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Wearable non-invasive biosensors for the continuous monitoring of metabolites in 
sweat can detect a few analytes at sufficiently high concentrations, typically during 
vigorous exercise so as to generate sufficient quantity of the biofluid. Here, we 
report the design and performance of a wearable electrochemical biosensor for the 
continuous analysis, in sweat during physical exercise and at rest, of trace levels of 
multiple metabolites and nutrients, including all essential amino acids and vitamins.
The biosensor consists of graphene electrodes that can be repeatedly regenerated 
in situ, functionalized with metabolite-specific antibody-like molecularly imprinted 
polymers and redox-active reporter nanoparticles, and integrated with modules for 
iontophoresis-based sweat induction, microfluidic sweat sampling, signal processing
and calibration, and wireless communication. In volunteers, the biosensor enabled 
the real-time monitoring of the intake of amino acids and their levels during 
physical exercise, as well as the assessment of the risk of metabolic syndrome (by 
correlating amino acid levels in serum and sweat). The monitoring of metabolites for
the early identification of abnormal health conditions could facilitate applications in 
precision nutrition.

One-sentence editorial summary (to appear right below the title of your Article on the journal's 
website):
A wearable electrochemical biosensor can continuously detect, in sweat during 
physical exercise and at rest, trace levels of multiple metabolites and nutrients, 
including all essential amino acids and vitamins.



Circulating nutrients are essential indicators for overall health and body function1. Amino acids
(AAs),  sourced  from  dietary  intake,  gut  microbiota  synthesis,  and  influenced  by  personal
lifestyles,  are important  biomarkers for  a number  of  health conditions  (Fig. 1a)2.  Elevated
branched-chain amino acids (BCAAs) including leucine (Leu), isoleucine (Ile), and valine (Val),
are associated with obesity, insulin resistance, and the future risk of type 2 diabetes mellitus
(T2DM), cardiovascular  diseases (CVDs),  and pancreatic  cancer3–5.  Deficiencies in AAs (e.g.,
arginine and cysteine) could hamper the immune system by reducing immune-cell activation6.
Tryptophan  (Trp),  tyrosine  (Tyr)  and  phenylalanine  (Phe)  are  precursors  of  serotonin  and
catecholamine neurotransmitters (dopamine, norepinephrine, and epinephrine), respectively,
and play an important role in the function of complex neural systems and mental health7,8. A
number of metabolic fingerprints (including Leu, Phe, and vitamin D) are linked to COVID-19
severity9,10; health disparities in nutrition also correlate well with the alarming racial and ethnic
disparities that are worsened by COVID-19 vulnerability and mortality11; moreover, organ and
tissue  dysfunction  induced  by  SARS-CoV-2  could  result  in  an  increased  incidence  of
cardiometabolic diseases12. 
Metabolic  profiling  and  monitoring  are  a  key  approach  to  enabling  precision  nutrition  and
precision  medicine13.  Current  gold  standards  in  medical  evaluation  and  metabolic  testing
heavily rely on blood analyses that are invasive and episodic, often requiring physical visits to
medical facilities, labor-intensive sample processing and storage, and delicate instrumentation
(e.g., gas chromatography-mass spectrometry (GC-MS))14. As the current COVID-19 pandemic
remains uncontrolled around the world, there is a pressing need for developing wearable and
telemedicine sensors to monitor an individual’s health state and to enable timely intervention
under home- and community-based settings15–23; it is also increasingly important to monitor a
person’s long-term cardiometabolic and nutritional  health status after recovery from severe
COVID-19  infection  using  wearables  to  capture  early  signs  of  potential  endocrinological
complications such as T2DM12. 
Sweat is an important body fluid containing a wealth of chemicals reflective of nutritional and
metabolic  conditions24–27.  The progression  from blood analyses to  wearable  sweat  analyses
could  provide  great  potential  for  non-invasive,  continuous  monitoring  of  physiological
biomarkers critical to human health28-38. However, currently reported wearable electrochemical
sensors primarily focus on a limited number of analytes including electrolytes, glucose, and
lactate, due to the lack of a suitable continuous monitoring strategy beyond ion-selective and
enzymatic  electrodes  or   direct  oxidation  of  electroactive  molecules25–27,34-40  .  Thus,  most
clinically relevant nutrients and metabolites in sweat are rarely explored and undetectable by
existing wearable sensing technologies. Moreover, current wearable biosensors usually require
vigorous exercise to access sweat; although a few recent reports use pilocarpine gel-based
iontophoresis  for  sedentary  sweat  sampling22,30,36,  this  approach  suffers  from  short  sweat
periods and low sensing accuracy due to the mixing of sweat and gel fluid and the lack of
dynamic sweat sampling.
Here we present a universal wearable biosensing strategy based on a judicious combination of
the  mass-producible  laser-engraved  graphene  (LEG),  electrochemically  synthesized  redox-
active nanoreporters (RARs), molecularly imprinted polymer (MIP)-based ‘artificial antibodies’,
as well as unique in situ regeneration and calibration technologies (Fig. 1b). Unlike bioaffinity
sensors  based on antibodies  or  classic  MIPs  which are generally  one-time use and require
multiple  washing  steps  in  order  to  transduce  the  bioaffinity  interactions  in  standard  ionic
solutions41,42, this approach enables the demonstration of sensitive, selective, and continuous
monitoring of a wide range of trace-level biomarkers in biofluids including all nine essential AAs
as well as vitamins, metabolites, and lipids commonly found in human sweat (Supplementary
Table 1).  Seamless integration of  this  unique approach with  in  situ signal  processing and
wireless communication leads to a powerful  wearable sweat sensing technology ‘NutriTrek’
that  is  able to perform personalized and non-invasive metabolic  and nutritional  monitoring
toward timely intervention (Fig. 1b). The incorporation of the carbachol iontophoresis-based
sweat induction and efficient microfluidic-based surrounding sweat sampling enables prolonged
autonomous and continuous molecular analysis with high temporal  resolution and accuracy



across  activities,  during  physical  exercise  and  at  rest.  Using  five essential  or  conditionally
essential  AAs  (i.e.,  Trp,  Try,  and  three  BCAAs  (Leu,  Ile,  Val))  as  exemplar  nutrients,  we
corroborated the system in several human trials by enrolling both healthy subjects and patients
toward personalized monitoring of central fatigue, standard dietary intakes, nutrition status,
metabolic syndrome risks, and COVID-19 severity.

Results
Design and overview of the autonomous wearable biosensor technology
The  flexible  and  disposable  sensor  patch  consists  of  two  carbachol-loaded  iontophoresis
electrodes,  a  multi-inlet  microfluidic  module,  a  multiplexed  MIP  nutrient  sensor  array,  a
temperature sensor,  and an electrolyte sensor (Fig. 1c–f and  Supplementary Fig. 1).  All
flexible  electrode and sensor designs are based on the LEG which has large surface area,
excellent  electrochemical  properties,  and  can  be  produced  at  a  large  scale  directly  on  a
polyimide substrate  via CO2 laser engraving (Supplementary Fig. 2). The sensor patch can
be easily attached to skin with conformal contact and interfaces with a miniaturized electronic
module  for  on-demand  iontophoresis  control,  in  situ signal  processing  and  wireless
communication with the user interfaces through Bluetooth (Fig. 1g and Supplementary Figs.
3 and 4). A custom mobile app ‘NutriTrek’ was developed to process, display, and store the
dynamic  metabolic  information  monitored  by  the  wearable  sensors  (Fig.  1h and
Supplementary Video S1). The wearable system was also integrated into a smartwatch with
an electronic paper display (Fig. 1i and Supplementary Fig. 5). 

