
UCLA
UCLA Electronic Theses and Dissertations

Title
Aeroelasticity in axial flow: Balakrishnan continuum theory and a semi-continuum approach

Permalink
https://escholarship.org/uc/item/2r84474z

Author
DeMoulin, George

Publication Date
2019
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2r84474z
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Aeroelasticity in Axial Flow: Balakrishnan Continuum Theory and a

Semi-Continuum Approach

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mechanical Engineering

by

George William DeMoulin

2019





ABSTRACT OF THE DISSERTATION

Aeroelasticity in axial flow:

Balakrishnan continuum theory and

a semi-continuum approach

by

George William DeMoulin

Doctor of Philosophy in Mechanical Engineering

University of California,Los Angeles, 2019

Professor Ivan Catton, Chair

This work begins by presenting the mathematical development of the Balakrishnan Contin-

uum Theory (BCT) of aeroelasticity in axial flow, which was left unpublished by Professor

Balakrishnan in 2015. While the mathematics and solution had been fully described, the

BCT was left incomplete in the sense that it had not been implemented for engineering

calculations. The methods developed as part of this dissertation for implementing the BCT

are presented. To make improvements to the BCT, and to extend it, a new solution method

was developed, implemented, and validated with experimental data. This method, referred

to as the semi-continuum approach, combines the BCT continuum solution with a Galerkin

method solution. The semi-continuum approach was applied to the fully linear problem

solved by the BCT, and was consequently extended to account for nonlinear structure effects.
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Experiments were performed to obtain flutter speed data, which was used to make com-

parisons with theoretical predictions. These comparisons demonstrate the validity of the

semi-continuum approach, and the BCT that serves as its foundation. Experiments were

also performed to study Limit Cycle Oscillation (LCO) in axial flow, where the dependence

of the amplitude and frequencies of the oscillations on air speed was analyzed. These exper-

iments also provide information about the shape of the structure during LCO, which was

compared to the eigenfunctions produced by the semi-continuum calculations.
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1 Introduction

Aeroelasticity is the field of study that examines the response of a structure to dynamic

forces exerted on it by a moving fluid. In such systems the dynamics of an elastic structure

are directly coupled to the dynamics of the fluid at the fluid-structure boundary. As a re-

sult, this subject is inherently interdisciplinary, and from the very beginning has attracted

the interest of mechanical engineers, aerospace engineers, structural engineers, and mathe-

maticians. The rich history of aeroelasticity, which begins in the first half of the twentieth

century, covers several fascinating applications. Perhaps the most interesting historical event

to point to is the catastrophic failure of the (first) Tacoma Narrows Bridge in 1940.

From a technical standpoint, the field of aeroelasticity can be described by the Collar triangle

[10], shown in Figure 1.1.

Figure 1.1: The Collar triangle of aeroelasticity.

In aeroelasticity we are primarily interested in the stability of the structure when subjected

to aerodynamic loading. While static aeroelasticity has great importance in laying the foun-
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dation for aeroelasticity, much of the modern research is devoted to dynamic aeroelasticity.

In fact, it is the dynamic instability of the structure, known as flutter, that is of utmost

importance to the aeroelastician. When flutter occurs the motion of the structure may be

bounded, in which case we call the motion Limit Cycle Oscillation (LCO). In cases where

flutter causes violent motion of the structure, the result is almost always catastrophic failure.

It is not hard to see why avoiding flutter is critically important in the design of aircraft.

In beam-like structures, e.g. the wing of an airplane, there are two modes of motion that

can be excited by flutter: bending motion, or “plunge”, and torsional motion, or “pitch”.

Using a cantilever beam as an example, Figure 1.2 illustrates bending and torsional motion.

Figure 1.2: Bending and torsional motion of a cantilever beam.

Another important distinction that should be made is the difference between “normal” flow

and “axial” flow aeroelasticity. In beam-like structures, the term normal flow is used to

describe systems where the fluid velocity in the free stream is normal to the longitudinal

axis of the beam. This is the configuration used to investigate the flutter of wings of an
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airplane. Axial flow is somewhat less common, and exists when the fluid velocity is parallel

to the beam’s longitudinal axis. Flutter in axial flow is sometimes referred to as “flag” flutter

because a flag fluttering in the wind resembles axial flow. Figure 1.3 shows the difference

between normal and axial flow.

Figure 1.3: Normal flow vs. axial flow.

The key difference between modeling normal and axial flow involves modeling the fluid.

In normal flow, if the beam’s aspect ratio is assumed to be large, the dependence of the

fluid velocity on the y-direction can be neglected. That is, normal flow systems can be well

represented by a 2-D unsteady flow model. The counterpart of this assumption in axial

flow would be to neglect the x-direction dependence, but due to the torsional motion of the

structure this assumption cannot be made without a significant loss in accuracy. The added

complexity in modeling axial flow is that it requires a 3-D unsteady flow model for the fluid.

Like many fields of engineering, the nature of the research in aeroelasticity can be classified

as either: theoretical/analytical, experimental, or computational. Much of the effort in this

dissertation belongs to the first category, and therefore this will be the emphasis of this

literature reveiw . For a review of experimental aeroelasticity reference can be made to [23],
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and for a more recent discussion see Dowell[13]. For a commanding review of computational

aeroelasticity see Bendiksen [6].

Most relevant to this work is aeroelastic modeling of beam-like structures, but aeroelastic

modeling in general has been used to solve a wide variety of problems. For example, vi-

bration of tubes in heat exchangers can lead to a fluid-elastic instability; for an example on

modeling this phenomenon see Marn and Catton [22] and the review by Khushnood et al.

[19]. In aerospace engineering, a great deal of work has been done in analyzing turboma-

chinery; see Bendiksen [5]. If we narrow our attention to beam-like structures, the majority

of the literature is focused on normal flow applications, e.g. the wings of aircraft. A natural

extension of modeling is the modeling of axial flow aeroelasticity, which in the last decade

has gained the attention of researchers aiming to develop piezoelectric energy harvesters [14].

The earliest work of consequence in modeling dynamic aeroelasticity was published in 1934

by Theodorsen [27] in the context of analyzing flutter of aircraft wings. One of the most cited

works in aeroelasticity, the classic paper by Theodorsen reduces a 3-D wing to a “typical

section” whose structural stiffness is represented by springs with constants Kh for bending

motion and Kα for torsional motion. This model proceeds by assuming simple harmonic mo-

tion for the bending and torsional displacements, and represents the fluid forces in terms of

lift and moment coefficients which depend on these simple harmonic motion displacements.

Neither steady nor unsteady, this type of aerodynamic modeling has been termed “quasi-

steady”. The resulting stability analyses lead to what is known as the flutter determinant,

which then gives rise to a flutter parameter that can be used to determine at which air speed

4



the structure becomes unstable. This approach played an important role in developing a

technical understanding of flutter, and the validity of using quasi-steady aerodynamics was

confirmed in the classic work of Bisplinghoff and Ashley [7]. It should also be noted that

Theodorsen [27, 28] employed unsteady aerodynamics to use a flutter determinant approach

for thin plates.

The next significant improvement to the typical section model involves using more accurate

methods to model the structure. To avoid using empirical coefficients for the structural

stiffness, as was the case in the typical section model, governing differential equations are

derived using expressions for the strain energy of the structure. Perhaps the most widely used

models based on this approach use Euler-Bernoulli beam theory for bending deformation and

St. Venant’s theory for torsional deformation. Assuming small displacements for bending

and torsion, the resulting set of partial differential equations usually takes the form:

EI
∂4h(t, y)

∂y4
+m

∂2h(t, y)

∂t2
= L(t, y) (1.1)

−GJ ∂
2θ(t, y)

∂y2
+ Iθ

∂2θ(t, y)

∂t2
= M(t, y) (1.2)

Where h(t, y) and θ(t, y) are the bending and torsional displacements, and L(t, y) and M(t, y)

are the aerodynamic lift and moment forces. Equations (1.1) and (1.2) are in fact the Goland

beam model [16], which form the basis for the linear continuum theory presented here. For a
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complete treatment of the structural dynamics used to derive these equations reference can

be made to Hodges [17] or Donaldson [11], and for the aeroelastic modeling see Goland [16]

or Runyan and Watkins [24]. It should be noted that this type of structure modeling gives

rise to the concept of structural modes for bending and torsional motion, which is a result of

the linear equations resembling an eigenvalue problem. Coupled with Theodorsen-like aero-

dynamics, stability of the structure has been studied using several methods: U-g method,

p-k method, flutter eigenvalue analysis, assumed modes etc. For a detailed discussion on

these stability techniques see Hodges [17] or Dowell [12].

The theoretical efforts described so far remained very popular until the 1970s and 1980s, and

as a whole have been categorized as “classical aeroelasticity”. It is not a coincidence that the

analytical methods for aeroelasticity began to decline during this time period, which is of

course the era when numerical and computational methods began to dominate many areas

of mechanics. However, analytical, or continuum, methods have continued to be of great

importance. In an engineering setting, a commonly made argument is that such approaches

can be used to obtain simplified governing equations that can be solved numerically with a

fraction of the computational cost associated with Direct Numerical Simulation (DNS). This

is the argument made here, along with the argument that continuum methods can provide

physical insight unattainable by numerical computation. For example, through a mathemat-

ical proof we can demonstrate that the divergence speed in axial flow is undefined. Such a

result cannot be extracted from discretized governing equations.

We will narrow our attention to recent advances in developing continuum methods for aeroe-
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lasticity. The methods of interest here use Euler-Bernoulli beam theory to model bending and

torsional displacement of the structure, and unsteady aerodynamics for the fluid. Modeling

the fluid as unsteady potential flow, and using the Goland beam model [16] , all governing

equations are linear. While this methodology is restricted to small displacements of the

structure, it is all that is needed to study the stability characteristics. Nonlinear terms only

appear in the fluid-structure boundary condition, but because it is assumed that structural

displacements are small, these terms are easily discarded. In the case of normal flow, this

problem has been solved without any numerics by A.V. Balakrishnan and is summarized

in his 2012 book [2]. Because it does not use numerical approximation, it has been termed

the “continuum” theory of aeroelasticity. Central to its development is the solution of the

fluid governing equations with a dynamic boundary condition at the fluid-structure inter-

face. This gives rise to an integral equation, often referred to as the Possio integral equation

[3], whose solution requires techniques found in functional analysis. In the past decade the

mathematical aspects of solving this problem have been studied by many authors; for exam-

ples see Chueshov [9, 8] , Lasiecka [21] and Shubov [26].

In recent years an effort to extend the aeroelastic continuum theory to axial flow was begun

by A.V. Balakrishnan. This work involves using the Goland beam model, as is done for

normal flow, but requires the use of a fluid model where the velocity is a function of two

spatial coordinates instead of one. The resulting integral equation now contains a double

integral, instead of a single integral, and thus can be appropriately termed the Generalized

Possio Integral Equation. The completion and implementation of the axial flow continuum

theory, most of which was done by Balakrishnan, is an important aspect of this dissertation.
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2 Flutter of structures in axial flow: Balakrishnan con-

tinuum theory

In this chapter the continuum theory of aeroelasticity in axial flow developed by Balakr-

ishnan [4] is presented, although some changes have been made throughout. For example,

the linearization technique has been reformulated: here a small perturbation method with

scaling arguments is used in place of the more abstract power series formulation. While

both methods are mathematically correct, and produce the same set of linearized equations,

the approach taken here is more physically intuitive. The other changes are mostly notation

changes, and filling in extra steps in the development. The stability of the system is analyzed

for bending and torsional motion, where a proof shows that torsion is unconditionally stable

in axial flow. This chapter concludes by proving that the divergence speed is undefined in

axial flow.

2.1 Fluid-structure model

The fluid-structure model is based on the Goland beam model [16], with the aerodynamics

represented by an unsteady three-dimensional potential flow model. The most restrictive

assumptions limit the model to cases where the structure displacements are small, which is

perfectly acceptable if the purpose is only to analyze the stability of the system.

Consider a cantilever beam, as shown in Figure 2.1, exposed to uniform airflow with velocity

U parallel to the y-axis. The coordinate system is located at the center of the beam so that
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the length is 2l and the width is 2b.

Figure 2.1: Cantilever beam and coordinate system.

For homogeneous structures of uniform cross-section, the torsion pitch axis coincides with

the beam’s elastic axis, and it is safe to neglect structural coupling between bending and

torsional motion. Letting h(t, y) denote the bending displacement in the negative z-direction

and θ(t, y) denote the torsion angle corresponding to rotation about the y-axis, the Goland

beam model is:

EI
∂4h(t, y)

∂y4
+m

∂2h(t, y)

∂t2
= L(t, y) (2.1)

and

−GJ ∂
2θ(t, y)

∂y2
+ Iθ

∂2θ(t, y)

∂t2
= M(t, y) (2.2)

where
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E is the modulus of elasticity

I is the moment of inertia of the cross section

m is the mass per unit length of the beam

L(t, y) is the aerodynamic lift per unit length of the beam

G is the shear modulus

J is the torsional constant

Iθ is the polar mass moment of inertia

M(t, y) is the aerodynamic moment per unit length of the beam

In the BCT, the torsional constant is approximated as the polar area moment of inertia,

which would be exact if it were a circular cross section. At the clamped end of the beam,

y = −l, no displacements are allowed and the slope of the bending displacement is zero.

These boundary conditions are:

h(t,−l) = h′(t,−l) = θ(t,−l) = 0 (2.3)

Because the free end of the beam cannot support forces or moments, the boundary conditions

for y = l are:

h′′(t, l) = h′′′(t, l) = θ′(t, l) = 0 (2.4)

To obtain expressions for the aerodynamic lift and moment, the beam is treated as being

infinitely thin in the flow field, with a jump discontinuity at z = 0. Figure 2.2 shows a side
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view of the beam, which lies in the x-y plane, where z = 0+ and z = 0− denote the top and

bottom surfaces of the beam, respectively.

Figure 2.2: Structure as seen in the x-y plane.

For inviscid flow, the lift force per unit length at any location y along the beam can be

obtained by integrating the pressure difference across the beam over the beam’s width.

Denoting the difference of a quantity between the top and bottom surfaces of the beam by

the operator δ(), the pressure jump can be written as:

δp (t, x, y) = p
(
t, x, y, 0+

)
− p

(
t, x, y, 0−

)
(2.5)

The expression for L(t, y) in terms of the pressure jump is:

L (t, y) =

b∫
−b

δp (t, x, y)dx (2.6)

At any point on the beam, the moment per unit length (due to pressure forces) about the

y-axis can be written as:
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m(t, x, y) = δp (t, x, y)x (2.7)

Integrating m(t, x, y) over x, the expression for the moment becomes:

M (t, y) =

b∫
−b

δp (t, x, y)xdx (2.8)

For unsteady, inviscid, incompressible flow, the aerodynamics can be represented using a

potential flow model:

∇2φ (t, x, y, z) = 0 (2.9)

where the velocity potential is defined by:

∇φ =
⇀

u (2.10)

and
⇀

u is the velocity vector:

⇀

u = u
⇀

i + v
⇀

j + w
⇀

k (2.11)

The next step is to relate the pressure difference across the beam to the velocity poten-

12



tial. Because the flow is assumed to be incompressible and inviscid, the unsteady Bernoulli

equation is applicable:

∂φ

∂t
+
∇φ · ∇φ

2
+
p

ρ
+ gz = f (t) (2.12)

Neglecting body forces due to gravity, and rearranging Equation (2.12), the pressure differ-

ence can be written as:

δp (t, x, y) = −ρ
[
δ

(
∂φ

∂t

)
+ δ

(
∇φ · ∇φ

2

)]
(2.13)

Using Equation (2.13), the governing equations for the structure become:

EI
∂4h(t, y)

∂y4
+m

∂2h(t, y)

∂t2
= −ρ

b∫
−b

[
δ

(
∂φ

∂t

)
+ δ

(
∇φ · ∇φ

2

)]
dx (2.14)

−GJ ∂
2θ(t, y)

∂y2
+ Iθ

∂2θ(t, y)

∂t2
= −ρ

b∫
−b

[
δ

(
∂φ

∂t

)
+ δ

(
∇φ · ∇φ

2

)]
xdx (2.15)

To complete the development of the fluid-structure model, the boundary conditions for the

velocity potential φ(t, x, y, z) as it relates to the structure are constructed. The first condition

is that the velocity field must return to uniform flow very far away from the structure. With

the distance away from the structure denoted by,
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r =
√
x2 + y2 + z2 (2.16)

This condition can be expressed as:

lim
r→∞

φ (t, x, y, z) = Uy (2.17)

The boundary condition for φ(t, x, y, z) at the structure surface presents a fundamental chal-

lenge to the modeling approach used so far. Euler-Bernoulli beam theory has been used

to describe the motion of the structure, which is formulated in the Lagrangian perspective,

along with a potential flow model for the fluid which is is based on the Eulerian perspective.

That is, the structure variables h(t, y) and θ(t, y) provide information about a material point

on the structure whereas the fluid model conserves mass and momentum at a point in the

field.

While it may seem that this discrepancy would make the model inherently invalid, it can

be shown through basic kinematics that the Lagrangian and Eulerian perspectives can be

connected using the material derivative for the structure’s velocity. At the surface of the

structure, the condition imposed is:

Normal velocity of the structure = Normal velocity of the fluid at the structure

Because the torsion angle θ(t, y) is assumed to be small, the total displacement of the struc-

ture can be written as:
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Z (t, x, y) = h (t, y) + xθ (t, y) (2.18)

The normal velocity of the structure can be obtained by taking the material derivative of

Z(t, x, y). Noting that the normal velocity of the fluid is the z-derivative of the velocity

potential, the condition becomes:

DZ (t, x, y)

Dt
= − ∂

∂z
φ(t, x, y, z = 0+) = − ∂

∂z
φ(t, x, y, z = 0−) (2.19)

Where the negative sign appears because h(t, y) is in the negative z-direction. Evaluating

the material derivative in Equation (2.19), the condition becomes:

∇φ
(
t, x, y, 0±

)
·
⇀

k = −ḣ (t, y)− xθ̇ (t, y)−
(
∇φ(t, x, y, 0±) ·

⇀

i
)
θ (t, y)

−
(
∇φ(t, x, y, 0±) ·

⇀

j
)

(h′ (t, y) + xθ′ (t, y)) (2.20)

Equation (2.20) is often referred to as the “flow tangency” or “attached flow” condition.

The remaining conditions, the Kutta-Joukowski conditions, ensure that the flow field is

continuous away from the structure. For the beam shown in Figure 2.1, the Kutta-Joukowski

conditions are:

δp (t, |x| > 2b, y > 2l) = 0 (2.21)
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and

δp (t, x, y = l) = 0 (2.22)

Equation (2.22), the Kutta condition, ensures uniqueness of the solution. The development so

far has produced a closed set of governing equations for the fluid and the structure, along with

all appropriate boundary conditions. The potential flow model and the homogeneous part

of the Goland beam model are linear differential equations, but the flow tangency condition

and the pressure jump terms in the structure model contain nonlinear terms. Because the

fluid-structure model assumes small structural displacements, the nonlinear terms can be

linearized using a small perturbation technique.
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2.2 Small perturbation theory/linearization

The first step to linearize the problem is to consider the “static” solution”, which is defined as

the solution corresponding to the beam at rest and parallel uniform flow,
⇀

u (t, x, y, z) = U
⇀

j .

The static solution can be expressed as:

h0 (t, y) = 0 (2.23)

θ0 (t, y) = 0 (2.24)

For the fluid:

⇀

u0 (t, x, y, z) = U
⇀

j (2.25)

φ0 (t, x, y, z) = Uy (2.26)

It can be shown through direct substitution that the static solution satisfies the governing

equations. The structure is now perturbed from the static solution by a small bending

displacement h∗(t, y) and small torsion angle θ∗(t, y):

h (t, y) = h0 (t, y) + h∗ (t, y) (2.27)

θ (t, y) = θ0 (t, y) + θ∗ (t, y) (2.28)
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From the definition of the static solution, it is evident that:

h (t, y) = h∗ (t, y) (2.29)

and

θ (t, y) = θ∗ (t, y) (2.30)

The perturbations in the structure will affect the flow field, but perturbations in any of

the flow quantities are assumed to be small and are assuemd to satisfy the conservation

equations in the potential flow model. Letting φ∗ (t, x, y, z) denote the perturbation in the

velocity potential, the velocity potential can be written as:

φ (t, x, y, z) = Uy + φ∗ (t, x, y, z) (2.31)

The far field condition, Equation (2.17), can be applied to the velocity potential in Equation

(2.31) to obtain:

lim
r→∞

φ∗ (t, x, y, z) = 0 (2.32)

Denoting the perturbation in the pressure jump by δp∗ (t, x, y), the pressure jump can be

written as:
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δp (t, x, y) = δp0 (t, x, y) + δp∗ (t, x, y) (2.33)

Because δp0 (t, x, y) = 0 from the static solution, the Kutta-Joukowski and Kutta conditions

apply to the perturbation:

δp∗ (t, |x| > 2b, y > 2l) = 0 (2.34)

δp∗ (t, x, y = −l) = 0 (2.35)

Now that it has been shown that the perturbations in the flow quantities satisfy the boundary

conditions, the model can be linearized by assuming the perturbations are small. Recall the

flow tangency condition:

∇φ
(
t, x, y, 0±

)
·
⇀

k =− ḣ (t, y)− xθ̇ (t, y)−
(
∇φ(t, x, y, 0±) ·

⇀

i
)
θ (t, y)

−
(
∇φ(t, x, y, 0±) ·

⇀

j
)

(h′ (t, y) + xθ′ (t, y)) (2.36)

The velocity vector can be written as:

⇀

u = [0 + u∗ (t, x, y, z)]
⇀

i + [U + v∗ (t, x, y, z)]
⇀

j + [0 + w∗ (t, x, y, z)]
⇀

k (2.37)
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Here the starred quantities denote perturbations from the static solution. Thus,

∇φ
(
t, x, y, 0±

)
·
⇀

i = u∗
(
t, x, y, 0±

)
(2.38)

∇φ
(
t, x, y, 0±

)
·
⇀

j = U + v∗
(
t, x, y, 0±

)
(2.39)

∇φ
(
t, x, y, 0±

)
·
⇀

k = w∗
(
t, x, y, 0±

)
(2.40)

Substituting these expressions, along with the expressions for h(t, y) and θ(t, y), the flow

tangency condition becomes:

w∗
(
t, x, y, 0±

)
=− ∂

∂t
h∗ (t, y)− x ∂

∂t
θ∗ (t, y)− u∗

(
t, x, y, 0±

)
θ∗ (t, y)

−
(
U + v∗

(
t, x, y, 0±

))( ∂

∂y
h∗ (t, y) + x

∂

∂y
θ∗ (t, y)

)
(2.41)

The last term can be simplified by noting that:

v∗
(
t, x, y, 0±

)
� U (2.42)

Equation (2.41) becomes:
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w∗
(
t, x, y, 0±

)
=− ∂

∂t
h∗ (t, y)− x ∂

∂t
θ∗ (t, y)− u∗

(
t, x, y, 0±

)
θ∗ (t, y)

− U
(
∂

∂y
h∗ (t, y) + x

∂

∂y
θ∗ (t, y)

