987, 1988, and, 1989 were reported 9n an 
hourly basis. Each data set contained data for total household load in addition to loads 
for specific appliances. . 

PG&E reports load data at the end of the measurement interval. For example, in the 
1987, 1988, and 1989 hourly data provided by PG&E, the 1 a.m. hourly load is the load 
between 12 midnight and 1 a.m .. We used this convention to compute hourly average 
loads from the 1985 and .1986 half-hourly load data. For consistency with PG&E's 
reporting procedure, we defined the hourly load for a given hour as the average of the 
loads reported for the two preceding half-hours. For example, load demand for I a. m. 
was computed as the average of the 12:30 a.m. and 1 a.m. loads. If data for only one 
of the two half-hours was available, we estimated the corresponding hourly demand using 
only the demand for the half-hour. 

A.4 Time Conventions 

The NOAA weather data are always reported in Local Standard Time whereas the PG&E 
weather and load data are recorded using Dayligqt Savings Time. We converted the 
NOAA data to Daylight Savings Time for our computations. 

For this report Weekend is defined as Saturday, Sunday, or one of the eight holidays 
listed on the PG&E rate schedule: New Year's Day, President's Day, Memorial Day, 
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Independence Day, Labor Day, Veteran's Day, Thanksgiving Day, and Christmas Day~ 
A Weekday is any other day. 
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Table A-1. Number of Central and Room Air Conditioners Metered by CEC 
Region and PG&E Zone 

CEC Region 1 • •••••• I • 3 
CEC Region 2 · ........ 65 
CEC Region 3 · ........ 186 
CEC Region 4 · ........ 133 
CEC Region 5 · ........ 6 

PG&E zone R . . . . . . . . .. 149 
PG&E zone S ........ " 157 
PG&E zone T+ ....... " 1 
PG&E zone X . . . . . . . . .. 107 

CEC Region 1 
CEC Region 2 
CEC Region 3 
CEC Region 4 
CEC Region 5 

2 
6 
13 
39 
2 

PG&E zone R ........ " 9 
PG&E zone S ........ " 20 
PG&E zone T+ ....... " 0 
PG&E zone X '. . . . . . . . .. 36 

• PG&E zone T is not analyzed in this study 
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Table A-2. Comparison of Geographic Assignments Between PG&E Zones 
and CEC Regions 

CEC R S T X TOTAL 
Region 

1 6 15 19 0 40 
2 1 83 0 1 85 
3 150 94 0 1 245 
4 0 43 23 226 292 
5 1 0 40 39 80 
6 0 8 0 0 8 
7 25 0 0 0 25 

183 243 82 267 775 

1 all AMP LBLIDs are included in this cross tabulation, not just those for which cooing end uses were 
metered. 
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Figure B-4. Central Air Conditioner Load Profiles by Bin for PG&E Zone S. 
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Figure B-5. Central Air Conditioner Load Profiles by Bin for PG&E Zone S. 
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Figure B.6. Central Air Conditioner Load Profiles by Bin for PG&E Zone S. 
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Figure B-7. Central Air Conditioner Load Profiles by Bin for PG&E Zone X . . 
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Figure B-8. Central Air Conditioner Load Profiles by Bin for PG&E Zone X. 
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Figure B -9. Central Air Conditioner Load Profiles by Bin for PG&E Zone X. 
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Figure B·10. Central Air Conditioner Load Profiles by Bin for CEC Region 2. 
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Figure B-11. Central Air Conditioner Load Profiles by Bin for CEC Region 2. 
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Figure B-12. Central Air Conditioner Load Profiles by Bin for CEC Region 2. 
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Figure p,,13. Central Air Conditioner Load Profiles by Bin for CEC Region 3. 
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Figure B-14. Central Air Conditioner Load Profiles by Bin for CEC Region 3. 
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Figure 'l!-15. Cent~al Air Conditioner Load Profiles by Bin for CEC Region 3._ 
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Figure B-16. Central Air Conditioner Load Profiles by Bin for CEC Region 4 . 
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Figure B-17. Central Air Conditioner Load Profiles by Bin for CEC Region 4. 
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FigureB-18. Central Air Conditioner Load Profiles by Bin for CEC Region 4. 
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Figure C-3. Distribution of season-specific model residuals (obs. - pred.) for CEC Region 4. 
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Appendix D 

HELM Model Implementation 
of Proj ect Results 

This appendix documents the HELM input files provided as products of the current 
project, and summarizes an important issue in using HELM~ 50 

We prepared HELM input files for the. "final" versions of the models described in 
Chapters 3 and 4, which combine daily energy forecasts with bin-specific 24-hour load 
shapes. We developed six sets of inputs, one for each of the three CEC regions studied 
(CEC regions 2, 3, and 4), and one for each of the three PG&E zones studied (pG&E 
zones R, S, and X). The input files developed for each of these geographic areas consist. 
of one Daily WRF files and one Load Shape Representation file. The Daily WRF files 
contain the final daily energy regression models reported in Chapter 3 (Tables 3-3 and 
3-4). The Load Shape Representation files contain load shape libraries, which are sets 
of 24-hour load shapes corresponding to the temperature, season, and day-type bins 
specified in Table 4-1 (for PG&E zones) and Table 4-2 (for CEC regions). Model· 
specifications are completed by day type and season definitions (which are defined in this 
report and in our calendar files), and definitions of the variables used in the models 
(which are defined in Table 3-2). 