Biosensor design and evaluation for universal metabolic and nutritional analysis
Universal detection of AAs and other metabolites/nutrients with high sensitivity and selectivity
was achieved through careful design of the selective binding MIP layer on the LEG. MIPs are
chemically synthesized receptors formed by polymerizing functional monomer(s) with template
molecules.  Although  MIP  technology  has  been  proposed  for  sensing,  separation  and
diagnosis42,43, it has not yet been demonstrated for continuous wearable sensing as classic MIP
sensors require washing steps for sensor regeneration and the detection is generally performed
in standard buffer or redox solutions. In our case, the functional monomer (e.g., pyrrole) and
crosslinker (e.g., 3-Aminophenylboronic acid) initially form a complex with the target molecule;
following polymerization, their functional groups are embedded in the polymeric structure on
the LEG; subsequent extraction of the target molecules reveals binding sites on the LEG-MIP
electrode  that  are  complementary  in  size,  shape,  and  charge  to  the  target  analyte
(Supplementary Fig. 6). Two detection strategies – direct and indirect – are designed based
on  the  electrochemical  properties  of  the  target  molecules  (Fig.  2).  Optimizations  and
characterizations  of  the  LEG-MIP  sensors  are  detailed  in  Supplementary  Note  1 and
Supplementary Figs. 7–13.
For  electroactive  molecules  in  sweat,  the  oxidation  of  bound  target  molecules  in  the  MIP
template can be directly measured by differential pulse voltammetry (DPV) in which the peak
current  height  correlates  to  analyte  concentration  (Fig.  2a).  Considering  that  multiple
electroactive molecules can be oxidized at similar potentials, this LEG-MIP approach addresses
both sensitivity and selectivity issues. For example, Tyr and Trp, two AAs with close redox
potentials  (~0.7  V),  could  be  detected  selectively  with  this  strategy  (Fig.  2b,c and
Supplementary Fig.  14).  Linear  relationships  between peak height  current  densities  and
target concentrations with sensitivities of 0.63 µA µM−1 cm−2 and 0.71 µA µM−1 cm−2 respectively
for the LEG-MIP Tyr and Trp sensors were observed (Supplementary Fig. 15).  It  is worth
noting  that  choices  of  monomer/crosslinker/template  ratios  and  incubation  periods  have
substantial  influences on sensor response while sample volume does not (Supplementary
Fig. 10). The Tyr and Trp sensors can be readily and repeatably regenerated in situ without
any washing step with a high-voltage amperometry (IT) that oxidizes the bound targets at their
redox potentials (Fig. 2d).
As the majority of metabolites and nutrients (e.g., BCAAs) are non-electroactive and cannot
easily  be  oxidized  under  operational  conditions,  we  herein  utilize  an  indirect  detection



approach involving an RAR layer sandwiched between the LEG and MIP layers to enable rapid
quantitation (Fig. 2e).  The selective adsorption of the target molecules onto the imprinted
polymeric layer decreases the exposure of the RAR to the sample matrix. Controlled-potential
voltammetric techniques such as DPV or linear sweeping voltammetry (LSV) can be applied to
measure the RAR’s oxidization or reduction peak, where the decrease in peak height current
density  corresponds  to  an  increase  in  analyte  levels.  For  example,  using  Prussian  Blue
nanoparticles (PBNPs) as the RAR (Supplementary Fig. 11), we developed a MIP-LEG Leu
sensor with a log-linear relationship between the peak height decrease and Leu concentration
and a sensitivity of 702 nA mm-2 per decade of concentration (Fig. 2f). We established this
approach to quantify the physiologically relevant range of all nine essential AAs (i.e., Leu, Ile,
Val, Trp, Phe, histidine (His), lysine (Lys), methionine (Met), and threonine (Thr)) (Fig. 2g and
Supplementary Fig. 16) as well as a number of vitamins, metabolites, and lipids (vitamins B6,
C,  D3,  and  E,  glucose,  uric  acid,  creatine,  creatinine,  and  cholesterol)  (Fig.  2h and
Supplementary Fig. 17). In addition to these nutrients and metabolites, this approach can be
easily reconfigured to enable the monitoring of a broad spectrum of biomarkers ranging from
hormones  (e.g.,  cortisol)  to  drugs  (e.g.,  immunosuppressive  drug  mycophenolic  acid)
(Supplementary Fig. 18 and Supplementary Tables 2 and 3). Most of these targets are
undetectable continuously by any existing wearable technology. Considering that a total level
of multiple nutrients (e.g., total BCAAs) is often an important health indicator, a multi-template
MIP approach can be used to enable accurate and sensitive detection of the total concentration
of multiple targets with a single sensor (Fig. 2i,j). These indirect LEG-RAR-MIP sensors can be
regenerated in situ upon constant potential applied to the working electrode repels the bound
target molecules from the MIP layer with prolonged re-usability (Fig. 2k). 
The  LEG-MIP  sensors  show stable  responses  during  repeatable  use:  The PBNPs-based RAR
showed stable redox signals throughout 60 repetitive cyclic voltammetry (CV) scans (Fig. 2l
and  Supplementary Fig. 11); minimal output changes were observed throughout a 42-day
storage period (Supplementary Fig. 19a,b); the sensors also showed no substantial relative
signal shift  when used continuously over 5 days (Supplementary Fig. 19c).  Compared to
traditional MIP preparation processes, the electrodeposited MIP layer on the mass-producible
LEG  leads  to  high  reproducibility  in  both  selectivity,  sensitivity,  and  device  to  device
consistency (Supplementary Figs. 20  and 21).  The choice of  LEG as the MIP deposition
substrate also showed advantages in sensor sensitivity as compared to classic electrodes such
as glassy carbon electrode, printed carbon electrode, and Au electrode (Supplementary Fig.
22).  Other RARs such as the anthraquinone-2-carboxylic  acid (AQCA) can also be used for
indirect AA sensing with stable performance (negatively scanned DPV was used here to monitor
AQCA reduction) (Fig. 2m and Supplementary Fig. 23). As illustrated in Fig. 2n, the LEG-
AQCA-MIP sensors could be directly regenerated in a raw human sweat sample, resolving a
main bottleneck of wearable biosensing. The MIP-LEG AA sensors have excellent selectivity for
other  analytes  in  sweat  (including  AAs  with  similar  structures)  at  physiologically  relevant
concentrations (Fig. 2o,  Supplementary Fig. 24, and Supplementary Table 3). The LEG-
MIP technology showed a comparable sensitivity with the current gold standard laboratory-
based GC-MS44 (Supplementary Fig. 25);  the sensor measurements  in raw human sweat
samples have been validated against GC-MS (Fig. 2p, Supplementary Figs. 26 and 27).

