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SUMMARY

Task-related information is widely distributed across the brain with different coding properties, 

such as persistency. We found in mice that coding persistency of action history and value was 

variable across areas, learning phases, and task context, with the highest persistency in the 

retrosplenial cortex of expert mice performing value-based decisions where history needs to be 

maintained across trials. Persistent coding also emerged in artificial networks trained to perform 

mouse-like reinforcement learning. Persistency allows temporally untangled value representations 

in neuronal manifolds where population activity exhibits cyclic trajectories that transition along 

the value axis after action outcomes, collectively forming cylindrical dynamics. Simulations 

indicated that untangled persistency facilitates robust value retrieval by downstream networks. 

Even leakage of persistently maintained value through non-specific connectivity could contribute 

to the brain-wide distributed value coding with different levels of persistency. These results reveal 

that context-dependent untangled persistency facilitates reliable signal coding and its distribution 

across the brain.

eTOC blurb

Hattori et al. showed that highly persistent value coding emerges in the mouse retrosplenial cortex 

and artificial recurrent neural network in a learning- and context-dependent manner. Persistency 

ensures untangled value representations in neural population dynamics and facilitates distributed 

value coding across the brain, highlighting the benefits of persistent coding.
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INTRODUCTION

The parallel distributed processing (PDP) theory (McClelland et al., 1986; Rogers 

and McClelland, 2014; Rumelhart et al., 1986) highlights computational advantages of 

distributed information coding in neural networks and has had a profound impact on our 

understanding of cognition and deep learning. Growing evidence revealed that information 

coding in the brain is highly distributed across neurons and distinct brain areas (Allen et 

al., 2019; Hattori et al., 2019; Koay et al., 2020; Musall et al., 2019; Steinmetz et al., 2019; 

Stringer et al., 2019). Even neurons in the primary sensory cortex, which were classically 

thought to process only sensory information of a single modality, have been found to encode 

diverse information such as other sensory modalities (Hattori and Hensch, 2017; Hattori 

et al., 2017; Iurilli et al., 2012), spontaneous movements (Musall et al., 2019; Stringer et 

al., 2019), actions (Hattori et al., 2019; Koay et al., 2020; Steinmetz et al., 2019), reward 

(Hattori et al., 2019; Koay et al., 2020), event history (Hattori et al., 2019; Koay et al., 

2020), and value (Hattori et al., 2019; Serences, 2008). Although these signals are widely 

distributed, activity perturbations of a brain area typically affect only a subset of behavioral 

outputs that are associated with the information encoded in the area. These results suggest 

that, although information coding is highly distributed, not all of the information represented 

in neural activity may be used in each area.

A clue to understand the utility of encoded information may lie in the temporal dynamics 

of the information coding. In working memory tasks where information is maintained for 
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several seconds in a trial, information can be maintained as either persistent neural activity 

or sequential transient activity across a neural population that tiles the memory period 

(Cavanagh et al., 2018; Fuster and Alexander, 1971; Masse et al., 2019; Miller et al., 1996; 

Murray et al., 2017; Orhan and Ma, 2019; Romo et al., 1999; Zhu et al., 2020). Recently, it 

was shown that certain brain areas in mice such as the retrosplenial cortex (RSC) (Hattori 

et al., 2019) and the medial prefrontal cortex (Bari et al., 2019) encode action values with 

exceptional persistency during history-dependent value-based decision making tasks where 

values need to be stably maintained across trials. Inactivation of either area impaired the 

ability to use the action value for their decision making. These results suggest that persistent 

value coding is critical for animals to exploit value for decision making when the value 

needs to be maintained for extended periods of time. Similar persistent coding is prevalent 

across the brain and species, ranging from coding of motor planning (Guo et al., 2017; 

Inagaki et al., 2019; Li et al., 2016), internal states (Allen et al., 2019; Marques et al., 2020) 

to emotions (Jung et al., 2020; Kennedy et al., 2020), yet the computational advantages of 

persistent coding has not been fully established quantitatively.

Here we investigated the neural dynamics of action history and value coding in 6 areas of 

the mouse cortex and artificial recurrent neural network (RNN) agents to understand the 

computational advantages of persistent coding and its impact on distributed coding.

RESULTS

Learning- and context-dependence of coding persistency across cortical areas

We first used the neural activity data recorded in mice performing decision making based 

on history-dependent action value we reported previously (Hattori et al., 2019). Each trial 

consisted of a ready period, an answer period, and an inter-trial-interval (ITI). The duration 

of each period was variable from trial to trial, making the task more naturalistic than a 

fixed temporal sequence (Figure 1A). During the ready period (LED cue), mice needed to 

withhold licking to enter the answer period. This ensured that the neural activity during 

the ready period was free of licking-related motor activity. Mice were allowed to freely 

choose either left or right lickport after a go cue tone. Different reward probabilities 

were assigned to the 2 lickports, and the reward probabilities changed every 60–80 trials 

without cue. Therefore, mice were encouraged to dynamically estimate the underlying 

reward probabilities of the 2 options on a trial-by-trial basis by forming subjective action 

values based on their recent choice outcome history using reinforcement learning (RL) 

(Sutton and Barto, 2018). The action values need to be stably maintained within each 

trial and updated after each trial based on the action and its outcome. Neural activity 

was collected with in vivo 2-photon calcium imaging from transgenic mice that express 

GCaMP6s (Chen et al., 2013) in excitatory neurons (Wekselblatt et al., 2016) (Figure 

1B), and the calcium signals were converted to estimated spike rates by non-negative 

deconvolution (Friedrich et al., 2017; Pachitariu et al., 2018). The recording data were 

from 6 cortical areas including 2 association (RSC: retrosplenial; PPC: posterior parietal), 

2 premotor (pM2: posterior secondary motor; ALM: anterior-lateral motor), and 2 primary 

sensory (S1: primary somatosensory; V1: primary visual) cortex. We estimated the 2 action 

values on each trial (QL and QR) by fitting a RL model to the choices of mice, and we 

Hattori and Komiyama Page 3

Neuron. Author manuscript; available in PMC 2023 February 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



focused our analyses on the neural coding of the policy value (ΔQ = QL - QR: the value 

difference between the 2 actions) on which animals rely their decision making.

Regression analysis of the activity of individual neurons at different time bins within the 

ready period identified significant fractions of neurons that encode ΔQ in all 6 areas, with 

the highest fraction in RSC (Figure 1C). ΔQ coding in these neurons was independent 

of upcoming choice directions (Figure S1), and reliably updated at single-trial resolution 

(Figure S2), indicating that these neurons faithfully encoded ΔQ on a trial-by-trial basis 

across all 6 areas. Despite the widespread ΔQ coding, the temporal stability of ΔQ 

coding within the ready period differed across areas. Only in RSC, the ΔQ-coding neurons 

identified at different time bins reliably encoded ΔQ throughout the trial and across trials, 

while the encoding was temporally unstable in the other 5 areas (Figure 1D and S1H). 

This was because the way individual neurons encoded ΔQ across time differed across 

areas (Figure 1E and S1I). We quantified the temporal stability of ΔQ coding by defining 

the persistency index which reflects the coding persistency relative to the chance level 

(Methods). The analysis revealed RSC as the area with the highest ΔQ coding persistency 

(Figure 1F).

We next examined whether the coding persistency is a fixed property of individual areas or 

changes with learning. We analyzed the population activity from RSC, PPC, pM2 and ALM 

during early stages of training (< 1 week from training start, Figure 1G). We compared their 

value coding persistency between early and expert sessions. We found that the ΔQ coding 

persistency significantly increases in RSC, PPC and pM2 during training (Figure 1H–I), 

indicating that coding persistency can change during task learning.

The coding persistency may have increased during learning because the value-based 

decision task requires stable value maintenance for an extended period of time across trials. 

Therefore, we tested whether coding persistency differs in another task that does not require 

long maintenance of value. We trained 9 mice in the alternate choice task in which a 

reward was given when mice made a choice that was the opposite to the previous action 

(Figure 2A). Thus, the correct action depended only on the immediately preceding trial, 

in contrast to the value task in which history from multiple past trials was informative. 

All other task conditions were identical between the 2 tasks. camk2-tTA::tetO-GCaMP6s 

transgenic mice were trained in the alternate choice task for at least 2 weeks to achieve a 

plateau-level performance (~80% correct) (Figure 2B). We then performed 2-photon calcium 

imaging of 8,524 RSC cells, 3,186 PPC cells, 7,915 pM2 cells and 4,911 ALM cells 

(RSC: 14 populations, 608.9 ± 18.1 cells, PPC: 7 populations, 455.1 ± 25.1 cells, pM2: 14 

populations, 565.4 ± 34.6 cells, ALM: 10 populations, 491.1 ± 36.8 cells, mean ± s.e.m 

per population). The coding persistency of action history in the alternate choice task was 

significantly weaker than in value-based task for the 4 imaged areas (Figure 2C, D). These 

results indicate that the coding persistency in the cortex is context-dependent.

Persistent value coding in RSC forms cylindrical dynamics

In the value-based task, ΔQ coding in RSC is temporally stable within each trial. However, 

this does not necessarily mean that RSC population activity is static during these periods. In 

fact, individual neurons in RSC showed heterogeneous and rather dynamic activity patterns 
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(Figure 1B). To investigate how the coding of different information temporally interacts, 

we sought to decompose population activity into the demixed neural subspaces where 

different task-related signals are separated into distinct dimensions. Specifically, we sought 

to define 3 demixed axes each encoding ΔQ, Qch (value of selected action, e.g. QL on 

left choice trial), or ΣQ (sum of 2 values), and the remaining Q-free subspace that retains 

all the activity variance that is not explained by the 3 Q-related axes. A previous study 

reported demixed principal component analysis (dPCA) (Kobak et al., 2016) as a method to 

decompose population activity into demixed target-dependent and independent dimensions. 

However, dPCA is only designed to identify dimensions for discrete variables and cannot 

be applied for continuous variables such as Q-related signals. In addition, dPCA splits each 

targeted signal into multiple linear axes, which makes the signal interpretation difficult. 

To overcome these limitations, we developed a novel dimensionality reduction method 

that is more generally applicable, which we term demixed subspace principal component 

analysis (dsPCA) (Figure 3A). dsPCA identifies demixed dimensions for targeted signals 

and dimensions for target-independent activity, similarly to dPCA. However, unlike dPCA, 

it groups each of the target signals along a single linear coding dimension and can identify 

such dimensions for both discrete and continuous target variables. The first step of dsPCA 

identifies the best demixed linear axes for the target variables using a regression-based 

approach, similarly to (Mante et al., 2013). This step involves fitting a multiple linear 

regression model of the form x(trail) = βAA(trail) + βBB(trail) + βCC(trail) to the activity 

of individual neurons for the targeted variables, A, B and C. The regression coefficients, 

βA, βB and βC are the partial derivatives of the neural activity by each target variable, and 

the vectors that consist of the coefficients from all neurons are the linearly demixed coding 

directions of the neural population for the 3 targeted variables. We defined the targeted 

coding axes as the unit vectors of these coding directions. By definition, these demixed 

coding vectors capture all linear information of targeted variables in a population. Next, 

dsPCA identifies the remaining target-free subspace that is orthogonal to these targeted 

axes and captures all the remaining activity variance. The target-free orthogonal subspace 

is identified by performing full QR decomposition of the matrix with the coding axis 

vectors. Then the axes of the target-free subspace are further realigned based on the principal 

components of the activity within the target-free subspace to define axes that contain large 

fractions of remaining variance. (Figure 3B). Therefore, dsPCA can be viewed as a general 

extension of PCA by combining the regression-based supervised target axis identifications 

and the PCA-based unsupervised dimensionality reduction of the target-free population 

dynamics.