)
(2.43)

Because the starred quantities are assumed to be small,

∣∣u∗ (t, x, y, 0±) θ∗ (t, y)
∣∣� ∣∣w∗ (t, x, y, 0±)∣∣ (2.44)

This eliminates the third term on the RHS of Equation (2.43), and the equation becomes:

w∗
(
t, x, y, 0±

)
= − ∂

∂t
h∗ (t, y)− x ∂

∂t
θ∗ (t, y)− U

(
∂

∂y
h∗ (t, y) + x

∂

∂y
θ∗ (t, y)

)
(2.45)

Because h (t, y) = h∗ (t, y) and θ (t, y) = θ∗ (t, y), and using Equation (2.40), the linearized

flow tangency condition is:

∇φ
(
t, x, y, 0±

)
·
⇀

k = − ∂

∂t
h (t, y)− x ∂

∂t
θ (t, y)− U

(
∂

∂y
h (t, y) + x

∂

∂y
θ (t, y)

)
(2.46)

For the pressure jump, recall the expression:

δp (t, x, y) = −ρ
[
δ

(
∂φ

∂t

)
+ δ

(
∇φ · ∇φ

2

)]
(2.47)
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The derivative in the first bracketed term becomes:

∂φ

∂t
=

∂

∂t
(Uy + φ∗ (t, x, y, z)) =

∂

∂t
φ∗ (t, x, y, z) (2.48)

The second bracketed term in Equation (2.47) can be simplified by noting that:

∇φ · ∇φ = u∗u∗ + (U + v∗) (U + v∗) + w∗w∗ (2.49)

Or,

∇φ · ∇φ = u∗u∗ + 2Uv∗ + U2 + v∗v∗ + w∗w∗ (2.50)

The second bracketed term in Equation (2.47) becomes:

δ

(
∇φ · ∇φ

2

)
=

1

2
δ
(
u∗u∗ + 2Uv∗ + U2 + v∗v∗ + w∗w∗

)
(2.51)

Because δ (U2) = 0,

δ

(
∇φ · ∇φ

2

)
=

1

2
δ (u∗u∗ + 2Uv∗ + v∗v∗ + w∗w∗) (2.52)

Comparing the magnitude of each term,
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u∗u∗, v∗v∗, w∗w∗ � Uv∗ (2.53)

The second bracketed term in Equation (2.47) is:

δ

(
∇φ · ∇φ

2

)
= δ (Uv∗) = Uδ (v∗) (2.54)

Or, in terms of the velocity potential:

δ

(
∇φ · ∇φ

2

)
= Uδ

(
∂φ∗

∂y

)
(2.55)

Using the definition of the static solution:

∂φ∗

∂y
= −U +

∂φ

∂y
(2.56)

Equation (2.55) becomes:

δ

(
∇φ · ∇φ

2

)
= δ

(
∂φ

∂y

)
(2.57)

The pressure jump, Equation (2.47), can now be written as:

δp (t, x, y) = −ρ
[
δ

(
∂φ

∂t

)
+ Uδ

(
∂φ

∂y

)]
(2.58)
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Which contains only linear terms in φ. The governing equations for the structure become:

EI
∂4h(t, y)

∂y4
+m

∂2h(t, y)

∂t2
= −ρ

b∫
−b

[
δ

(
∂φ

∂t

)
+ Uδ

(
∂φ

∂y

)]
dx (2.59)

and

−GJ ∂
2θ(t, y)

∂y2
+ Iθ

∂2θ(t, y)

∂t2
= −ρ

b∫
−b

[
δ

(
∂φ

∂t

)
+ Uδ

(
∂φ

∂y

)]
xdx (2.60)

Along with the linearized flow tangency condition:

∂

∂z
φ
(
t, x, y, 0±

)
= − ∂

∂t
h (t, y)− x ∂

∂t
θ (t, y)− U

(
∂

∂y
h (t, y) + x

∂

∂y
θ (t, y)

)
(2.61)

Equations (2.59)-(2.61) show that the problem has successfully been linearized, where the

simplified set of equations are valid for small h(t, y) and θ(t, y). These equations will be

solved in the coming sections, with the understanding that any solutions should be used

only when the structure displacements are small. Because flutter is a very abrupt, self-

excited phenomenon, these assumptions are reasonable for air speeds up to the onset of

instability. The goal now is to use the linearized set of equations to determine the largest

value of U for which the system is stable, and define this U to be the flutter speed.
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2.3 Generalized Possio Integral Equation

At the heart of the Balakrishnan continuum theory is the development and solution of the

Generalized Possio Integral Equation (GPIE), a two dimensional form of the Possio Integral

Equation encountered in normal flow aeroelasticity. The first step in the development is to

define the Kussner doublet function, A (t, x, y), which is defined only on the structure:

A (t, x, y) = −δp (t, x, y)

ρU
(2.62)

Using the linearized pressure jump, the linearized Kussner doublet function can be written

as:

A (t, x, y) = − 1

U
δ

(
∂φ

∂t

)
− δ

(
∂φ

∂y

)
(2.63)

With this definition the structure governing equations, Equations (2.59) and (2.60), can be

written as:

EI
∂4h(t, y)

∂y4
+m

∂2h(t, y)

∂t2
= ρU

b∫
−b

A (t, x, y)dx (2.64)

and

−GJ ∂
2θ(t, y)

∂y2
+ Iθ

∂2θ(t, y)

∂t2
= ρU

b∫
−b

A (t, x, y)xdx (2.65)

The approach to solving Equations (2.64) and (2.65) can be summarized as using the fluid
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model and boundary conditions to write A (t, x, y) in terms of the structure displacements

and their derivatives only, which will result in a set of differential equations for h(t, y) and

θ(t, y). The flow tangency condition, Equation (2.61), suggests that A (t, x, y) should be

written as a function of ∂
∂z
φ (t, x, y, 0±). This approach does not carry the burden of ob-

taining an analytical solution for the velocity potential φ (t, x, y, z), but will require several

manipulations of φ (t, x, y, z), and thus A (t, x, y), while satisfying the potential flow equation

and boundary conditions.

Following the approach in [2], the Laplace transform in the time variable and the spatial

Fourier transforms in x and y of the velocity potential are taken to obtain:

˜̂̃
φ (s, ω1, ω2, z) =

∞∫
−∞

∞∫
−∞

∞∫
0

e−ixω1e−iyω2e−stφ (t, x, y, z)dtdxdy (2.66)

where

0 ≤ s ≤ ∞,−∞ ≤ ω1 ≤ ∞,−∞ ≤ ω2 ≤ ∞

In Equation (2.66) the Laplace transform is denoted by ˆ and each Fourier transform is

denoted by .̃ The next step is to obtain an equivalent form of the fluid governing equation

in terms of the transformed velocity potential. It can be shown that the Fourier transform

of a derivative is:
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∞∫
−∞

∞∫
−∞

∞∫
0

e−i(xω1+yω2)e−st
∂φ

∂x
(t, x, y, z)dtdxdy = iω1

˜̂̃
φ (s, ω1, ω2, z) (2.67)

For the Fourier transform of a second derivative, it follows that:

∞∫
−∞

∞∫
−∞

∞∫
0

e−i(xω1+yω2)e−st
∂2φ

∂x2
(t, x, y, z)dtdxdy = −ω1

2
˜̂̃
φ (s, ω1, ω2, z) (2.68)

Similarly, for the second derivative with respect to y,

∞∫
−∞

∞∫
−∞

∞∫
0

e−i(xω1+yω2)e−st
∂2φ

∂y2
(t, x, y, z)dtdxdy = −ω2

2
˜̂̃
φ (s, ω1, ω2, z) (2.69)

For the z-derivative, note that:

∞∫
−∞

∞∫
−∞

∞∫
0

e−i(xω1+yω2)e−st
∂2φ

∂z2
(t, x, y, z)dtdxdy =

∂2
˜̂̃
φ

∂z2
(s, ω1, ω2, z) (2.70)

Combining Equations (2.68)-(2.70),

∞∫
−∞

∞∫
−∞

∞∫
0

e−i(xω1+yω2)e−st
(
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2

)
dtdxdy = −ω1

2
˜̂̃
φ− ω2

2
˜̂̃
φ+

∂2
˜̂̃
φ

∂z2
(2.71)

Recall the fluid governing equation:

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0 (2.72)
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Equation (2.71) becomes:

−ω1
2
˜̂̃
φ− ω2

2
˜̂̃
φ+

∂2
˜̂̃
φ

∂z2
= 0 (2.73)

Equation(2.73) can be rearranged to obtain the differential equation:

∂2
˜̂̃
φ

∂z2
=
(
ω1

2 + ω2
2
) ˜̂̃
φ (2.74)

Equation (2.74) is a relatively simple differential equation, but because there is a jump

discontinuity at z = 0 , it must be solved in separate regions for z < 0 and z > 0. For a 2nd

order homogeneous equation it follows that:

˜̂̃
φ (s, ω1, ω2, z) = b1 (s, ω1, ω2) e

√
ω2
1+ω2

2z + b2 (s, ω1, ω2) e−
√
ω2
1+ω2

2z (2.75)

Here b1 (s, ω1, ω2) and b2 (s, ω1, ω2) are functions to be determined from the boundary con-

ditions. The case where z < 0 is treated first. Recall that
˜̂̃
φ vanishes in the far field, so

that:

˜̂̃
φ (s, ω1, ω2, z → −∞) = 0 (2.76)

For
˜̂̃
φ to be finite, b2 (s, ω1, ω2) = 0 for z < 0.

˜̂̃
φ can now be written as:
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˜̂̃
φ (s, ω1, ω2, z) = b1 (s, ω1, ω2) e

√
ω2
1+ω2

2z for z < 0 (2.77)

The function b1 (s, ω1, ω2) can be obtained by evaluating
˜̂̃
φ at the structure boundary, z = 0−:

˜̂̃
φ (s, ω1, ω2, z) =

˜̂̃
φk
(
s, ω1, ω2, 0

−) ez√ω2
1+ω2

2 for z < 0 (2.78)

Similarly, for z > 0:

˜̂̃
φ (s, ω1, ω2, z) =

˜̂̃
φk
(
s, ω1, ω2, 0

+
)
e−z
√
ω2
1+ω2

2 for z > 0 (2.79)

Differentiating Equations (2.78) and (2.79), the following expressions are obtained:

∂

∂z

˜̂̃
φ (s, ω1, ω2, z) =

˜̂̃
φk
(
s, ω1, ω2, 0

−)√ω2
1 + ω2

2e
z
√
ω2
1+ω2

2 for z < 0 (2.80)

and

∂

∂z

˜̂̃
φ (s, ω1, ω2, z) = −

˜̂̃
φk
(
s, ω1, ω2, 0

+
)√

ω2
1 + ω2

2e
z
√
ω2
1+ω2

2 for z > 0 (2.81)

Equations (2.80) and (2.81) can be evaluated at the structure boundaries to obtain:

∂

∂z

˜̂̃
φ
(
s, ω1, ω2, 0

−) =
˜̂̃
φ
(
s, ω1, ω2, 0

−)√ω2
1 + ω2

2 (2.82)
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and

∂

∂z

˜̂̃
φ
(
s, ω1, ω2, 0

+
)

= −
˜̂̃
φ
(
s, ω1, ω2, 0

+
)√

ω2
1 + ω2

2 (2.83)

With expressions for the z-derivative of the velocity potential, recall the flow tangency con-

dition:

∇φ (t, x, y, 0±) ·
⇀

k = − ∂

∂t
h (t, y)− x ∂

∂t
θ (t, y)− U

[
∂

∂y
h (t, y) + x

∂

∂y
θ (t, y)

]
(2.84)

Because the RHS of Equation (2.84) does not depend on z, it is evident that:

∂

∂z

˜̂̃
φ
(
s, ω1, ω2, 0

+
)

=
∂

∂z

˜̂̃
φ
(
s, ω1, ω2, 0

−) (2.85)

Therefore, using Equations (2.82) and (2.83), the velocity potential at the upper and lower

surfaces of the beam are related by:

˜̂̃
φ
(
s, ω1, ω2, 0

+
)

= −
˜̂̃
φ
(
s, ω1, ω2, 0

−) (2.86)

The jump in the transformed velocity potential becomes:

δ
˜̂̃
φ = 2

˜̂̃
φ
(
s, ω1, ω2, 0

+
)

= 2
˜̂̃
φ
(
s, ω1, ω2, 0

−) (2.87)
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The jump in the transformed velocity potential can now be substituted into the expression

for the Kussner doublet function. From its linearized form, Equation (2.63), and noting that

δ(.) is commutative with differentiation, A(t, x, y) can be written as:

A (t, x, y) = − 1

U

∂ (δφ)

∂t
− ∂ (δφ)

∂y
(2.88)

Taking the Laplace and double Fourier transforms of A(t, x, y),

˜̂̃
A (s, ω1, ω2) =

∞∫
−∞

∞∫
−∞

∞∫
0

e−i(xω1+yω2)e−st
[
− 1

U

∂

∂t
δφ (t, x, y, z)− ∂

∂y
δφ (t, x, y, z)

]
dtdxdy

(2.89)

Evaluating the Laplace transform of the first bracketed term in Equation (2.89), this term

becomes:

∞∫
−∞

∞∫
−∞

∞∫
0

e−i(xω1+yω2)e−st
[
− 1

U

∂

∂t
δφ (t, x, y, z)

]
dtdxdy = − 1

U
s

∞∫
−∞

∞∫
−∞

e−i(xω1+yω2)δφ̂ (t, x, y, z)dxdy

(2.90)

Or, using the notation for Fourier transforms, this term can be written as:

∞∫
−∞

∞∫
−∞

∞∫
0

e−i(xω1+yω2)e−st
[
− 1

U

∂

∂t
δφ (t, x, y, z)

]
dtdxdy = − s

U
δ

˜̂̃
φ (s, ω1, ω2, z) (2.91)
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The second bracketed term of Equation (2.89), from the property of Fourier transforms used

previously, becomes:

∞∫
−∞

∞∫
−∞

∞∫
0

e−i(xω1+yω2)e−st
[
− ∂

∂y
δφ (t, x, y, z)

]
dtdxdy = −iω2δ

˜̂̃
φ (s, ω1, ω2, z) (2.92)

Equation (2.89) becomes:

˜̂̃
A (s, ω1, ω2) = −

( s
U

+ iω2

)
δ

˜̂̃
φ (s, ω1, ω2, z) (2.93)

It is convenient to define the symbol:

κ ≡ s

U
(2.94)

Equation (2.93) can now be written in terms of κ:

˜̂̃
A (s, ω1, ω2) = − (κ+ iω2) δ

˜̂̃
φ (s, ω1, ω2, z) (2.95)

Using the expression for δ
˜̂̃
φ obtained in Equation (2.87), the Kussner doublet function be-

comes:

˜̂̃
A (s, ω1, ω2) = −2 (κ+ iω2)

˜̂̃
φ
(
s, ω1, ω2, 0

+
)

(2.96)
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Using Equation (2.83),
˜̂̃
φ can be written in a slightly different form:

˜̂̃
φ
(
s, ω1, ω2, 0

+
)

= − 1√
ω2

1 + ω2
2

∂

∂z

˜̂̃
φ
(
s, ω1, ω2, 0

+
)

(2.97)

Equation (2.96) becomes:

˜̂̃
A (s, ω1, ω2) = 2

(κ+ iω2)√
ω2

1 + ω2
2

∂

∂z

˜̂̃
φ
(
s, ω1, ω2, 0

+
)

(2.98)

Rearranging Equation (2.98),

∂

∂z

˜̂̃
φ
(
s, ω1, ω2, 0

+
)

=
1

2

√
ω2

1 + ω2
2

(κ+ iω2)

˜̂̃
A (s, ω1, ω2) (2.99)

Equation (2.99) is close to being in the form where the Kussner doublet function,
˜̂̃
A (s, ω1, ω2),

can be related to the structural displacements via the flow tangency condition. First, both

Fourier transforms are inverted to obtain:

∂

∂z
φ̂
(
s, ω1, ω2, 0

+
)

=
1

4π2

∞∫
−∞

∞∫
−∞

ei(xω1+yω2)

√
ω2

1 + ω2
2

2 (κ+ iω2)

˜̂̃
A (s, ω1, ω2) dω1dω2 (2.100)

There is no need to invert the Laplace transform because the stability analysis will be

performed in the Laplace domain. The Laplace transform of the flow tangency condition,

Equation (2.61), is:
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∂

∂z
φ̂
(
s, ω1, ω2, 0

+
)

= sĥ (s, y) + sxθ̂ (s, y) + U
(
ĥ′ (s, y) + xθ̂′ (s, y)

)
(2.101)

In Equation (2.101), the prime denotes differentiation with respect to y. This expression can

be substituted into Equation (2.100) to obtain:

1

4π2

∞∫
−∞

∞∫
−∞

ei(xω1+yω2)

√
ω2

1 + ω2
2

2 (κ+ iω2)

˜̂̃
A (s, ω1, ω2) dω1dω2 = sĥ (s, y) + sxθ̂ (s, y)

+ U
(
ĥ′ (s, y) + xθ̂′ (s, y)

)
(2.102)

Equation (2.102) is the Generalized Possio Integral Equation (GPIE), an integral equation

where the function to be solved for is Â (s, x, y). With Â (s, x, y) representing the pressure

jump across the structure, this equation connects the aerodynamics to the structural mo-

tion, which was the original goal. Possessing the solution of ˆA (s, x, y) from the GPIE will

provide the aerodynamic loading in terms of the structure state variables, which will lead

to a stability analysis in the Laplace domain to determine if the structure will flutter for a

given air speed U . Equation (2.102) will be solved by treating the right hand side as being

known. In other words, the structure state variables will be thought of as “inputs”, with

Â (s, x, y) being the corresponding output.

The approach used here is to take advantage of the similarities between the GPIE and

the Possio integral equation of normal flow aeroelasticity, which has a known solution [3].
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The first difference between the two equations is that the GPIE contains a double integral,

whereas the normal flow Possio equation contains only a single integral. Both equations have

the Kussner doublet function as the kernel, with the structure variables on the right hand

side, but a key difference is that the multiplier in the GPIE is not a Mikhlin multiplier. The

GPIE can be manipulated to where it contains a Mikhlin multiplier, at which point it can

be compared to the known solution of the 1-D Possio equation.

The first step is to decompose the RHS of Equation (2.102) by recognizing that it is of the

form:

x
(
sθ̂ (s, y) + Uθ̂′ (s, y)

)
+ sĥ (s, y) + Uĥ′ (s, y) = xf̂1 (s, y) + f̂2 (s, y) (2.103)

where

f̂1 (s, y) = sθ̂ (s, y) + Uθ̂′ (s, y) (2.104)

and

f̂2 (s, y) = sĥ (s, y) + Uĥ′ (s, y) (2.105)

To decompose the LHS of Equation (2.102), let:
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Â (s, x, y) = ixÂ1 (s, y) + Â2 (s, y) (2.106)

Taking the Fourier transforms in x and y, Equation (2.106) becomes:

˜̂̃
A (s, ω1, ω2) =

∞∫
−∞

∞∫
−∞

e−i(xω1+yω2)ixÂ1 (s, y) dxdy +

∞∫
−∞

∞∫
−∞

e−i(xω1+yω2)Â2 (s, y) dxdy (2.107)

To simplify Equation (2.107), the integrals can be rearranged to obtain:

˜̂̃
A (s, ω1, ω2) =

∞∫
−∞

e−iyω2Â1 (s, y) dy

∞∫
−∞

e−ixω1ixdx+

∞∫
−∞

e−iyω2Â2 (s, y) dy

∞∫
−∞

e−ixω1dx

(2.108)

Noticing that the integrals over y are Fourier transforms of Â (s, x, y), Equation (2.108)

becomes:

˜̂̃
A (s, ω1, ω2) =

˜̂
A1 (s, ω2)

∞∫
−∞

e−ixω1ixdx+
˜̂
A2 (s, ω2)

∞∫
−∞

e−ixω1dx (2.109)

The second term in Equation (2.109) is the Fourier transform of 1, which gives the Dirac

delta function. Equation (2.109) becomes:

˜̂̃
A (s, ω1, ω2) =

˜̂
A1 (s, ω2)

∞∫
−∞

e−ixω1ixdx+
˜̂
A2 (s, ω2) δ (ω1) (2.110)
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To simplify the first term in Equation (2.110), note that:

e−ixω1ix = − ∂

∂ω1

(
e−ixω1

)
(2.111)

Thus, Equation (2.110) becomes:

˜̂̃
A (s, ω1, ω2) = − ˜̂

A1 (s, ω2)
∂

∂ω1

∞∫
−∞

e−ixω1dx+
˜̂
A2 (s, ω2) δ (ω1) (2.112)

Noticing that the integral in Equation (2.112) is the Dirac delta function, the equation

becomes:

˜̂̃
A (s, ω1, ω2) = −δ′ (ω1)

˜̂
A1 (s, ω2) +

˜̂
A2 (s, ω2) δ (ω1) (2.113)

Where δ′ (ω1) is the distributional derivative, which has the following property:

∞∫
−∞

δ′ (ω1) g (ω1)dω1 = −
∞∫

−∞

δ (ω1) g′ (ω1)dω1 (2.114)

The expression for
˜̂̃
A (s, ω1, ω2) can now be substituted into the GPIE, Equation (2.102), to

obtain:
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1

4π2

∞∫
−∞

∞∫
−∞

−δ′ (ω1) ei(xω1+yω2)

√
ω2

1 + ω2
2

2 (κ+ iω2)
˜̂
A1 (s, ω2) dω1dω2

+
1

4π2

∞∫
−∞

∞∫
−∞

δ (ω1) ei(xω1+yω2)

√
ω2

1 + ω2
2

2 (κ+ iω2)
˜̂
A2 (s, ω2) dω1dω2 = xf̂1(s, y) + f̂2 (s, y) (2.115)

Using the property of the distributional derivative to simplify the first term, Equation (2.115)

becomes:

1

4π2

∞∫
−∞

∞∫
−∞

δ (ω1) ei(xω1+yω2) ix
√
ω2

1 + ω2
2 + ω1 (ω2

1 + ω2
2)
− 1

2

2 (κ+ iω2)
˜̂
A1 (s, ω2) dω1dω2

+
1

4π2

∞∫
−∞

∞∫
−∞

δ (ω1) ei(xω1+yω2)

√
ω2

1 + ω2
2

2 (κ+ iω2)
˜̂
A2 (s, ω2) dω1dω2 = xf̂1(s, y) + f̂2 (s, y) (2.116)

The Dirac delta function has the following property:

∞∫
−∞

δ (ω1) g (ω1, ·)dω1 = g (0, ·) (2.117)

Thus, performing the integration over ω1, Equation (2.116) becomes:
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1

4π2

∞∫
−∞

eiyω2
ix |ω2|

2 (κ+ iω2)
˜̂
A1 (s, ω2) dω2

+
1

4π2

∞∫
−∞

eiyω2
|ω2|

2 (κ+ iω2)
˜̂
A2 (s, ω2) dω2 = xf̂1(s, y) + f̂2 (s, y) (2.118)