Wearable system design for autonomous sweat induction, sampling, analysis, and
calibration
To enable on-body continuous metabolic and nutritional monitoring, the flexible sensor patch
was designed to comprise of an iontophoresis module for localized on-demand sweat induction,
a  multi-inlet  microfluidic  module  for  efficient  sweat  sampling,  a  multiplex  LEG-MIP  sweat
nutrient sensor array for continuous AA analysis, and LEG-based temperature and electrolyte
sensors  for  real-time  AA  sensor  calibration  (Fig.  3a).  Unlike  classic  bioaffinity  sensor’s
detection in buffer or redox solutions,  in situ sweat analysis poses more challenges due to
complex and interpersonally varied sweat composition and demands technological innovations
for accurate on-body sensing. For example, for direct LEG-MIP Trp sensing, a DPV scan in sweat



even before  target/MIP  recognition  could  lead to  an  oxidation  peak  as  a  small  amount  of
electroactive molecules (e.g., Trp and Tyr) can be oxidized on the surface of MIP layer; after
recognition and binding of Trp into the MIP cavities, a substantially higher current peak height
can be obtained; measuring difference of the two peak heights allows more accurate bound Trp
measurement directly in sweat with high selectivity (Fig. 3b–d). The influence of temperature
and ionic strength on the AA sensors can be calibrated in real time based on the readings from
an LEG-based strain-resistive temperature sensor and an ion-selective Na+ sensor (Fig. 3e,
Supplementary Fig. 28). Considering that sweat rate during exercise was reported to have
influence on certain biomarker levels; we could use sweat Na+ level (which showed a linear
correlation with sweat rate) to further calibrate the nutrient levels for personalized analysis.
This unique transduction strategy involving both the two-step DPV scans and the temperature/
electrolyte calibrations allows us to obtain accurate reading continuously in sweat during on-
body use (Supplementary Fig. 29). 
In  order  to  make  this  wearable  technology  broadly  applicable,  particularly  for  sedentary
individuals,  we utilize  here  a  custom-designed iontophoresis  module  consisting  of  the  LEG
anode and cathode coupled with hydrogels containing muscarinic agent carbachol (carbagel)
for sustainable sweat extraction. Carbachol was selected from various muscarinic agents as it
allows the most efficient, repeatable, and long-lasting sweat secretion from the surrounding
sweat gland thanks to its additional nicotinic effects45 (Fig. 3f–h,  Supplementary Fig. 30,
and  Supplementary Note 2). In contrast, the classic sweat inducing agent – pilocarpine –
used by the standard sweat test and previously reported wearable systems22,30,36 offers only a
short period of sweat and very limited sweat rate from the neighboring sweat glands (Fig. 3f–
h). Furthermore, sampling the mixture of the leaked sweat underneath the pilocarpine gel and
the gel fluid could result in substantial  wearable sensor errors and fail  to provide real-time
information due to the absence of efficient sweat refreshing. A very small current (50–100 µA)
is used for our iontophoresis module, as compared to commonly used 1–1.5 mA22,30,36, greatly
reducing the risks of skin irritation. To maximize the efficiency of low-volume sweat sampling
and improve the temporal resolution of wearable sensing, a compact and flexible microfluidic
module  was  carefully  designed  to  isolate  sweat  sampling  areas  from  iontophoresis  gels.
Numerical  simulations were performed to optimize the geometric design of the microfluidic
module, including inlet numbers, angle span, orientation, and flow direction with respect to the
reservoir  geometry  (Fig. 3i,  Supplementary Note 3,  Supplementary Figs. 31  and 32,
Supplementary  Video 2,  and  Supplementary  Table 4).  With  the  optimized  design  for
sweat induction and sampling, sweat can be conveniently induced locally and readily sampled
with the multi-inlet microfluidics over a prolonged period (Fig. 3g,j, Supplementary Fig. 33,
and Supplementary Video 3). At the physiological sweat rates ranging from 0.15 µL min−1 to
3 µL min−1,  our wearable sensor patch could provide  reliable and accurate analysis  of  the
dynamic changes of the AA levels (Supplementary Figs. 34 and 35). 

Evaluation  of  the  wearable  system  for  dynamic  physiological  and  nutritional
monitoring
Evaluation of the wearable system was conducted first  via sensing of sweat Trp and Tyr in
human subjects during a constant-load cycling exercise trial (Fig. 4a–d and Supplementary
Fig. 36). The DPV data from the sensors were wirelessly transmitted along with temperature
and Na+ sensor readings to the mobile app that automatically extracted the oxidation peaks
using  a  custom  developed  iterative  baseline  correction  algorithm  (Fig.  4e and
Supplementary Fig. 37) and performed calibration for the accurate quantification of sweat
Tyr and Trp. Considering that AAs (e.g., Try and BCAAs) play a crucial role in central fatigue
during physical exercise46, a flexible Trp and BCAA sensor array was used to monitor the AA
dynamics during vigorous exercise (Fig. 4f–j  and  Supplementary Fig. 38).  Both Trp and
BCAA levels decreased during the exercise due to the serotonin synthesis and BCAA ingestion,
respectively. The increased sweat Trp/BCAA ratio was observed which could potentially serve
as  an  indicator  for  central  fatigue,  in  agreement  with  a  previous  report  on  its  plasma
counterpart46. 



The wearable iontophoresis-integrated patch enables daily continuous AA monitoring at rest
beyond the physical exercise. As illustrated in  Fig. 4k–o and  Supplementary Figs. 39–42,
rising Trp and Tyr  levels  in  sweat  were  observed from all  four  subjects  after  Trp and Tyr
supplement intake while the readings from the sensors remained stable during the studies
without  intake.  Such capability  opens  the  door  for  personalized  nutritional  monitoring  and
management through personalized sensor-guided dietary intervention. It should be noted that
our pilot study showed that sweat nutrient and electrolyte levels were independent of sweat
rate changes during the carbachol-based iontophoresis-induced sweat (Supplementary Fig.
43). 