We evaluated the demixing performance of dsPCA using noisy simulated neural populations 

(200 neurons / population with Gaussian noise) where graded signals A, B and C are 

linearly encoded in 20% of the neurons. Each target signal was uniquely encoded only 

along the single, target axis (Figure 3C–D), and linear decoders failed to decode any A, B 

and C signals in the remaining target-free subspace (Figure 3E). We next applied dsPCA 

on the cortical population activity time-averaged over the ready period to identify demixed 

coding axes for ΔQ, Qch, and ΣQ, and the remaining, Q-free subspace (Figure 3F). For 

all 6 areas, most of the targeted information was confined to each of the coding axes, 

and the remaining subspace completely lacked any of the targeted information even though 

Hattori and Komiyama Page 5

Neuron. Author manuscript; available in PMC 2023 February 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



this subspace contained the highest activity variance (Figure 3G–I, and S3). Although we 

detected some Qch signal along the ΣQ axis (Figures 3H and S3B), this is expected because 

Qch is a component of ΣQ (ΣQ = Qch + unchosen Q). However, note that ΣQ signal is 

not detectable along the Qch axis, indicating that the demixing of activity variance worked 

correctly. Thus, dsPCA successfully identified demixed coding axes for Q-related variables 

and the remaining Q-free subspace.

With dsPCA, we examined how ΔQ coding temporally interacts with other dynamics. The 

activity dynamics around the choices (between ±4 sec from the choice) was visualized in 

the neuronal manifold consisting of the ΔQ coding axis and the other value-related axes 

(Figure 3J), or the manifold consisting of the ΔQ coding axis and 2 largest temporal activity 

variance axes within the Q-free subspace (Figures 3K). We found in both manifolds that 

activity trajectories in RSC from trials with different ΔQ values do not cross with each 

other across time. In the manifold with the largest temporal dynamics (Figures 3K, S4 

and S5), RSC population remained in the initial positions linearly segregated along ΔQ 

axis according to ΔQ of the trial (‘Pre-choice’ in the figures). Around the go cue time, 

the RSC population diverged from these initial positions and drew rotational dynamics. 

After a choice, the population returned towards the initial positions following a circular 

geometry. The return geometry was warped along ΔQ axis, reflecting the reward prediction 

error (RPE) on each trial depending on the choice and its outcome, which updates the ΔQ 

representation in the population (Figure 3L–M). The RPE-dependent, bidirectional transition 

of the activity state ensures that the neural population closely represents and updates the 

ΔQ coding online in each trial. In contrast, the dynamics in S1 and V1 were highly tangled 

over time, and similar ΔQ values could accompany different activity states at different time. 

Therefore, although ΔQ coding is widely distributed across the cortex, the different levels of 

persistency confer different levels of tangling in ΔQ coding (Figure 3N). The exceptionally 

high ΔQ coding persistency in RSC allows a temporally untangled value representation 

with the within-trial cyclic dynamics that transitions along the value axis to reflect value 

updates. These dynamics across trials collectively form cylindrical dynamics during task 

performance.

Untangled, persistent value coding emerges in the RNN trained with the mouse RL 
strategy

The persistent and untangled ΔQ coding in RSC, together with our previous observation that 

RSC inactivation impairs value-based decision (Hattori et al., 2019), raises the possibility 

that persistent value coding is advantageous in the task. We investigated this possibility by 

training artificial RNN agents to perform RL in the same task and subsequently examining 

the ΔQ coding scheme in the trained network. The training of RNNs was done without 

constraining the activity dynamics. We reasoned that, if persistent coding is advantageous, 

trained RNN agents may use persistent coding to perform the task.

First, we trained RNNs to perform RL optimally by teaching them the ideal choices of 

each trial based on the reward assignment rule. In this task, once a reward is assigned to 

a choice, the reward remains assigned until the choice is selected. As a result, the actual 

reward probability of a choice cumulatively increases if the choice is not selected in the 
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recent trials. Therefore, an optimal choice would depend on the current reward assignment 

probabilities, which are unknown to mice and RNN agents, and past choice history. By 

using the optimal choices as the teacher, we trained synaptic weights of RNNs such that the 

RNNs use only history of choice and reward to make near-optimal decisions (Figures 4A 

and 4B). The durations between decisions were made variable, similarly to the task structure 

in mice. The RNNs receive action outcome information only at the time step after choice 

and need to maintain the information through recurrent connectivity across time steps and 

trials. These optimally trained networks (“optimal RNN agents”) achieved higher reward 

rate than expert mice (Figure 4E). Furthermore, the choice patterns of optimal RNN agents 

diverged from the RL model that has been optimized to describe the behavior of expert mice 

(Figure 4E), indicating that the optimal RNN acquired a RL strategy that is distinct from 

mice. Accordingly, a regression analysis showed that the dependence of optimal RNN agents 

on choice and reward history differed from that of expert mice (Figure 4F).

To obtain a network model that better mimics the mouse strategy, we trained RNNs to 

imitate expert mouse behaviors using behavioral cloning, a form of imitation learning (Osa 

et al., 2018). We used 50,472 decision making trials of expert mice as the teaching labels 

to train the synaptic weights of the RNN. The goal of this training was for the RNN 

to make the same decisions as expert mice with its recurrent activity dynamics based on 

the same history of choice and outcome in the past trials (Figure 4C). The trained RNNs 

(“mouse-like RNN agents”) performed RL using their recurrent activity (Figure 4D), and the 

reward rate and the RL model accuracy were equivalent to those of expert mice (Figure 4E). 

Furthermore, the mouse-like RNN agents used history from previous trials for its decisions 

in a similar way as expert mice (Figure 4F). Therefore, the RL strategy of expert mice 

was successfully transferred to the synaptic weights of the trained RNN agents, and the 

trained RNNs could implement mouse-like RL using its recurrent activity dynamics without 

updating synaptic weights from trial to trial.

We then examined how the mouse-like RNN agents encoded ΔQ. We found that RSC-like 

persistent ΔQ coding emerged in their recurrent activity (Figures 4G). This observation 

is significant as the training procedure did not impose a priori constraints on the coding 

scheme of the RNN. We also examined how the population activity dynamics evolved 

during training. We had RNN agents at 3 stages of training run the task (before training, 

intermediate (after 1 epoch of training), and fully trained) and analyzed their recurrent 

activity during the task performance. dsPCA revealed that untrained networks with random 

connectivity exhibit highly tangled ΔQ coding, while training gradually shaped the networks 

to form stacked circular dynamics (Figure 5A). Unlike RSC that formed cylindrical 

dynamics (Figure 3K), the diameter of rotational trajectory varied across different ΔQ 

states in the trained networks, suggesting that additional biological constraints that were not 

considered for RNN training may have imposed a constant diameter in the mouse brain. In 

addition to the analysis of ΔQ estimates from a RL model fit to behaviors, we examined 

the coding persistency of the ground truth ΔQ which is available as the activity of the 

action output neuron in each RNN agent. We confirmed that the ground truth ΔQ was also 

persistently encoded in both optimal and mouse-like RNN agents (Figure S6).
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Persistency facilitates reliable and robust value retrieval by downstream neural networks

The emergence of ΔQ coding persistency in RNN agents suggests that persistent coding is 

a preferred solution in the task. What would be the advantage of persistent coding? One 

possibility is that untangled persistency may allow a more reliable signal retrieval by the 

downstream network to guide the action selection. We tested this possibility by training 

artificial RNNs to retrieve the ΔQ signal from different temporal patterns of simulated 

population activity (Figure 6A). For this purpose, RNNs are biologically relevant as they 

receive time-varying inputs sequentially, as opposed to other decoder models (e.g. regression 

models).

We created artificial population activity encoding ΔQ in 4 different patterns: persistent, and 

3 types of non-persistent coding (Figure 6B). In persistent coding, 20% of cells encode ΔQ 

as rate coding persistently. The slope of ΔQ tuning curve for each neuron was taken from its 

distribution among RSC neurons (Figure S7). For the first 2 types of non-persistent coding, 

the cellular identity of the persistent coding pattern was shuffled independently at each time 

bin to alter the ΔQ persistency of each neuron without altering the population-level ΔQ 

signal in each time bin. Non-persistent 1 allowed each neuron to encode ΔQ in multiple 

time points, while non-persistent 2 was constrained that each neuron encodes ΔQ in only 

one of the 5 time points. In the third non-persistent coding scheme, binary signals (active 

or inactive) at each time bin were used to encode ΔQ by activating distinct sequences of 

neurons across time for different values of ΔQ. We prepared 10 different sequences for 10 

bins of ΔQ values.

Using these activity patterns as inputs, we trained RNNs to retrieve ΔQ. Various levels of 

noise were added to the input activity to test a range of signal-to-noise ratio (SNR). The 

RNN trained with the persistent ΔQ codes was able to retrieve ΔQ better than those trained 

with non-persistent codes, especially when the input activity noise was high (Figure 6C–D). 

This indicates that persistent coding facilitates reliable information retrieval by downstream 

circuits. Furthermore, the RNNs that were trained to retrieve ΔQ from persistent coding were 

more robust to changes in the synaptic weights, loss of synapses and cells (Figure 6E).

To investigate the impact of persistency in the brain activity, we next examined how ΔQ 

could be retrieved from the neural activity with different levels of persistency recorded from 

the 6 cortical areas (Figure 6F). In addition to the original recorded activity (‘Raw’), we 

artificially increased or decreased ΔQ coding persistency by temporally sorting (‘Sorted’) or 

shuffling (‘Shuffled’) the cell identity in each area. These persistency manipulations simply 

changed the neuron ID of activity and thus did not alter the total amount of ΔQ signal in 

each time bin. Using these sets of neural activity as inputs, we trained RNNs to retrieve ΔQ. 

There was a general trend that an increase in persistency (sorted activity) improved retrieval 

accuracy, while a decrease in persistency (shuffled activity) impaired retrieval accuracy 

(Figure 6G). However, the effect size differed across different cortical areas. We found that 

the increase in retrieval accuracy by sorting was larger when the original persistency in the 

population was lower, and the decrease in retrieval accuracy by shuffling was larger when 

the original persistency was higher (Figures 6H–I). These results further support the notion 

that coding persistency is a critical determinant that enhances the accuracy of information 

retrieval by the downstream network.
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The results above indicate that persistent codes can be read out by the downstream more 

effectively than non-persistent codes when the artificial neural network is allowed to train 

its synaptic weights by minimizing the difference between its output and the target (ΔQ) 

as supervised learning. However, in the real brain, such an explicit supervised target label 

to guide the shaping of network connectivity is rarely available. Another approach to shape 

the connectivity to retrieve particular information is unsupervised learning where errors 

are computed using information readily available to the local network such as the input 

itself (Lillicrap et al., 2020). Therefore, we next considered the possibility that coding 

persistency may also affect signal retrieval processes that do not necessitate a supervised 

target label for each information. It has been suggested that the brain may implement 

unsupervised learning in a similar way to autoencoder networks in which the target is the 

input itself (Lillicrap et al., 2020). Autoencoders extract the most dominant signals from 

the input activity and represent them in the activity of a small number of neurons in the 

coding layer. The networks shape their connectivity by reconstructing the input activity 

from the coding layer and minimizing the reconstruction error between the input and the 

reconstructed activity. To examine what information in the input population activity can be 

extracted in an unsupervised manner by downstream recurrent networks, we used a recurrent 

denoising autoencoder (RDAE) (Maas et al., 2012; Vincent et al., 2010) that sequentially 

processes input activity and extracts the latent representations embedded in the input activity 

sequence, which are sufficient to reconstruct the original population activity sequence with 

noise robustness (Figure 7B; Methods). When the RDAE was trained on RSC population 

activity, ΔQ was extracted in the most dominant dimensions of neural activity in the coding 

layer (Figure 7A). The ΔQ representation in the coding layer was independent of upcoming 

choice directions, indicating that the dimensions reflect value and not motor plans. Other 

task-related signals were not represented as the dominant signals in the coding layer (Figure 

S8). Similar results were observed in the activity dynamics of the mouse-like RNN agent 

but not in S1. Systematic comparisons among 6 cortical areas revealed that extracted ΔQ in 

the coding layer was especially high from RSC, and the amount of extracted ΔQ showed 

a high correlation with the ΔQ coding persistency in the input population activity (Figures 

7B–D). To directly test the effect of persistency, we artificially manipulated the persistency 

of ΔQ coding in RSC without changing the total amount of ΔQ signals in the population. 