Equating coefficients of like powers of x produces the set of integral equations:

1

4π2

∞∫
−∞

eiyω2
|ω2|

2 (κ+ iω2)
i

˜̂
A1 (s, ω2) dω2 = f̂1(s, y) (2.119)

1

4π2

∞∫
−∞

eiyω2
|ω2|

2 (κ+ iω2)
˜̂
A2 (s, ω2) dω2 = f̂2 (s, y) (2.120)

Equations (2.119) and (2.120) each have the same form as the 1-D Possio equation, which

has a known solution [3]. The solution of the Possio equation will not be repeated here

because of its length and complexity; see Balakrishnan [3] for the full solution. Instead, the

solution will be used and adapted to i
˜̂
A1 (s, ω2) and

˜̂
A2 (s, ω2). The solutions in their most

compact form are:

iÂ1 (s, y) = (I + κL (0))

[
ν̂1 (s, ·) + h (κ, ·) L (κ, (I + κL (0)) ν̂1 (s, ·))

lκ (K0 (lκ) +K1 (lκ)) elκ

]
(2.121)

and
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Â2 (s, y) = (I + κL (0))

[
ν̂2 (s, ·) + h (κ, ·) L (κ, (I + κL (0)) ν̂2 (s, ·))

`κ (K0 (lκ) +K1 (lκ)) elκ

]
(2.122)

In Equation (2.122) I is the identity operator and dots have been used in the place of the

y independent variable to ensure that the y dependence does not get integrated out by the

operators. The operators νi are given by:

ν̂1 (s, ·) = 2Tf̂1 (s, ·) (2.123)

and

ν̂2 (s, ·) = 2Tf̂2 (s, ·) (2.124)

where T is the linear bounded operator defined by:

Tf = g (2.125)

g (s, y) =
1

π

√
l − y
l + y

l∫
−l

√
l + ζ

l − ζ
f (s, ζ)

ζ − y
dζ (2.126)

The operator L (0) is given by:
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L (0) f = ḡ (2.127)

where

ḡ (s, y) =

y∫
−l

f (s, ζ) dζ (2.128)

The operator L (κ, f) is defined as:

L (κ, f) =

l∫
−l

e−κ(l−ζ)f (s, ζ) dζ (2.129)

The function h (κ, y) is given by:

h (κ, y) =
1

π

√
l − y
l + y

∞∫
0

e−κζ

√
2l + ζ

ζ

1

y − l − ζ
dζ (2.130)

K0 (lκ) and K1 (lκ) are the Bessel K functions:

K0 (lκ) =

∞∫
1

e−lκt√
t2 − 1

dt (2.131)

K1 (lκ) = −K ′0 (lκ) =

∞∫
1

te−lκt√
t2 − 1

dt (2.132)

Recall the decomposed form of the Kussner doublet function:
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Â (s, x, y) = ixÂ1 (s, y) + Â2 (s, y) (2.133)

Using the solution to the GPIE, Equations (2.121) and (2.122), the Kussner doublet function

can be written as:

Â (s, x, y) = (I + κL (0))

[
xν̂1 (s, ·) + xh (κ, ·) L (κ, (I + κL (0)) ν̂1 (s, ·))

lκ (K0 (lκ) +K1 (lκ)) elκ

+ υ̂2 (s, ·) + h (κ, ·) L (κ, (I + κL (0)) ν̂2 (s, ·))
lκ (K0 (lκ) +K1 (lκ)) elκ

]
(2.134)

Equation (2.134) is the solution for the Kussner doublet function, in the Laplace domain,

as a function of integrals of the structure variables ĥ (s, y) and θ̂ (s, y). The procedure

so far has not produced a closed form expression for φ (t, x, y, z), and therefore does not

contain a detailed description of the flow field off the structure, but this is not needed to

analyze the stability of the structure. Having the solution for Â (s, x, y), which represents

the aerodynamic loading on the structure, the next step is to solve the structure governing

equations.
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2.4 Aeroelastic torsion dynamics

In this section the governing equation for the torsion angle, θ̂ (s, y), will be solved using the

solution of the GPIE in the aerodynamic loading term. Because the goal is to perform a

stability analysis, and not to obtain a time domain solution, the equation will be solved in

the Laplace domain. Taking the Laplace transform of Equation (2.2), the governing equation

for the torsion angle becomes:

−GJθ̂′′ (s, y) + s2Iθθ̂ (s, y) = ρU

b∫
−b

xÂ (s, x, y)dx (2.135)

The boundary conditions, unaffected by the Laplace transform, are:

θ̂ (s,−l) = θ̂′ (s, l) = 0 (2.136)

Substituting in the decomposed form of Â (s, x, y), the equation becomes:

−GJθ̂′′ (s, y) + s2Iθθ̂ (s, y) = ρU

b∫
−b

x2iÂ1 (s, y) dx+ ρU

b∫
−b

xÂ2 (s, y) dx (2.137)

The second integral, whose integrand is an odd function of x, evaluates to zero upon inte-

grating from −b to b. Evaluating the first integral, Equation (2.137) becomes:

−GJθ̂′′ (s, y) + s2Iθθ̂ (s, y) =
2b3

3
ρUiÂ1 (s, y) (2.138)
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Substituting the expression for iÂ1 (s, y) from Equation (2.121) and rearranging, the equation

becomes:

GJθ̂′′ (s, y) = s2Iθθ̂ (s, y)

− 2b3

3
ρU (I + κL (0))

[
ν̂1 (s, ·) + h (κ, ·) L (κ, (I + κL (0)) ν̂1 (s, ·))

lκ (K0 (lκ) +K1 (lκ)) elκ

]
(2.139)

Because there is no need to invert the Laplace transforms in Equation (2.139), and thus no

need for initial conditions, the equation represents a two-point boundary value problem. It

is convenient to solve Equation (2.139) by writing it in state-space form. Let:

⇀

x (s, y) =

 θ̂ (s, y)

θ̂′ (s, y)

 (2.140)

Differentiating Equation (2.140),

⇀

x
′
(s, y) =

 θ̂′ (s, y)

θ̂′′ (s, y)

 (2.141)

The boundary condition vectors are:

⇀

x (s,−l) =

 0

θ̂′ (s,−l)

 (2.142)
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And

⇀

x (s, l) =

θ̂ (s, l)

0

 (2.143)

The θ̂ (s, l) and θ̂′ (s,−l) are unspecified by the problem and are left arbitrary. The governing

equation, Equation (2.139), can now be expressed as:

⇀

x
′
(s, y) = A (s, U)

⇀

x (s, y) (2.144)

The matrix A should not be confused with the Kussner doublet function. A (s, U) can be

decomposed into two parts as follows:

A (s, U) = A0 (s, 0) + AU (s, U) (2.145)

where

A0 (s, 0) =

 0 1

s2Iθ
GJ

0

 (2.146)

AU (s, U) =

 0 0

−W1 (s, U) −W2 (s, U)

 (2.147)
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The nonzero elements of the matrix in Equation (2.147) are linear bounded operators defined

by:

W1 (s, U)x1 = g1 (2.148)

with

g1 =
4b3ρUs

3GJ
(I + κL (0))

[
Tx1 (s, ·) + h (κ, ·) L (κ, (I + κL (0)) Tx1 (s, ·))

lκ (K0 (lκ) +K1 (lκ)) elκ

]
(2.149)

The following substitution for ν̂1 (s, y) has been used:

ν̂1 (s, y) = 2Tf̂1 (s, ·) = 2T [sx1 (s, ·) + Ux2 (s, ·)] (2.150)

Similarly, W2 (s, U) is given by:

W2 (s, U)x1 = g2 (2.151)

with

g2 =
4b3ρU2

3GJ
(I + κL (0))

[
Tx2 (s, ·) + h (κ, ·) L (κ, (I + κL (0)) Tx2 (s, ·))

lκ (K0 (lκ) +K1 (lκ)) elκ

]
(2.152)
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The state-space representation of the equation for θ̂ (s, y) can be written in a slightly different

form:

⇀

x
′
(s, y) = A0 (s, 0)

⇀

x +
⇀

b (s, y) (2.153)

where

⇀

b (s, y) =

−W1 (s, U)x1

−W2 (s, U)x2

 (2.154)

Here
⇀

b (s, y) contains x1 and x2, but is not an explicit function of x1 and x2 due to the

operators W . Therefore, Equation (2.153) can be treated as a nonhomogeneous set of linear

differential equations with
⇀

b (s, y) representing the nonhomogeneous part. For a two-point

boundary value problem on [−l, l], application of Duhamel’s theorem yields the solution:

⇀

x (s, y) = eA0(s,0)(y+l)⇀x (s,−l) +

y∫
−l

eA0(s,0)(y−σ)⇀z (s, σ)dσ (2.155)

where

⇀

z (s, σ) =

 0

z1 (s, σ)

 (2.156)
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where

z1 (s, σ) = −4b3ρUs

3GJ
(I + κL (0))

Tθ̂ (s, ·) + h (κ, ·)
L
(
κ, (I + κL (0)) Tθ̂ (s, ·)

)
lκ (K0 (lκ) +K1 (lκ)) elκ


− 4b3ρU2

3GJ
(I + κL (0))

Tθ̂′ (s, ·) + h (κ, ·)
L
(
κ, (I + κL (0)) Tθ̂′ (s, ·)

)
lκ (K0 (lκ) +K1 (lκ)) elκ

 (2.157)

It should be noted that the σ-dependence in Equations (2.155) and (2.157) is found in the

operators, which will integrate to σ instead of y. Equations (2.155)-(2.157) provide a general

solution for the torsion angle, but they need to be simplified before applying the boundary

conditions. First, z1 (s, σ) can be written more compactly as:

z1 (s, σ) =− 4b3ρU

3GJ
(I + κL (0))

[
T
(
sθ̂ (s, ·) + Uθ̂′ (s, ·)

)

+h (κ, ·)
L
(
κ, (I + κL (0)) T

(
sθ̂ (s, ·) + Uθ̂′ (s, ·)

))
lκ (K0 (lκ) +K1 (lκ)) elκ

]
(2.158)

To evaluate the matrix exponential, let:

β =

√
Iθ
GJ

(2.159)

A0 (s, 0) becomes:

A0 (s, 0) =

 0 1

(sβ)2 0

 (2.160)
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The matrix exponential is defined by:

eA =
∞∑
n=0

1

n!
An (2.161)

Evaluating a few terms, the matrix exponential can be written as:

eA0(s,0) =


(
1 + 1

2!
(sβ)2 + 1

4!
(sβ)4 + ...

) (
1 + 1

3!
(sβ)2 + 1

5!
(sβ)4 + ...

)
(

(sβ)2 + 1
3!

(sβ)4 + ...
) (

1 + 1
2!

(sβ)2 + 1
4!

(sβ)4 + ...
)
 (2.162)

Comparing the elements of Equation(2.162) to Taylor series expansions of common functions,

it can be shown that:

eA(s,0)y =

 cosh (sβy) 1
sβ

sinh (sβy)

sβ sinh (βsy) cosh (sβy)

 (2.163)

The expression for the matrix exponential can now be substituted into the solution given by

Equations (2.155)-(2.157), along with the expression for the clamped end boundary condition

vector
⇀

x (s,−l), to obtain:

⇀

x (s, y) =

 1
sβ

sinh (sβ (y + l))

cosh (sβ (y + l))

+

y∫
−l

 1
sβ

sinh (sβ (y − σ))

cosh (sβ (y − σ))

z1 (s, σ) dσ (2.164)

The arbitrary condition θ̂′ (−l) from earlier has been set to 1 for convenience. Equation
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(2.164) is not a solution in closed form because the second term on the right hand side is an

implicit function of
⇀

x (s, y). It is convenient to define the vector:

⇀

x0 (s, y) =

 1
sβ

sinh (sβ (y + l))

cosh (sβ (y + l))

 (2.165)

And the linear bounded operator:

J (s, U)
⇀

x =
⇀

y (2.166)

with

⇀

y =

y∫
−l

 1
sβ

sinh (sβ (y − σ))

cosh (sβ (y − σ))

z1 (s, σ) dσ (2.167)

Equation (2.164) can be written as:

[I − J (s, U)]
⇀

x (s, y) =
⇀

x0 (s, y) (2.168)

Thus,

⇀

x (s, y) = [I − J (s, U)]−1 ⇀

x0 (s, y) (2.169)

The inverse in Equation (2.169) can be expressed as a Neumann expansion:
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[I − J (s, U)]−1 =
∞∑
n=0

[J (s, U)]n (2.170)

For the linear stability problem, the series is truncated at n = 1. Thus,

⇀

x (s, y) = [I + J (s, U)]
⇀

x0 (s, y) (2.171)

Equation (2.171) is a closed form solution, but the boundary condition at y = l still needs

to be enforced. Before applying this boundary condition, it is convenient to expand the

solution given by Equation (2.171) as follows:

θ̂ (s, y) =
1

sβ
sinh (2sβl) +

y∫
−l

1

sβ
sinh (sβ (y − σ)) z0 (s, σ) dσ (2.172)

θ̂′ (s, y) = cosh (2sβl) +

y∫
−l

cosh (sβ (y − σ)) z0 (s, σ) dσ (2.173)

where

z0 (s, σ) =− 4b3ρU

3GJ
(I + κL (0))

[
T (sx0,1 (s, ·) + Ux0,2 (s, ·))

+h (κ, ·) L (κ, (I + κL (0)) T (sx0,1 (s, ·) + Ux0,2 (s, ·)))
lκ (K0 (lκ) +K1 (lκ)) elκ

]
(2.174)
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Applying the free end boundary condition, θ̂′ (s, l) = 0, Equation (2.173) becomes:

0 = cosh (2sβl) +

l∫
−l

cosh (sβ (l − σ)) z0 (s, σ) dσ (2.175)

To satisfy Equation (2.175), let:

d (s, U) = cosh (2sβl) +

l∫
−l

cosh (sβ (l − σ)) z0 (s, σ) dσ (2.176)

To satisfy the boundary conditions it is required that:

d (s, U) = 0 (2.177)

Equation (2.177) can be satisfied by finding the complex roots s for a given air speed U .

Consider the special case of the structure in still air, where U = 0. Equation (2.176) becomes:

d (s, 0) = cosh (2sβl) (2.178)

Thus, to satisfy Equation (2.177):

cosh (2sβl) = 0 (2.179)

The roots to Equation (2.179) are:
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(2sβl)n = 2πi (2n− 1) (2.180)

Using the definition of β and solving for sn, note that:

sn =
iπ

l
(2n− 1)

√
GJ

Iθ
(2.181)

It is interesting to note that the torsional natural frequencies of the structure in still air are

given by:

ωT,n =
π

l
(2n− 1)

√
GJ

Iθ
(2.182)

Defining the real and imaginary parts of sn to be:

sn (U) = λn (U) + iωn (U) (2.183)

It is clear that:

ωn (0) = ωT,n (2.184)

Equations (2.183) and (2.184) show that the imaginary part of sn is equal to the torsional
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natural frequencies when U = 0. Therefore, the ωn (U) for U > 0 can be thought of as “aeroe-

lastic modes”. Extending this concept to the real part of sn, the λn (U) can be thought of

as aeroelastic damping of the structure. With this in mind, it should be expected for λn (U)

to play an important role in determining the stability of the system.

A common way to determine the stability of a system is to assume that the time domain

solution can be written in the form:

θ (t, y) = f(y)emt (2.185)

In Equation (2.185) m is a complex number. It is evident from Equation (2.185) that θ (t, y)

will exhibit exponential growth for Re (m) > 0 and exponential decay for Re (m) < 0. Taking

the time derivative of θ (t, y), Equation (2.185) becomes:

θ̇ (t, y) = mf(y)emt (2.186)

Note that:

θ̇ (t, y) = mθ (t, y) (2.187)

Taking the Laplace transform, Equation (2.187) becomes:
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sθ̂ (s, y) = mθ̂ (t, y) (2.188)

And thus s = m for the form of the solution assumed in Equation (2.185). This shows that

for a given U , the system is stable for Re [s (U)] < 0 and unstable for Re [s (U)] > 0. The

results obtained for the case of U = 0 suggest that there are a countable number of roots for

each U , each corresponding to an aeroelastic mode. This makes the “Root Locus” technique

a natural choice for determining if an individual mode is stable for a given U .

A Root Locus stability plot is a plot of λn(U) versus U , where each mode n will produce

its own curve. This leads to the definition of the modal flutter speed UF,n of mode n as the

smallest value of U for which λn is non-negative. The flutter speed is defined as the smallest

U in the set of modal flutter speeds UF,n. This can be expressed mathematically using the

infimum:

UF = inf
n
{UF,n} (2.189)

where the infimum is taken over all modes.
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2.5 Aeroelastic bending dynamics

The bending dynamics of the structure in axial flow is analyzed in the same manner as was

done for torsion. The governing equation will be solved in the Laplace domain, using state-

space representation, where the goal is to determine the minimum air speed U which will

cause the structure to become unstable. The governing equation for bending in the Laplace

domain is:

ms2ĥ (s, y) + EIĥ′′′′ (s, y) = ρU

∫ b

−b
Â (s, x, y)dx (2.190)

where the prime denotes differentiation with respect to y. Using the solution for Â (s, x, y),

Equation (2.190) becomes:

ms2ĥ (s, y) + EIĥ′′′′ (s, y) = ρU

b∫
−b

ixÂ1 (s, y)dx+ ρU

b∫
−b

Â2 (s, y)dx (2.191)

Evaluating the integrals on the right hand side, and rearranging, the Equation (2.191) be-

comes:

ĥ′′′′ (s, y) = −ms
2

EI
ĥ (s, y) +

2bρU

EI
Â2 (s, y) (2.192)

To write Equation(2.192) in state-space form, let:
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⇀

x (s, y) =



ĥ (s, y)

ĥ′ (s, y)

ĥ′′ (s, y)

ĥ′′′ (s, y)


(2.193)

Taking the derivative,

⇀

x
′
(s, y) =



ĥ′ (s, y)

ĥ′′ (s, y)

ĥ′′′ (s, y)

ĥ′′′′ (s, y)


(2.194)

The boundary condition vectors are:

⇀

x (s,−l) =



0

0

ĥ′′ (s,−l)

ĥ′′′ (s,−l)


(2.195)

and
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⇀

x (s, l) =



ĥ (s, l)

ĥ′ (s, l)

0

0


(2.196)

The non-zero entries in the boundary condition vectors are understood to be arbitrary be-

cause they are not specified by the physics of the problem; in fact they can safely be set to

1. Equation (2.192) can now be written as:

⇀

x
′
(s, y) = A (s, U)

⇀

x (s, y) (2.197)

The coefficient matrix A (s, U) can be decomposed as follows:

A (s, U) = A0 (s, 0) + AU (s, U) (2.198)

where

A0 (s, 0) =



0 1 0 0

0 0 1 0

0 0 0 1

−ms2

EI
0 0 0


(2.199)

and
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AU (s, U) =



0 0 0 0

0 0 0 0

0 0 0 0

W1 W2 0 0


(2.200)

where the operators W1 and W2 are defined as:

W1 (s, U)x1 = g1 (2.201)

W2 (s, U)x2 = g2 (2.202)

where

g1 =
4bρUs

EI
(I + κL (0))

[
Tx1 (s, ·) + h (κ, ·) L (κ, (I + κL (0)) Tx1 (s, ·))

lκ (K0 (lκ) +K1 (lκ)) elκ

]
(2.203)

g2 =
4bρU2

EI
(I + κL (0))

[
Tx2 (s, ·) + h (κ, ·) L (κ, (I + κL (0)) Tx2 (s, ·))

lκ (K0 (lκ) +K2 (lκ)) elκ

]
(2.204)

The linear system can now be written as:

⇀

x
′
(s, y) = A0 (s, 0)

⇀

x (s, y) +
⇀

b (s, y) (2.205)
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where

⇀

b (s, y) =

g1

g2

 (2.206)

Recognizing that Equation (2.205), along with the boundary conditions in Equations (2.195)

and (2.196), represents a two-point boundary value problem, the solution can be written as:

⇀

x (s, y) = eA0(s,0)(y+l)⇀x (s,−l) +

y∫
−l

eA0(s,0)(y−σ)⇀z (s, σ)dσ (2.207)

where

⇀

z (s, σ) =



0

0

0

z1 (s, σ)


(2.208)

where

z1 (s, σ) =− 2bρU

EI
(I + κL (0))

[
T
(
sĥ (s, ·) + Uĥ′ (s, ·)

)

+h (κ, ·)
L
(
κ, (I + κL (0)) T

(
sĥ (s, ·) + Uĥ′ (s, ·)

))
lκ (K0 (lκ) +K1 (lκ)) elκ

]
(2.209)
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To evaluate the matrix exponential of A0 (s, 0), let:

A0 (s, 0) =



0 1 0 0

0 0 1 0

0 0 0 1

γ4 0 0 0


(2.210)

where

γ4 = −ms
2

EI
(2.211)

The definition of the matrix exponential can be written as a power series:

eA =
∞∑
n=0

An

n!
= 1 + A+

AA

2!
+
AAA

3!
+ ... (2.212)

The matrix exponential is then determined by expanding a few terms of the power series,

and comparing the expressions in each element to Taylor series of common functions. To

write the matrix exponential, let:

aij (s, y) = eAij(s,0)(y) (2.213)

The sixteen elements of eAij(s,0)(y) are:
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a11 (s, y) =
1

2
[cos (γy) + cosh (γy)] (2.214)

a12 (s, y) =
1

2γ
[sin (γy) + sinh (γy)] (2.215)

a13 (s, y) =
1

2γ2
[− cos (γy) + cosh (γy)] (2.216)

a14 (s, y) =
1

2γ3
[− sin (γy) + sinh (γy)] (2.217)

a21 (s, y) =
1

2
γ [− sin (γy) + sinh (γy)] (2.218)

a22 (s, y) =
1

2
[cos (γy) + cosh (γy)] (2.219)

a23 (s, y) =
1

2γ
[sin (γy) + sinh (γy)] (2.220)

a24 (s, y) =
1

2γ2
[− cos (γy) + cosh (γy)] (2.221)

a31 (s, y) =
1

2
γ2 [− cos (γy) + cosh (γy)] (2.222)

a32 (s, y) =
1

2
γ [− sin (γy) + sinh (γy)] (2.223)
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a33 (s, y) =
1

2
[cos (γy) + cosh (γy)] (2.224)

a34 (s, y) =
1

2γ
[sin (γy) + sinh (γy)] (2.225)

a41 (s, y) =
1

2
γ3 [sin (γy) + sinh (γy)] (2.226)

a42 (s, y) =
1

2
γ2 [− cos (γy) + cosh (γy)] (2.227)

a43 (s, y) =
1

2
γ [− sin (γy) + sinh (γy)] (2.228)

a44 (s, y) =
1

2
[cos (γy) + cosh (γy)] (2.229)

The solution to Equation (2.205) can now be written as:

x1 (s, y) = a13 (s, y + l) + a14 (s, y + l) +

y∫
−l

a14 (s, y − σ) z1 (s, σ) dσ (2.230)

x2 (s, y) = a23 (s, y + l) + a24 (s, y + l) +

y∫
−l

a24 (s, y − σ) z1 (s, σ) dσ (2.231)

x3 (s, y) = a33 (s, y + l) + a34 (s, y + l) +

y∫
−l

a34 (s, y − σ) z1 (s, σ) dσ (2.232)