Personalized  monitoring  of  metabolic  syndrome  risk  factors  using  the  wireless
biosensors
Metabolic syndrome, characterized by abdominal obesity and insulin resistance, is now on the
rise as the leading cause of morbidity and mortality, affecting more than a third of all U.S.
adults47. Elevated circulating BCAAs levels are predictive of insulin-resistant obesity, metabolic
syndrome, and linked to CVDs and T2DM (Fig. 5a and Supplementary Note 4)3,4, which could
lead to potential complications of severe COVID-1912. Recent studies have shown the potential
use  of  BCAAs  supplementation  as  dietary  intervention  to  ameliorate  insulin  resistance48.
Monitoring changes in essential nutrient levels provides a highly sensitive early detection of
metabolic syndrome risks, enabling effective personalized dietary intervention (Fig. 5b).  To
explore  the  use  of  sweat  BCAAs  as  a  non-invasive  risk  factor  of  metabolic  syndrome,  we
performed  a  pilot  study  to  investigate  the  correlations  between  serum and  sweat  BCAAs
involving three groups of subjects: normal weight (I, n=10), overweight/obesity (II, n=7), and
obesity  with  T2DM (III,  n=3)  (Fig.  5c,d).  Positive  Pearson  correlation  coefficients  of  0.66
(n=65) and 0.69 (n=65) were observed between sweat and serum levels (all analyzed by the
sensors) of Leu and total BCAA, respectively (Fig. 5c). Compared to healthy participants in
Group I, substantially elevated sweat and serum Leu levels (analyzed by the sensors) were
observed in Group II and III (Fig. 5d), consistent with previous reports that higher circulating
BCAA  levels  were  identified  in  individuals  with  obesity  and  T2DM3.  Considering  the  well-
established  role  of  BCAAs  on  insulin  production  and  inhibition  of  glycogenolysis,  we  also
investigated the  postprandial  response of  sweat  Leu/BCAAs and blood glucose/insulin  after
BCAA supplement and dietary intake on healthy subjects (Fig. 5e,f). All biomarkers remained
stable during fasting period; protein diet intake resulted in the increase of both blood glucose
and insulin while BCAA intake only led to a rapid insulin increase. In both studies, sweat Leu
and BCAAs increased first in the 30–60 min and then decreased. For subjects with different
metabolic conditions, Leu levels in iontophoretic sweat after BCAA vary differently: although
substantial increase in sweat Leu levels were observed in all cases, healthy subjects showed a
drastic percentage fluctuation and individuals with obesity/T2DM showed blunted fluctuation
that may indicate the different metabolic stage of BCAA in those individuals (Fig. 5g). 
Considering that circulating elevated Leu has been reported as a key metabolic fingerprint for
the  COVID-19  severity,  we  also  evaluated  our  biosensors  for  analyzing  the  samples  from
patients  with  COVID-19  and  healthy  individuals;  substantially  elevated  Leu  levels  were
identified in from COVID-19 positive samples as compared to the negative ones (415.6 ± 133.7
µM vs. 151.5 ± 36.0 µM), indicating the great potential of our biosensors for at-home COVID-19
monitoring and management (Fig. 5h).   

Discussion
Circulating metabolic  biomarkers,  such as amino acids and vitamins,  have been associated
with  various  health  conditions,  such  as  diabetes  and  cardiovascular  diseases.  Metabolic
profiling  using  wearable sensors  has become increasingly  crucial  in  precision nutrition  and
precision medicine, especially in the era of COVID-19 pandemic, as it provides not only insights
into COVID-19 severity but also guidance to stay metabolically healthy to minimize the risk of
potential COVID-19 infections. As the pandemic remains rampant in the world and the regular
medical  services could be in shortage, it  is of  urgent need to develop and apply wearable



sensors that can monitor health conditions via metabolic profiling so that at-home diagnosis
and  timely  intervention  via  telemedicine  could  be  achieved.  However,  current  wearable
electrochemical  sensors  are  limited to  a  narrow range  of  detection targets  due to  lack  of
continuous sensing strategies beyond ion-selective and enzymatic electrodes. Though various
bio-affinity based sensors have been developed to detect a broader spectrum of targets using
antibodies or MIPs, they generally require multiple washing steps or provide only one-time use;
these limitations have hampered their useability in wearable devices. Moreover, the majority of
wearable biosensors rely on vigorous exercise to access sweat and are not suitable for daily
continuous use.
By integrating  the  mass-producible  LEG,  electrochemically  synthesized RARs,  and ‘artificial
antibodies’, we have demonstrated a powerful universal wearable biosensing strategy that can
achieve  selective  detection  of  a  broad  range  of  biomarkers  (including  all  essential  AAs,
vitamins,  metabolites,  lipids,  hormones  and  drugs)  and  reliable  in  situ regeneration.
Furthermore, to enable continuous and on-demand metabolic and nutritional monitoring across
the activities,  we have integrated the LEG-MIP sensor array and iontophoresis-based sweat
induction  into  a  wireless  wearable  technology,  with  optimized  multi-inlet  microfluidic
sudomotor  axon  reflex  sweat  sampling,  in  situ signal  processing,  calibration,  and  wireless
communication. Using this telemedicine technology, we have demonstrated the wearable and
continuous monitoring of postprandial AA responses to identify risks for metabolic syndrome.
The high correlation between sweat and serum BCAAs shows great promise of this technology
towards metabolic syndrome risk monitoring. The substantial difference in Leu between COVID-
19 positive and negative blood samples indicates the potential of using this technology for at-
home COVID-19 management. We envision that this wearable technology could play a crucial
role  in  the  realization  of  precision  nutrition  through  continuous  monitoring  of  circulating
biomarkers and enabling personalized nutritional intervention. This technology could also be
reconfigured to continuously monitor a variety of other biomarkers toward a wide range of
personalized preventive, diagnostic, and therapeutic applications.

Methods
Materials and reagents. Uric acid, L-tyrosine, silver nitrate, iron chloride (III), dopamine 
hydrochloride, choline chloride, creatinine, pantothenic acid calcium salt, citrulline, pyridoxine, 
and lactic acid were purchased from Alfa Aesar. Sodium thiosulfate pentahydrate, sodium 
bisulfite, tryptophan, leucine, alanine, isoleucine, methionine, valine, lysine, thiamine 
hydrochloride, serine, sulfuric acid, hydrochloric acid, anthraquinone-2-carboxylic acid (AQCA), 
3-Aminophenylboronic acid (APBA), aniline, o-phenylenediamine (o-PD), methylene blue (MB), 
thionine, 2-(N-morpholino)ethanesulfonic acid hydrate (MES), ethanolamine, N-(3-dimethyl-
aminopropyl)-N’-ethylcarbodiimide (EDC), N-hydroxysulfosuccinimide sodium salt (sulfo-NHS), 
bovine serum albumin (BSA), tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl), 
streptavidin-peroxidase conjugate (strep-POD, Roche), and hydroquinone (HQ) were purchased 
from Sigma Aldrich. Carboxylic acid-modified-magnetic beads (Dynabeads®, M-270) were 
obtained from Invitrogen. Potassium ferricyanide (III), and potassium ferrocyanide (IV) was 
purchased from Acros Organics. Acetic acid, methanol, sodium acetate, sodium chloride, 
sodium dihydrogen phosphate, potassium chloride, potassium hydrogen phosphate, urea, L-
ascorbic acid and dextrose (D-glucose) anhydrous, glycine, arginine, inositol, ornithine, aspartic
acid, threonine, histidine, riboflavin, creatine, phenylalanine, nicotinic acid, folic acid, glutamic 
acid, and hydrogen peroxide (30% (w/v)) were purchased from Thermo Fisher Scientific. Insulin 
capture antibody and biotinylated detector antibody were purchased from R&D systems 
(Human/Canine/Porcine Insulin DuoSet ELISA). Screen printed carbon electrodes (SPCE) and 
magnetic holder were purchased from Metrohm DropSens. Medical adhesives were purchased 
from 3M and Adhesives Research. Polyimide (PI) films (75 μm thick) were purchased from 
DuPont. PET films (12 μm thick) were purchased from McMaster-Carr.