We found that artificial increases in the persistency by sorting the cell identity improved 

the ΔQ extraction, while artificial decreases in the persistency by shuffling the cell identity 

worsened the ΔQ extraction (Figure 7E). These results indicate that high persistency in the 

input activity can allow ΔQ retrieval by the downstream network even without supervised 

learning.

Taken together, these analyses indicate that the persistency of value coding facilitates a 

robust and accurate readout of value by downstream networks.

Signal leakage can contribute to distributed value coding with varying levels of 
persistency

The results so far indicate computational advantages of persistent coding. However, in the 

mouse brain, ΔQ coding was widely distributed across the 6 cortical areas with different 

levels of persistency (Figures 1C–F). We asked whether anatomical connectivity among 
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cortical areas relates to the persistency levels of value coding. We analyzed the connectivity 

among imaged areas using the dataset from the Allen Mouse Brain Connectivity Atlas (Oh 

et al., 2014). Focusing on the projections from each of the 3 areas with high ΔQ persistency 

(RSC, PPC, pM2), we quantified their axon projection density in each of the other 5 imaged 

areas (Figure 8A). We found that RSC, PPC, and pM2 predominantly project to each 

other, with smaller amounts of direct projections to ALM, S1, and V1 (Figures 8B–C and 

S9). Thus, 3 areas with persistent and strong ΔQ coding densely connect with each other, 

while they send less direct projections to the other 3 areas with weaker and less persistent 

ΔQ coding. Based on this observation, we hypothesized that the weak ΔQ persistency in 

ALM, S1 and V1 could result from a signal leakage from the areas that maintain ΔQ as 

persistent activity. To test this hypothesis, we built RNNs with multiple recurrent layers 

that receive RSC activity through non-specific synaptic connectivity and examined how ΔQ 

coding changes along the downstream hierarchy of layers (Figure 8D). We found that the 

fractions of neurons with ΔQ coding gradually decreased as the signal leaked through layers 

of recurrent connectivity (Figures 8E–F). Concurrently, ΔQ coding became increasingly 

less persistent (Figure 8G), and the temporal tangling of ΔQ coding in neuronal manifolds 

gradually increased in the downstream (Figure 8H). Furthermore, artificial manipulations 

of ΔQ coding persistency in the input RSC activity revealed that persistency in ΔQ coding 

can affect the robust distribution of ΔQ coding with graded levels of persistency across the 

downstream layers (Figures 8F–G). We obtained similar results using PPC and pM2 as the 

input activity (Figure S10A–H), and the decreases in the ΔQ coding neurons and the ΔQ 

coding persistency in the downstream layers were more dramatic when the direct neural 

projections from layer to layer were sparse (Figure S10I–K). These results indicate that, 

even without specific connectivity to selectively route particular information, persistently 

encoded information can propagate thorough layers of non-specific connectivity to lead to a 

wide distribution of the information encoded with lower levels of persistency in downstream 

areas.

DISCUSSION

Brain-wide distribution of task-related information has emerged as a common principle 

in recent years. In many cases, such as what we observed for ΔQ coding (Figure S1), 

task-related signals are encoded by a heterogeneous population with some cells increasing 

but others decreasing their activity. Such information coding may not be identified with 

classical large-scale recording techniques such as fMRI, EEG and ECoG that quantify 

population average responses. Even though information coding is wide-spread, the way by 

which information is encoded differs across areas (Hattori et al., 2019). In the present study, 

the big data of >100k mouse decisions and the activity from >100k neurons in 2 behavioral 

tasks allowed us to investigate the potential origin of the distributed information coding 

and the computational advantages of persistent coding using data-driven machine learning 

approaches. Coding persistency was both learning- and context-dependent, and the persistent 

coding emerged during task learning in both mouse brain and artificial network agents 

performing the same task. Persistency facilitates an untangled maintenance of information 

as well as its reliable retrieval by downstream circuits. The observation that persistency 

is context-dependent suggests that certain cortical areas such as RSC can adjust coding 
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persistency depending on behavioral demands. For example, persistency may be especially 

preferred when the task context requires extended maintenance of the information, or the 

maintained information is graded as in the case of value, so that information can be 

stably maintained and robustly retrieved by downstream areas. Furthermore, we showed that 

persistent coding in key areas such as RSC could also contribute to the wide distribution 

of ΔQ coding across the mouse brain even through non-specific signal leakage. The 

same principle may also apply to other task-related signals in various task conditions, 

providing a possible explanation for the widespread phenomenon of distributed coding 

across the brain. In other words, a wide distribution of information is expected across the 

interconnected network of the brain, unless specific connectivity restricts the propagation 

of particular information. We note that non-specific leakage is one of potential mechanisms 

for signal distribution and it remains to be shown how much such a mechanism contributes 

to the phenomenon. Furthermore, this mechanism is agnostic to whether the propagated 

information has a function in the downstream areas — leaked information could contribute 

to various computations performed in downstream areas.

We trained artificial RNNs to imitate the mouse behavioral strategy using behavioral cloning 

and investigated the activity dynamics that emerged in the RNNs that were trained without 

activity constraints. Previous studies trained task-performing artificial neural networks either 

by using the correct action labels which are defined in each task structure (e.g. action A must 

be taken after stimulus A) (Masse et al., 2019; Orhan and Ma, 2019) or by RL (Banino et 

al., 2018; Song et al., 2017; Tsuda et al., 2020; Wang et al., 2018). Both approaches train 

the networks to learn the optimal strategy in the respective task, independent of the actual 

behavioral strategy that animals learn in the environment. In our value-based decision task, 

animals learn to use behavioral history for decisions during training, but the RL strategy 

that animals develop was suboptimal (Figure 4E–F). The origins of the sub-optimality 

likely include 1) limited memory capacity, 2) low sample efficiency, 3) limited amount 

of training trials, and 4) inductive bias inherent to each species. Deep RL, an artificial 

network that learns to solve a task with RL, does not always have these constraints, and thus 

it learns a near-optimal strategy unlike animals. These artificial networks may not reflect 

the mechanisms used by the brain. In another common approach, simpler mathematical 

models (e.g. regression, classical RL models) directly fit to animal behaviors are useful to 

understand the behavioral strategies. However, they do not provide insights into potential 

neural activity dynamics that may mediate the behaviors. To overcome these issues, we 

trained artificial RNNs, using mice as the teachers, to acquire the sub-optimal RL strategy 

that mice develop during training. The big data of ~50k decisions collected from expert mice 

allowed us to successfully train RNNs to imitate mouse behavioral strategy. This data-driven 

approach to train RNNs to implement animal/human-like behaviors would be a useful 

approach to obtain the neural network models and analyze what kind of activity dynamics 

allows the animal strategy in a particular task. Similarly to our approach, convolutional 

neural networks has been trained in visual object recognition tasks. The training was 

done to perform the task optimally, as opposed to our approach using behavioral cloning. 

Nevertheless these networks have been shown to develop some neural activity characteristics 

that resemble the neural activity in the visual system of animals (Kriegeskorte, 2015; 

Hattori and Komiyama Page 11

Neuron. Author manuscript; available in PMC 2023 February 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Yamins and DiCarlo, 2016). These deep learning approaches will be a powerful approach to 

understand what kind of neural activity may mediate given behaviors.

In this study, we developed dsPCA, a novel dimensionality reduction method which 

combines the strengths of supervised and unsupervised algorithms. The supervised aspect 

allows us to identify the best demixed linear coding dimensions for targeted task-related 

variables, and the unsupervised aspect allows us to identify non-targeted correlated signals 

in the remaining population activity. Therefore, dsPCA is a generally applicable method 

to understand both the signals of interest and other non-targeted correlational structures in 

high-dimensional data. Using dsPCA, we found that both mouse brain and artificial RNN 

agents develop cylindrical dynamics, which consists of within-trial cyclic dynamics and its 

across-trial transition along ΔQ axis. Similar within-trial dynamics have been well-studied 

in monkey motor cortex during arm movement (Churchland et al., 2012; Russo et al., 2018, 

2020). The studies showed that the population activity state draws untangled rotational 

dynamics during movements. They also showed that the activity state draws a simple cyclic 

trajectory in the primary motor cortex, while the supplementary motor area draws a helical 

trajectory that unfolds along a single direction by reflecting the ‘context’ of the movement 

(Russo et al., 2020). The activity trajectory that we observed had cylindrical geometry, and 

the activity state repeatedly transitioned along the ΔQ axis based on the RPE. These spatially 

confined geometries ensure the untangled representation of ΔQ, which contributes to a 

robust ΔQ representation in the brain. dsPCA and other RNN-based approaches in this study 

would facilitate the geometric understanding of population dynamics in both biological and 

artificial networks.

STAR Methods

Resource availability

Lead Contact—Further information and requests for resources should be directed to and 

will be fulfilled by the lead contact, Takaki Komiyama (tkomiyama@ucsd.edu).

Materials Availability—This study did not generate new unique reagents.

Data and code availability

• Data reported in this paper are available from the lead contact upon reasonable 

request.

• dsPCA code has been deposited at Zenodo and is publicly available. The DOI 

and the link to the latest code in the GitHub repository are listed in the key 

resource table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

Experimental model and subject

Animals—The experimental data in the value-based decision task were first reported in 

ref. (Hattori et al., 2019). The data in the alternate choice task were newly collected for the 
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current study. Both male and female mice were included in both datasets because we did 

not observe obvious sex-dependent differences in their neural activity patterns. Mice were 

originally obtained from the Jackson Laboratory (CaMKIIa-tTA: B6;CBA-Tg(Camk2a-

tTA)1Mmay/J [JAX 003010]; tetO-GCaMP6s: B6;DBA-Tg(tetO-GCaMP6s)2Niell/J [JAX 

024742]). All mice (6 weeks or older) were implanted with glass windows above their dorsal 

cortex for in vivo two-photon calcium imaging. All mice were water-restricted at ~1ml/day 

during training.

Method details

Surgery—Mice were continuously anesthetized with 1–2% isoflurane during surgery after 

subcutaneous injection of dexamethasone (2mg/kg). After exposing the dorsal skull and 

removing the connective tissue on the skull surface using a razor blade, we marked on the 

skull with black ink at the coordinates of [AP from bregma, ML from bregma] = [+3.0 mm, 

0 mm], [+2.0 mm, 0 mm], [+1.0 mm, 0 mm], [0 mm, 0 mm], [−1.0 mm, 0 mm], [−2.0 mm, 

0 mm], [−3.0 mm, 0 mm], [0 mm, ±1.0 mm], [0 mm, ±2.0 mm], [0 mm, ±3.0 mm], [−2.0 

mm, ±1.0 mm], [−2.0 mm, ±2.0 mm], [−2.0 mm, ±3.0 mm]. We then applied saline on the 

skull and waited for a few minutes until the skull became transparent enough to visualize 

vasculature patterns on the brain surface. We took a photo of the vasculature patterns 

along with marked coordinates and used it to find target cortical areas for two-photon 

microscopy. A large craniotomy was performed to expose 6 cortical areas, and a hexagonal 

glass window was implanted on the brain. The glass window was secured on the edges of the 

remaining skull using 3M Vetbond (WPI), followed by cyanoacrylate glue and dental acrylic 

cement (Lang Dental). After implanting the glass window, a custom-built metal head-bar 

was secured on the skull above the cerebellum using cyanoacrylate glue and dental cement. 

Mice were subcutaneously injected with Buprenorphine (0.1 mg/kg) and Baytril (10 mg/kg) 

after surgery.

Behavior task and training—Mice were water-restricted at 1–2 ml/day after a minimum 

of 5 days of recovery after surgery. We began animal training in pre-training tasks after at 

least a week of water restriction. We used BControl (C Brody), a real-time system running 

on Linux communicating with MATLAB, to control behavioral apparatus. We placed 2 

lickports in front of head-fixed mice to monitor their licking behaviors and give water 

rewards. Licking behaviors were monitored by IR beams running in front of each water tube. 