63



x4 (s, y) = a43 (s, y + l) + a44 (s, y + l) +

y∫
−l

a44 (s, y − σ) z1 (s, σ) dσ (2.233)

Before applying the free end boundary conditions, Equations (2.230)-(2.233) need to be

simplified. First, let:

⇀

q (s, y) =



a13 (s, y) + a14 (s, y)

a23 (s, y) + a24 (s, y)

a33 (s, y) + a34 (s, y)

a43 (s, y) + a44 (s, y)


(2.234)

Note that z1 (s, U, σ) can be written as:

z1 (s, U, σ) = W1x1 (s, σ) +W2x2 (s, σ) (2.235)

The solution becomes:

x1 (s, y) = q1(s, y + l) +

y∫
−l

a14 (s, y − σ) [W1x1 (s, σ) +W2x2 (s, σ)] dσ (2.236)

x2 (s, y) = q2(s, y + l) +

y∫
−l

a24 (s, y − σ) [W1x1 (s, σ) +W2x2 (s, σ)] dσ (2.237)
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x3 (s, y) = q3(s, y + l) +

y∫
−l

a34 (s, y − σ) [W1x1 (s, σ) +W2x2 (s, σ)] dσ (2.238)

x4 (s, y) = q4(s, y + l) +

y∫
−l

a44 (s, y − σ) [W1x1 (s, σ) +W2x2 (s, σ)] dσ (2.239)

To simplify further, let:

⇀

χ =

x1

x2

 (2.240)

It is convenient to define the operator:

P1
⇀

χ =


y∫
l

a14 (s, y − σ) [W1x1 (s, σ) +W2x2 (s, σ)] dσ

y∫
l

a24 (s, y − σ) [W1x1 (s, σ) +W2x2 (s, σ)] dσ

 (2.241)

Equations (2.236) and (2.237) become:

⇀

χ− P1
⇀

χ =

q1

q2

 (2.242)

Solving for
⇀

χ,
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⇀

χ = (I − P1)−1

q1

q2

 (2.243)

Applying the Neumann expansion in the same manner as was done for torsion, Equation

(2.243) becomes:

⇀

χ = (I + P1)

q1

q2

 (2.244)

The operator P3 is defined as:

P3
⇀

χ =


y∫
l

a34 (s, y − σ) [W1x1 (s, σ) +W2x2 (s, σ)] dσ

y∫
l

a44 (s, y − σ) [W1x1 (s, σ) +W2x2 (s, σ)] dσ

 (2.245)

The second half of the solution, Equations (2.238) and (2.239), can be expressed as:

x3

x4

 = P3
⇀

χ+

q3

q4

 (2.246)

Substituting the expression for
⇀

χ from Equation (2.244),

x3

x4

 = P3 (I + P1)

q1

q2

+

q3

q4

 (2.247)

As an approximation the product of the operators, P3P1, can be neglected to obtain:
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x3

x4

 = P3

q1

q2

+

q3

q4

 (2.248)

Equations (2.245) and (2.248) provide a simplified form of the solution for the structure state

variables,
⇀

x, where the right hand side no longer depends on
⇀

x. The full solution can now

be written as:

x1 (s, y) = q1(s, y + l) +

y∫
−l

a14 (s, y − σ) [W1q1 (s, σ) +W2q2 (s, σ)] dσ (2.249)

x2 (s, y) = q2(s, y + l) +

y∫
−l

a24 (s, y − σ) [W1q1 (s, σ) +W2q2 (s, σ)] dσ (2.250)

x3 (s, y) = q3(s, y + l) +

y∫
−l

a34 (s, y − σ) [W1q1 (s, σ) +W2q2 (s, σ)] dσ (2.251)

x4 (s, y) = q4(s, y + l) +

y∫
−l

a44 (s, y − σ) [W1q1 (s, σ) +W2q2 (s, σ)] dσ (2.252)

Equations (2.249)-(2.252) are now in the form where the free end boundary conditions can

be applied. Recall:

x3 (s, l) = x4 (s, l) = 0 (2.253)

From Equations (2.251) and (2.252), the boundary conditions are enforced by:
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0 = q3(s, 2l) +

l∫
−l

a34 (s, l − σ) [W1q1 (s, σ) +W2q2 (s, σ)] dσ (2.254)

0 = q4(s, 2l) +

l∫
−l

a44 (s, l − σ) [W1q1 (s, σ) +W2q2 (s, σ)] dσ (2.255)

Using the expressions from the matrix exponential eAij(s,0)(·), the quantities qi (s, ·) and

aij (s, ·) in Equations (2.254) and (2.255) can be written as:

q1(s, σ) =
1

2γ2
[− cos (σγ) + cosh (σγ)] +

1

2γ3
[− sin (σγ) + sinh (σγ)] (2.256)

q2(s, σ) =
1

2γ
[sin (σγ) + sinh (σγ)] +

1

2γ2
[− cos (σγ) + cosh (σγ)] (2.257)

q3(s, 2l) =
1

2
[cos (2lγ) + cosh (2lγ)] +

1

2γ
[sin (2lγ) + sinh (2lγ)] (2.258)

q4(s, 2l) =
1

2
γ [− sin (2lγ) + sinh (2lγ)] +

1

2
[cos (2lγ) + cosh (2lγ)] (2.259)

a34(s, l − σ) =
1

2γ
[sin ((l − σ) γ) + sinh ((l − σ) γ)] (2.260)

68



a44(s, l − σ) =
1

2
[cos ((l − σ) γ) + cosh ((l − σ) γ)] (2.261)

To satisfy Equations (2.254) and (2.255), they are written in the form:

0 = D0 (s, 0)
⇀

α +DU (s, U)
⇀

α (2.262)

where each equation has been multiplied by scalar α. That is,

⇀

α =

α
α

 (2.263)

The matrices in Equation (2.262) are given by:

D0 (s, 0) =

 1
2

[cos (2lγ) + cosh (2lγ)] 1
2γ

[sin (2lγ) + sinh (2lγ)]

1
2
γ [− sin (2lγ) + sinh (2lγ)] 1

2
[cos (2lγ) + cosh (2lγ)]

 (2.264)

and

DU (s, U) =


l∫
−l

1
2γ

sin ((l − σ) γ) zq (s, σ) dσ
l∫
−l

1
2γ

sinh ((l − σ) γ) zq (s, σ) dσ

l∫
−l

1
2

cos ((l − σ) γ) zq (s, σ) dσ
l∫
−l

1
2

cosh ((l − σ) γ) zq (s, σ) dσ

 (2.265)

where
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zq (s, σ) = W1q1 (s, σ) +W2q2 (s, σ) (2.266)

and γ is defined by:

γ4 = −ms
2

EI
(2.267)

Equation (2.261) can be written as:

0 = [D0 (s, 0) +DU (s, U)]
⇀

α (2.268)

Using the definition:

d(s, U) = det [D0 (s, 0) +DU (s, U)] (2.269)

Equation (2.268) is satisfied if:

d(s, U) = 0 (2.270)

The free end boundary conditions can be satisfied by finding the roots s that satisfy Equation

(2.270) for a given air speed U . As was done for torsion, the special case of U = 0 is

considered. For U = 0:
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d (s, 0) = det [D0 (s, 0)] (2.271)

Evaluating the determinant, and setting it to zero, Equation (2.271) becomes:

0 =
1

4
[cos (2lγ) + cosh (2lγ)]2 − 1

4
[sin (2lγ) + sinh (2lγ)] [− sin (2lγ) + sinh (2lγ)] (2.272)

Expanding the terms in Equation (2.272), and simplifying, the equation becomes:

1 + cos (2lγ) cosh (2lγ) = 0 (2.273)

Equation (2.273) is a transcendental equation of the form:

1 + cos (β) cosh (β) = 0 (2.274)

The roots in Equation (2.274) can found through numerical solution. The first five roots are

given in Table 2.1.
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Table 2.1: First five roots to Equation (2.273).

n βn

1 1.875

2 4.694

3 7.855

4 11.00

5 14.14

It is evident that the roots βn are positive and real. The βn are related to γn by:

2lγn = βn (2.275)

The terms in Equation (2.275) can be squared to obtain:

γ2
n =

β2
n

4l2
(2.276)

Using the definition of γ from Equation (2.267),

±
√

m

EI
isn =

β2
n

4l2
(2.277)

Or,
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sn = i

√
EI

m

1

4l2
βn

2 (2.278)

where the negative root of sn has been discarded. The real and imaginary parts of sn are

denoted by:

sn = σn + iωn (2.279)

Comparison of Equations (2.278) and (2.279) yields:

ωn =

√
EI

m

1

4l2
βn

2 (2.280)

As was the case for torsion, Equation (2.280) shows that the ωn are the bending natural fre-

quencies of the structure. Therefore, the ωn(U) for nonzero U represent ”aeroelastic modes”

and the λn(U) corresponds to aeroelastic damping of the structure. By virtue of the Laplace

transform, Re [d(s, U)] < 0 indicates that the system is stable and Re [d(s, U)] > 0 indicates

that the system is unstable.

The key observation, which was also made in the torsion case, is that there are a count-

able set of roots sn to d(s, U) = 0 for a given U . Hence, the root locus method is a natural

choice to determine if a given aeroelastic mode is stable by starting at the structure mode

sn(0) = iωn(0). For each n a stability curve can be constructed showing λn(U) as a function
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of U , and the modal flutter speed is defined as the smallest value of Un for which λn(U) is

non-negative. Then flutter speed of the system is defined as the smallest UF,n, for all n:

UF = inf
n
{UF,n} (2.281)

Once again, the infimum is taken over all modes.
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2.6 Stability of torsional motion in axial flow

In this section it will be shown that torsional motion is unconditionally stable in axial flow,

at least when modelled using linear structure and fluid dynamics. This is done simply by

proving that the flutter determinant, d (s, U), has no zeros for all U > 0. To begin, recall

the flutter determinant for torsion:

d (iω, U) = cosh (2iωβl)− 4b3ρU

3GJ

y∫
−l

cosh (iωβ (y − σ))z0 (iω, σ) dσ (2.282)

where

z0 (iω, σ) = (U + iωL (0))

[
T (iωx0,1 (s, ·) + Ux0,2 (s, ·))

+h (κ, ·) L (κ, (I + κL (0)) T (iωx0,1 (iω, ·) + Ux0,2 (iω, ·)))
lκ (K0 (lκ) +K1 (lκ)) elκ

]
(2.283)

where

κ =
iω

U
(2.284)

The first observation is that as U →∞,the function z0 → −∞.In this limit, note that:

lim
U→∞

|d (s, U)| → −∞ (2.285)
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With U appearing in the denominator of κ, the approach now is to investigate the behavior

of d (iω, U) for some very small U , which is denoted by U0 :

0 < U0 � 1 (2.286)

Several of the terms in Equation (2.283) can be compared, noting that U0 � 1 . First, notice

that with U0 very small:

U0 + iωL (0) ∼= iωL (0) (2.287)

Similarly,

T (iωx0,1 (iω, ·) + U0x0,2 (iω, ·)) ∼= T (iωx0,1 (iω, ·)) (2.288)

Equation (2.283) reduces to:

z0 (iω, σ) = iωL (0)

[
T (iωx0,1 (s, ·)) +H (κ, ·)L (κ, (I + κL (0)) T (iωx0,1 (iω, ·)))

]
(2.289)

H (κ, ·) is defined as:

H (κ, ·) =
h (κ, ·)

lκ (K0 (lκ) +K1 (lκ)) elκ
(2.290)
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The denominator in Equation (2.290) is the Sears formula [25]:

S (lκ) = lκ (K0 (lκ) +K1 (lκ)) elκ (2.291)

The Sears formula, S (κ) , which appears in the normal flow continuum solution, has already

been analyzed in [4]. For brevity, the analysis will not be repeated here. The result is:

S (lκ) = O
(
U−

4
3

)
(2.292)

Recall the function h (κ, y), now written using κ = iω
U0

:

h (κ, y) =
1

π

√
l − y
l + y

∞∫
0

e
− iω
U0
ζ

√
2l + ζ

ζ

1

y − l − ζ
dζ (2.293)

Note that for U0 very small:

e
− iω
U0
ζ

= cos

(
iω

U0

ζ

)
− i sin

(
iω

U0

ζ

)
= O (1) (2.294)

Thus,

H (κ, ·) = O
(
U0

4
3

)
(2.295)
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Furthermore, note that with no further dependence of U0 on the second bracketed term of

Equation (2.289), that:

H (κ, ·)L [κ, (I + κL (0)) T (iωx0,1 (iω, ·))] = O
(
U0

4
3

)
(2.296)

Noting that:

T (iωx0,1 (iω, ·))� O
(
U0

4
3

)
(2.297)

Equation (2.289) reduces to, for small U :

z0 (iω, σ) = −4b3ρ

3GJ
iωL (0) T (iωx0,1 (iω, ·)) (2.298)

Thus,

lim
U→0

z0 (iω, σ) = −4b3ρ

3GJ
iωL (0) T (iωx0,1 (iω, ·)) (2.299)

Thus, for small U , d (iω, U) becomes:

lim
U→0

d (iω, U) = cosh (2iωβl)− 4b3ρ

3GJ
iω

y∫
−l

cosh (iωβ (y − σ))L (0) T (iωx0,1 (iω, ·)) dσ (2.300)

Or,
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d (iω, 0) = cosh (2iωβl)− 4b3ρ

3GJ
iω

y∫
−l

cosh (iωβ (y − σ))L (0) T (iωx0,1 (iω, ·)) dσ (2.301)

The next step is to consider the behavior of the derivative of d (iω, U) as U → 0 . From Equa-

tion (2.299), note that z0 (iω, σ) approaches a constant as U → 0 . Taking the derivative,

Equation (2.300) becomes:

∂

∂U
d (iω, U) =

∂

∂U

−4b3ρU

3GJ

y∫
−l

cosh (iωβ (y − σ))L (0) T (iωx0,1 (iω, ·)) dσ

 (2.302)

In the limit of U → 0 the integrand in Equation (2.302) is a constant, hence:

∂

∂U
d (iω, U) = −4b3ρ

3GJ

y∫
−l

cosh (iωβ (y − σ))L (0) T (iωx0,1 (iω, ·)) dσ (2.303)

Note that:

∂2

∂U2
d (iω, U) = 0 (2.304)

From Equation (2.303), the first derivative is a negative constant, indicating a negative

slope near U = 0 , and therefore d (iω) is expected to monotonically decrease with U . To

investigate this further, consider the absolute square of the function, which is defined as:

‖z‖2 = zz̄ (2.305)
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where z̄ is the complex conjugate of z . The absolute square of d (iω, U) is:

‖d (iω, U)‖2 = d (iω, U) d (−iω, U) (2.306)

The first derivative of ‖d (iω, U)‖2 is:

∂

∂U
‖d (iω, U)‖2 =

∂

∂U
d (iω, U) d (−iω, U) + d (iω, U)

∂

∂U
d (−iω, U) (2.307)

And the second derivative,

∂2

∂U2
‖d (iω, U)‖2 =d (−iω, U)

∂2

∂U2
d (iω, U) +

∂

∂U
d (iω, U)

∂

∂U
d (−iω, U)

+ d (−iω, U)
∂2

∂U2
d (iω, U) +

∂

∂U
d (iω, U)

∂

∂U
d (−iω, U) (2.308)

Noting that the second derivative of d (iω, U) is zero, Equation (2.308) reduces to:

∂2

∂U2
‖d (iω, U)‖2 =

∂

∂U
d (iω, U)

∂

∂U
d (−iω, U) +

∂

∂U
d (−iω, U)

∂

∂U
d (iω, U) (2.309)

The next step is to consider the complex conjugate of d (iω, U) . First, using properties of

cosh (z) , Equation (2.303) can be written as:
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∂

∂U
d (iω, U) = −4b3ρ

3GJ

y∫
−l

cos (ωβ (y − σ))L (0) T (iωx0,1 (iω, ·)) dσ (2.310)

Noting that iω can be treated as a constant in the integral in T (iωx0,1 (iω, ·)), the complex

conjugate is:

∂

∂U
d (−iω, U) = − ∂

∂U
d (iω, U) (2.311)

Thus,

∂2

∂U2
‖d (iω, U)‖2 = −

[
∂

∂U
d (iω, U)

]2

(2.312)

Using Equation (2.303), it is concluded that for small U , the function d (iω, U) will be

concave downward, indicating that it will decrease monotonically. The analysis so far can

be summarized as:

1. For U = 0, d (iω, U) is a nonzero, negative constant.

2. For small U , d (iω, U) has negative slope.

3. For small U , the absolute square of d (iω, U) shows that it is concave downward.

4. As U →∞, d (iω, U) approaches −∞.
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Having proven the statements above, it has been shown that d (iω, U) is negative for all

U > 0 , and therefore there is no U > 0 that will produce zeroes of d (iω, U) , and therefore

there is no flutter speed. This concludes the proof that torsional motion is unconditionally

stable in axial flow.
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2.7 Divergence speed

The divergence speed is defined as an air speed that produces an unstable structure, with a

frequency of zero. While the divergence speed is a construct of static aeroelasticity, it can

be detected by a flutter analysis which is of course based on dynamic aeroelasticity. For

example, it has been proven to exist in normal flow aeroelasticity [12]. Its existence can be

investigated by determining if the flutter determinant has zeroes for ω = 0 :

d (0, UD) = 0 (2.313)

where UD is the divergence speed if Equation (2.313) is satisfied. A key finding of the

Balakrishnan continuum theory is that the divergence speed is undefined in axial flow. To

prove this, consider the integral:

h̄

(
iω

U
, y

)
=

∞∫
0

e−
iω
U
ζ

√
2l + ζ

ζ

1

y − l − ζ
dζ (2.314)

The integral in Equation (2.314) appears in the flutter determinant for both bending and

torsion. Setting ω = 0, the integral becomes:

h̄ (0, y) =

∞∫
0

√
2l + ζ

ζ

1

y − l − ζ
dζ (2.315)

Simplifying the square root, and changing the sign, Equation (2.315) becomes:
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h̄ (0, y) = −
∞∫

0

√
1 +

2l

ζ

1

−y + l + ζ
dζ (2.316)

Because the upper bound on the integral is infinity, ζ can be treated as being large. Notice

that the square root simplifies to:

lim
ζ→∞

√
1 +

2l

ζ
= 1 (2.317)

The integral is now in a form where it can be evaluated analytically. Equation (2.317)

becomes:

h̄ (0, y) = − lim
M→∞

ln (−y + l + ζ) = −∞ (2.318)

It is clear that the integral h̄ (0, y) , and thus d (iω, U) , is undefined for both bending and

torsional motion. This concludes the proof that the divergence speed is undefined in axial

flow.
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3 Modifications to Balakrishnan continuum theory and

methods for determining the flutter speed

This chapter presents the techniques developed to compute the flutter speed using the Bal-

akrishnan continuum theory. First, the root locus stability method is modified so that all of

the functions resulting from the axial flow solution are defined. The solution of the GPIE for

bending motion, Â2 (s, y) , is then decomposed so that it can be evaluated for calculation of

the flutter determinant. The functions composing Â2 (s, y) contain integrals that are singu-

lar at the endpoints and within the domain of integration. In this chapter two methods for

handling singular integrals numerically are presented: the IMT method [18] and the Tanh

transformation [15]. Finally, this chapter concludes with calculated results for a rectangular

beam-like structure.

3.1 Modification to the root locus stability method

In the normal flow continuum theory developed by Balakrishnan [2], a root locus method

was employed to determine the minimum air speed at which the structure becomes unstable.

This method is based on assuming a general form for h (t, y) :

h(t, y) = f (y) emt (3.1)

The Laplace domain h (t, y) takes the form:
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ĥ (s, y) = e(λ+iω)tf (y) (3.2)

with

s = λ+ iω (3.3)

There are a countable number of ωn , each corresponding to an “aeroelastic” mode; the ωn

are the natural frequencies of the structure when U = 0 . The root locus method evaluates

the flutter determinant for a given ωn , and finds the roots λ and U that make it zero. That

is, for a given ωn :

Re [d (λ+ iωn, U)] = 0 (3.4)

Im [d (λ+ iωn, U)] = 0 (3.5)

It is evident that if λ < 0 , the structure is stable for that U , and if λ > 0 the structure

is unstable at the corresponding air speed U . A stability curve, with λ vs U , is plotted

starting at U = 0 . As U is increased beyond zero, λ is negative, and if λ reaches zero and

becomes positive, there is a U for that aeroelastic mode ωn that will cause the structure to

become unstable. The minimum U for which λ is non-negative is the modal flutter speed

for the given ωn . However, it is also possible that for a given ωn the λ will remain negative
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and never cross the λ - axis. In this scenario, the structure is unconditionally stable for that

ωn .