Fabrication and preparation of the LEG sensors. The LEG electrodes were fabricated on a 
polyimide film with a thickness of 75 μm (DuPont) with a 50 W CO2 laser cutter (Universal Laser 



System). When engraving the PI with a CO2 laser cutter, the absorbed laser energy is converted
to local heat and thus leads to a high localized temperature (>2500 °C), chemical bonds in the 
PI network are broken and thermal reorganization of the carbon atoms occurs, resulting in 
sheets of graphene structures. The optimized parameters for the graphene electrodes and 
electronic connections were power 8%, speed 15%, points per inch (PPI) 1000 in raster mode 
with 3-time scan. For the active sensing area of the temperature sensor, the optimized 
parameters were power 3%, speed 18%, PPI 1000 in vector mode with 1-time scan. To prepare 
the reference electrode, Ag was first modified on the corresponding graphene electrode by 
multi-current electrodeposition with electrochemical workstation (CHI 832D) at -0.01 mA for 
150 s, -0.02 mA for 50 s, -0.05 mA for 50 s, -0.08mA for 50 s, and -0.1 mA for 350 s using a 
plating solution containing 0.25 M silver nitrate, 0.75 M sodium thiosulfate and 0.5 M sodium 
bisulfite. 0.1 M FeCl3 solution was further dropped on the Ag surface for 30 s to obtain the 
Ag/AgCl electrode, and then 3 µL PVB reference cocktail prepared by dissolving 79.1 mg of 
PVB, 50 mg of NaCl in 1 mL of methanol was dropped on the Ag/AgCl electrode and dried 
overnight. The Na+ selective electrode was prepared as follows: 0.6 µL of Na+ selective 
membrane cocktail prepared by dissolving 1 mg of Na ionophore X, 0.55 mg Na-TFPB, 33 mg 
PVC and 65.45 mg DOS into 660 µL of THF was drop-casted onto the graphene electrode and 
dried overnight. To obtain the desired stable Na+ sensing performance for long-term continuous
measurements, the obtained Na+ sensor was conditioned overnight in 100 mM NaCl.
The fabrication process of the LEG-MIPs sensor array is illustrated in Supplementary Fig. 6. 
All the MIP layers are synthesized by electro-polymerization. The polymerization solution was 
prepared by dissolving 5 mM template (e.g., target amino acid), 12.5 mM aminophenylboronic 
acid (APBA) and 37.5 mM pyrrole into 0.01 M phosphate buffer saline (PBS) (pH=6.5). For multi-
MIP BCAA sensor, 5 mM of each target (i.e., Leu, Ile, and Val) was used. Prior to MIP deposition, 
the LEG was activated in 0.5 M H2SO4 with CV scans for 60 segments (-1.2–1 V with a scan rate 
of 500 mV s-1). For the direct-detection LEG-MIP sensors, the target imprinted polymer was 
electrochemically synthesized on the LEG electrode with CV deposition (0–1 V for 10 cycles, 50 
mV s-1) using the prepared polymerization solution. The target molecules were extracted by 
soaking the electrode into an acetic acid/methanol mixture (7:3 v/v) for 1 hour. Subsequently, 
the resulting electrode was immersed into 0.01 M phosphate buffer saline (pH=6.5) for 
repetitive CV scans (0.4–1 V with a scan rate of 50 mV s-1) until a stable response was obtained.
For LEG-non-imprinted polymer (NIP), the electrode was prepared following the same 
procedure as LEG-MIP except that there was no template added in the polymerization solution. 
For the indirect-detection MIP sensors, electrochemically synthesized redox-active 
nanoreporters (RARs) (e.g., Prussian Blue nanoparticles (PBNPs) or anthraquinone-2-carboxylic 
acid (AQCA)) was first modified on the LEG electrode. The PBNPs RAR on the LEG was prepared 
with cyclic voltammetry (20 cycles) (-0.2 to 0.6 V with a scan rate of 50 mV s-1) in an aqueous 
solution containing 3 mM FeCl3, 3 mM K3Fe(CN)6, 0.1 M HCl and 0.1 M KCl. A PBNP layer with 
appropriate redox signal is necessary to produce a good sensitivity for the final MIP sensors; to 
achieve this stable and suitable redox signal, the LEG-electrode was rinsed with distilled water 
after the initial PB deposition and the PB electrodeposition step was repeated for two more 
times until a stable 70 µA LSV peak in 0.1 M KCl solution was achieved. Subsequently, the LEG-
PB was rinsed with distilled water and immersed into a solution containing 0.1 M HCl and 0.1 M 
KCl for repetitive CV scans (-0.2–0.6 V with a scan rate of 50 mV s-1) until a stable response was
obtained. To prepare the AQCA RAR on the LEG, the LEG electrode was first incubated in 50 µL 
PBS (pH=6.5) with 5 mM AQCA at 4 ºC overnight. Subsequently, the LEG-AQCA was rinsed with 
distilled water and immersed into a phosphate buffer solution for repetitive CV scans (-0.8–0 V 
with a scan rate of 50 mV s-1) until a stable response was obtained. For the indirect-detection 
LEG-PB-MIP sensors, an additional PB activation process was conducted right after the template
extraction (IT scan at 1 V in 0.5 M HCl for 600 s), followed by an LEG-PB-MIP sensor stabilization
process in 0.1 M KCl (CV scans at -0.2–0.6 V with a scan rate of 50 mV s-1). It should be noted 
that for the LEG-AQCA-MIP sensor, only 3 CV cycles polymerization was used to prepare the MIP
layer, and the sensor was stabilized in 0.01 M phosphate buffer saline (PBS) (pH=6.5) (CV 
scans at -0.8–0 V with a scan rate of 50 mV s-1).



The morphology of materials was characterized by scanning electron microscopy (SEM, Nova 
Nano SEM 450) and transmission electron microscope (TEM, Talos S-FEG FEI, USA). The Raman 
spectrum of the electrodes with different modification were recorded using a 532.8 nm laser 
with an inVia Reflex (Renishaw). Fourier transform infrared (FT-IR) spectra were measured 
using IR spectrometer (Nicolet 6700).

Characterization of the LEG sensor performance. A set of electrochemical sensors were 
characterized in solutions of target analytes. All the in vitro sensor characterizations were 
performed through CHI 832D. The response of the Na+ sensor was characterized with open 
circuit potential measurements in the solutions containing varied Na+ levels. DPV analysis was 
performed for all the direct-detection LEG-MIP sensor characterizations in 0.01 M PBS (pH 6.5) 
or in raw sweat. DPV conditions: range, 0.4–1 V; incremental potential, 0.01 V; pulse amplitude,
0.05 V; pulse width, 0.05 s; pulse period, 0.5 s; and sensitivity, 1 × 10−5 A V-1. For in vitro 
indirect-detection of the target molecules based on the LEG-PB-MIP sensors, LSV analysis (0.4–
0 V) was performed in 0.1 M KCl. The LSV conditions: range, 0.4–0 V; scan rate, 0.005 V s-1; 
sample interval, 0.001 V; quiet time, 2 s, and sensitivity, 1 × 10−4 A V-1. For in vitro indirect-
detection of the target molecules based on the LEG-AQCA-MIP sensors, negative DPV analysis 
(0–-0.8 V) was performed in 0.01 M PBS. The negative DPV conditions: 0–-0.8 V; incremental 
potential, 0.01 V; pulse amplitude, 0.05 V; pulse width, 0.05 s; pulse period, 0.5 s; and 
sensitivity, 1 × 10−5 A V-1. For in situ sweat analyte measurement, background and signal 
curves were recorded before and after incubation; the signal current was obtained as the 
difference of the peak amplitudes between the post-incubation signal and the background 
current curves (Fig. 3b–d and Supplementary Fig. 29). The temperature sensor 
characterization was carried out on a ceramic hot plate (Thermo Fisher Scientific) 
(Supplementary Fig. 28). The sensor response was recorded using a parameter analyzer 
(Keithley 4200A-SCS) and compared with the readings from an infrared thermometer 
(LASERGRIP 800; Etekcity). 
To evaluate the performance of the various electrode substrates for MIP-based AA sensing, 
LEG, printed carbon electrode (PCE), Au electrode (AuE), and glassy carbon electrode (GCE) 
were chosen. The GCEs were purchased from CH Instruments. The PCEs were printed on the PI 
substrate using a Dimatix Materials Printer DMP-2850 (Fujifilm, Minato, Japan) with a 
commercial carbon ink from NovaCentrix. The AuEs were fabricated via E-beam evaporation: 
20 nm of Cr and 100 nm of Au were deposited onto an O2-plasma pretreated PET substrate. MIP
films were prepared with CV deposition (0–1 V for 10 cycles, 50 mV s-1).