We used an amber LED (5mm diameter) as the ready cue and a speaker for auditory cues. 

Each trial begins with a ready period (2 or 2.5 sec with the amber LED light), followed by 

an answer period with an auditory go cue (10 kH tone). The 10 kHz tone was terminated 

when animals made a choice (the first lick to a lickport) or when the answer period reached 

the maximum duration of 2 sec. Mice received a 50 ms feedback tone (left: 5 kHz, right: 

15 kHz) after a choice. ~2.5 μl water was provided to mice on each rewarded trial from a 

lickport.

Before running in the alternate choice task or value-based decision task, mice were trained 

in 2 pre-training tasks. In the 1st pre-training task, mice were rewarded for either choice 

during the answer period. We gradually increased the mean ITI from 1 sec to 6 sec with 

±1 sec jitter. Through training in this task (2–3 days), mice learn that they can obtain 

Hattori and Komiyama Page 13

Neuron. Author manuscript; available in PMC 2023 February 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



water rewards from the 2 lickports if they lick during the answer period. In the 2nd pre-

training task, reward location alternated every trial irrespective of their choice directions. 

Furthermore, licking during ready period was punished by 500 ms white noise alarm sound 

and trial abort with an extra 2 sec ITI in addition to the regular 5–7 sec ITI. Through 

training in this 2nd pre-training task (2–3 days), mice learned to lick from both lickports and 

withhold licking during the ready period.

Alternate choice task—In the alternate choice task, mice need to change their choice 

from a previous trial to get a water reward. For example, if a mouse chose left on one trial, 

regardless of whether the mouse received a reward or not, a water reward is available only 

from the right choice on the next trial. The mouse will not get any rewards by repeating 

left choices for many trials because a reward will not be assigned to the left until the mouse 

collects the assigned reward on the right side. Mice need to rely on which side they chose 

in the previous trial to make the correct choice. ITI was 5–7 sec, and the trials with licking 

during ready period were classified as alarm trials (500 ms white noise alarm sound and 

extra 2 sec ITI). Mice were trained for at least 2 weeks before starting 2-photon calcium 

imaging.

Value-based decision task—In the value-based decision task, a reward is 

probabilistically assigned to each choice. On each trial, a reward may be assigned to each 

choice according to the reward assignment probabilities that are different between two 

choices. Once a reward was assigned to a lickport, the reward remained assigned until it was 

chosen. As a result, the probability that a reward is assigned to a choice gradually increases 

if the choice has not been selected in the recent past trials. The combinations of reward 

assignment probabilities were either [60 %, 10 %] or [52.5 %, 17.5 %] in a trial, and reward 

assignment probabilities switched randomly every 60–80 trials in the order of [Left, Right] 

= …, [60 %, 10 %], [10 %, 60 %], [52.5 %, 17.5 %], [17.5 %, 52.5 %], [60 %, 10 %], …. 

The probability switch was postponed if the fraction of choosing the lickport with higher 

reward assignment probability was below 50 % in recent 60 trials until the fraction reached 

at least 50 %. ITI was 5–7 sec, and the trials with licking during ready period were classified 

as alarm trials (500 ms white noise alarm sound and extra 2 sec ITI). Trials in which mice 

licked during ready period (‘alarm trials’, 5.15 %) and the trials in which mice failed to 

lick during the answer period (‘miss trials’, 4.68 %) were not rewarded. We did not include 

alarm and miss trials in neural activity analyses to ensure that the ready periods we analyzed 

were free of licking behaviors and that mice were engaged in the task in the trials.

Two-photon calcium imaging—We used a two-photon microscope (B-SCOPE, 

Thorlabs) with a 16× objective (0.8 NA, Nikon) and 925 nm excitation wavelength 

(Ti-Sapphire laser, Newport) for in vivo calcium imaging. Images were acquired using 

ScanImage (Vidrio Technologies) running on MATLAB. All calcium imaging was 

performed using camk2-tTA::tetO-GCaMP6s double transgenic mice that express GCaMP6s 

in camk2-positive excitatory neurons. Each field-of-view (FOV) (512 × 512 pixels covering 

524 × 524 μm) was scanned at ~29 Hz. Areas within the FOV that were not consistently 

imaged across frames were discarded from analyses (Typically 10 pixels from each edge 

of the FOV). We imaged and analyzed layer 2/3 neurons of 6 cortical areas in this study: 
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retrosplenial (RSC, 0.4 mm lateral and 2 mm posterior to bregma), posterior parietal (PPC, 

1.7 mm lateral and 2 mm posterior to bregma), posterior premotor (pM2, 0.4 mm lateral 

and 0.5 mm anterior to bregma), anterior lateral motor (ALM, 1.7 mm lateral and 2.25 

mm anterior to bregma), primary somatosensory (S1, 1.8 mm lateral and 0.75 mm posterior 

to bregma), and primary visual (V1, 2.5 mm lateral and 3.25 mm posterior to bregma) 

cortex. Images from these areas were collected from both hemispheres. We collected only 

1 population from each hemisphere for each cortical area of a single mouse. We imaged 

both hemispheres in two different behavioral sessions if the FOVs on both hemispheres were 

clear at the time of imaging.

Image processing—Images from 2-photon calcium imaging were processed using 

a custom-written pipeline (Hattori, 2021). The pipeline corrects motion artifacts using 

pyramid registration (Mitani and Komiyama, 2018), and slow image distortions were further 

corrected by affine transformations based on enhanced correlation coefficients between 

frames (Evangelidis and Psarakis, 2008). We used Suite2P (Pachitariu et al., 2017) to define 

regions of interests (ROIs) corresponding to individual neurons and extract their GCaMP 

fluorescence. We selected only cellular ROIs using a user-trained classifier in Suite2P and 

by manual inspections. At the step of signal extraction from each cellular ROI, we excluded 

pixels that overlap with the other ROIs.

Neural activity—The neural activity data for the value-based decision task were first 

reported in ref. (Hattori et al., 2019). We also additionally collected new neural activity data 

from mice running the alternate choice task. The activity was continuously recorded with 

in vivo two-photon calcium imaging at ~29 Hz from mice during the task performance. 

GCaMP fluorescence time series were deconvolved to obtain signals that better reflect the 

kinetics of neural spiking activity using a non-negative deconvolution algorithm (Friedrich 

et al., 2017; Pachitariu et al., 2018). The deconvolved signal of each neuron was z-

score normalized using the activity time series during the entire imaging session before 

performing all the activity analyses in this study.

For the alternate choice task, we collected and analyzed the activity of 8,524 RSC neurons 

(14 populations), 3,186 PPC neurons (7 populations), 7,915 pM2 neurons (14 populations) 

and 4,911 ALM neurons (10 populations) from 9 expert mice while they were running 

the alternate choice task. For the value-based decision task, we analyzed the activity of 

9,254 RSC neurons (15 populations), 6,210 PPC neurons (13 populations), 7,232 pM2 

neurons (13 populations) and 5,498 ALM neurons (10 populations) from early sessions 

(≤ 6th session), and 9,992 RSC neurons ( populations), 7,703 PPC neurons ( populations), 

9,759 pM2 neurons (populations), 6,721 ALM neurons (populations), 7,576 S1 neurons (14 

populations) and 2,767 V1 neurons (6 populations) from expert sessions of the data used in 

ref. (Hattori et al., 2019).

Reinforcement learning model for mouse behaviors—The reinforcement learning 

model that we used to estimate the action values in each trial was taken from ref. (Hattori 

et al., 2019). This model was optimized specifically for mouse behaviors and not necessarily 

ideal for describing the RL action policy of artificial neural network agents (e.g. Optimal 
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RNN agents). Action values of chosen (Qch) and unchosen (Qunch) options in each trial were 

updated as follows:

Qcℎ(t + 1) =
Qcℎ(t) + αrew ∗ R(t) − Qcℎ(t) if rewarded (R(t) = 1)
Qcℎ(t) + αunr ∗ R(t) − Qcℎ(t) if unrewarded (R(t) = 0) [eq. 1]

Quncℎ(t + 1) = (1 − δ) ∗ Quncℎ(t) [eq. 2]

where αrew and αunr are the learning rates for rewarded and unrewarded trials respectively, 

δ is the forgetting rate for the unchosen option, and R(t) is reward outcome in trial 

t (1 for rewarded, 0 for unrewarded trials). The learning rates and the forgetting rate 

were constrained between 0 and 1. In alarm and miss trials, values of both options were 

discounted by δ. The probability of choosing left (PL) on trial t is estimated using left (QL) 

and right (QR) action values as follows:

PL(t) = 1
1 + e−βΔQ β0 + QL(t) − QR(t) [eq. 3]

where β0 is the value bias which is constant within each session, and βΔQ reflects the 

behavioral sensitivity to ΔQ. The RL model was fit to the behavioral choice patterns with 

maximum likelihood estimation.

ΔQ-coding neurons—ΔQ-coding neurons in the value-based decision task were 

identified with the following multiple linear regression model.

ai(t) = βCC(t) + βΔQΔQ(t) + βQcℎQcℎ(t) + βΣQΣQ(t) + β0 [eq. 4]

where ai(t) is the mean activity of ith neuron within each 200 ms time bin on trial t (except 

for some analyses (Figures S1 and S2) where the mean activity within the first 2 sec of 

ready period was used instead), C(t) is the choice on trial t (1 if contralateral choice, −1 if 

ipsilateral choice), ΔQ(t) is the value difference between contralateral and ipsilateral options 

on trial t, Qcℎ(t) is the value of the chosen option on trial t, and ∑Q (t) is the sum of values of 

both options on trial t. The regression weights were estimated by the ordinary least squares 

method. ΔQ-coding neurons were identified with two-tailed t-test for the βΔQ regression 

weight (statistical threshold of either P < 0.05 or P < 0.01 as indicated in the figure legend 

of each analysis). The t-value for βΔQ(t) is TβΔQ(t) =
βΔQ

se βΔQ
 where se(βΔQ) is an estimate of 

the standard error of βΔQ.

Action history coding neurons—Neurons that encode action history from an 

immediately preceding trial in the alternate choice task and the value-based decision task 

were identified with the following multiple linear regression model.

ai(t) = βCtC(t) + βC(t − 1)C(t − 1) + β0 [eq. 5]
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where ai(t) is the mean activity of ith neuron within each 200 ms time bin on trial t, C(t) is 

the choice on trial t (1 if contralateral choice, −1 if ipsilateral choice), C(t − 1) is the choice 

on trial (t − 1) (1 if contralateral choice, −1 if ipsilateral choice, 0 otherwise). The regression 

weights were estimated by the ordinary least squares method. Action history coding neurons 

were identified with two-tailed t-test for the βC(t − 1) regression weight (statistical threshold 

of P < 0.05). The t-value for βC(t − 1) is TβC(t − 1) =
βC(t − 1)

se βC(t − 1)
 where se βC(t − 1)  is an 

estimate of the standard error of βC(t − 1).

Persistency index—Persistency index to quantify the mean persistency of ΔQ coding or 

action history coding in a population of neurons was defined as follow;

Persistency index

=
1
m ∑j = 1

m ∑i = 1
n std Tsℎuffled

i, j sequence − ∑i = 1
n std Traw

i sequence
1
m ∑j = 1

m ∑i = 1
n std Tsℎuffled

i, j sequence − ∑i = 1
n std Tsorted

i sequence
[eq. 6]

where Traw
i sequence is the time series of t-values for βΔQ or βC(t − 1) that was obtained by 

fitting the [eq. 4] or [eq. 5] to the activity of each of the non-overlapping 200 ms time 

bins between 5 sec before the ready cue and 2 sec after the ready cue. The across-time 

standard deviation of the Traw
i sequence was summed across all n neurons in the population 

(including neurons with non-significant t-values), and this summed standard deviation was 

normalized by min-max normalization such that the persistency index ranges between 0 

(chance level persistency of a target population) and 1 (maximum persistency of a target 

population). The maximum persistency of a target population, ∑i = 1
n std Tsorted

i sequence , 

was obtained by independently sorting the cell identity at each time bin according to 

the βΔQ t-values of each cell in the time bin. The chance level persistency of a target 

population, 1
m ∑j = 1

m ∑i = 1
n std Tsℎuffled

i, j sequence , was obtained by independently shuffling 

the cell identity at each time bin. To minimize the effect of randomness in the shuffling 

procedure, we iterated the shuffling m times (m = 10) and took the mean of the 10 iterations. 