The root locus method is successfully used in the continuum theory for normal flow aeroe-

lasticity [2], but when applying it to the axial flow case an inherent issue arises. Consider

one of the integrals present in the Kussner doublet function Â2 (s, y) :

h (κ, y) =
1

π

√
l − y
l + y

∞∫
0

e−κζ

√
2l + ζ

ζ

1

y − l − ζ
dζ (3.6)

where

κ =
s

U
=
σ + iω

U
(3.7)

so that,

e−κζ = e−σζ [cos (ωζ)− sin (ωζ)] (3.8)

Equations (3.6) and (3.8) show that the function h (κ, y) is undefined for λ < 0 . This is not

consistent with the root locus stability method, i.e. finding the points (λ, U) starting with

U = 0 and determining at which U the λ becomes non-negative for a given ωn . However,

the stability of the system can be analyzed by setting λ to zero, and finding the roots ω and

U that drive the real and imaginary parts of the flutter determinant to zero:
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Re [d (λ = 0, iω, U)] = 0 (3.9)

Im [d (λ = 0, iω, U)] = 0 (3.10)

This approach does not produce a stability curve, but instead finds sets of roots (ωi, Ui) that

drive the flutter determinant to zero. The minimum Ui is the flutter speed,Uf , and the ωi

corresponding to it is the aeroelastic mode present at the onset of flutter. Equations (3.9)

and (3.10) are solved using the Newton-Raphson method shown in Appendix B.
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3.2 Evaluation of bending flutter determinant

To calculate the flutter speed, the flutter determinant for bending motion must be decom-

posed into its real and imaginary parts. Due to the amount of algebra involved, this section

is written so that it can be skipped by the reader without loss in continuity with the rest of

the chapter. The flutter determinant is:

d (s, U) = det

D11 (s, U) D12 (s, U)

D21 (s, U) D22 (s, U)

 (3.11)

Or,

d (s, U) = D11 (s, U)D22 (s, U)−D12 (s, U)D21 (s, U) (3.12)

Setting s = iω , it is clear that d (iω, U) is complex. Letting the subscript R denote the

real part of a function, and the subscript I denote the imaginary part, d (iω, U) can be

decomposed as follows:

d (iω, U) = dR (ω, U) + idI (ω, U) (3.13)

Keeping the same notation, Equation (3.13) is expanded to separate the real and imaginary
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parts. The real part of d (iω, U) is:

dR (ω, U) =D11,R (ω, U)D22,R (ω, U)−D11,I (ω, U)D22,I (ω, U)

−D12,R (ω, U)D21,R (ω, U) +D12,I (ω, U)D21,I (ω, U) (3.14)

And the imaginary part is:

dR (ω, U) =D11,R (ω, U)D22,I (ω, U) +D11,I (ω, U)D22,R (ω, U)

−D12,R (ω, U)D21,I (ω, U)−D12,I (ω, U)D21,R (ω, U) (3.15)

The functions Dij (ω, U) are defined as:

Dij (iω, U) = D0,ij (ω) +

l∫
−l

Qij (ω, φ) zq (iω, φ)dφ (3.16)

Because the functions D0,ij (ω) and Qij (ω, φ) are purely real, Equation (3.16) can be sepa-

rated into its real and imaginary parts by:

Dij,R (iω, U) = D0,ij (ω) +

l∫
−l

Qij (ω, φ) zq,R (iω, φ)dφ (3.17)

and

Dij,I (iω, U) =

l∫
−l

Qij (ω, φ) zq,I (iω, φ)dφ (3.18)
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The D0,ij (ω) are given by:

D0,11 (ω) =
1

2

[
cos
(
2lβ
√
ω
)

+ cosh
(
2lβ
√
ω
)]

(3.19)

D0,12 (ω) =
1

2β
√
ω

[
sin
(
2lβ
√
ω
)

+ sinh
(
2lβ
√
ω
)]

(3.20)

D0,21 (ω) =
1

2
β
√
ω
[
− sin

(
2lβ
√
ω
)

+ sinh
(
2lβ
√
ω
)]

(3.21)

D0,22 (ω) =
1

2

[
cos
(
2lβ
√
ω
)

+ cosh
(
2lβ
√
ω
)]

(3.22)

The Qij (ω, φ) are given by:

Q11 (ω, φ) =
1

2β
√
ω

sin
[
(l − φ) β

√
ω
]

(3.23)

Q12 (ω, φ) =
1

2β
√
ω

sinh
[
(l − φ) β

√
ω
]

(3.24)

Q21 (ω, φ) =
1

2
cos
[
(l − φ) β

√
ω
]

(3.25)

Q22 (ω, φ) =
1

2
cosh

[
(l − φ) β

√
ω
]

(3.26)
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The function zq (iω, φ) is complex, and defined as:

zq (iω, φ) =
2bρ

EI
(U + iωΩ (0)) z̄q (iω, φ) (3.27)

where

z̄q (iω, φ) = T (iωq1 (ω, φ) + Uq2 (ω, φ))

+H (iω, φ)L [κω, (I + κωΩ (0)) T (iωq1 (ω, φ) + Uq2 (ω, φ))] (3.28)

In Equation (3.28), κ has been replaced with κω, which is defined as:

κω =
iω

U
(3.29)

Recall the definition of the operator Ω (0):

Ω (0) f = ḡ (3.30)

where

ḡ (s, y) =

y∫
−l

f (s, ζ) dζ (3.31)
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Thus, it is convenient to spit zq (iω, φ) into two functions:

zq (iω, φ) = x (iω, φ) + y (iω, φ) (3.32)

The function x (iω, φ) is defined as:

x (iω, φ) =
2bρU

EI
[x1 (iω, φ) + x2 (iω, φ)] (3.33)

where

x1 (iω, φ) = T (iωq1 (ω, φ) + Uq2 (ω, φ)) (3.34)

and

x2 (iω, φ) = H (iω, φ)L [κω, (I + κωΩ (0)) T (iωq1 (ω, φ) + Uq2 (ω, φ))] (3.35)

The function y (iω, φ) is defined by:

y (iω, φ) = iω

φ∫
−l

x (iω, ζ) dζ (3.36)

The real and imaginary parts of zq (iω, φ) are:
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zq,R (ω, φ) = xR (ω, φ) + yR (ω, φ) (3.37)

and

zq,I (ω, φ) = xI (ω, φ) + yI (ω, φ) (3.38)

From Equation (3.36), it can be shown that the real and imaginary parts of y (iω, φ) are:

yR (ω, φ) = −ω
φ∫
−l

xI (ω, ζ) dζ (3.39)

and

yI (ω, φ) = ω

φ∫
−l

xR (ω, ζ) dζ (3.40)

Due to its complexity, several simplifications will be made before decomposing x (iω, φ). The

function H (iω, φ) is defined by:

H (iω, φ) = S (κω)h (κω, φ) (3.41)

where
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S (κω) =
1

lκω [K0 (lκω) +K1 (lκω)] elκω
(3.42)

The functions K0 (lκω) and K1 (lκω) are the Bessel K functions. The function h (κω, φ) is

defined by Equation (3.6), but replacing κ with κω . It is convenient to write h (κω, φ) as:

h (κω, φ) =
1

π

√
l − φ
l + φ

h̄ (κω, φ) (3.43)

where

h̄ (κω, φ) =

∞∫
0

e−κωζ

√
2l + ζ

ζ

1

φ− l − ζ
dζ (3.44)

H (iω, φ) can now be written as:

H (iω, φ) =
1

π

√
l − φ
l + φ

S (κω) h̄ (κω, φ) (3.45)

It will be convenient to rewrite the function T (·) in a similar fashion. Recall its definition:

T [ψ (iω, φ)] =
1

π

√
l − φ
l + φ

l∫
−l

√
l + ζ

l − ζ
ψ (iω, ζ)

ζ − φ
dζ (3.46)

where, from Equation (3.28),
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ψ (iω, φ) = iωq1 (ω, φ) + Uq2 (ω, φ) (3.47)

Equation (3.46) can be written as:

T [ψ (iω, φ)] =
1

π

√
l − φ
l + φ

T̄ [ψ (iω, φ)] (3.48)

where

T̄ [ψ (iω, φ)] =

l∫
−l

√
l + ζ

l − ζ
ψ (iω, ζ)

ζ − φ
dζ (3.49)

Equations (3.45) and (3.48) show that there is a common factor in the bracketed terms of

Equation (3.35). The function x (iω, φ) can be written in terms of the barred quantities to

obtain:

x (iω, φ) =
2bρU

EI

1

π

√
l − φ
l + φ

{
T̄ (ψ (iω, φ)) + S (κω) h̄ (κω, φ)L [κω, (I + κωΩ (0)) Tψ (iω, φ)]

}
(3.50)

For simplicity, the following shorthand notation is used for the function L [·] in Equation

(3.50):

L̃ (κω) = L [κω, (I + κωΩ (0)) Tψ (iω, φ)] (3.51)
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Equation (3.50) becomes:

x (iω, φ) =
2bρU

EI

1

π

√
l − φ
l + φ

[
T̄ (ψ (iω, φ)) + S (κω) h̄ (κω, φ) L̃ (κω)

]
(3.52)

Equation (3.52) can be written as:

x (iω, φ) =
2bρU

EI

1

π

√
l − φ
l + φ

x̄ (iω, φ) (3.53)

where

x̄ (iω, φ) = T̄ (ψ (iω, φ)) + S (κω) h̄ (κω, φ) L̃ (κω) (3.54)

The real and imaginary parts of x (iω, φ) are:

xR (ω, φ) =
2bρU

EI

1

π

√
l − φ
l + φ

x̄R (ω, φ) (3.55)

and

xI (ω, φ) =
2bρU

EI

1

π

√
l − φ
l + φ

x̄I (ω, φ) (3.56)

The task now is to decompose x̄ (iω, φ) into its real and imaginary parts. For clarity, this
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will be done in two steps for each part. The real part can be written as:

x̄R (ω, φ) = T̄R (ψ (iω, φ)) + Re
[
S (κω) L̃ (κω)

]
h̄R (κω, φ)− Im

[
S (κω) L̃ (κω)

]
h̄I (κω, φ)

(3.57)

Continuing to separate the real and imaginary parts, Equation (3.57) becomes:

x̄R (ω, φ) = T̄R (ψ (iω, φ)) +
[
SR (ω) L̃R (ω)− SI (ω) L̃I (ω)

]
h̄R (κω, φ)

−
[
SR (ω) L̃I (ω) + SI (ω) L̃R (ω)

]
h̄I (κω, φ) (3.58)

The imaginary part of x (iω, φ) is:

x̄I (ω, φ) = T̄I (ψ (iω, φ)) + Re
[
S (κω) L̃ (κω)

]
h̄I (κω, φ) + Im

[
S (κω) L̃ (κω)

]
h̄R (κω, φ)

(3.59)

Or,

x̄I (ω, φ) = T̄R (ψ (iω, φ)) +
[
SR (ω) L̃R (ω)− SI (ω) L̃I (ω)

]
h̄I (κω, φ)

+
[
SR (ω) L̃I (ω) + SI (ω) L̃R (ω)

]
h̄R (κω, φ) (3.60)
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The next step is to find the real and imaginary parts of T̄ [ψ (iω, φ)] . First, recall:

ψ (iω, φ) = iωq1 (ω, φ) + Uq2 (ω, φ) (3.61)

Because q1 (ω, φ) and q2 (ω, φ) are purely real, note that:

ψR (ω, φ) = Uq2 (ω, φ) (3.62)

and

ψI (ω, φ) = ωq1 (ω, φ) (3.63)

From the definition of T̄ [ψ (iω, φ)], it follows that:

T̄R [ψ (iω, φ)] =

l∫
−l

√
l + ζ

l − ζ
ψR (ω, ζ)

ζ − φ
dζ (3.64)

and

T̄I [ψ (iω, φ)] =

l∫
−l

√
l + ζ

l − ζ
ψI (ω, ζ)

ζ − φ
dζ (3.65)

Next, the function L̃ (κω) will be decomposed into its real and imaginary parts . Recall the
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undecomposed form:

L̃ (κω) = L [κω, (I + κωΩ (0)) Tψ (iω, φ)] (3.66)

The operator L [κω, f ] is defined by:

L [κω, f ] =

l∫
−l

e−κω(l−ζ)f (s, ζ) dζ (3.67)

The second argument in L [κω, f ], from Equation (1.63), can be expanded to obtain:

(I + κωΩ (0)) Tψ (iω, φ) = Tψ (iω, φ) + κωΩ (0) Tψ (iω, φ) (3.68)

Using the definition of Ω (0), Equation (3.68) becomes:

(I + κωΩ (0)) Tψ (iω, φ) = Tψ (iω, φ) + κω

φ∫
−l

Tψ (iω, ζ) dζ (3.69)

It is convenient to define:

G (iω, φ) =

φ∫
−l

T [ψ (iω, ζ)] dζ (3.70)

so that:
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(I + κωΩ (0)) Tψ (iω, φ) = Tψ (iω, φ) + κωG (iω, φ) (3.71)

Or, in terms of the barred quantities:

(I + κωΩ (0)) Tψ (iω, φ) =
1

π

√
l − φ
l + φ

T̄ [ψ (iω, φ)] + κωG (iω, φ) (3.72)

Where G (iω, φ) can be written as:

G (iω, φ) =
1

π

φ∫
−l

√
l − ζ
l + ζ

T̄ [ψ (iω, ζ)] dζ (3.73)

The real and imaginary parts of G (iω, φ) are:

GR (ω, φ) =
1

π

φ∫
−l

√
l − ζ
l + ζ

T̄R [ψ (iω, ζ)] dζ (3.74)

and

GI (ω, φ) =
1

π

φ∫
−l

√
l − ζ
l + ζ

T̄I [ψ (iω, ζ)] dζ (3.75)

Returning to L̃ (κω), Equations (3.66), (3.67), and (3.71) can be used to obtain:
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L̃ (κω) =
1

π

l∫
−l

√
l − ζ
l + ζ

e−κω(l−ζ)T̄ [ψ (iω, ζ)] dζ + κω

l∫
−l

e−κω(l−ζ)G (iω, ζ) dζ (3.76)

To decompose Equation (3.76), note that:

e−κω(l−ζ) = e−
iω
U

(l−ζ) = cos
[ω
U

(l − ζ)
]
− i sin

[ω
U

(l − ζ)
]

(3.77)

From Equations (3.76) and (3.77), it can be shown that the real part of L̃ (κω) is:

L̃R (ω) =
1

π

l∫
−l

√
l − ζ
l + ζ

cos
[ω
U

(l − ζ)
]

T̄R [ψ (iω, ζ)] dζ

+
1

π

l∫
−l

√
l − ζ
l + ζ

sin
[ω
U

(l − ζ)
]

T̄I [ψ (iω, ζ)] dζ

− ω

U

l∫
−l

cos
[ω
U

(l − ζ)
]
GI (ω, ζ) dζ +

ω

U

l∫
−l

sin
[ω
U

(l − ζ)
]
GR (ω, ζ) dζ (3.78)

The imaginary part is:
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L̃I (ω) =
1

π

l∫
−l

√
l − ζ
l + ζ

cos
[ω
U

(l − ζ)
]

T̄I [ψ (iω, ζ)] dζ

− 1

π

l∫
−l

√
l − ζ
l + ζ

sin
[ω
U

(l − ζ)
]

T̄R [ψ (iω, ζ)] dζ

+
ω

U

l∫
−l

cos
[ω
U

(l − ζ)
]
GR (ω, ζ) dζ +

ω

U

l∫
−l

sin
[ω
U

(l − ζ)
]
GI (ω, ζ) dζ (3.79)

The next step is to decompose the function S (κω). First, let:

S (κω) =
1

M (ω) + iN (ω)
(3.80)

where

M (ω) = Re
{
lκω [K0 (lκω) +K1 (lκω)] elκω

}
(3.81)

and

N (ω) = Im
{
lκω [K0 (lκω) +K1 (lκω)] elκω

}
(3.82)

The real and imaginary parts of Equation (3.80) can be separated by multiplying it by one:

S (κω) =
1

M (ω) + iN (ω)

M (ω)− iN (ω)

M (ω)− iN (ω)
(3.83)
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Equation (3.83) becomes:

S (κω) =
M (ω)

[M (ω)]2 + [N (ω)]2
− i N (ω)

[M (ω)]2 + [N (ω)]2
(3.84)

The real and imaginary parts are:

SR (ω) =
M (ω)

[M (ω)]2 + [N (ω)]2
(3.85)

and

SI (ω) = − N (ω)

[M (ω)]2 + [N (ω)]2
(3.86)

The functions M (ω) and N (ω) from Equations (3.81) and (3.82) still need to be evaluated.

First, let:

K̃ (lκω) = K0 (lκω) +K1 (lκω) (3.87)

Equation (3.81) can now be written as:

M (ω) = Re

{
l
iω

U
K̃ (lκω)

[
cos

(
lω

U

)
+ i sin

(
lω

U

)]}
(3.88)
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Or,

M (ω) = Re

[
l
iω

U
K̃ (lκω)

]
cos

(
lω

U

)
− Im

[
l
iω

U
K̃ (lκω)

]
sin

(
lω

U

)
(3.89)

Finally, M (ω) becomes:

M (ω) = −l ω
U
K̃I (lκω) cos

(
lω

U

)
− l ω

U
K̃R (lκω) sin

(
lω

U

)
(3.90)

The function N (ω) is evaluated in the same manner. Without showing the algebra, the

function can be written as:

N (ω) = −l ω
U
K̃I (lκω) sin

(
lω

U

)
+ l

ω

U
K̃R (lκω) cos

(
lω

U

)
(3.91)

Further treatment of the Bessel functions K̃R (lκω) and K̃I (lκω) is deferred to the next

section. The last function that needs to be decomposed is h̄ (κω, φ). Recall its definition:

h̄ (κω, φ) =

∞∫
0

e−κωζ

√
2l + ζ

ζ

1

φ− l − ζ
dζ (3.92)

Euler’s formula can be applied to Equation (3.92) to obtain:

h̄R (ω, φ) =

∞∫
0

cos
(ω
U
ζ
)√2l + ζ

ζ

1

φ− l − ζ
dζ (3.93)
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The bending flutter determinant, d (iω, U) , has been decomposed into its real and imaginary

parts completely. Some of the integrals in d (iω, U) can be evaluated using routine numerical

integration methods, but the integrals that are singular must be treated with care.
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3.3 Treatment of singular integrals

It has been shown that some of the integrals present in the flutter determinant are singular,

where the integrand goes to infinity within the domain of integration. It may be tempting

to use traditional numerical integration methods, and do nothing more than increase the

number of subdivisions near the singular point, but this would result in catastrophic error.

The best way to demonstrate this is with a simple example. Consider the definite integral:

I =

1∫
0

1√
x
dx (3.94)

Where it is clear that this integral is singular because 1√
x
→ ∞ as x → 0. However, it is

known that I is finite, because the integral can be evaluated analytically and results in I = 2

. Consider a scenario where the integral is evaluated numerically by setting the lower bound

to a very small number ε , where the intent is for it to converge if ε is sufficiently small.

That is, the following integral is computed using standard numerical methods.

I =

1∫
ε

1√
x
dx (3.95)

Table 3.1 shows the result of applying Simpson’s Rule to Equation (3.95), using 1000 subdi-

visions, for ε ranging from 0.1 to 1× 10−13.
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Table 3.1: Numerical Integration of Equation (3.95) using Simpson’s Rule.

ε I

1× 10−1 1.36754

1× 10−2 1.8

1× 10−3 1.9369

1× 10−4 1.98917

1× 10−5 2.06515

1× 10−6 2.29348

1× 10−7 3.01428

1× 10−8 5.29353

1× 10−9 12.5011

1× 10−10 35.2935

1× 10−11 107.369

1× 10−12 335.294

1× 10−13 1056.05

It is clear from Table 3.1 that the integral in Equation (3.95) will not converge, no matter

how small the ε. The easiest way to treat singular integrals, whenever possible, is to use a

variable substitution to eliminate the singularity. For example, consider the integral G (iω, φ)

from the bending flutter determinant.
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G (iω, φ) =
1

π

φ∫
−l

√
l − ζ
l + ζ

T̄ [ψ (iω, ζ)] dζ (3.96)

In Equation (3.96), T̄ [ψ (iω, ζ)] is finite. Here it is evident that the integral is singular at

ζ = −l. However, this can be avoided with a variable substitution. Let:

u =
√
l + ζ (3.97)

so that:

du =
1

2
√
l + ζ

dζ (3.98)

and

ζ = u2 − l (3.99)

The bounds in terms of the new integration variable are 0 ≤ u ≤
√
l + φ for −l ≤ ζ ≤ φ .

Substituting these expressions into Equation (3.96), the integral becomes:

G (iω, φ) =
2

π

√
l+φ∫

0

√
2l − u2T̄

[
ψ
(
iω, u2 − l

)]
du (3.100)

The integrand in Equation (3.100) is finite throughout the entire integration domain. This
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type of variable substitution can be applied to several of the integrals in d (iω, U), including

L̃ (κω) and y (iω, φ). However, this type of substitution cannot eliminate singularities that

are not in the form of a square root. For example, consider the integral T̄ (κω, φ):

T̄ [ψ (iω, φ)] =

l∫
−l

√
l + ζ

l − ζ
ψ (iω, ζ)

ζ − φ
dζ (3.101)

This integral is singular at two points within the domain, ζ = l and ζ = φ . The singularity

at ζ = l can be eliminated using a variable substitution. Let:

u =
√
l − ζ (3.102)

so that:

du = − 1

2
√
l − ζ

dζ (3.103)

The lower and upper bounds become u =
√

2l and u = 0, respectively. Performing the

substitution, and reversing the bounds, the integral in Equation (3.101) becomes:

T̄ [ψ (iω, φ)] = 2

√
2l∫

0

√
2l − u2

ψ (iω, l − u2)

l − u2 − φ
du (3.104)

Or, rearranging,
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T̄ [ψ (iω, φ)] = −2

√
2l∫

0

√
2l − u2

ψ (iω, l − u2)

u2 − (φ− l)
du (3.105)

One singular point has been eliminated, but there is no such variable substitution that can

eliminate the singularity at u2 = φ − l. However, the IMT method provides a variable

transformation that eliminates singularities given that they are at the endpoints of the

integration. Because −l ≤ φ ≤ l in Equation (1.102), the singularity at u2 = φ − l is not

located at an endpoint, but the integral can be split at u =
√
φ− l to force this to be the

case. Consider the integral of a function f (x)from 0 to 1, where f (x) can approach infinity

as x→ 0 , x→ 1 , or both. For an integral in this form, the IMT method is:

1∫
0

f (x) dx =

1∫
0

g (t) dt (3.106)

where

g (t) = f [η (t)] η′ (t) (3.107)

where

η′ (t) =
1

Q
exp

(
−1

t
− 1

1− t

)
(3.108)

where
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Q =

1∫
0

exp

(
−1

τ
− 1

1− τ

)
dτ ∼= 0.007043 (3.109)

where it is evident that:

η (t) =

t∫
0

η′ (τ) dτ (3.110)

The integral in Equation (3.110) cannot be evaluated analytically, but its numerical com-

putation is straightforward. The IMT method accomplishes the task of eliminating the

endpoint singularities by the choice of η′ (t). This function is plotted in Figure 3.1.

Figure 3.1: The function η′ (t) from Equation (3.108).

Figure 3.1 shows that η′ (t) sharply approaches zero at t = 0 and t = 1, which will prevent

a singular integrand from being very large near the endpoints. To demonstrate the IMT
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method, it will be applied to the real part of T̄ [ψ (iω, φ)]:

T̄R [ψ (iω, φ)] = −2

√
2l∫

0

√
2l − u2

ψR (ω, l − u2)

u2 − (φ− l)
du (3.111)

The integral in Equation (3.111) can be split at the singular point as follows. Let:

T̄R [ψ (iω, φ)] = T̄R,1 [ψ (iω, φ)] + T̄R,2 [ψ (iω, φ)] (3.112)

where

T̄R,1 [ψ (iω, φ)] = −2

λ∫
0

√
2l − u2

ψR (ω, l − u2)

u2 − (φ− l)
du (3.113)

and

T̄R,2 [ψ (iω, φ)] = −2

√
2l∫

λ

√
2l − u2

ψR (ω, l − u2)

u2 − (φ− l)
du (3.114)

where λ ≡
√
l − φ. The next step is to make a variable substitution so that the bounds on

each of the integrals are 0 and 1. For the first integral, let:

v =
u

λ
⇒ du = λdv (3.115)

For the second integral, let:
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v =
u− λ√
2l − λ

⇒ du =
(√

2l − λ
)
dv (3.116)

Performing the substitutions, the integrals become:

T̄R,1 [ψ (iω, φ)] = −2λ

1∫
0

√
2l − (λv)2ψR

(
ω, l − (λv)2)

(λv)2 − (φ− l)
dv (3.117)

and

T̄R,2 [ψ (iω, φ)] = −2
(√

2l − λ
) 1∫

0

√
2l − γ2

ψR (ω, l − γ2)

γ2 − (φ− l)
dv (3.118)

where

γ ≡ λ+
(√

2l − λ
)
v (3.119)

Applying the IMT method to Equation (3.117), the integral becomes:

T̄R,1 [ψ (iω, φ)] = −2λ

1∫
0

√
2l − (λη (t))2ψR

(
ω, l − (λη (t))2)

(λη (t))2 − (φ− l)
η′ (t) dt (3.120)

To verify that T̄R,1 [ψ (iω, φ)] is no longer singular, the integrand in Equation (3.120) is plot-

ted for L = 0.15, φ = 0 , and ω = 1. Figure 3.2 shows the original integrand (left) and the
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transformed integrand (right) of Equation (3.120).