Fabrication and characterization of microfluidic channels. The microfluidic module was 
fabricated using a 50 W CO2 laser cutter (Universal Laser System) (Supplementary Fig. 1). 
Briefly, layers of double-sided and single-sided medical adhesives (3M) were patterned with 
channels, inlets, the iontophoresis gel outlines and reservoirs. For all microfluidic layers, the 
iontophoresis gel outlines were patterned to enable the current flow from the top polyimide 
electrode layer. The bottom layer, which is the double-sided adhesive layer in contact with the 
skin (accumulation layer), was patterned with a sweat accumulation well (3M 468MP, laser 
parameter: power 60%, speed 90%, PPI 1000). The second layer (the inlets layer), in contact 
with the accumulation layer, was patterned with the multiple inlets (12 μm thick PET, laser 
parameter: power 20%, speed 100%, PPI 1000). The third layer (channel layer), in contact with 
the inlets layer, was patterned with microfluidic channels (Adhesives Research 93049, laser 
parameter: power 45%, speed 100%, PPI 1000).  The fourth layer (reservoir layer), sandwiched 
between the channel layer and the electrode polyimide layer, was patterned with the reservoir 
and the outlet (3M 468MP, laser parameter: power 60%, speed 90%, PPI 1000). The reservoir is
an ellipse with a 5.442 mm major axis and a 4.253 mm minor axis to fully enclose the active 
sensing area. The thickness of the channel layer is ~0.1 mm (Adhesives Research 93049) and 
the thickness of the reservoir layer is 0.13 mm (3M 468MP). The reservoir area is 18.17 mm2, 
and thus the reservoir volume can be calculated as the area multiplied by the thickness of the 
reservoir layer (0.13 mm) which totals 2.36 µL. 



Fabrication of agonist agent hydrogels. Hydrogels containing muscarinic agent carbachol 
was prepared as follows: Briefly, for anode gel, agarose (3% w/w) was added into deionized 
water and then heated to 250 °C under constant stirring. After the mixture was fully boiled and 
became homogenous without agarose grains, the mixture was cooled down to 165 °C and 1% 
carbachol was added to the above mixture. Subsequently, the cooled mixture was slowly 
poured into pre-made cylindrical molds or into assembled microfluidic patch and solidified for 
10 min at 4 °C. The cathode gel was prepared similarly except that NaCl (1% w/w) was used 
instead of carbachol.

Signal conditioning, processing and wireless transmission for the wearable sensor. 
The block diagram of the electronic system (Fig. 1g and Supplementary Fig. 4) represents 
both the wearable electronic patch and the smart watch that can (i) induce sweat via 
iontophoresis and (ii) monitor sweat via electrochemical methods. The sweat induction and the 
sweat sensing procedures are initiated and controlled by the microcontroller (STM32L432KC, 
STMicroelectronics) when it receives a user command from the Bluetooth module over 
Universal Asynchronous Receiver/Transmitter (UART) communication. 
Sweat induction: Programmable iontophoretic current is generated by a voltage controlled 
current source that consists of a unity-gain difference amplifier (AD8276, Analog Devices) and 
a boost transistor (BC846, ON Semiconductor). The circuit is supplied by the output of a boost 
converter (LMR64010) that boosts the 3.7 V battery voltage to 36 V. The microcontroller 
controls the digital to analog converter (DAC) (DAC8552, Texas Instruments) over serial 
peripheral interface (SPI) to set the control voltage of the current source. The current source 
output is checked by a comparator (TS391, STMicroelectronics) and the microcontroller is 
interrupted through its general-purpose input/output (GPIO) pin at output failure. The 
protection circuit consists of a current limiter (MMBF5457, ON Semiconductor) and analog 
switches (MAX4715, Maxim Integrated; ADG5401, Analog Devices). The microcontroller’s GPIO 
is also used to enable or disable the iontophoresis circuit. For the optimized design, a 100-µA 
current (~2.6 µA mm-2) was applied for on-body iontophoresis sweat induction using the 
flexible microfluidic patch. 
Power analysis: When powered at 3.3 V, the electronic system consumes ~28 mA during an 
active electrochemical measurement and ~61 mA during iontophoresis. The microcontroller 
and Bluetooth module each consume ~12 mA; the sensor interface consumes ~4 mA; the 
boost converter and iontophoresis module consumes ~33 mA, and the display module 
consumes an additional ~8 mA when refreshing its screen.
Sweat sensing: The sweat sensing circuitry can perform two channel simultaneous DPV, as well
as potentiometric and temperature measurements. A bipotentiostat circuit is constructed by a 
control amplifier (AD8605) and two transimpedance amplifiers (AD8606). A series voltage 
reference (ISL60002, Renesas Electronics) and a DAC (DAC8552, Texas Instruments) is used to 
generate a dynamic potential bias across the reference and working electrodes. In 
instrumentation amplifier (INA333, Texas Instruments) is used for potentiometric 
measurements; and a voltage divider is used for the resistive temperature sensor. All analog 
voltage signals are acquired by the microcontroller’s built-in analog-to-digital converter (ADC) 
channels, processed, then transmitted over Bluetooth to a user device.

Custom mobile application design. The custom mobile application was developed with the 
cross-platform Flutter framework. The mobile application can wirelessly communicate with the 
wearable devices via Bluetooth to send commands, and to acquire, process, and visualize the 
sweat biomarker levels. The application establishes a secure Bluetooth connection to the 
wearable sensor. The home page plots the user’s historical biomarker levels, and highlights the
most recently measured analyte concentrations. When a sweat biomarker measurement is 
prompted, the user can switch over to the measurement page that plots the sweat sensors’ 
voltammograms in real time. Following the voltammetric measurement, the app extracts the 
voltammograms’ peak currents using a custom baseline correction algorithm, then converts 



the peak currents to corresponding biomarker concentrations. This measurement data is added
to the list of historic analyte levels in the home page.