This persistency index describes how persistent the target signal coding is above chance and 

how far the persistency is from the maximum persistency that the target population activity 

could achieve.

Demixed subspace principal component analysis (dsPCA)—Supervised 

dimensionality reduction algorithms can identify dimensions that encode targeted signals 

in high-dimensional data. However, they do not provide any information about signals that 

are not targeted by the users. As a result, these supervised analyses may miss important 

signals that exist in the original high-dimensional data. On the other hand, unsupervised 

dimensionality reduction algorithms can find dimensions for the major signals in the high-

dimensional data, but they do not automatically reveal what kind of signals are reflected 

along each dimension. Furthermore, unsupervised methods may miss the signals of interest 

if the target signals are much weaker than the other dominant signals in the data.
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We developed a novel dimensionality reduction algorithm that combines the strengths of 

both supervised and unsupervised methods. The demixed subspace principal component 

analysis (dsPCA) identifies demixed coding axes for targeted variables in a supervised 

manner, and then identify axes that capture the remaining variance in the data using an 

unsupervised method. Although previously reported demixed principal component analysis 

(dPCA) has similar objectives (Kobak et al., 2016), dPCA can only identify targeted coding 

axes for discrete variables. In contrast, dsPCA can identify demixed axes for both discrete 

and continuous variables. Furthermore, although dPCA splits each targeted signal into 

multiple linear axes, dsPCA identifies a single linear coding dimension for each of the 

target signals, and all the linear information for the target signals are contained within the 

dimensions identified by these single coding axes.

The input to the algorithm is a 3rd-order tensor of population activity with dimensions of 

Trial (m) × Time (t) × Neuron (n).

Xtrial × time × neuron = Xm × t × n [eq. 7]

The tensor Xm×t×n is first averaged over time axis elements within a specified time range, 

and we get a 2nd-order tensor of Xm × n′ .

Xm × n′ =

x1, 1 x2, 1 ⋯ xn, 1
x1, 2 x2, 2 ⋯ xn, 2

⋮ ⋮ ⋱ ⋮
x1, m x2, m ⋯ xn, m

[eq. 8]

To identify the demixed linear coding axes that encode ΔQ, Qch, or ΣQ in the population 

activity, we fit the following multiple linear regression model to the mean activity of 

individual neurons during the ready period;

xi, 1
xi, 2
⋮

xi, m

=

1 ΔQ1 Qch1 ΣQ1

1 ΔQ2 Qch2 ΣQ2

⋮ ⋮ ⋮ ⋮
1 ΔQm Qchm ΣQm

βi, 0
βi, ΔQ
βi, Qcℎ
βi, ΣQ

+

ε1
ε2
⋮
εm

[eq. 9]

where βi,ΔQ, βi, Qcℎ, and βi, ΣQ are the regression coefficients of the ith neuron. For a 

population of n neurons, we obtain n regression coefficients for each type of Q-related 

signal. These regression coefficients are used to define the coding axes as follows;

Δq =

Δq1
Δq2

⋮
Δqn

= βΔQ

βΔQ 2
= β1, ΔQ β2, ΔQ ⋯ βn, ΔQ

T

∑i = 1
n βi, ΔQ

2 [eq. 10]
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qch =

qcℎ1
qcℎ2

⋮
qcℎℎ

=
βQch

βQch 2
=

β1, Qcℎ β2, Qcℎ ⋯ βn, Qcℎ
T

∑i = 1
n βi, Qcℎ

2 [eq. 11]

Σq =

Σq1
Σq2
⋮

Σqn

= βΣQ

βΣQ 2
= β1, ΣQ β2, ΣQ ⋯ βn, ΣQ

T

∑i = 1
n βi, ΣQ

2 [eq. 12]

Note that these coding axes are ‘demixed’ coding axes where the activity variance for 

partially correlated variables are demixed into one of the axes for the partially correlated 

variables thanks to the linear demixing in the regression model ([eq. 9]). Although some 

previous studies further orthogonalized these demixed coding axes (Mante et al., 2013), 

we did not orthogonalize between the coding axes because further orthogonalization would 

remix these best demixed coding axes.

Next, our goal is to identify a neural subspace that does not encode any of the targeted 

Q-related signals. To identify the neural subspace that is free of the 3 targeted Q-related 

signals, we solve the following full QR decomposition of an n × 3 matrix with the 3 coding 

axis vectors using Householder reflections;

Δq1 qcℎ1 Σq1

Δq2 qcℎ2 Σq2

⋮ ⋮ ⋮
Δqn qcℎn Σqn

= SQ, Sfree R

= q1, q2, q3, f1, f2, ⋯f(n − 3) R

=

q1, 1 q2, 1 q3, 1 f1, 1 f2, 1 ⋯ f(n − 3), 1
q1, 2 q2, 2 q3, 2 f1, 2 f2, 2 ⋯ f(n − 3), 2

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
q1, n q2, n q3, n f1, n f2, n ⋯ f(n − 3), n

R

[eq. 13]

where R is an upper triangular matrix, SQ is a neural subspace that captures all Q-related 

signals, and Sfree is the Q-free subspace that is orthogonal to the SQ. SQ is formed by 3 

orthonormal basis vectors q1, q2, q3 , and these basis vectors and the 3 coding axis vectors 

Δq, qch, Σq  span the identical neural subspace. On the other hand, Sfree is formed by (n – 

3) target-free orthonormal vectors (f1, f2, ⋯f(n − 3)) and capture all the remaining population 

activity variance that were not captured by the subspace SQ. The representation of the 

population activity Xm × n′  in Sfree is given by
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projSfree X′ = X′Sfree [eq. 14]

Lastly, we further realign the dimensions of the Q-free subspace Sfree such that minimum 

numbers of dimensions are necessary to explain the remained activity variance as much 

as possible. This realignment is done using the principal component vectors from PCA on 

projSfree X′. The top p principal component vectors (p ≤ n - 3) can be used as the major 

Q-free subspace dimensions for dimensionality reduction purpose as follows;

Fp′ = X′ Sfree W ppca = X′W p
dspca [eq. 15]

where the m-by-p matrix Fp′ is the top p principal components of the activity within the 

Q-free subspace, the (n-3)-by-p matrix Wp
pca is the loadings matrix of the PCA, and the 

n-by-p matrix Wp
dspca is the loadings matrix of the dsPCA. The columns of Wp

dspca are the 

Q-free axis vectors in the raw n-dimensional population activity space. More generally, the 

neural subspace that is free of k targeted variables can be obtained by the same [eq. 15] with 

p ≤ n – k.

Through these steps ([eq. 7] ~ [eq. 15]), dsPCA identified the 3 linearly demixed coding 

axes for the targeted Q-related signals (Δq, qch, Σq), and (n - 3) target-free axes (column 

vectors of Wn−3
dspca). We confirmed that none of the targeted signals could be linearly 

decodable from the population activity within the obtained target-free subspace (Figures 3E, 

3I and S3C).

In this manuscript, we decomposed neural population activity into demixed Q subspace and 

Q-free subspace using dsPCA. The Q subspace consists of demixed linear coding axes for 

ΔQ, Qch and ΣQ, and all activity variance that linearly relates to these Q-related signals 

are included in this subspace. On the other hand, all the other activity variance that did 

not remain in the Q subspace is included in the Q-free subspace. The activity state of the 

neural population changes across trials within the Q subspace depending on how each of 

the Q-related signals is updated by choice and its outcome. We also identified the axes 

that capture the major with-intrial temporal activity variance in the Q-free subspace by 

performing PCA on the 2nd-order tensors that are obtained by averaging projSfree X′ over 

trial axis elements.

Quantification of Q-related signals in subspaces from dsPCA—dsPCA 

decomposed population activity into Q subspace and Q-free subspaces. We examined the 

amount of Q-related signals in each subspace. The strength of Q-related signals in a full 

population activity with n neurons was quantified using linear decoders given by

ΔQ(t) = ∑
i = 1

n
βi

ΔQai(t) + β0
ΔQ

[eq. 16]
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Qcℎ(t) = ∑
i = 1

n
βi

Qcℎai(t) + β0
Qcℎ

[eq. 17]

ΣQ(t) = ∑
i = 1

n
βi

ΣQai(t) + β0
ΣQ

[eq. 18]

where ai(t) is the activity of the ith neuron on trial t, βi
x is the regression weight for ai(t), 

and β0
x is the constant term. The decoder was trained with an L2 penalty by selecting the 

regularization parameter by 5-fold cross-validation. The decoding accuracy was obtained 

with 5-fold cross-validation by separating trials into training and test sets. Similarly, the 

strength of Q-related signals in the 3-dimensional Q subspace and the (n - 3)-dimensional 

Q-free subspaces were quantified using linear decoders on the projected population activity 

in each subspace as follows;

ΔQ(t) = ∑
i = 1

x
βi

ΔQsi(t) + β0
ΔQ

[eq. 19]

Qcℎ(t) = ∑
i = 1

x
βi

Qcℎsi(t) + β0
Qcℎ

[eq. 20]

ΣQ(t) = ∑
i = 1

x
βi

ΣQsi(t) + β0
ΣQ

[eq. 21]

where si(t) is the population activity along the ith dimension of the subspace on trial t, βi
x is 

the regression weight for si(t), and β0
x is the constant term. x = 3 for Q subspace while x = 

n − 3 for Q-free subspace. These analyses revealed that all Q-related signals were captured 

by the Q-subspace, while Q-related signals were completely absent in the Q-free subspace 

(Figures 3E, 3I and S3C).

RNN agents with optimal or mouse-like RL strategy—The RNN agents trained to 

perform RL in this study consisted of 2 neurons in the input layer, 100 neurons in the 

recurrent layer, and 1 neuron in the output layer. The agents were trained to perform RL in 

the same behavior task environment with 10 time steps per trial. The 2 input neurons receive 

choice and reward outcome information only at the time step immediately after choice, 

and the history of the choice outcome information was maintained through the recurrent 

connectivity in the downstream recurrent layer. The sequence of activity fed into the input 

neurons was given as vectors with either choice or reward history labels in their elements. 

The elements that correspond to the time steps immediately after choice took 1 for left 

choice and −1 for right choice in the choice history vector, and the elements took 1 for 

reward outcome and −1 for no-reward outcome in the reward history vector. These elements 
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took 0 in miss trials. The other elements of the vectors were all zeros. We sequentially fed 

100 time steps of sequences into these input neurons, and the network training was done 

with unroll length of 100 time steps for backpropagation through time. The choice input 

neuron and reward input neuron connect with neurons in the recurrent layer. The neurons 

in the recurrent layer are connected with each other through recurrent connections, which 

allows each recurrent neuron to receive outputs of the previous time steps. The output of the 

recurrent layer is given by

y(t) = tanℎ W xx(t) + W yy(t − 1) + b [eq. 22]

where tanℎ(∙) is a hyperbolic tangent activation function of the form tanℎ(z) = ez − e−z
ez + e−z , x(t) 

is a 2 × 1 vector containing the choice and reward information from a previous time step, 

y(t−1) is a 100 × 1 vector containing the layer’s outputs at time step t, Wx is a 100 × 2 matrix 

containing the connection weights for the inputs of the current time step, Wy is a 100 × 100 

matrix containing the connection weights for the outputs of the previous time step, and b is a 

100 × 1 vector containing each neuron’s bias term. The recurrent neurons send their outputs 

to the output neuron. The output neuron calculates the probability of selecting left action in 

the trial with a sigmoid activation function of the form σ(z) = 1
1 + e−z . The agent then selects 

an action for the trial probabilistically by following the choice probability from the output 

neuron. This 3-layer RNN agent was trained to perform either an optimal RL strategy or the 

RL strategy that mice develop after training using its recurrent activity dynamics.