We have already discussed two issues relevant to the use of project results within HELM, 
. including the format and number of variables that can be used to specify WRFs, and the 
ease of using the WRFs, both described in Chapter 3. In this appendix, we discuss the 
reasonableness of HELM model forecasts developed using.project results, in the context 
of current PG&E and CEC forecasting procedures. Specifically, we comment on the 
issue of negative load forecasts resulting from use of LBL's WRF and the weather files 
currently used by PG&E and CEC in forecasting . 

so Because the production version of HELM 2.0 was not available when we began developing and testing 
input filel), we used the beta release of HELM 2.0. 
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D.1 Background 

The nature of linear regression, which is the basis for the HELM WRFs, means that their 
use may produce negative values for loads. The occurrence of such loads depends on the 
forecast weather data used in the HELM. Both CEC and PG&E have reported obtaining 
negative loads while using preliminary LBL WRFs along with their respective "typical 
weather" files, and it is likely that any "reasonable" typical weather data for the areas 
studied would likewise result in a few (but not many) negative loads. 

The occurrence of such negative load forecasts is statistically acceptable in the context 
of forecasting. However, because negative ioads are theoretically impossible, they may 
be awkward to use: the occurrence of such as a prediction can be conceptually 
discomforting and could conceivably result in computer-rela~ed difficulties in the post­
processing of model output. 

D.2 Approach and Findings 

CEC and PG&E requested that we investigate the occurrence of negative loads in order 
to develop recommendations on how they might best be dealt with. We obtained the 
"typical weather" files used by CEC51 and PG&E52 in their ER-94 HELM forecasts runs . 
. We generated HELM model predictions using these typical weather files (as both the 
forecast and the base weather file) and examiried the occurrence of negative loads. Note 
that the hourly loads for a day are zero if and only if the daily load. is zero, since 
application of the binned load shape implies multiplication of the daily energy load shape 
by a positive scale. 

We examined the occurrence of negative loads for each CEC region and PG&E zone, 
determining for each the number of negative loads, the total (negative) energy these loads 
represent, and the percentage this total (of negative loads) is of the forecast annual 
energy. Negative loads account for 1.3, 0.1, and 1.1 percent of annual energy for CEC 
regions 2, 3, and 4 respectively; days with negative loads account for 6.3, 2.5, and 4.1 
percent of the 365 days for these regions, respectively. Of the three PG&E zones R, 
S,and X, only the forecast for zone R included any negative load forecasts. Negative 

51 These are the files PGE92. WTR in the RES subdirectories of geographic area directories (SACTO; 
FESN, and SANJOSE for CEC regions 2, 3, and 4 respectively), which were transmitted with a memorandum 
dated August 31, 1993. 

52 These are the files CZRRES.DAT, CZSRES.DAT, and CZXRES.DAT (for PG&E zones R, S, and X 
respectively) received in September 1993. 
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load forecasts for zone R accounted for 2.4 percent of annual forecast energy, and 
occurred on 1.4 percent of the 365 days. 

D.3 Discussion 

Options for treating negative loads, apart from ignoring them, include: (1) replacing 
negative loads by zero; (2) modifying the WRFs;and (3) defining new bins. 

( 

Option 1, replacing negative loads by zero, will result in an overestimate (relative to the 
model as originally specified) of total energy for the forecast period. That is, if forecast 
weather and base weather are the same, the total forecast load (if negatives are 

, interpreted as zeros) will be higher than the energy specified in the forecast. The 
overestimate would be small (equal to the Sum as negative loads as a percent of annual 
energy), but can probably not be considered negligible:, in our case, for CEC regions 
2 and 4 and PG&E zone R the total of negative loads is more than one percent of total 
annual load, as shown above (1.3 percent, 1.1 percent, and 2.4 percent, respectively. 
Further, resetting negative loads to zero may be computationally awkward, since it 
requires post-processing of the HELM output. 

Option 2, modifying the WRFs, has been used both by CEC and PG&E. It is in general 
not mathematically straightforward to calculate minimal adjustments to eliminate negative 
loads, since each WRF uses a variety of weather-based variables which are not a function 
of AVGDRY used to define the bins. Furthermore, adjustments necessary depend also 
on the particular weather used. Trial and error may be the easiest method of making 
these adjustments. Such ad hoc adjustments can result in substantial changes in HELM 
forecasted loads, although they will not necessarily do so. For example, to get rid of 
negative loads in our CEC region 2 forecasts, we adjusted the TCHANGE coefficients 
(which were negative values) for the Spring and Summer region 2 WRFs. while we 
tried to make these adjustments as small as possible, the adjustments resulted in a 
substantial change in peak load, reduced the predicted peak load by 3.5 percent. In our 
test case for each region, we noticed that the negative loads occurred only in late Spring 
and early Summer. 

Option 3, defining new bins, is again not a straightforward calculation either. The 
necessary adjustments may again be most easily achieved by trial and error. Option 3 
is perhaps the most acceptable of the options sketched here (e~c1uding "do nothing"), 
since peak predicted load would not be affected by such an adjustment. There are 
apparently (at least) two ways to make the adjustment: (1) shifting the lower bound of 
the lowest load shape bin slightly higher, or (2) possibly using a secondary variable (in 
addition to A VGDRY) to define an additional set of bins for each season and region. 
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D.4 Recommendation 

In view of the small amount of energy affected and the necessarily somewhat ad hoc 
approaches required to implement the alternative, we recommend that negative loads be 
retained, as predicted. In the context of the overall system load shape, the effect of these 
negative loads will be negligible. Accepting negative loads will also preserve the 
consistency between the annual energy and load shape forecasts. 
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