Refreshing time analysis and simulations. The refreshing time analyses were performed 
using numerical simulations (COMSOL). Three-dimensional models of different microfluidic 
designs with same dimensions of the actual device were created in Rhinoceros and imported 
into COMSOL Multiphysics. The mass transport process was simulated by numerically solving 
the Stokes equation for an incompressible flow coupled with convection-diffusion equation (see
Supplementary Note 3). 

Human subject recruitment. The validation and evaluation of the sweat sensor were 
performed using human subjects in compliance with all the ethical regulations under protocols 
(ID 19-0892 and 21-1079) that were approved by the Institutional Review Board (IRB) at 
California Institute of Technology. The participating subjects (age over 18 years) were recruited
from the California Institute of Technology campus and the neighboring communities through 
advertisement. All subjects gave written informed consent before study participation. For 
wearable sensor evaluation, healthy subjects with a BMI of 18.5 to 24.9 kg m-2 with fasting 
serum glucose <100 mg dL-1 were recruited. For the BCAA study, inclusion criteria include: 
Group I, normal weight individuals with a body mass index (BMI) of 18.5 to 24.9 kg m-2 with 
fasting serum glucose <100 mg dL-1 (Healthy); Group II, overweight/obese individuals with a 
BMI of 25 to 35 kg m-2 and fasting serum glucose <6 mg dL-1 (Overweight/Obesity); Group III, 
obese individuals with a BMI of 25 to 35 kg m-2 and fasting serum glucose >= 126 mg dL-1 
(Obesity & T2DM). COVID-19 positive and COVID-19 negative serum samples were purchased 
from RayBiotech, Inc.

Gas chromatography–mass spectrometry (GC-MS) analysis for sensor validation. GC-
MS analysis of the amino acids in sweat and serum samples were performed using EZ:Faast kit 
from Phenomenex which provides sample preparation, derivatization and GC-MS analysis of 
free amino acids. A Varian Saturn 2000 was used for the GC-MS runs. 1 µL of prepared sample 
solution was injected for GC in Helium carrier gas at 1.0 mL min-1 constant flow with a pulse 
pressure of 20 pounds per square inch (psi) for 0.2 min, with the oven programmed from 110 
°C to 320 °C at 32 °C min-1. The mass chromatography was set with source at 240 °C, quad at 
180 °C, and auxiliary at 310 °C with a scan range from 45−450 m z-1 at a sampling rate of 3.5 
scans s-1. Selected ion monitoring was used, which records the ion current at selected masses 
that are characteristic of the certain amino acid in an expected retention time49. For example, 
after the derivatization of the EZ:Faast kit, Trp has a characteristic mass at 130 with a 
retention time at around 5.1 min, and peak height is recorded for Trp measurements at ion 
number 130 and at 5.1 min from the raw data spectrum. The internal standard (norvaline) was 
added during the sample derivatization process to account for potential evaporation-induced 
increase in peak detection; the internal standard (IS) norvaline peak height is recorded at its 
ion number 158 at 1.65 min (Supplementary Fig. 26). The Trp peak height recorded from 
raw data spectrum was calibrated with respect to the internal standard in the same run: 
normalized Trp peak height = Trp peak height/IS peak height. With normalized peak heights of 
different levels of Trp standards, calibration plots were constructed. For other samples, the 
normalized peak height of Trp was used to calculate the concentration.

Integrated system validation in human subjects.
System evaluation during exercise: To validate the wearable sensor system, we conducted 
constant-load cycling exercise on healthy subjects. The subjects reported to the lab after 
fasting overnight and were given a standardized protein drink (Fairlife, Core Power Elite). The 
subjects’ foreheads and necks were cleaned with alcohol swabs and gauze before the sensor 
patches were placed on the body. A stationary exercise bike (Kettler Axos Cycle M-LA) was 
used for cycling trials. The subjects cycled at 60 rpm for 60 min or until fatigue. During the on-
body trial, the data from the sensor patches were wirelessly sent to the user interface via 



Bluetooth. When the subjects started biking, the sensor system continuously acquired and 
transmitted temperature and sodium sensor data. Every minute, the electronic system initiated
a transient voltage bias between the reference and working electrodes. When the bias 
triggered a current above an experimentally determined threshold, the system would start a 
CV cleaning cycle and then the first DPV scan as the initial background without target 
incubation. The DPV scan was repeated 7 min later as the post-incubation curve. Between the 
two scans, sodium and temperature sensor data were continuously recorded. Right after the 
post-incubation DPV, another cycle started with an IT cleaning/regeneration step, followed by 
an initial background DPV scan. The collected temperature, sodium, and DPV data were 
wirelessly transmitted to a user device via Bluetooth in real-time, where the molecular data 
was extracted, calibrated, and converted to concentration levels. Sweat samples were 
collected periodically from the subjects during the studies using centrifuge tubes. The sweat 
samples were then frozen at −20 °C for further testing and validation via electrochemical test 
with the biosensors and GC-MS analysis. 
System evaluation with Tyr/Trp supplement intake: The subjects reported to the lab after 
fasting overnight. The subjects’ arms were cleaned with alcohol swabs and gauze before the 
sensor patches were placed on the body. The subjects were provided Tyr and Trp supplement 
(1 g each) for the intake study. In contrast, the control study was performed on the subjects 
without any supplementary intake. A 5-min iontophoresis was applied on the subjects. The 
sensor data recording process was the same as exercise-based human trials. 
Sensor evaluation with BCAA diet challenge: For the BCAA studies, the subjects were asked to 
consume 5 g BCAAs (2:1:1=Leu:Ile:Val) or a standardized snack including a protein drink 
(Fairlife, Core Power Elite) and a CLIF energy bar. An iontophoresis session was implemented 
with carbachol gels for sweat induction. Over entire study period, the subject’s sweat was 
sampled periodically and analyzed by the sensor patch. Blood glucose level was recorded every
15 min with a commercial Care Touch Blood Glucose Meter. Fresh capillary blood samples were
collected using a finger-prick approach during the human studies. After cleaning the fingertip 
with alcohol wipe and allowing it to air dry, the skin was punctured with a CareTouch lancing 
device. Samples were collected with centrifuge tubes after wiping off the first drop of blood 
with gauze. After the 90-min standardized clotting procedure finished, serum was separated by
centrifuging at 6,000 rpm for 15 min, and instantly stored at −20 °C for analysis with GC-MS, 
the LEG-MIP sensors, and the custom insulin assay. 
Blood insulin analysis: For the BCAA diet challenge study, the collected serum samples were 
analyzed using a custom insulin sandwich immunoassay. The magnetic beads (MB) were 
modified based on a previous publication50. Briefly, 3 μL MBs were activated with 50 mg mL−1 
EDC/sulfo-NHS in MES buffer (25 mM, pH 5) for 35 minutes followed by capture antibody 
immobilization (25 μg mL−1 in MES buffer) for 15 minutes. After deactivation with 1 M 
ethanolamine in phosphate buffer (0.1 M, pH 8), MBs were incubated in 25 μL standards 
prepared in 1% BSA or serum samples diluted 5 times in 1% BSA for 15 min. From here, the 
beads were rinsed with 1% BSA twice after each binding step. Next, the MBs were incubated in 
25 μL of biotin-detector Ab (1.0 μg mL-1) in 1% BSA for 30 min followed by 15 min in Strep-POD 
(2500X) prepared in 1% BSA. The amperometric detection was carried out by applying a 
constant potential of -0.2 V to MBs resuspended in 45 μL 1 mM HQ, 5 μL 5 mM H2O2 was 
pipetted onto the SPCE when background current stabilized. 