To train the RNNs to perform optimal RL in the task environment, we directly utilized the 

reward assignment rule of the task. In the value-based decision task, a reward is assigned 

to each choice according to the reward assignment probabilities of each choice on each 

trial. Once a reward was assigned to a lickport, the reward was maintained on the choice 

until it was chosen by the animal. As a result, the probability that a reward is assigned to a 

choice gradually increases if the choice has not been selected in the recent trials. The actual 

cumulative reward probabilities of left and right choices are given by

PL(t) = 1 − ∏
x = t − NR(t)

t
1 − AL(x) [eq. 23]

PR(t) = 1 − ∏
x = t − NL(t)

t
1 − AR(x) [eq. 24]

where Ac(x) is the reward assignment probability of choice c on trial x, Nc(t) is the number 

of successive c choices before trial t (e.g. NR(t) = 3 when the choice on (t-4) was left and the 

choices on (t-3), (t-2), (t-1) were right). Therefore, an optimal choice generator would select 

a choice with higher cumulative reward probability on each trial as follows;

Optimal cℎoice = argmax
c

Pc(t) [eq. 25]
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We used this optimal choice generator as the teacher to train RNNs to learn a near-optimal 

RL strategy. Unlike the optimal choice generator that knows the exact reward assignment 

probabilities (Ac(x)) and the reward assignment rule, the RNNs are agnostic to these hidden 

variables. Therefore, our goal is to train the RNNs to use only the past choice and reward 

history to make choices that are similar to the choices made by the optimal choice generator. 

To train the RNNs to imitate the behaviors of the optimal choice generator, we calculated 

binary cross-entropy as the loss function to be minimized. The cross-entropy is given by

Hp = − 1
M ∑

i = 1

M
(ai

optimal log piRNN) + (1 − ai
optimal )log(1 − piRNN ) [eq. 26]

where M is the total number of training trials, ai
optimal is 1 or 0 when the optimal choice 

generator selected left or right action on the ith trial respectively, and piRNN is the left choice 

probability of the RNN agent from its output neuron.

To train RNNs to perform mouse-like RL that is suboptimal in the task environment, we 

used 50,472 decision making trials of expert mice in the task environment. We fed the 

choice and reward history that expert mice experienced into the RNNs, and trained the 

RNNs to imitate the choice patterns of expert mice. To do this, we calculated the binary 

cross-entropy as the loss function to be minimized. The cross-entropy is given by

Hp = − 1
M ∑

i = 1

M
(aimouse log piRNN + 1 − aimouse log 1 − piRNN ) [eq. 27]

where M is the total number of training trials, aimouse . is 1 or 0 when the expert mouse 

selected the left or right action in the ith trial respectively, and piRNN is the left choice 

probability of the RNN agent from its output neuron.

For the training of both the optimal RNN agents and mouse-like RNN agents, the cross-

entropy loss was calculated at variable time steps for each trial to reflect the temporal 

variability of the timing of decision making in this task (variable ITI, variable ready-period, 

variable reaction time), and all the synaptic weights of the RNN agent were trained 

with backpropagation through time. The training was optimized using mini-batch gradient 

descent with Nesterov momentum optimization (learning rate of 0.001 and momentum of 

0.9, batch size of 128), and the training was terminated when the loss for a validation set 

(1/5 of trials) stopped decreasing for the consecutive 50 epochs as a form of regularization 

(Early stopping). The trained RNN agents ran the task in a simulated environment with the 

length of 500 trials/session, and the RL behavioral strategy in the simulated environment 

was quantified by a RL model optimized to describe expert mouse behaviors [eq. 1–3] and a 

logistic regression model [eq. 28].

Quantification of history-dependent behavioral strategy—The quantification of 

behavioral strategy for mice and RNN agents was performed with either a RL model [eq. 

1–3] or a logistic regression model [eq. 36]. The logistic regression model predicts an action 

in each trial based on 3 types of history from the past 10 trials. The model is given by
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logit PL(t) = ∑
i = 1

10
βRewC(t − i) * RewC(t − i)

+ ∑
i = 1

10
βUnrC(t − i) * UnrC(t − i)

+ ∑
i = 1

10
βC(t − i) * C(t − i) + β0

[eq. 28]

where PL(t) is the probability of choosing left on trial t, RewC(t − i) is the rewarded choice 

history on trial t − i (1 if rewarded left choice, −1 if rewarded right choice, 0 otherwise), 

UnrC(t − i) is the unrewarded choice history on trial t − i (1 if unrewarded left choice, −1 if 

unrewarded right choice, 0 otherwise), C(t − i) is the outcome-independent choice history on 

trial t − i (1 if left choice, −1 if right choice, 0 otherwise). βRewC(t−i), βUnrC(t−i), and βC(t−i) 

are the raw regression weights of each history predictor, and β0 is the history-independent 

constant bias term. The sizes of these raw weights reflect the relative contribution of each 

history variable to decision making in a behavior session. However, the weight size does not 

reflect the absolute strength of the contribution to decision making because the strength of 

each history effect on decision making is determined by not only the regression weight but 

also the choice prediction accuracy of the regression model. Therefore, we normalized the 

regression weights by the choice predictability of the regression model as follows;

Normalized βx =
Ncℎoice

correct

Ncℎoice
all − 0.5 ∗ βx

∑i = 1
10 βRewC(t − i) + βUnrC(t − i) + βC(t − i) + β0

[eq. 29]

where Ncℎoice
all  is the number of choice trials in the session, and Ncℎoice

correct .is the number of 

choice trials that were correctly predicted by the [eq. 36]. Each regression weight is divided 

by the sum of absolute values of all the regression weights before being multiplied by the 

choice prediction accuracy. This normalization turns raw regression weights to reflect the 

fraction of choice predictability by each of the history variable. These normalized weights 

are comparable across different behavior sessions or mice because they reflect the absolute 

strength of each history event on decision making. We used these normalized weights to 

compare the history dependence of expert mice and trained RNN agents for their decision 

making.

Artificial population activity sequence—Artificial population activity sequences with 

either persistent or non-persistent rate coding of ΔQ were created based on the distributions 

of the tuning curves of ΔQ coding among RSC neurons. Each population consisted of 200 

neurons with 5 time bins, and we assigned 20% of neurons at each time bin to encode ΔQ. 

The tuning curve slope of ΔQ coding of each RSC neuron (βΔQ) was measured by fitting 

[eq. 4] to the activity during ready period. We defined across-trial standard deviation of 

βΔQΔQ(t) from [eq. 4] as the signal standard deviation of ΔQ coding. To derive the noise 

standard deviation, we first subtracted βΔQΔQ(t) from the ready period activity sequence 

of each trial. The residual ready period activity sequences were then concatenated across 

trials. The standard deviation of the concatenated activity sequence was defined as the noise 
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standard deviation. The SNR of ΔQ coding was defined as the ratio of the signal standard 

deviation to the noise standard deviation. The tuning curve slope for each activity time bin 

was randomly sampled without replacement from the distributions of ΔQ-coding neurons. 

The ΔQ signal was linearly encoded at each time bin according to the sampled tuning curve 

slope, and additional Gaussian noise was added to the neural activity. The other non-ΔQ 

coding activity time bins simply exhibited Gaussian noise. We created populations with 3 

different types of rate coding modes (Persistent, Non-persistent 1, Non-persistent 2). In the 

populations with Persistent mode, the identical 20% of neurons encoded ΔQ at all 5 time 

bins. In the populations with Non-persistent 1 mode, we randomly selected 20% of neurons 

at each time bin as the ΔQ-coding neurons and allowed each neuron to encode ΔQ with 

different tuning curve slopes at different time bins. Non-persistent 2 mode is similar to 

Non-persistent 1, except that each neuron in the population encoded ΔQ at only one of the 

time bins.

In addition to the 3 rate coding schemes, we also considered a coding mode that encodes ΔQ 

as specific sequential activity patterns across cells in a population. In this 3rd non-persistent 

coding mode (Non-persistent 3), neural activity at each time bin can take only binary states 

(0: inactive, 1: active). Therefore, this population encodes ΔQ using only the identity of 

active cells. We encoded 10 different sequences in a population such that each sequence 

uniquely corresponds to one of the 10 binned ΔQ (−1 to 1 with binning of 0.2 width). For 

each sequence, we randomly assigned 20% of neurons at each time bin as active neurons 

with a constraint that each neuron can be active only at a single time step in a sequence. 

After encoding the 10 different sequences in a population, we added Gaussian noise to the 

activity of each neuron. We defined the SNR of this coding scheme as the ratio of the 

across-time standard deviation of the activity of a neuron to the standard deviation of its 

added Gaussian noise.

ΔQ retrieval by RNN—RNNs were trained to retrieve ΔQ information from the input 

population activity sequence. The RNN had 40 recurrent neurons with tanh activation 

functions and an output neuron with linear activation function. The network weights were 

updated by backpropagation through time with RMSprop to minimize mean-squared-error 

(MSE) between the network outputs and ΔQ values of the trials in a training set. The 

network training was terminated when the MSE of a validation set stopped decreasing for 

the consecutive 20 epochs as a form of regularization (Early stopping). For each training 

iteration, we used 20% of available trials as a test set to calculate the ΔQ retrieval accuracy 

by the trained network, and the remaining 80% of the trials were further split into validation 

set (10%) and training set (70%). We repeated the network training 5 times by using 

different sets of trials as the test set such that we can obtain ΔQ predictions by the trained 

networks for all available trials in a cross-validated way. The ΔQ retrieval accuracy was 

calculated by comparing the ΔQ predictions to the true ΔQ from the RL model. For the ΔQ 

retrieval from cortical activity, we used only 240 cells as the inputs to match the number of 

cells across different cortical areas. For each neural population, we subsampled 240 cells in 

each iteration allowing repetitions with the smallest number of iterations to include every 

cell at least once for decoding, and the ΔQ retrieval accuracy from the iterations were 

averaged.
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Denoising recurrent autoencoder—Autoencoder is an artificial neural network that 

learns to extract efficient coding of its input without supervision. It consists of an encoder 

network and a decoder network, and they are sequentially connected through a coding 

layer with small number of neurons. In a trained autoencoder, the encoder extracts essential 

signals in the input into the coding layer, while the decoder tries to reconstruct the original 

input from activity in the coding layer. When the number of neurons in the coding layer 

is smaller than the dimensions of the input, only signals that are dominant in the input 

remains in the coding layer of a trained autoencoder network. Among various types of 

autoencoders, we used denoising recurrent autoencoders (Maas et al., 2012; Vincent et al., 

2010) to extract dominant signals embedded in each population activity sequence. Although 

autoencoders with only feedforward connections or convolutional neural networks can also 

extract latent signals in a population activity sequence, we used recurrent neural networks 

that sequentially process the input activity because the neural networks in a brain also 

process input activity sequentially. Our goal is to understand whether such biologically 

relevant recurrent networks can extract signals from input activity without explicit teaching 

labels (i.e. unsupervised learning). The latent signals extracted by a recurrent autoencoder 

represent the latent signals from the perspective of a recurrent network that processes input 

activity sequentially through its recurrent connectiviy.