Figure 3.2: Integrand of T̄R,1 [ψ (iω, φ)] : Original (left) and transformed (right).

Figure 3.2 demonstrates that the IMT method was successful in transforming T̄R,1 [ψ (iω, φ)]

to a nonsingular integral. It was observed, when implementing the IMT method, that while

it is successful on T̄R,1 [ψ (iω, φ)], it did not convert T̄R,2 [ψ (iω, φ)]to a nonsingular integral.

Since the original publication of the IMT method, several subsequent methods based on

this approach have been developed. The method that works best for T̄R,2 [ψ (iω, φ)] is the

so-called Tanh transformation, which drives the integrand to zero at the endpoints via the

function sech2 (t). The Tanh transformation is given by:

b∫
a

f (x) dx =
1

2
(b− a)

∞∫
−∞

f

[
1

2
(b+ a) +

1

2
(b− a) tanh (t)

]
sech2 (t) dt (3.121)

Here f (x) can be singular at x = a , x = b , or both. Implementing the Tanh transformation
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for T̄R,2 [ψ (iω, φ)], the integral becomes:

T̄R,2 [ψ (iω, φ)] = −
(√

2l − λ
) M∫
−M

√
2l − γ̃2

ψR (ω, l − γ̃2)

γ̃2 − (φ− l)
sech2 (t) dt (3.122)

where

γ̃ = λ+
(√

2l − λ
)[1

2
+

1

2
tanh (t)

]
(3.123)

It was found that M = 5 is sufficiently large for the integral T̄R,2 [ψ (iω, φ)]to converge. Once

again, the transformed integrand of T̄R,2 [ψ (iω, φ)] is plotted to ensure that the integral is no

longer singular. Figure 3.3 shows the original and transformed integrands of T̄R,2 [ψ (iω, φ)],

for L = 0.15, φ = 0 , and ω = 1 .

Figure 3.3: Integrand of T̄R,2 [ψ (iω, φ)] : Original (left) and transformed (right)..
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Another integral that is singular is h̄ (κω, φ):

h̄ (κω, φ) =

∞∫
0

e−κωζ

√
2l + ζ

ζ

1

φ− l − ζ
dζ (3.124)

This integral is singular at two points within the domain, ζ = 0 and ζ = φ−l. The singularity

at ζ = 0 can be eliminated using a variable substitution. Let:

u =
√
ζ (3.125)

so that:

du =
1

2
√
ζ
dζ (3.126)

The bounds of integration remain unchanged. The integral in Equation (3.124) becomes:

h̄ (κω, φ) = 2

∞∫
0

e−κωu
2√

2l + u2
1

φ− l − u2
du (3.127)

One singular point has been eliminated, but there is no variable substitution that can elim-

inate the singularity at u2 = φ− l. However, with −l ≤ φ ≤ l, note that (φ− l) ≤ 0. With

u2 ≥ 0, the integral in Equation (1.124) can only be singular when (φ− l) = 0, or φ = l.

Recall the form of h (κω, φ) from Equation (3.43) :
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h (κω, φ) =
1

π

√
l − φ
l + φ

h̄ (κω, φ) (3.128)

Note that in Equation (3.128) h (κω, φ) is identically zero when φ = l , and with h̄ (κω, φ)

finite, there is no need to evaluate the function h̄ (κω, φ) when φ = l. While the IMT method

or the Tanh transformation can be applied to h̄ (κω, φ) in a straightforward manner, it is not

necessary.

With the variable substitutions and the IMT and Tanh transformations applied to the sin-

gular integrals, the task at hand now involves numerical integration of relatively smooth

functions. There are many methods to choose from, but it was determined that Simpson’s

Rule – a Newton-Cotes formula of order 3 – provides sufficient accuracy. The Composite

Simpson’s Rule is shown in Appendix B.1. For each of the integrals in d (iω, U), the number

of integration points was increased until the result of the numerical integration was indepen-

dent of the number of points. The minimum number of points for each of these integrals is

shown in Table 2.
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Table 3.2: Number of Integration Points Required for Integrals in the Flutter Determinant.

Integral N

T̄ [ψ (iω, φ)] 26

G (iω, φ) 12

h̄ (κω, φ) 14

L̃ (κω) 22

ȳ (ω, φ) 10

While it may seem that the number of points required for these integrals is not excessive,

due to the nature of the integrals being nested up to three times, the calculation of d (iω, U)

can be computationally expensive. To reduce the computational time, any integrals that are

functions of one variable only can be integrated only once and reused in subsequent instances

of it. An example of such an integral is η (t) from the IMT method:

η (t) =
1

Q

t∫
0

exp

(
−1

τ
− 1

1− τ

)
dt (3.129)

Where 0 ≤ t ≤ 1. Using object-oriented programming techniques, the values of η (t) can be

stored in a data structure and retrieved by the main computer program computing d (iω, U).

In this work, η (t) was calculated for 10,000 values of t , where each integration was performed

using Simpson’s Rule with 1000 points. For values of t that fall between the tabulated

values, for example tk and tk+1 , linear interpolation is used to more accurately determine

the corresponding value of η (t) .
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η (t) ∼= η (tk) +
t− tk

tk+1 − tk
[η (tk+1)− η (tk)] (3.130)

This approach is also applicable for evaluating the Bessel K functions K0 (lκω)and K1 (lκω).

The results of these functions are stored as a function of the variable lκω , where it is

understood that new values would have to be computed if the constant l is to be changed.

For a complex argument z , the Bessel K functions are:

K0 (z) =
2−

1
4

(2π)−
3
2

e−zz−
1
4

∞∫
−∞

Γ

(
1

4
+ it

)
Γ2

(
1

4
− it

)
(2z)itdt (3.131)

And

K1 (z) = e−zz−1 − 2−
1
4

(2π)−
3
2

e−zz−
1
4

∞∫
−∞

Γ

(
1

4
+ it

)
Γ2

(
1

4
− it

)
(2z)itdt (3.132)

The function Γ (·) is the gamma function, for a complex argument, given by:

Γ (z) =

∞∫
0

xz−1e−xdx (3.133)

Due to the complexity of K0 (lκω) and K1 (lκω), the results for 10,000 values of lκω were

obtained from the software Mathematica. These values were then used to calculate the

functions SR (κω)and SI (κω) for 10,000 lκω values, for a given value of l .
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3.4 Flutter speed calculation using Balakrishnan continuum the-

ory

Using the methods for determining the flutter speed presented in this chapter, along with

the Balakrishnan continuum theory of Chapter 2, flutter speed calculations were performed

for three rectangular, beam-like structures. The three structures were made of 2024-T3

aluminum, PETG plastic, and ABS plastic. The dimensions and material properties of each

structure are shown in Table 3.3.

Table 3.3: Material Properties and Dimensions for Three Structures.

2024-T3 Aluminum PETG ABS

Young’s Modulus (GPa) 73.1 2.83 2.10

Length (cm) 30.5 20.32 20.32

Width (cm) 10.2 10.2 10.2

Thickness (cm) 3.81×10−4 0.075 0.05

The calculations were performed in a C++ computer program, consisting of a source file

accompanied by header files which stored the tabulated data for some integrals. The Newton-

Raphson routine for finding the roots ω and U to the real and imaginary parts of the flutter

determinant converged rapidly using a reasonable initial guess. For the 2024 aluminum case,

using an initial guess of ω = 122 rad/s and U = 45 m/s, the Newton-Rapshon method

converged after 9 iterations with an error of 1.06× 10−8. Table 3.4 shows the error for this

case, defined using the 2-norm, for each iteration.
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Table 3.4: Newton-Rapshon Convergence for 2024-T3 Aluminum Case.

Iteration Error

1 3.58× 1013

2 2.75× 108

3 3.06× 105

4 9.06× 104

5 2.29× 104

6 2.23× 103

7 12.5

8 1.27× 10−3

9 1.06× 10−8

The roots ω and U also converged rapidly. Figure 3.4 shows the convergence of ω (left) and

U (right) for the 2024-T3 aluminum case.
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Figure 3.4: Convergence of ω (left) and U (right) with number of iterations for 2024-T3

aluminum case.

The flutter speed obtained from these calculations was 20.3 m/s. The calculated value for

the aeroelastic mode frequency, ω, was 122 rad/s, which is near the second bending natural

frequency of 133.5 rad/s. The convergence behavior was similar for the PETG and ABS

plastic cases. For PETG, the calculated flutter speed was 32.4 m/s and the ω was 34.4

rad/s. The U and ω for the ABS case were 23.1 m/s and 94.3 rad/s, respectively.
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4 The semi-continuum approach: Combined approxi-

mate and continuum solution

When the linear continuum theory is extended to account for nonlinear structure effects,

the problem that arises is that the structure side of the problem can no longer be solved

analytically. It will be shown that allowing for lateral motion of the structure, which produces

a set of coupled nonlinear equations for the dynamics of the structure, does not prohibit

the use of the continuum solution for the aerodynamics if the flow is treated as inviscid.

Thus, the approach presented here uses the continuum solution developed previously for

the aerodynamic lift and moment, and uses approximate methods to solve the nonlinear

structure equations.

4.1 Semi-continuum method for linear structure and fluid dynam-

ics

In this section the semi-continuum method is developed to solve the governing equations for

the case where the fluid and structure dynamics are both linear. This is the same set of

equations used in the Balakrishnan continuum theory (BCT), but the use of an approximate

solution for the structure side allows for a key simplifying assumption in the solution to be

relieved. To begin, recall the governing equation for the bending displacement in the Laplace

domain, ĥ (s, y) :

EIĥ(4) (s, y) +mss
2ĥ (s, y) = 2bρUÂ2

(
s, y, ĥ, ĥ′

)
(4.1)
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Where Â2

(
s, ȳ, ĥ, ĥ′

)
is the Kussner doublet function representing the lift on the structure,

which is solved for using the BCT. In the solution method presented in this chapter, the

continuum solution for Â2

(
s, ȳ, ĥ, ĥ′

)
is used for the fluid side of the problem, and the struc-

ture side of the problem is solved using the Galerkin method.

The boundary conditions for the structure in the cantilever configuration, with −l ≤ y ≤ l ,

are:

ĥ (s,−l) = ĥ′ (s,−l) = ĥ′′ (s, l) = ĥ′′′ (s, l) = 0 (4.2)

For the Galerkin method, it is convenient to nondimensionalize the y variable as follows:

ȳ =
y + l

2l
(4.3)

where 0 ≤ ȳ ≤ 1. The governing equation becomes:

EI

16l4
ĥ(4) (s, ȳ) +mss

2ĥ (s, ȳ) = 2bρUÂ2

(
s, ȳ, ĥ, ĥ′

)
(4.4)

The boundary conditions in terms of ȳ are:

ĥ (s, 0) = ĥ′ (s, 0) = ĥ′′ (s, 1) = ĥ′′′ (s, 1) = 0 (4.5)
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To analyze the stability of the system for a given air speed U , a disturbance is applied to

the structure from rest:

h (t, ȳ) = 0 + f (t)H (ȳ) (4.6)

The function for the time dependence of h (t, y) is chosen to be purely real in the time

domain so that the bending displacement h (t, y) is purely real, but complex in the Laplace

domain to perform a stability analysis. The function f (t) can be written in terms of two

independent parameters σ and ω :

f (t) = eσt [cos (ωt) + sin (ωt)] (4.7)

It can be shown, using Euler’s Formula, that f (t) can be written as:

f (t) = eσt [cos (ωt) + sin (ωt)] = eσt
[

1

2i
eiωt − 1

2i
e−iωt +

1

2
eiωt +

1

2
e−iωt

]
(4.8)

In Equation (4.8), f (t) is the sum of four linearly independent functions:

u1 (t) =
1

2i
e(σ+iω)t (4.9)

u1 (t) = − 1

2i
e(σ−iω)t (4.10)
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u1 (t) =
1

2
e(σ+iω)t (4.11)

u1 (t) =
1

2
e(σ−iω)t (4.12)

Before taking the Laplace transform, it is useful to look at the derivatives:

u̇1 (t) =
1

2i
(σ + iω) e(σ+iω)t = (σ + iω)u1 (t) (4.13)

Similarly,

u̇2 (t) = (σ − iω)u2 (t) (4.14)

u̇3 (t) = (σ + iω)u3 (t) (4.15)

u̇4 (t) = (σ − iω)u4 (t) (4.16)

By taking the Laplace transform of u̇1 (t) from Equation (4.13), note that:

sL [u1 (t)] = (σ + iω)L [u1 (t)] (4.17)

It evident that for u1 (t) and u3 (t) :
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s = σ + iω (4.18)

Whereas for u2 (t) and u4 (t) :

s = σ − iω (4.19)

For the f (t) chosen for the disturbance, s comes as a complex conjugate pair s = σ ± iω,

where the negative root can be discarded. The Laplace transform of h (t, y) is:

ĥ (s, ȳ) =

[
s− σ

(s− σ)2 + ω2
+

ω

(s− σ)2 + ω2

]
H (ȳ) (4.20)

Substituting the expression for ĥ (s, ȳ) from Equation (4.20) into the governing equation,

Equation (4.1), and canceling the denominator, the governing equation becomes:

EI

16l4
(s− σ + ω)H(4) (ȳ) +mss

2 (s− σ + ω)H (ȳ) = 2bρU (s− σ + ω) Â2 [s, y, U,H (ȳ)]

(4.21)

As demonstrated in Chapter 3, the sign of σ determines whether or not the structure is

stable for a given U , where σ = 0 corresponds to the onset of flutter. As before, σ will be

set to zero and the roots ω and U will be calculated to determine the onset of instability.

For σ = 0 and s = iω, Equation (4.21) becomes:
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EI

16l4
(1 + i)H(4) (ȳ)−msω

2 (1 + i)H (ȳ) = 2bρU (1 + i) Â2 [iω, ȳ, U,H (ȳ)] (4.22)

Because Equation (4.22) has real and imaginary parts, they must be separated and each

equation must be satisfied simultaneously. The real equation is:

EI

16l4
H(4) (ȳ)−msω

2H (ȳ) = 2bρU
[
Re
(
Â2 [iω, ȳ, U,H (ȳ)]

)
− Im

(
Â2 [iω, ȳ, U,H (ȳ)]

)]
(4.23)

And the imaginary equation is:

EI

16l4
H(4) (ȳ)−msω

2H (ȳ) = 2bρU
[
Re
(
Â2 [iω, ȳ, U,H (ȳ)]

)
+ Im

(
Â2 [iω, ȳ, U,H (ȳ)]

)]
(4.24)

The task now is to find the roots ω and U that satisfy Equations (4.23) and (4.24). Because

σ has been set to zero, which corresponds to a marginally stable structure, this U is the

flutter speed.

The Galerkin method approximates a function as a series with a finite number of terms.

Each term is a trial function multiplied by a coefficient, as shown in Equation (4.25).

H (ȳ) =
N∑
n=1

BnHn (ȳ) (4.25)
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The trial functions, Hn (ȳ), must satisfy the boundary conditions, and for the Galerkin

method to be useful they must also be orthogonal. A natural choice for the trial functions

is the solution for a beam vibrating without the presence of air. This is an eigenvalue

problem, where the solution for the spatial dependence comes in the form of the following

eigenfunctions:

Hn (ȳ) = cosh (µnȳ)− cos (µnȳ) +
cosh (µn) + cos (µn)

sinh (µn) + sin (µn)
(sin (µnȳ)− sinh (µnȳ)) (4.26)

The µn are calculated to satisfy the boundary conditions using the transcendental equation:

cosh (µn) cos (µn) + 1 = 0 (4.27)

The functions in Equation (4.10) are orthogonal, and represent the mode shapes for each

natural frequency ωn. The first three eigenfunctions, Hn (ȳ), are shown in Figure 4.1.
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Figure 4.1: First three eigenfunctions.

The functions Hn (ȳ) have the following orthogonality property:

1∫
0

Hn (ȳ)Hm (ȳ) dȳ = δmn (4.28)

The fourth derivative of Hn (ȳ) is:

H(4)
n (ȳ) = µ4

nHn (ȳ) (4.29)

Thus,

H(4) (ȳ) =
N∑
n=1

µ4
nBnHn (ȳ) (4.30)
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Substituting Equations (4.25) and (4.30), the governing equation becomes:

EI

16l4
(1 + i)

N∑
n=1

µ4
nBnHn (ȳ)−msω

2 (1 + i)
N∑
n=1

BnHn (ȳ) =

2bρU (1 + i)
N∑
n=1

BnÂ2n [iω, ȳ, U,Hn (ȳ)] (4.31)

The next step is to multiply through by Hm (ȳ) and integrate over ȳ to obtain:

EI

16l4
(1 + i)

N∑
n=1

µ4
nBn

1∫
0

Hn (ȳ)Hm (ȳ) dȳ −msω
2 (1 + i)

N∑
n=1

Bn

1∫
0

Hn (ȳ)Hm (ȳ) dȳ =

2bρU (1 + i)
N∑
n=1

Bn

1∫
0

Hm (ȳ) Â2n [iω, ȳ, U,Hn (ȳ)] dȳ (4.32)

For n = 1, 2, ..., N and m = 1, 2, ..., N . For each m , there is one equation containing the

coefficients B1, B2, ..., BN . Applying the orthogonality property, Equation (4.32) becomes:

EI

16l4
(1 + i)

N∑
n=1

µ4
nBn −msω

2 (1 + i)
N∑
n=1

Bn =

2bρU (1 + i)
N∑
n=1

Bn

1∫
0

Hm (ȳ) Â2n [iω, ȳ, U,Hn (ȳ)] dȳ (4.33)
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Rearranging,

(1 + i)
N∑
n=1

(
µ4
n

EI

16l4
−msω

2

)
Bn − 2bρU (1 + i)

N∑
n=1

Bn

1∫
0

Hm (ȳ) Â2n [iω, ȳ, U,Hn (ȳ)] dȳ = 0

(4.34)

Equation (4.36) can be written in matrix form, to isolate U and obtain:

N∑
n=1

BnM
1
nn − U

N∑
n=1

BnM
2
nm = 0 (4.35)

where

M1
nn = (1 + i)

(
EI

16l4
µ4
n −msω

2

)
(4.36)

and

M2
nm = 2bρ (1 + i)

1∫
0

Hm (ȳ) Â2n [iω, ȳ, U,Hn (ȳ)] dȳ (4.37)

Multiplying through by (M2
nm)

−1
and rearranging,

N∑
n=1

BnM
1
nn

(
M2

nm

)−1 − U
N∑
n=1

BnInn = 0 (4.38)

For m = 1, 2, ..., N . Equation (4.38) expressed in block matrix form:
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∣∣∣M − UI∣∣∣ ∣∣B̄∣∣ = 0 (4.39)

where ¯̄I is the identity matrix, and:

M = M1
nn

(
M2

nm

)−1
(4.40)

Equation (4.40) is satisfied if:

det
(
M − UI

)
= 0 (4.41)

Because the matrix ¯̄M in Equation (4.41) is complex, the real and imaginary parts of the

determinant must be set to zero simultaneously. Thus,

det
[
Re
(
M (ω)− UI

)]
= 0 (4.42)

det
[
Im
(
M (ω)− UI

)]
= 0 (4.43)

By finding the roots ω and U to Equations (4.42) and (4.43), it is evident that U is a repeated

eigenvalue of the matrix ¯̄M . As a result, the coefficients Bn can be determined because they

are the elements of the eigenvector corresponding to the eigenvalue U .
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4.2 Flutter speed calculation based on linear fluid and linear struc-

ture dynamics

Using the numerical methods described in Chapter 3 and Appendix A, calculations were

performed for three different structures. The benchmark case was a 2024-T3 Aluminum

beam, where aluminum was chosen because the material properties are precisely known.

The two additional cases were of different materials, ABS and PETG plastic, each with

different dimensions. The flutter speed was measured in a wind tunnel for each sample; see

Chapter 5.2. The material properties and dimensions for each configuration is shown in in

Table 4.1.

Table 4.1: Material properties and dimensions for three configurations.

Material 2024-T3 Aluminum PETG ABS

Density (kg/m3) 2780 1270 1070

Young’s Modulus (GPa) 73.1 2.83 2.10

Shear Modulus (GPa) 28.0 0.0385 0.0827

Length (cm) 30.5 20.32 20.32

Width (cm) 10.2 10.2 10.2

Thickness (cm) 3.81−4 0.075 0.05

For each case, the number of terms used in the Galerkin method was increased until sufficient

convergence was obtained. The plot in Figure 4.2 shows that the flutter speed convergence

for the 2024-T3 aluminum case, where it converges reasonably well using 17 terms.
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Figure 4.2: Convergence of flutter speed with number of terms used in the Galerkin method.

The flutter speed obtained for the 2024-T3 aluminum case using 20 terms is 50.4 m/s, and the

corresponding ω is 122 rad/s. The Galerkin coefficients obtained from the calculation at the

flutter speed can be used to construct the eigenfunctions associated with the approximation

of h (t, y). The eigenfunctions from the real and imaginary parts of the flutter determinant

were plotted to inspect the shape of the structure associated with the approximation of

h (t, y), as shown in Figure 4.3. The coefficients are tabulated in Appendix C.
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Figure 4.3: Eigenfunctions from the real (left) and imaginary (right) flutter determinant for

2024-T3 aluminum.

The eigenfunctions in Figure 4.3 are primarily a combination of the first and second bending

mode shapes. For experimental visualization of the mode shapes of a structure fluttering in

axial flow see Chapter 5.3. Figure 4.4 shows the convergence of flutter speed with number

of Galerkin terms for the second configuration, PETG plastic.
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Figure 4.4: Convergence of flutter speed with number of terms used in the Galerkin method

for PETG case.

The flutter speed obtained for the PETG case is 30.4 m/s, and the corresponding ω is 99.9

rad/s. The eigenfunctions determined from the solution at the flutter speed are shown in

Figure 4.5.

Figure 4.5: Eigenfunctions from the real (left) and imaginary (right) flutter determinant for

PETG plastic.
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The solution produced for the PETG plastic configuration is a combination of the first and

second bending modes, where the first bending mode is dominant. Note that the eigenfunc-

tion from the imaginary part of the flutter determinant has more influence from the second

bending mode as compared to the eigenfunction from the real part. Figure 4.6 shows the

flutter speed versus number of Galerkin terms for the third configuration, ABS plastic.

Figure 4.6: Convergence of flutter speed with number of terms used in the Galerkin method

for the ABS case.

The flutter speed obtained for the ABS case is 20.6 m/s using 20 Galerkin terms, and the ω

is 130 rad/s. The eigenfunctions for this case are shown in Figure 4.7.
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Figure 4.7: Eigenfunctions from the real (left) and imaginary (right) flutter determinant for

PETG plastic.