Data availability
The data that support the plots within this paper and other findings of this study are available 
from the corresponding author upon request.
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Figure captions

Fig. 1 | Schematics and images of the wearable biosensor ‘NutriTrek’. a, Circulating 
nutrients such as amino acids are associated with various physiological and metabolic 
conditions. b, Schematic of the wearable ‘NutriTrek’ that enables metabolic monitoring through
a synergistic fusion of laser-engraved graphene, redox-active nanoreporters, and artificial. c,d, 
Schematic (c) and layer assembly (d) of the microfluidic ‘NutriTrek’ patch for sweat induction, 
sampling, and biosensing. T, temperature; PI, polyimide. e,f, Images of a flexible sensor patch 
(e) and a skin-interfaced wearable system (f). Scale bars, 5 mm (e) and 2 cm (f). g, Block 
diagram of electronic system of ‘NutriTrek’. The modules outlined in red dashes are included in 
the smartwatch version. ADC, analog-to-digital converter; DAC, digital-to-analog converter; 
CPU, central processing unit; GPIO, general-purpose input/output; POT, potentiometry; In-Amp, 
instrumentation amplifier; MCU, microcontroller; SPI, serial peripheral interface; TIA, 
transimpedance amplifier; UART, universal asynchronous receiver-transmitter; IP, 
iontophoresis; CE, counter electrode; RE, reference electrode; WE, working electrode; DPV, 



differential pulse voltammetry. h, Custom mobile application for real-time metabolic and 
nutritional tracking. i, ‘NutriTrek’ smartwatch with a disposable sensor patch and an 
electrophoretic display. Scale bars, 1 cm (top) and 5 cm (bottom).

Fig. 2 | Schematics and characterizations of the LEG-MIP sensors. a, Direct detection of
electroactive molecules using LEG-MIP sensors. b,c, DPV voltammograms of the LEG-MIP 
sensors for direct Tyr (b) and Trp (c) detection. Insets, the calibration plots with a linear fit. ∆J, 
peak height current density. d, In situ continuous sensing and regeneration of an LEG-MIP Trp 
sensor in 50 µM Trp. e, Indirect molecular detection using LEG-RAR-MIP sensors. f, LSV 
voltammograms of indirect Leu detection with LEG-PBNP-MIP sensors. Inset, the calibration plot
with a linear fit. g,h, Indirect detection of all essential AAs (g) and multiple vitamins, lipids, and
metabolites  (h) using LEG-PBNP-MIP sensors. Dashed lines represent linear fit trendlines. i, 
Schematic of multi-MIP AA sensors. j, LSV voltammograms of a LEG multi-MIP sensor for BCAA 
quantification. Inset, the calibration plot with a linear fit. k, In situ continuous sensing and 
regeneration of an LEG-PBNP-MIP Leu sensor in 50 µM Leu. l, Repetitive CV scans of an LEG-
PBNP electrode in 0.1 M KCl. m, DPV voltammograms of indirect Leu detection with LEG-AQCA-
MIP sensors. Inset, the calibration plot. n, In situ regeneration of an LEG-AQCA-MIP Leu sensor 
in a raw sweat sample. o, Selectivity of the Trp, Tyr, Leu, Ile, Val, and BCAA sensors against 
other AAs. p, Validation of Tyr, Trp, and Leu sensors for analyzing raw exercise sweat samples 
(n=20) against GC-MS. All error bars represent the s.d. from 3 sensors.



Fig. 3 | Wearable system design for autonomous sweat induction, sampling, 
analysis, and calibration. a, Illustration of a multifunctional wearable sensor patch. b–d, The
two-scan sensor calibration strategy enabling selective Trp sensing in situ in the presence of 
Tyr. ∆I, peak height current; ∆I’, peak height difference caused by target recognition. Solid and 
dashed curves in c,d represent linear fit trendlines. e, Electrolyte calibration of the AA sensor 
reading, with a linear fit. f, Schematic of localized sweat sampling based on iontophoretic 
sweat extraction with muscarinic agents: pilocarpine and carbachol. g,h, Localized sweat rates 
measured from the stimulated (g) and surrounding (h) skin areas after a 5-min iontophoresis 
with pilocarpine and carbachol. Solid and dashed curves represent quadratic fit trendlines. S, 
subject. i, Numerically simulated [Trp] distributions in the microfluidic reservoir at 120 s after 
the inlet fluid changed from 20 to 80 µM Trp (flow rate, 1.5 µL min−1) (with varied designs in 
inlet number, angle span, inlet and outlet orientation). j, On-body evaluation of the optimized 
flexible microfluidic patch for efficient carbachol-based iontophoretic sweat induction and 
surrounding sampling at rest. Timestamps represent the period (min) after a 5-min 
iontophoresis session. Black dye was used in the reservoir to facilitate the direct visualization 
of sweat flow in the microfluidics. Scale bar, 3 mm.



Fig. 4 | Wearable system evaluation across activities toward prolonged physiological
and nutritional monitoring. a–d, Continuous on-body Trp and Tyr analysis using a wearable 
sensor array with real-time sensor calibrations during cycling exercise. e, Custom 
voltammogram analysis with an automatic peak extraction strategy based on a polynomial 
fitting and cut-off procedure. f–j, Dynamic sweat Trp and BCAA analysis during physical 
exercise toward central fatigue monitoring. Dashed lines in h–j represent quadratic fit 
trendlines. k–o, Dynamic analysis of sweat AA levels with and without Trp and Tyr supplement 
intake at rest toward personalized nutritional monitoring.



Fig. 5 | Personalized monitoring of metabolic syndrome risk factors using the LEG-
MIP BCAA sensors. a, Elevated BCAA levels identified in individuals with obesity and/or 
T2DM. b, The close associations between BCAA metabolism and insulin response in healthy 
and obesity/T2DM groups. c, Correlation of serum and sweat total BCAA and Leu levels 
obtained with the LEG-MIP sensors (n=65). Dashed lines represent linear fit trendlines. d, Box-
and-whisker plot of measured Leu levels in iontophoresis-extracted sweat and serum in three 
groups of participants: normal weight (Group I, n=10), overweight or obesity (Group II, n=7), 
and obesity with T2DM (Group III, n=3), The bottom whisker represents the minima; the top 
whisker represents the maxima; and the square in the box represents the mean. e,f, Dynamic 
changes of sweat Leu and total BCAAs, serum insulin (Ins), and blood glucose (BG) levels from 
two healthy subjects with 5 g BCAAs (e) and a standard protein diet (f) intakes. g, Sweat Leu 
dynamics collected from Groups I–III after the 5 g BCAAs intake. Inset, the ratio of the Leu level 
at 50-min after BCAA intake and the level before intake. h, Evaluation of Leu as a metabolic 
fingerprint for COVID-19 severity in serum samples from COVID-19 negative subjects (n=8) and
COVID-19 positive patients (n=8). Error bars represent the s.d. from 3 measurements. 