The autoencoders that we used to visualize extracted dynamics from example populations 

(Figure 7A) consisted of 3 hidden layers with recurrent connectivity (1st: 50 neurons, 

2nd: 10 neurons, 3rd: 50 neurons), and the activity of all neurons in a population was 

used as the input to the autoencoder. On the other hand, the autoencoders that we used 

for quantitative across-area comparisons (Figure 7B–E) consisted of 3 hidden layers with 

recurrent connectivity (1st: 20 neurons, 2nd: N neurons, 3rd: 20 neurons) and processed input 

activity of subsampled 240 cells. Note that 3 layers are the minimum number of layers 

that are required for an autoencoder network. All recurrent neurons in the hidden layers 

had tanh activation functions. All neurons except for the neurons in the middle hidden 

layer (coding layer) sent activity sequentially to the neurons in the next layer. However, the 

neurons in the coding layer sent only the activity at the last time step to the next hidden 

layer. The last-time-step activity is the result of the temporal integration of the original 

population activity sequence through recurrent connectivity, and the activity reflects the 

latent representations in the original population activity sequence. The hidden layers after 

the coding layer reconstructed the original population activity sequence from the latent 

representations in the coding layer. The network weights were updated by backpropagation 

through time with RMSprop to minimize mean-squared-error (MSE) between the original 

population activity sequence and the reconstructed population activity sequence. To ensure 

stable training of network weights, we clipped the gradients of network weights if their 

L2 norms were greater than 1 (Gradient clipping (Pascanu et al., 2012)). To add noise 

robustness to the autoencoders, we applied dropout (Hinton et al., 2012; Srivastava et al., 

2014) to the connections between the input neurons and the neurons in the 1st hidden layer 

such that 50% of randomly selected connections are ablated at each training step. The 

network training was terminated when the MSE of a validation set (20% of trials for Figure 

7A, 10% of trials for Figure 7B–E) stopped decreasing for the consecutive 20 epochs as 

another form of regularization (Early stopping). The activity of the 10 coding neurons for 
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Figure 7A were further reduced to 2 dimensions with multidimensional scaling to visualize 

the dominant population activity states. To quantify the strength of ΔQ signal in the activity 

of N coding neurons for Figures 5B–E, we performed decoding of ΔQ from the activity of N 
coding neurons using a simple feedforward neural network where all the N coding neurons 

are connected to an output neuron with tanh activation function. For each training iteration, 

we used 20% of available trials as a test set to calculate the ΔQ decoding accuracy by the 

trained network, and the remaining 80% of the trials were further split into validation set 

(10%) and training set (70%). We repeated the network training 5 times by using different 

sets of trials as the test set such that we can obtain ΔQ predictions by the trained networks 

for all available trials in a cross-validated way. For these ΔQ decoding analyses, we also 

matched the number of cells included in the inputs to the autoencoders across different 

decoding by subsampling 240 cells from the original population. For each neural population, 

we subsampled 240 cells in each iteration allowing repetitions with the smallest number of 

iterations to include every cell at least once for decoding, and the ΔQ decoding accuracy 

from the iterations were averaged.

Deep RNN with non-specific connectivity—Neural networks with 5 recurrent layers 

were used to simulate how the input population activity transforms in the downstream 

recurrent layers when the synaptic weights are non-specific throughout the networks. Each 

recurrent layer had 1,000 neurons with tanh activation functions, and the 5 recurrent layers 

were sequentially connected through feedforward connections. All neurons of a recorded 

cortical population were directly connected to the 1st recurrent layer. Each neuron in a 

recurrent layer was connected with all the other neurons in the same layer, but we made 

the connections between successive layers sparse by setting the connection probability of a 

neuron to the neurons in the next layer to 1%, 5%, 10%, 20%, or 50%. The non-specific 

synaptic weights were randomly drawn from a uniform distribution on [−1, 1).

Anatomical connectivity analyses—We analyzed neural projections from the areas 

with high ΔQ coding persistency (RSC, PPC, pM2) using the neural tracing data available 

in the Allen Mouse Brain Connectivity Atlas (Oh et al., 2014). These projection data 

were originally acquired by injecting adeno-associated virus (AAV) encoding EGFP into 

various target brain areas and scanning EGFP-labelled axons throughout the brain with high-

throughput serial 2-photon tomography. We used their software development kit (SDK), 

allensdk, to access and process their data in Python.

Dorsal view of the Allen Reference Atlas—Allen Reference Atlas is a high-resolution 

anatomical 3D reference atlas for the adult mouse brain. Different brain structures are 

colored differently in this atlas. All projection data in the Connectivity Atlas are registered 

to this reference atlas. We created a dorsal view of the Allen Reference Atlas to indicate 

the virus injection coordinates and cortical projection density in the dorsal cortex. First, 

we downloaded the 3D RGB-colored atlas at the resolution of 25 μm/pix. At each anterior-

posterior (AP) and medial-lateral (ML) coordinate of the 3D atlas, we picked up the RGB 

value of the most dorsal brain surface. We obtained a dorsal view of the atlas by projecting 

these dorsal RGB values onto a single 2D plane.
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Selection of injection data—In the Allen Mouse Brain Connectivity Atlas, each 

injection experiment is labelled with the name of the injected structure. First, we narrowed 

injection experiments using these annotations. We selected experiments with virus injections 

into retrosplenial area (RSP), anterior area (VISa) of posterior parietal association area 

(PTLp), and secondary motor area (MOs). Then, we further narrowed down injection 

experiments based on the exact injection coordinates. As we indicated in Figure S9, we 

isolated medial RSP injections, anterior VISa injections, and posterior MOs injections 

for RSC, PPC, and pM2, respectively. The database contains experiments that were 

performed on wild-type mice and Cre transgenic mice for cell-type specific tracing. We 

used experiments from only WT mice or combined data (WT + Cre). The projection patterns 

were similar in both cases (Figure S9).

Axon projection density in dorsal cortex—We analyzed the axon projection density 

from RSC, PPC, and pM2 in the dorsal cortex. For each injection experiment, we calculated 

the projection density at each AP-ML coordinate as [# of positive pixels] / [# of all pixels] 

in the volume of 25μm (AP axis) × 25μm (ML axis) × 1000μm (DV axis, from dorsal 

surface at each AP-ML coordinate). To create a mean projection density map, experiments 

with left hemisphere injections were mirrored relative to midline before averaging. We 

also quantified mean projection density within each imaging FOV that we used for in 
vivo 2-photon calcium imaging. Although our imaging FOVs were based on stereotactic 

coordinates from the bregma in the Paxinos’ atlas (Paxinos and Franklin, 2004), the Allen 

Reference Atlas does not include coordinates from the bregma. To register our imaging 

FOVs to the Allen Reference Atlas Coordinate, we calculated the scaling factors for the AP 

and ML dimensions of the mouse brain to match the brain in the Paxino’s atlas to the brain 

in the Allen Reference Atlas. Using the scaling factors, we estimated the coordinates of each 

imaging FOV on the Allen Reference Atlas. We calculated the mean signal density within 

each imaging FOV of the size 500 μm × 500 μm. The mean signal density of each FOV was 

used to construct the connectivity matrix in Figure 8C.

Data analysis and statistics—All data analyses and network simulations were 

performed in Python3.7 with libraries of TensorFlow (Abadi et al., 2016), scikit-learn 

(Pedregosa et al., 2011), NumPy (Harris et al., 2020), SciPy (Virtanen et al., 2020), and 

Statsmodels (Seabold and Perktold, 2010). Statistical tests were performed either in Python 

with SciPy and Statsmodels or in R with its statistics libraries. All accuracy measures 

reported in this study were obtained with cross-validation. Unless otherwise noted, we split 

trials into training set (70%), validation set (10%), and test set (20%) for each iteration 

of decoding, and repeated the network training 5 times by using different sets of trials as 

the test set. When we compared ΔQ retrieval/decoding accuracy across different cortical 

populations, we matched the number of cells in the input population activity by subsampling 

240 cells in each iteration allowing repetitions with the smallest number of iterations to 

include every cell at least once for decoding, and the accuracies from the iterations were 

averaged. For all the simulations with artificial population activity, we created 10 distinct 

populations for each of the 3 types of coding modes by independently sampling tuning curve 

slopes from RSC neurons. These repetitions allowed us to tell the variability that originates 

from the randomness of ΔQ signal assignments and randomness of network trainings. All 
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figure plots were created using Matplotlib (Hunter, 2007) and seaborn (Waskom, 2021) in 

Python.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

Coding persistency in the cortex is learning- and context-dependent

Highly persistent value coding emerged in RSC and ANN during reinforcement learning

Persistency ensures untangled value representation within cylindrical geometry

Coding persistency facilitates brain-wide distributed information coding
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Figure 1. Persistency of action value coding across mouse cortex is area- and learning-dependent.
(A) Schematic of the value-based decision task and an example expert behavior.

(B) Neural activity was recorded from 6 cortical areas. The heatmap is the trial-averaged 

z-scored deconvolved activity of an example RSC population. The activity of each neuron 

was normalized to its peak. A half of the recorded trials were used to sort cells by the peak 

time, and the mean activity of the other half are shown.

(C) Fractions of cells with significant ΔQ coding during ready period based on the mean 

activity within each of the non-overlapping 200 ms bins (Regression, P < 0.05, 2-sided 

t-test). The fractions with filled circles are significantly above the chance fraction of 5% (P < 

0.05, one-sided t-test). ΔQ values were shuffled across trials for the right panel.

(D) Activity of ΔQ coding neurons that were identified at different time windows (yellow 

shadings) for example RSC and S1 populations. Trials were binned according to the ΔQ of 

each trial, and the activity in each trial bin was averaged.

(E) t-values for ΔQ coding at each time bin of ready period for example populations of RSC 

and S1 (Regression). Neurons were sorted based on the t-values at the last time bin.

(F) ΔQ coding persistency of each population as quantified by the persistency index (0: 

chance persistency, 1: maximum-possible persistency, Methods, ***P < 0.001, ****P < 

0.0001, one-way ANOVA with Tukey’s HSD).

(G) Fraction of trials when mice chose the side with higher reward assignment probability 

across training sessions (n = 9 mice, mean ± CI). The first 6 sessions were treated as early 

sessions.

(H) Activity of ΔQ coding RSC neurons that were identified from the activity within 

the specified time bin (yellow shadings) in early and late sessions (same RSC population 

between the 2 sessions) indicating an increase in persistency during learning.

(I) ΔQ coding persistency of each population as quantified by the persistency index for early 

and expert sessions (**P < 0.01, ***P < 0.001, mixed effects model with population as the 

fixed intercept).

All error bars are s.e.m.
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Figure 2. Persistency of history coding is task-dependent.
(A) Schematic of the alternate choice task. The choice opposite to the choice in the previous 

trial was rewarded regardless of reward outcome in the previous trial.

(B) Fraction of trials of correctly choosing the side with reward across training sessions (n = 

9 mice, mean ± 95% CI).

(C) Activity of RSC neurons that significantly encoded the action history from previous trial 

in alternate choice task and value-based decision task. These neurons were identified using 

the activity within the specified time bin (yellow shadings). The activity of the identified 

action history coding neurons was separately averaged according to the choice on the 

previous trial.

(D) Persistency of action history coding in each population as quantified by the persistency 

index for the alternate choice task (Alt) and the value-based decision task (Value) (*P < 

0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, mixed effects model with population as the 

fixed intercept).
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Figure 3. dsPCA reveals cylindrical dynamics with untangled value representation in RSC.
(A) dsPCA decomposes the activity of a population of individual neurons that exhibit mixed 

selectivity for multiple variables into demixed dimensions and the remaining subspace that 

is free of the targeted signals.

(B) Matrix operations to identify the target-free axes. Full QR decomposition of a matrix 

with target axes (T) identifies a set of basis vectors that spans the target-free subspace 

(Sfree). These target-free axes are realigned based on the principal component vectors 

(W p
pca , matrix with top p PCA loadings) of the activity in the target-free subspace. The 

target-free axes in the original n-dimensional space are the columns of W p
dspca = SfreeW p

pca.

(C) Fraction of activity variance along each target axis and the top 5 PC axes from the 

target-free subspace. dsPCA was performed on noisy simulated data with target signals 

A, B, and C (10 repeated simulations). The amount of variance is similar between the 5 

target-free axes because only Gaussian noise remained in the target-free subspace.

(D) Signals A, B, and C along each dimension identified with dsPCA for the simulated data. 

Pearson correlations between the projected activity and each signal are shown.
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(E) Decoding accuracy of target signals from original population activity, activity in the 

target subspace (3 dimensions), and activity in the target-free subspace (n-3 dimensions). 

50,000 and 10,000 trials for training and test sets.

(F) We applied dsPCA to decompose the original population activity into the demixed Q 

subspace that consists of ΔQ, Qch, and ΣQ dimensions, and the Q-free subspace which is 

orthogonal to the Q subspace.