The eigenfunctions obtained for the ABS plastic case show that they are composed primarily

of the first and second mode shapes. As was the case for the PETG plastic configuration,

the eigenfunction from the imaginary part of the solution has a greater influence from the

second bending mode.
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4.3 Semi-continuum method for nonlinear structure and linear

fluid dynamics

The Galerkin method, combined with the continuum solution for the aerodynamics, produced

a reasonably accurate result in the linear case and eliminated a simplifying assumption.

However, the true usefulness of the semi-continuum approach is that it can be used to extend

the model to account for nonlinear structure dynamics – something a purely continuum

approach cannot do. The nonlinear effects investigated here, using the Dowell-Hodges model

[DH], arise from allowing lateral motion of the structure. This motion, perpendicular to the

air velocity as shown in Figure 4.8, will have no effect on the flow field if the flow is assumed

to be inviscid because the beam is very thin.

Figure 4.8: Beam and coordinate system with three modes of motion.

The governing equations for the Dowell-Hodges model, using the nondimensional coordinate,

0 ≤ ȳ ≤ 1, are:
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EIxx
16l4

h(4) (t, ȳ) +msḧ (t, ȳ) +
∆EI

16l4
[θ (t, ȳ)w′′ (t, ȳ)]

′′
= 2bρUL−1

[
Â2

(
s, ȳ, ĥ, ĥ′

)]
(4.44)

and

−GJ
2l2

θ′′ (t, ȳ) + Iθθ̈ (t, ȳ) +
∆EI

16l4
h′′ (t, ȳ)w′′ (t, ȳ) =

2

3
b3ρUL−1

[
iÂ1

(
s, ȳ, θ̂, θ̂′

)]
(4.45)

and

EIzz
16l4

w(4) (t, ȳ) +msẅ (t, ȳ) +
∆EI

16l4
[θ (t, ȳ)h′′ (t, ȳ)]

′′
= 0 (4.46)

where ∆EI = EIzz −EIxx . Note that the Kussner doublet functions, where L−1 [·] denotes

the inverse Laplace transform, have been used for the lift and moment on the right hand

sides of Equations (4.44) and (4.45). The boundary conditions for Equations (4.44)-(4.46)

are:

h (t, 0) = h′ (t, 0) = h′′ (t, 1) = h′′′ (t, 1) = 0 (4.47)

θ (t, 0) = θ′ (t, 1) = 0 (4.48)

w (t, 0) = w′ (t, 0) = w′′ (t, 1) = w′′′ (t, 1) = 0 (4.49)
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For the Galerkin method, the independent variables are assumed to have the form:

h (t, y) = f (t)H (ȳ) (4.50)

θ (t, y) = f (t) Θ (ȳ) (4.51)

w (t, y) = f (t)W (ȳ) (4.52)

The time dependence in the trial functions, f (t) , is chosen to be the same as before:

f (t) = eσt [cos (ωt) + sin (ωt)] (4.53)

The trial functions for the bending displacements, H (ȳ) and W (ȳ), are the solutions to the

beam vibration without the presence of air:

H (ȳ) =
N∑
n=1

BnHn (ȳ) (4.54)

where

Hn (ȳ) = cosh (µnȳ)− cos (µnȳ) +
cosh (µn) + cos (µn)

sinh (µn) + sin (µn)
(sin (µnȳ)− sinh (µnȳ)) (4.55)
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and

W (ȳ) =
N∑
n=1

DnWn (ȳ) (4.56)

where

Wn (ȳ) = cosh (µnȳ)− cos (µnȳ) +
cosh (µn) + cos (µn)

sinh (µn) + sin (µn)
(sin (µnȳ)− sinh (µnȳ)) (4.57)

The µn remain unchanged because both functions satisfy the same boundary conditions.

The trial functions for Θ (ȳ) are:

Θ (ȳ) =
N∑
n=1

CnΘn (ȳ) (4.58)

where

Θn (ȳ) = sin (λnȳ) (4.59)

where, from the boundary conditions, λn is given by:

λn =

(
2n− 1

2

)
π (4.60)
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Beginning with the governing equation for h (t, y), the assumed forms from Equations (4.50)-

(4.52) are substituted to obtain:

EIxx
16l4

f (t)H(4) (ȳ)+msf̈ (t)H (ȳ)+
∆EI

16l4
[f (t)]2[Θ (ȳ)W ′′ (ȳ)]

′′
= 2bρUf (t)L−1

[
Â2 (s, ȳ, H,H ′)

]
(4.61)

The challenge presented here is that the nonlinear term contains a factor of [f (t)]2 , which

would prevent the use of the stability analysis developed for the linear case. In order to

preserve the linear stability analysis, [f (t)]2 is linearized using a power series expansion.

[f (t)]2 is given by:

[[f (t)]2 = [cos (ωt) + sin (ωt)]2 = 1 + 2 cos (ωt) sin (ωt) (4.62)

The first few terms of the power series for sinx and cos x are:

cosx = 1− x2

2!
+
x4

4!
+ ... (4.63)

sinx = x− x3

3!
+
x5

5!
+ ... (4.64)

Thus,
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1 + 2 cos (ωt) sin (ωt) = 1 + 2ωt− 2
(ωt)3

3!
+ ... (4.65)

All terms of order (ωt)3 and higher are discarded to obtain:

1 + 2 cos (ωt) sin (ωt) ∼= 1 + 2ωt (4.66)

Comparing this to the power series expansions in Equations (4.63) and (4.64), [f (t)]2 be-

comes:

[f (t)]2 ∼= cos (ωt) + 2 sin (ωt) (4.67)

With [f (t)]2 linearized, the stability analysis detailed previously can be applied, and there is

no longer any need to work in the time domain. Taking the Laplace transform of Equation

(4.61),

EIxx
16l4

L [f (t)]H(4) (ȳ) +mss
2L [f (t)]H (ȳ) +

∆EI

16l4
L
{

[f (t)]2
}

[Θ (ȳ)W ′′ (ȳ)]
′′

=

L [f (t)] 2bρUÂ2 (s, ȳ, H,H ′) (4.68)

The Laplace transforms of f (t) and [f (t)]2are:
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L [f (t)] =
s− σ

(s− σ)2 + ω2
+

ω

(s− σ)2 + ω2
(4.69)

and

L
[
(f (t))2] =

s− σ
(s− σ)2 + ω2

+
2ω

(s− σ)2 + ω2
(4.70)

Substituting into Equation (4.68),

EIxx
16l4

(s− σ + ω)H(4) (s, ȳ)−ms (s− σ + ω)ω2H (ȳ) +
∆EI

16l4
(s− σ + 2ω) [Θ (ȳ)W ′′ (ȳ)]

′′

= 2bρU (s− σ + ω) Â2 (s, ȳ, H,H ′) (4.71)

For σ = 0 and s = iω, the equation reduces to:

EIxx
16l4

ω (1 + i)H(4) (s, ȳ)−ms (1 + i)ω3H (ȳ) +
∆EI

16l4
ω (2 + i) [Θ (ȳ)W ′′ (ȳ)]

′′

= 2bρUω (1 + i) Â2 (s, ȳ, H,H ′) (4.72)

Or,
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EIxx
16l4

H(4) (s, ȳ)−msω
2H (ȳ) +

∆EI

16l4
Ω
[
Θ̂ (ȳ)W ′′ (ȳ)

]′′
= 2bρUÂ2 (s, ȳ, H,H ′) (4.73)

Where Ω = 2 for the real equation and Ω = 1 for the imaginary equation The same procedure

can be applied to the governing equations for θ̂ (s, ȳ) and ŵ (s, ȳ) . Upon substituting the

assumed form, θ̂ (s, ȳ) = f (t) Θ (ȳ), the real and imaginary parts of the governing equation

for θ̂ (s, ȳ) become:

−GJ
4l2

Θ′′ (s, ȳ)− Iθω2Θ (s, ȳ) +
∆EI

16l4
ΩW ′′ (s, ȳ)H ′′ (s, ȳ) =

2

3
b3ρUiÂ1

(
s, ȳ, θ̂, θ̂′

)
(4.74)

Similarly, the governing equation for ŵ (s, ȳ) becomes:

EIzz
16l4

W (4) (s, ȳ)−msω
2W (ȳ) +

∆EI

16l4
Ω[Θ (ȳ)H ′′ (ȳ)]

′′
= 0 (4.75)

Returning to the equation for ĥ (s, ȳ) , the trial functions for H (ȳ) , Θ (ȳ) , and W (ȳ) are

substituted into Equation (4.73) to obtain:
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EIxx
16l4

µ4
n

N∑
n=1

BnHn (ȳ)−msω
2

N∑
n=1

BnHn (ȳ) +
∆EI

16l4
Ω

[
N∑
n=1

CnΘn (ȳ)
N∑
k=1

DkWk
′′ (ȳ)

]′′

= 2bρU
N∑
n=1

BnÂ2n [iω, ȳ, U,Hn (ȳ)] (4.76)

Multiplying through by Hm (ȳ), integrating each term over, and applying orthogonality,

Equation (4.76) becomes:

(
EIxx
16l4

µ4
n −msω

2

)
Bnδmn +

∆EI

16l4
Ω

1∫
0

Hm (ȳ)

[
N∑
n=1

CnΘn (ȳ)
N∑
k=1

DkWk
′′ (ȳ)

]′′
dȳ

= 2bρU

1∫
0

Hm (ȳ)
N∑
n=1

BnÂ2n [iω, ȳ, U,Hn (ȳ)]dȳ (4.77)

For n = 1, 2, ..., N and m = 1, 2, ..., N .Equation (4.77) can be written in matrix form:

N∑
n=1

BnM
H,1
nm +

N∑
n=1

CnM
H,2
nm − U

N∑
n=1

BnM
H,3
nm = 0 (4.78)

where

MH,1
nm =

(
EIxx
16l4

µ4
n −msω

2

)
δmn (4.79)

MH,2
nm =

∆EI

16l4
Ω

1∫
0

Hm (ȳ)

[
Θn (ȳ)

N∑
k=1

DkWk
′′ (ȳ)

]′′
dȳ (4.80)
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MH,3
nm = 2bρ

1∫
0

Hm (ȳ) Â2n [iω, ȳ, U,Hn (ȳ)] dȳ (4.81)

To construct an eigenvalue problem, Equation (4.81) is multiplied by the inverse of MH,3
nm to

obtain:

N∑
n=1

BnM
H,1
nm

[
MH,3

nm

]−1
+

N∑
n=1

CnM
H,2
nm

[
MH,3

nm

]−1 − U
N∑
n=1

Bn = 0 (4.82)

Equation (4.82) can be simplified by defining the following matrices:

M1
nm = MH,1

nm

[
MH,3

nm

]−1
(4.83)

M2
nm = MH,2

nm

[
MH,3

nm

]−1
(4.84)

Equation (4.82) becomes:

N∑
n=1

BnM
1
nm +

N∑
n=1

CnM
2
nm − U

N∑
n=1

Bn = 0 (4.85)

Or, in block matrix form,

∣∣∣∣(M1
− UI

)
M

2

∣∣∣∣
∣∣∣∣∣∣∣∣
B

C

∣∣∣∣∣∣∣∣ = 0 (4.86)
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Here it is important to note that the system in Equation (4.86) is N × 2N , due to the

unknowns B̄ and C̄. By performing the same procedure on the torsion governing equation,

another N × 2N system will be created with the same unknowns. The two systems can be

combined to obtain a 2N × 2N system with U as the repeated eigenvalue.

The governing equation for torsion, in the Laplace domain, is:

GJ

4l2
θ̂′′ (s, ȳ)− Iθω2θ̂ (s, ȳ) +

∆EI

16l4
ŵ′′ (s, ȳ) ĥ′′ (s, ȳ) =

2

3
b3ρUiÂ1

(
s, ȳ, θ̂, θ̂′

)
(4.87)

The second derivative of θ̂ (s, ȳ) is:

θ̂′′ (s, ȳ) = f (t) Θ′′ (ȳ) = f (t)λ2
n sin (λnȳ) (4.88)

Or,

θ̂′′ (s, ȳ) = λ2
nθ̂ (s, ȳ) (4.89)

Thus,

Θ′′ (s, ȳ) = λ2
nΘ (s, ȳ) (4.90)
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Substituting the trial functions,

− GJ

4l2

N∑
n=1

λ2
nCnΘn (ȳ)− Iθω2

N∑
n=1

CnΘn (ȳ) +
∆EI

16l4
Ω

N∑
n=1

BnH
′′
n (ȳ)

N∑
k=1

DkWk (ȳ)

=
2

3
b3ρU

N∑
n=1

CniÂ1 (s, ȳ,Θn) (4.91)

Multiplying through by Θm (ȳ) and integrating over ȳ , Equation (4.91) becomes,

− GJ

4l2

N∑
n=1

λ2
nCn

1∫
0

Θm (ȳ) Θn (ȳ) dȳ − Iθω2

N∑
n=1

Cn

1∫
0

Θm (ȳ) Θn (ȳ) dȳ

=
2

3
b3ρU

N∑
n=1

CniÂ1 (s, ȳ,Θn)

+
∆EI

16l4
Ω

1∫
0

Θm (ȳ)
N∑
n=1

BnH
′′
n (ȳ)

N∑
k=1

DkWk (ȳ)dȳ =
2

3
b3ρU

N∑
n=1

Cn

1∫
0

Θm (ȳ) iÂ1,n (s, ȳ,Θn) dȳ

(4.92)

Applying the orthogonality property to the first two terms, Equation (4.92) becomes:

(
−GJ

4l2
λ2
n − Iθω2

)
Cnδnm +

∆EI

16l4
Ω

1∫
0

Θm (ȳ)
N∑
n=1

BnH
′′
n (ȳ)

N∑
k=1

DkWk (ȳ)dȳ =

2

3
b3ρU

N∑
n=1

Cn

1∫
0

Θm (ȳ) iÂ1,n (s, ȳ,Θn) dȳ (4.93)
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Equation (4.93) can be written in matrix form:

N∑
n=1

CnM
Θ,1
nm +

N∑
n=1

BnM
Θ,2
nm − U

N∑
n=1

CnM
Θ,3
nm = 0 (4.94)

where

MΘ,1
nm =

(
−GJ

4l2
λ2
n − Iθω2

)
δnm (4.95)

MΘ,2
nm =

∆EI

16l4
Ω

1∫
0

Θm (ȳ)H ′′n (ȳ)
N∑
k=1

DkWk (ȳ)dȳ (4.96)

MΘ,3
nm =

2

3
b3ρ

1∫
0

Θm (ȳ) iÂ1,n (s, ȳ,Θn) dȳ (4.97)

As before, U will be isolated to construct an eigenvalue problem. This is done by multiplying

through by
[
MΘ,3

nm

]−1
:

N∑
n=1

CnM
Θ,1
nm

[
MΘ,3

nm

]−1
+

N∑
n=1

BnM
Θ,2
nm

[
MΘ,3

nm

]−1 − U
N∑
n=1

Cn = 0 (4.98)

Equation (4.98) can be simplified as:

N∑
n=1

BnM
3
nm +

N∑
n=1

CnM
4
nm − U

N∑
n=1

Cn = 0 (4.99)

where
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M3
nm = MΘ,2

nm

[
MΘ,3

nm

]−1
(4.100)

and

M4
nm = MΘ,1

nm

[
MΘ,3

nm

]−1
(4.101)

Or, in block matrix form,

∣∣∣∣M3 (
M

4
− UI

)∣∣∣∣
∣∣∣∣∣∣∣∣
B

C

∣∣∣∣∣∣∣∣ = 0 (4.102)

Recall from the analysis on the equation for ĥ (s, ȳ) :

∣∣∣∣(M1
− UI

)
M

2

∣∣∣∣
∣∣∣∣∣∣∣∣
B

C

∣∣∣∣∣∣∣∣ = 0 (4.103)

Equations (4.102) and (4.103) are combined to obtain:

∣∣∣∣∣∣∣∣
(
M

1
− UI

)
M

2

M
3 (

M
4
− UI

)
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
B

C

∣∣∣∣∣∣∣∣ = 0 (4.104)

Equation (4.104) is a 2N × 2N system of equations, with U as an eigenvalue when the

determinant of the square matrix is set to zero. Once again, the elements of the corresponding
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eigenvector will be the coefficients Bn and Cn . It is important to note that the matrices¯̄M2

and ¯̄M3 contain the unknown coefficients Dn . To obtain an equation for these coefficients,

and as a result close the system, we turn to the governing equation for ŵ (s, ȳ) :

EIzz
16l4

ŵ(4) (s, ȳ)−msω
2ŵ (s, ȳ) +

∆EI

16l4

[
θ̂ (s, ȳ) ĥ′′ (s, ȳ)

]′′
= 0 (4.105)

Notice that in Equation (4.105) that there is no aerodynamic loading, a result of assuming

inviscid flow. Substituting the trial functions for ŵ (s, ȳ) , Equation (4.105) becomes:

EIzz
16l4

N∑
n=1

Dnµ
4
nWn (ȳ)−msω

2

N∑
n=1

DnWn (ȳ) +
∆EI

16l4
Ω

[
N∑
n=1

CnΘn (ȳ)
N∑
k=1

BkH
′′
k (ȳ)

]′′
= 0

(4.106)

Multiplying through by Wm (ȳ) and integrating, Equation (4.106) becomes:

EIzz
16l4

N∑
n=1

Dnµ
4
n

1∫
0

Wm (ȳ)Wn (ȳ) dȳ −msω
2

N∑
n=1

Dn

1∫
0

Wm (ȳ)Wn (ȳ) dȳ

+
∆EI

16l4
Ω

1∫
0

Wm (ȳ)

[
N∑
n=1

CnΘn (ȳ)
N∑
k=1

BkH
′′
k (ȳ)

]′′
dȳ = 0 (4.107)

Applying orthogonality, the equation becomes:

(
EIzz
16l4

µ4
n −msω

2

)
Dnδnm +

∆EI

16l4
Ω

1∫
0

Wm (ȳ)

[
N∑
n=1

CnΘn (ȳ)
N∑
k=1

BkH
′′
k (ȳ)

]′′
dȳ = 0

(4.108)
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Writing Equation (4.108) in terms of matrices,

N∑
n=1

DnM
5
nm +

N∑
n=1

CnM
6
nm = 0 (4.109)

where

M5
nm =

(
EIzz
16l4

µ4
n −msω

2

)
δnm (4.110)

and

M6
nm =

∆EI

16l4
Ω

1∫
0

Wm (ȳ)

[
Θn (ȳ)

N∑
k=1

BkH
′′
k (ȳ)

]′′
dȳ (4.111)

Or,

∣∣∣M6∣∣∣ ∣∣D̄∣∣+
∣∣∣M5∣∣∣ ∣∣C̄∣∣ = 0 (4.112)

Solving for the vector of coefficients D̄,

D̄ = −
∣∣∣M6∣∣∣−1 ∣∣∣M5∣∣∣ ∣∣C̄∣∣ (4.113)

In Equation (4.113), C̄ is unknown and the matrix contains the unknown coefficients B̄ . As
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a result, an iterative method will be employed to solve for the three unknowns B̄ , C̄ , and

D̄ using equations (4.104) and (4.113). It will start with an initial guess for D̄, then proceed

to solve for B̄ and C̄ from Equation (4.104), then update the values of D̄ using Equation

(4.113). The process repeats until there is sufficiently small change in D̄ . This process is

illustrated in Figure 4.9.

Figure 4.9: Solution procedure for nonlinear model.

The next section implements this solution procedure to calculate the flutter speed for the

three configurations.
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4.4 Flutter speed calculation based on linear fluid and nonlinear

structure dynamics

Using the numerical methods described in Chapter 3 and Appendix B, calculations were

performed for three different structures and compared to experimental data. The benchmark

case was a 2024-T3 Aluminum beam, where aluminum was chosen because the material

properties are precisely known. The two additional cases were of different materials, ABS

and PETG plastic, each with different dimensions. The material properties and dimensions

for each configuration is shown in in Table 4.2.

Table 4.2: Material properties and dimensions for three configurations.

Material 2024-T3 Aluminum PETG ABS

Density (kg/m3) 2780 1270 1070

Young’s Modulus (GPa) 73.1 2.83 2.10

Shear Modulus (GPa) 28.0 0.0385 0.0827

Length (cm) 30.5 20.32 20.32

Width (cm) 10.2 10.2 10.2

Thickness (cm) 3.81×10−4 0.075 0.05

For each case, the number of terms used in the Galerkin method was increased until sufficient

convergence was obtained. The plot in Figure 4.10 shows that the flutter speed convergence

for the 2024-T3 aluminum case, where it converges reasonably well using 7 terms.
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Figure 4.10: Convergence of flutter speed with number of Galerkin terms for 2024-T3 alu-

minum.

The flutter speed for the 2024-T3 aluminum configuration is 48.7 m/s, and the correspond-

ing ω value is 134 m/s. The eigenfunctions from the real and imaginary parts of the flutter

determinant were plotted to inspect the shape of the structure associated with the approxi-

mation of h (t, y). In each of the three configurations, there was negligible influence from the

torsional and lateral bending coefficients. As a result, only the axial bending eigenfunctions,

HN (ȳ), have any significance in observing the overall shape of the structure. The eigen-

functions for 2024-T3 aluminum are shown in Figure 4.11. The coefficients are tabulated in

Appendix C.
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Figure 4.11: Eigenfunctions from the real (left) and imaginary (right) flutter determinant

for 2024-T3 aluminum.

The eigenfunctions in Figure 4.11 show the first and bending modes dominating the struc-

ture’s shape, where the influence of the second bending mode is more present than in the

linear case. Figure 4.12 shows the flutter speed convergence for the PETG configuration.

Figure 4.12: Convergence of flutter speed with number of Galerkin terms for PETG.

The calculated flutter speed for the PETG case using 12 terms is 22.6 m/s, and the ω is 104
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rad/s . The eigenfunctions for this case are shown in Figure 4.13.

Figure 4.13: Eigenfunctions from the real (left) and imaginary (right) flutter determinant

for PETG plastic.

As was the case for 2024-T3 aluminum, the eigenfunctions for the PETG configuration show

the shape as being influenced by the first and second bending modes. Figure 4.14 shows the

flutter speed versus number of terms for the third sample, ABS plastic.

Figure 4.14: Convergence of flutter speed with number of Galerkin terms for ABS plastic.
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The calculated flutter speed for the ABS plastic case is 8.5 m/s, and the corresponding ω is

68 rad/s. The eigenfunctions for ABS plastic are shown in Figure 4.15.

Figure 4.15: Eigenfunctions from the real (left) and imaginary (right) flutter determinant

for ABS plastic.

The eigenfunctions for the ABS plastic case once again show that the shape of the structure

is influenced primarily by the first and second bending modes.
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5 Flutter speed and limit cycle oscillation by experi-

ment

The previous chapters provided an analytical treatment of aeroelasticity in axial flow, but

only as it relates to the onset of instability of the structure. The models used are limited to

small structural displacements, which is adequate for calculating the flutter speed, but these

models fall short in describing the motion of the structure after the flutter speed is reached.