(G) Fraction of activity variance along each Q-related axis and the top 5 PC axes from the 

Q-free subspace for RSC populations. Unlike simulated data (C), the amount of variance 

between axes of the Q-free subspace differ, indicating that non-targeted correlated signals 

exist in the Q-free subspace.

(H) Q-related signals along each dsPCA dimension for RSC populations. Pearson 

correlations between the projected activity and each signal are shown.

(I) Decoding accuracy of Q signals from the original RSC population activity, activity in the 

Q subspace (3 dimensions), and activity in the target-free subspace.

(J-K) Example RSC, S1, and V1 population activity dynamics in neuronal manifolds where 

ΔQ axis is paired with Qch and ΣQ axes (J), or axes that reflect major within-trial temporal 

activity variance of Q-free subspace (K). dsPCA was applied on the activity between −2 

and −1 sec from choice, and the activity between ±4 sec from choice was projected onto 

the identified axes. Circles indicate the choice time. Projected activity was temporally 

downsampled to non-overlapping 200 ms bins.

(L) Activity state transitions along ΔQ axis according to the updated action values in RSC, 

whereas S1 and V1 activity draw complex trajectories that lead to tangling in the geometry. 

Post-action selection trajectory was separately averaged according to the sign of ΔQ update.

(M) Activity state transitions in (L) shown along the ΔQ axis.

(N) Population activity in RSC forms cylindrical dynamics where within-trial cyclic 

dynamics can transition along ΔQ axis across trials according to the RPE, while in the 

other areas ΔQ representation is tangled.

All error bars are 95% CI.
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Figure 4. Untangled persistency emerges in the artificial RNNs trained to perform ‘mouse-like’ 
RL.
(A) Optimal RNN agent was trained by updating its synaptic weights to minimize 

the discrepancy in decisions (cross-entropy error) between the teacher (optimal choice 

generator) and the student (RNN).

(B) Behaviors of the trained optimal RNN agent in an example session. The agent ran 

the task by itself using its recurrent activity dynamics to implement RL. The left choice 

probability of the RNN agent was taken from its output neuron activity. Left (QL) and right 

(QR) action values were estimated by fitting a RL model to the behaviors.

(C) Mouse-like RNN agent was trained by updating its synaptic weights to minimize the 

discrepancy in decisions (cross-entropy error) between the teacher (expert mice) and the 

student (RNN).

(D) Behaviors of the trained mouse-like RNN agent in an example session.

(E) Frequency of rewarded trials (left) and choice predictability by a RL model optimized 

to describe expert mouse behaviors (right, 5-fold cross-validation). n = 82 sessions for mice, 

500 sessions (5 trained networks, each ran 100 sessions of 500 trials/session) each for the 

optimal and mouse-like RNN agents.

(F) Decision dependence on history from past 10 trials, quantified by a regression model 

(Methods). RewC: rewarded choice, UnrC: unrewarded choice, C: outcome-independent 

choice history. n = 82 sessions for mice, 5 sessions (5 trained networks, each ran 10,000 

trials) each for the optimal and mouse-like RNN agents. The regression weights were 

normalized by the model accuracy. Error bars are 95% CI.

(G) Activity of ΔQ coding neurons that were identified using the activity at the highlighted 

time bin (yellow shading, −1 time step before choice) in the recurrent layer of a trained 

mouse-like RNN agent (left), and the t-values of ΔQ after choice for the activity in each time 

bin (right). Each trial had 10 time steps, and 0 corresponds to the choice time. t-values were 
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sorted based on the last time step (+9). The t-values in RNNs are higher than in mice due to 

smaller amount of activity noise. Error bars are s.e.m.
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Figure 5. Cylindrical dynamics emerges in mouse-like RNN agents and mice during training.
(A) Population activity dynamics of the recurrent layer of mouse-like RNN agents in 

neuronal manifolds where ΔQ axis is paired with axes that reflect major within-trial 

temporal activity variance in Q-free subspace. Agents at each training stage ran the task 

for 10,000 trials. dsPCA was applied on the activity averaged between −5 and −1 time steps 

from choice, and the population activity between ±5 time steps from choice was projected 

onto the identified axes. 4 independently trained mouse-like RNN agents are shown. Circles 

indicate the choice time.

(B) Population activity dynamics of example RSC, PPC, pM2, and ALM populations in 

early and expert sessions. The same population of neurons was longitudinally compared for 

each area. dsPCA was applied on the activity averaged between −2 and −1 sec from choice, 

and the population activity between ±4 sec is visualized. Circles indicate the choice time.
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Figure 6. Persistency in value coding facilitates reliable and robust value retrieval by 
downstream neural networks.
(A) RNN (40 recurrent units) was trained to retrieve ΔQ from the input population activity 

sequence with either persistent or non-persistent ΔQ coding.

(B) Artificial population activity with either persistent or non-persistent ΔQ coding in 

the 200-cell sequence. 3 types of non-persistent mode were considered (2 rate coding, 1 

binary coding; Methods). In the rate coding populations, the color indicates the Pearson 

correlation between the activity and ΔQ (20 % of neurons at each bin encode ΔQ). Example 

populations were visualized by either clustering ΔQ-coding neurons at each time bin (top) or 

sorting neurons based on the correlation at the last time bin (bottom). In the binary coding 

population, ΔQ is encoded by a unique activity sequence across time for each bin of ΔQ 

values (ten evenly spaced bins between ±1). 20% of neurons at each time bin participate in 

each sequence. In the example, cells are sorted for either sequence 1 or 2. Time bins that are 

active in both sequences are colored black.

(C) Mean ΔQ retrieval accuracy by the downstream RNNs from populations with different 

coding modes and varying SNR (10 simulations for each).

(D) The ΔQ retrieval accuracy at the 5th time step with different SNR in the input activity. 

The purple dashed line indicates the median SNR of ΔQ coding in imaged RSC populations.

(E) Robustness of trained RNNs. Simulations were performed using artificial population 

activity with SNR of 1. Noise to synaptic weights was given by Gaussian noise with the 

standard deviation relative to the standard deviation of the weight distribution of each 

connection type. Error bars in (D) and (E) are 95% CI.

(F) Artificial manipulations of ΔQ coding persistency illustrated in an example PPC 

population during ready period. Error bars are s.e.m.

(G) ΔQ retrieval accuracy before and after the persistency manipulations (subsampled 240 

cells were used, **P < 0.01, ****P < 0.0001, one-way ANOVA with Tukey’s HSD).

(H) Gain in retrieval accuracy by sorting correlates with the original ΔQ coding persistency.

(I) Loss in retrieval accuracy by shuffling correlates with the original ΔQ coding persistency.

Hattori and Komiyama Page 41

Neuron. Author manuscript; available in PMC 2023 February 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. Persistency in value coding also facilitates unsupervised value retrieval by downstream 
neural networks.
(A) Representation of input population activity in the coding layer of denoising recurrent 

autoencoder networks (RDAE). Each network was trained to extract major signals from 

example populations of RSC, S1, or a trained mouse-like RNN agent (5,000 trials). 

Population activity sequence during ready period was used as the input. Each data point 

corresponds to a trial, with the colors indicating the ΔQ of the trial. Trials were separated 

according to the choice directions in the upcoming answer period in the bottom 2 rows. The 

dominant signals extracted in the activity of coding neurons (10 neurons) were visualized in 

2 dimensions by multidimensional scaling.

(B) RDAEs extract major signals of the input population activity into the activity of N 
neurons in the coding layer by unsupervised learning.

(C) Decoding accuracy of ΔQ from the activity of N neurons in the coding layer. A simple 

feedforward neural network (N neurons in the coding layer are connected to a single output 

neuron with tanh activation function) was used to decode from the coding layer. Input 

populations were subsampled 240 cells.

(D) Decoding accuracy of ΔQ from the activity of neurons in the coding layer (N = 1 and 

10) positively correlates with the ΔQ coding persistency of the input population activity.

(E) Artificial manipulations of ΔQ coding persistency in the input RSC population bi-

directionally alter the amount of extracted ΔQ signal in the coding layer.

All error bars are s.e.m.
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Figure 8. Non-specific signal leakage can contribute to widely distributed value coding with 
graded persistency.
(A) Injection coordinates for anterograde tracing virus. RSC (red, n = 60 experiments), 

PPC (blue, n = 9), and pM2 (yellow, n = 33). Experiments with left hemisphere injections 

were mirrored horizontally. Experiments with both WT mice and Cre-transgenic mice were 

included (See Figure S9 for WT only). White squares indicate the imaging FOVs used for 

our neural activity analyses.

(B) Mean projection density of axons from each source area. Black dots indicate the 

injection coordinates.

(C) Connectivity matrix with the mean projection density from each source area to the 6 

target areas that we used for our neural activity analyses (500μm × 500μm white squares).

(D) RSC population activity sequences were processed through 5 recurrent layers with 

non-specific connectivity. Connection probability from layer to layer was set to 20% (Other 

probabilities in Figure S10).

(E) Fractions of ΔQ coding neurons at each of the 200 ms time bins during ready period 

(Regression, P < 0.05, 2-sided t-test). Error bars are s.e.m.

(F) Mean fractions of ΔQ coding neurons at each layer during ready period. Fractions 

of time bins within the ready period were averaged for each population. Artificial 

manipulations of ΔQ coding persistency in RSC does not affect the fractions of ΔQ coding 

neurons in RSC, but affect the fractions in the downstream.

(G) ΔQ coding persistency at each layer. Persistency progressively decreases in the 

downstream. Artificial manipulations of ΔQ coding persistency affect the persistency in 

the downstream. Error bars in (F) and (G) are 95% CI.
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(H) Temporal dynamics of population activity states visualized with dsPCA applied at each 

layer. Cylindrical dynamics gradually collapses into highly tangled dynamics in downstream 

layers.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Behaviors and imaging data in 
value-based decision task

Hattori et al., Cell, 2019, Jun 13;177(7):1858–
1872.e15.

https://doi.org/10.1016/j.cell.2019.04.027

Experimental Models: Organisms/Strains

Mouse: CaMKIIa-
tTA: B6;CBA-Tg(Camk2a-
tTA)1Mmay/J

The Jackson Laboratory RRID:IMSR_JAX:003010

Mouse: tetO-
GCaMP6s: B6;DBA-Tg(tetO-
GCaMP6s)2Niell/J

The Jackson Laboratory RRID:IMSR_JAX:024742

Software and Algorithms

Python3 Python Software Foundation RRID:SCR_008394

MATLAB MathWorks RRID:SCR_001622

R R Foundation for Statistical Computing RRID:SCR_001905

ScanImage Vidrio Technologies, LLC RRID:SCR_014307

Suite2P Pachitariu et al., bioRxiv, 2017 RRID:SCR_016434

BControl The Brody lab https://brodylabwiki.princeton.edu/bcontrol/
index.php

TensorFlow2 Google https://github.com/tensorflow/tensorflow

scikit-learn Pedregosa et al., JMLR, 2011, 12, pp. 2825–2830. https://github.com/scikit-learn/scikit-learn

SciPy Virtanen et al., Nat Methods, 2020, Mar;17(3):261–
272.

https://github.com/scipy/scipy

NumPy Harris et al., Nature, 2020, Sep;585(7825):357–362 https://github.com/numpy/numpy

statsmodels Seabold and Perktold, PROC. OF THE 9th PYTHON 
IN SCIENCE CONF., 2010

https://github.com/statsmodels/statsmodels

seaborn Waskom, J. Open Source Software, 2021, 6, 3021 https://github.com/mwaskom/seaborn

Matplotlib Hunter, Computing in Science and Engineering, 2007, 
pp. 90–95, vol. 9

https://github.com/matplotlib/matplotlib

lme4 Bates et al., Journal of Statistical Software, 2015, 
67(1), 1–48.

https://cran.r-project.org/web/packages/lme4/

PatchWarp Hattori and Komiyama, bioRxiv, 2021 DOI: 10.5281/zenodo.5590965, https://
github.com/ryhattori/PatchWarp

dsPCA This paper DOI: 10.5281/zenodo.5620834, https://
github.com/ryhattori/dspca
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