When Limit Cycle Oscillation (LCO) occurs, the structure exhibits large displacements in

the form of bounded oscillations. This chapter presents observations from wind tunnel

experiments, where structures were brought past the flutter speed to undergo LCO. Two

sets of experiments were performed. The purpose of the modal analysis experiments was

to determine how the frequencies of the oscillations changed with air speeds higher than

the flutter speed. The aim of the second set of experiments, which used image processing

techniques, was to determine the effect of increasing air speed on the amplitude of the

oscillations. Finally, a scaling analysis is used to present the data in nondimensional form

and obtain expressions to estimate the flutter speed and LCO frequency.

5.1 Description of wind tunnel and instrumentation

All experiments were performed in an Aerolab open circuit, subsonic wind tunnel. The wind

tunnel is constructed of fiberglass, with a steel and aluminum test section measuring 11.5

in.×11.75 in.×22 in. The fan is located on the outlet side of the wind tunnel and draws

air through the inlet where honeycomb-style flow straighteners are used to ensure a uniform

flow field through the test section. Within the test section, a custom assembly was mounted
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to the bottom to cantilever the beam structures, as shown in Figure 5.1. The assembly acts

as a clamp, bolting one end of the beams from all sides.

Figure 5.1: a)Aerolab wind tunnel used for LCO experiments; b) Wind tunnel test section.

Air velocity measurements were taken using a Pitot tube, the Aerolab Pitot-Static Probe,

which was purchased as an accessory to the wind tunnel. It is an L-shaped probe, as shown

in Figure , which is inserted into the air stream through the side of the test section.

Figure 5.2: Aerolab Pitot-Static Probe.

The short segment of the tube is parallel to the air stream, so that the holes along its length

measure the static pressure and the hole on the tip measures the stagnation pressure. The
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hoses at the other end of the Pitot tube were connected to a Dwyer 616KD-02 temperature-

compensated differential pressure transducer. The pressure transducer was calibrated by the

manufacturer, with a reported uncertainty of ± 2% full scale for a range of 0-3 in. H20.

The modal analysis experiments used a PCB Piezotronics 352A71 single axis accelerom-

eter. The accelerometer was calibrated by the manufacturer, with uncertainty of ¡0.4% of

the measured value for frequencies between 0 and 100 Hz. The signal from the accelerometer

was amplified using a PCB Piezotronics 422B104 sensor signal conditioner, and the amplified

signal was sent to a National Instruments USB-6210 data acquisition board. The data was

collected and processed in LabView 2012 installed on a Dell Optiplex 790 PC.

The high speed camera used in the image processing experiments was a Fastec-IL4 equipped

with a Nikon Micro-NIKKOR 55mm F/2.8 lens. The Fastec-IL4 is capable of frame rates

up to 6259 fps at 320×240 resolution, and can provide a resolution of 1280×1024 for frame

rates up to 510 fps. The settings used on the high speed camera for these experiments are

shown in section 5.2.3.
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5.2 Experimental results

5.2.1 Flutter speed

A critical aspect of aeroelasticity analysis is the determination of the flutter speed, which

can be measured in a wind tunnel by slowly increasing the air speed until the structure

begins to flutter. The onset of flutter in axial flow is very abrupt, with the amplitude of the

structure’s oscillations increasing visibly within the span of one air speed increment.

The air speed is controlled by increasing the wind tunnel fan speed in increments of 0.1

rotations per second, which correspond to increments of 0.08 m/s in air speed. This linear

trend between fan speed and air speed was determined experimentally by calculating the free

stream air velocity at different fan speed settings from measurements taken using a Pitot

tube. The Pitot tube was inserted into the vacant test section, with one channel measuring

the stagnation pressure of the air stream and the other measuring the static pressure. For

the range of air speeds required for these experiments, 0-40 m/s, the flow can be treated as

incompressible. Thus, the Bernoulli equation can be used to calculate air velocity from the

measured pressure difference:

U =

√
2∆P

ρ
(5.1)

where ∆P is the pressure difference measured by the Pitot tube, and ρ is the density of

air at the temperature when the measurement was taken. The uncertainty in the pressure

transducer provided by the manufacturer is ±2% of the full scale, which corresponds to ±
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0.06 in. H2O. Using Equation (1.1), the uncertainty in the air speed due to the pressure

transducer is 4.93 m/s. Because the structure and clamp occupy a large portion of the test

section, and to avoid obstruction by the Pitot tube, the air speed was not measured during

flutter. However, because the flow is largely incompressible, the structure does not have any

influence on the upstream air speed. Therefore, all measurements were taken without the

structure and clamp in the test section. Using 45 pressure measurements taken at different

fan speeds over the range of the pressure transducer, the plot shown in Figure B.54 was

constructed.

Figure 5.3: Measured pressure difference versus fan speed.

The data fits a quadratic trendline with an R2 value of 0.998, shown on Figure B.54 as a

black line. Observing that the fan speed is proportional to the square root of the pressure

difference from the Pitot tube, a comparison can be made between the data and Equation

(5.1) and a linear relationship between the velocity and fan speed can be determined. Using
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Equation (5.1), the velocity was calculated from the measured pressures and plotted against

the fan speed as shown in Figure 5.4.

Figure 5.4: Air velocity versus fan speed.

The linear curve fit in Figure 5.4 has an R2 value of 0.992, indicating a linear relationship

between velocity and fan speed . From the linear curve fit, the equation relating velocity to

fan speed is:

U [m/s] = 0.7811ω[Hz]± 4.93 (5.2)

For one controller increment (0.1 Hz) , the wind tunnel air speed is increased by approxi-

mately 0.08 m/s. This air speed increment of 0.08 m/s is the maximum uncertainty that

can be present from incrementally increasing the speed. At each increment in air speed, the

structure was allowed to reach steady state to avoid the possibility of transient effects.

Three different structures were analyzed for their flutter speed and LCO behavior. The

material properties, dimensions, and measured flutter speeds for each structure are shown in
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Table 5.1. For the remainder of this chapter, each structure will be referred to by its sample

number, as given at the top of Table 5.1.

Table 5.1: Parameters and Measured Flutter Speed for Three Structures.

Sample 1 Sample 2 Sample 3

Material 2024-T3 Aluminum PETG ABS

Young’s Modulus (GPa) 73.1 2.83 2.10

Length (cm) 30.5 20.32 20.32

Width (cm) 10.2 10.2 10.2

Thickness (cm) 3.81×10−4 0.075 0.05

Flutter speed (m/s) 38.3 28.0 15.5

Table 5.1 shows that the flutter speed of the aluminum sample is the highest, due to the

aluminum being considerably stiffer. The lower flutter speeds of the PETG and ABS plastic

samples can be partially attributed to their shorter length but are primarily due to the much

lower stiffness.

5.2.2 Limit cycle oscillation: Modal analysis

In these experiments, an accelerometer was attached to the structure near the clamped end.

Figure 5.5 shows the accelerometer attached to the structure in the wind tunnel test section

for Sample 2.
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Figure 5.5: Sample 2 with accelerometer attached.

Once the fan speed and thus the air speed is set and the structure undergoes LCO, the

signal from the accelerometer was recorded for 10 seconds using a data acquisition system.

Figure 5.6 shows the accelerometer time domain signal for Sample 1 at the flutter speed, for

3 seconds duration.
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Figure 5.6: Accelerometer time domain signal for Sample 1 at the flutter speed.

Figure 5.6 shows that there are multiple frequencies present in the time domain signal,

indicating that more than one mode is present in the LCO. To determine the frequency

content of the LCO, a Fast Fourier Transform (FFT) is performed on the time domain

signal. The FFT for the case from Figure 5.7 is shown below.
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Figure 5.7: FFT of Sample 1 at the flutter speed.

The peaks in the FFT of Figure 5.7 show that that there are two dominant frequencies

present, each of which may belong to any structural mode shape. It is expected that the

frequencies of the LCO in these experiments will be different from the structure’s natural

frequencies for several reasons. First, from physical intuition, air flow will dampen the

structure’s motion. The second reason is that the accelerometer acts as point mass added

to the structure, which is expected to have a greater impact on the frequency. Despite these

effects, comparison of the measured frequencies to the theoretical natural frequencies can

reveal which mode shapes are present in LCO. For bending motion, the theoretical natural

frequencies can be obtained from Euler-Bernoulli beam theory:

ωn = αn

√
EI

mL4
(5.3)

172



where L is the length of the beam, I is the moment of inertia of the cross section, and m is

the mass of the beam. The coefficients αn are the roots to the transcendental equation:

cosh (αn) cos (αn) = 1 (5.4)

Once the experimental FFT is obtained, the frequency corresponding to each peak is de-

termined. Table 5.2 shows the peak frequencies of Sample 1 at the flutter speed and the

theoretical natural frequencies.

Table 5.2: Experimental and Theoretical Frequencies of Sample 1 at the Flutter Speed.

Mode Number Experimental Frequency (Hz) Theoretical Frequency (Hz) Percent Difference (%)

1 - 3.48 -

2 17.6 21.8 19.3

3 53.0 61.0 13.1

4 - 120 -

The values in Table 5.2 show that the measured frequencies are 13.1-19.3% lower than the

closest theoretical frequencies, but this difference is far less than the difference between the

consecutive modes. Therefore, from Table 2 we can conclude that, at the flutter speed,

the 2nd and 3rd bending modes are present in the structure’s LCO and are comparable in

magnitude as indicated by Figure 5.7. To further investigate the LCO, measurements were

taken for five air speeds higher than the flutter speed. These experiments were performed for

all three configurations to see if increasing the air speed would either excite higher frequency
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modes or shift the existing frequencies higher or lower. Table 5.3 shows the peak frequencies

obtained for Sample 1, and the corresponding FFTs for each trial are shown in Appendix B.

Table 5.3: Experimental and Theoretical Frequencies of Sample 1 at the Flutter Speed.

Trial Air Speed (m/s) 1st Peak 2nd Peak

1 36.7 17.6 53

2 37.5 17.6 53.3

3 38.3 18 54

4 39 18 54.3

5 39.8 18.3 55

6 40.6 18.3 55.3

The data in Table 5.3 shows that there is a slight upward shift in the peak frequencies as

the air speed increases past the flutter speed. The FFTs (shown in Appendix C) reveal that

no higher frequencies were excited as a result of raising the air speed from 36.7 m/s to 40.6

m/s. The same trend is observed in the PETG plastic structure, Sample 2. Although it has

a lower Young’s Modulus than Sample 1, the natural frequencies are comparable to Sample

1 due to its shorter length. The modal frequencies were determined for Sample 2 at the

flutter speed and at five additional speeds higher than the flutter speed. Figure 5.8 shows

the FFT of Sample 2 at the flutter speed.
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Figure 5.8: FFT for Sample 2 at the flutter speed.

The FFT in Figure 5.8 shows that for Sample 2 a third peak is present at the flutter speed,

whereas only two modes were excited in Sample 1. Upon comparison to the theoretical

natural frequencies, it was determined that these peaks correspond to the 2nd, 3rd, and 4th

bending modes. It is interesting to note that for this material and dimensions the 3rd bending

mode is dominant, whereas for the configuration of Sample 1 the 2nd and 3rd bending modes

had roughly equal contribution to the overall shape. Table 5.4 lists the frequencies of the

peaks for all six speeds tested.
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Table 5.4: Peak Frequencies for Sample 2 At and Above the Flutter Speed

Trial Air Speed (m/s) 1st Peak 2nd Peak 3rd peak

1 25.9 19.67 59.33 98.67

2 26.7 19.67 59.33 98.67

3 27.5 19.67 59.33 98.67

4 28.3 20 59.67 99.33

5 29.1 20 59.67 99.33

6 29.8 20 59.67 99.67

The results in Table 5.4 show that as the speed increases beyond the flutter speed, there

is a slight shift in the peak frequencies. This is the same behavior that was observed for

Sample 1: a shift in existing frequencies but no excitation of higher modes. Sample 3, which

is made of ABS plastic, was chosen to have a lower Young’s modulus than Sample 2 and

substantially lower natural frequencies than Samples 1 and 2. Performing the same analysis,

there are six peak frequencies present at the flutter speed.
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Figure 5.9: FFT for Sample 3 at the flutter speed.

Figure 5.9 shows that the second frequency present is dominant over the other five frequen-

cies. The air speed was increased for five speeds higher than the flutter speed for a total of

six air speeds. The peak frequencies for all trials of Sample 3 are shown in Table 5.5.

Table 5.5: Peak Frequencies for Sample 2 At and Above the Flutter Speed.

Trial Air Speed (m/s) 1st Peak 2nd Peak 3rd Peak 4th Peak 5th Peak 6th peak

1 17.3 17.3 52 86.3 103.6 121 138.3

2 18 17.3 52.3 87.3 104.6 122.3 139.6

3 18.8 17.7 53 88.6 105.8 123.1 141

4 19.6 18 53.7 89.6 107.5 125.6 143.3

5 20.4 18.3 54.7 91 109.1 127.3 145.5

6 21.2 18.3 55.3 92.3 111 129.1 147.7
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In the experiments performed on Sample 3, it was observed that the frequencies measured

do not correlate well with the theoretical natural frequencies, for bending or torsion modes.

This indicates that Sample 3, although it is a rectangular beam of uniform cross-section,

does not behave as predicted by Euler-Bernoulli (EB) beam theory when the accelerometer

is attached. In Samples 1 and 2, with the accelerometer attached, the frequencies observed

in experiments were up to 20% lower than those predicted by EB theory but could still be

correlated to one of the mode shapes. This difference indicates that the mass of the ac-

celerometer has a substantial effect on beam-like behavior that became especially prominent

due to Sample 3’s lower stiffness.

The uncertainty in the observed frequencies in these experiments is partially due to un-

certainty in the time domain signal measured by the accelerometer. From the manufacturer,

for frequencies between 0 and 100 Hz, the uncertainty is reported to be no more than 0.4%

of the measured value. Uncertainty in the peak frequencies also arises from uncertainty in

measuring the dimensions of the structure. Measuring the dimensions with a dial caliper,

the uncertainty in the measured dimension is:

δL =
1

2
∆x (5.5)

where ∆x is the spacing between each increment on the caliper. Following the single sample

uncertainty analysis proposed by Kline and McClintock [20], and using Equation (5.3), the

uncertainty in the modal frequency can be expressed as:
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δωn = αn

√(
∂ωn
∂L

δL

)2

+

(
∂ωn
∂I

δI

)2

+

(
∂ωn
∂m

δm

)2

(5.6)

Before using Equation (5.6) to calculate δωn, the uncertainties in the mass and moment of

inertia must be calculated using uncertainty propagation analysis. Using the density of the

structure, the mass can be written as:

m = ρbtL (5.7)

where b is the width and t is the thickness. Applying the Kline and McClintock method, the

uncertainty in the mass is:

δm =

√(
∂m

∂L
δL

)2

+

(
∂m

∂t
δt

)2

+

(
∂m

∂b
δb

)2

(5.8)

Or,

δm =

√
(btδL)2 + (bLδt)2 + (tLδb)2 (5.9)

For a rectangular cross-section, the moment of inertia is:

I =
1

12
bt3 (5.10)
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Therefore, the uncertainty in I due to the measurement of the dimensions is:

δI =

√(
∂I

∂b
δb

)2

+

(
∂I

∂t
δt

)2

(5.11)

Or,

δI =
1

12

√
(t3δb)2 + (3bt2δt)2 (5.12)

The uncertainty in each modal frequency due to the uncertainty in measuring the dimensions

of the structure was calculated using Equations (5.6)-(5.12). The total uncertainty in the

frequencies measured is the sum of the uncertainty from measuring the dimensions and the

uncertainty due to the accelerometer. The uncertainty due to measuring the dimensions

depends on the measured frequency itself, therefore the uncertainty must be calculated

for each frequency measured. For each peak frequency, there was only a slight change in

the measured value as the air speed was increased, and thus only a slight change in the

uncertainty associated with that peak frequency. For brevity, Tables 5.6-5.8 list the range

of uncertainties (corresponding to the range of air speeds) for each peak frequency, and the

individual uncertainties for each measurement are tabulated in Appendix C. Table 5.6 shows

the uncertainties for the peak frequencies in Sample 1.
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Table 5.6: Uncertainty in Measured Frequencies for Sample 1.

Peak Measured Frequency (Hz) Uncertainty (Hz)

1 17.6-18.3 1.21

2 53.0-55.3 2.12-2.13

Table 5.6 shows that for the first peak frequency in Sample 1, the uncertainty is 1.91 Hz,

which is about 10% of the measured value. For the second peak frequency in Sample 1,

the uncertainty is 2.13 Hz, which is less than 4% of the measured value for each trial. The

uncertainties for Sample 2 are shown in Table 5.7.

Table 5.7: Uncertainty in Measured Frequencies for Sample 2.

Peak Measured frequency (Hz) Uncertainty (Hz)

1 19.7-20.0 0.884-0.885

2 59.3-59.7 1.59-1.60

3 98.7-99.7 2.29

Table 5.7 shows that uncertainties in the first, second, and third frequencies of Sample 2

are no more than 0.884, 1.60, and 2.29 Hz, respectively. The challenge in determining the

uncertainties for Sample 3 is that the frequencies did not correspond to those predicted by

Euler-Bernoulli beam theory. To provide a rough estimate, the same uncertainty analysis

used for Samples 1 and 2 was used and the frequencies were treated as Euler-Bernoulli

bending frequencies starting with the second mode. The uncertainties for Sample 3 are
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shown in Table 5.8.

Table 5.8: Uncertainty in Measured Frequencies for Sample 3.

Peak Measured Frequency (Hz) Uncertainty (Hz)

1 17.3-18.3 0.813-0.817

2 52.0-55.3 1.46-1.47

3 86.3-92.3 2.10-2.12

4 103.6-111 2.65-2.68

5 121-129 3.72-3.76

6 138.3-147.7 4.29-4.33

For the Sample 3 uncertainties shown in Table 5.8, the uncertainty ranges from 0.813 Hz to

4.33 Hz for the highest and lowest frequencies, respectively. While the uncertainty in these

experiments is noticeable, as high as 10% for some frequencies, it does not undermine the

observations made about LCO in axial flow. That is, that increasing the air speed beyond

the flutter speed shifts the existing frequencies slightly upward as seen in Samples 1 and 2

and does not excite higher frequency modes.

5.2.3 Limit cycle oscillation: Image processing

While the modal experiments reveal important information about the structure undergoing

LCO, i.e. how the frequencies present in the motion change with increasing air speed, they

provide no details about the amplitude of the structure’s motion. The experiments presented

in this section use a high-speed camera to observe the LCO of the structure at and above the
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flutter speed. Using image processing techniques with the camera footage, the structure’s

displacement as a function of time was obtained while it was undergoing LCO. This allows

further analysis of how the amplitude changes with increasing air speed. The high-speed

camera used is a Fastec-IL4 model equipped with a Nikon Micro-Nikkor 55mm F/2.8 lens.

It provides 1280 x 1024 resolution for frame rates up to 510 frames per second (fps) and is

capable of frame rates up to 60,000 fps at reduced resolutions. The shutter speed is also

variable, but must be low enough to avoid blurring the image of the moving structure. Table

5.9 lists the camera settings used for the three configurations tested in these experiments.

Table 5.9: High-Speed Camera Record and Display Settings.

Setting Value

Frame Rate (fps) 1022

Resolution 950×650

Shutter speed (µs) 443

Record Time (s) 13.5

Brightness -7

Contrast 28

Because the highest frequency present in the structure’s motion is on the order of 100 Hz,

the shutter speed required to capture a clear image was fairly high. Because the images

for higher shutter speeds are dark under room lighting, an auxiliary halogen light source

was used to illuminate the test section. Figure 10 shows the wind tunnel with the camera

mounted from above, along with the halogen light source.
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Figure 5.10: Wind tunnel with halogen lamps and camera mounting structure.

The three configurations tested are the same ones used in the accelerometer experiments, as

shown in Table 5.10.
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Table 5.10: Parameters and Measured Flutter Speed for Three configurations.

Sample 1 Sample 2 Sample 3

Material 2024-T3 Aluminum PETG ABS

Young’s Modulus (GPa) 73.1 2.83 2.10

Length (cm) 30.5 20.32 20.32

Width (cm) 10.2 10.2 10.2

Thickness (cm) 0.000381 0.075 0.05

Flutter Speed (m/s) 38.3 28.0 15.5

Observations about the LCO of the structure can be made by visually inspecting the footage,

without any image processing. Due to the high shutter speed required to obtain images

without blurring, playback of the camera footage is visibly dark. It should be emphasized

that this has no effect on the image processing program. Figures 5.11 - 5.13 show still frames

of each sample undergoing LCO, where the original image is on the left, and the image on

the right side of each figure has been enhanced to make the shape of the structure more

visible.
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Figure 5.11: Image of Sample 1 in LCO at the Flutter Speed. Original (left) and enhanced

for visibility (right).

Figure 5.12: Image of Sample 2 in LCO at the Flutter Speed. Original (left) and enhanced

for visibility (right).

Figure 5.13: Image of Sample 3 in LCO at the Flutter Speed. Original (left) and enhanced

for visibility (right).
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The still images in Figures 5.11 and 5.12 corresponding to Samples 1 and 2, respectively,

show nearly pure bending motion in the structure. However, Figure 5.13 indicates that there

is torsion in Sample 3. This can be attributed to a non-uniform air stream, due to the clamp,

and possible nonlinear effects in the structure considering it was the most flexible beam.

The image processing technique used to determine the structure’s displacement as a function

of time is based on tracking the position of a pixel corresponding to a point on the structure

for each frame. The image processing program, written in MATLAB, starts by converting a

grayscale frame to a binary image – where white is assigned to all pixels on the structure and

black is assigned to pixels off the structure. This is done by evaluating the grayscale value

for each pixel, which varies from 0 for black and 255 for white, and determining whether

it is above or below a specified threshold. The threshold used in these experiments comes

from a long-standing method of binarization known as Otsu’s method. For this method, all

possible thresholds are iterated through and data is collected for the number and intensity

of pixels that fall above or below each threshold. The final threshold value is the one that

has the lowest variance above and below that threshold.

For these experiments, a pixel located at the midpoint of the beam’s length was tracked

during LCO for a duration of 4.85 seconds. For each sample, this experiment was performed

at the flutter speed, and for five speeds above the flutter speed. Figure 5.14 shows the

midpoint displacement versus time for Sample 1 at the flutter speed, between 0 and 0.5

seconds.
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Figure 5.14: Midpoint displacement versus time for Sample 1 at the flutter speed.

For each case, the maximum displacement of the midpoint was obtained from the image

processing results. Because the distance from zero is offset in the image processing output,

the maximum displacement is defined as the maximum displacement from the mean. Table

5.11 shows the maximum midpoint displacements for Sample 1 at the flutter speed and for

five air speeds above the flutter speed. Table 5.11 shows that as air speed increases there is

an increase in the maximum displacement.
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Table 5.11: Maximum Midpoint Displacement for Sample 1 at Six Air Speeds.

Air Speed (m/s) Maximum Midpoint Displacement (cm)

38.3 4.80

39.1 4.93

39.8 5.03

40.6 5.08

41.4 5.11

42.2 5.66

These experiments were repeated for Samples 2 and 3 to see if there is a greater effect on

structures of lower Young’s Modulus. Figure 5.15 shows the maximum midpoint displace-

ment for Sample 2 at the flutter speed for 0.5 seconds duration.

Figure 5.15: Midpoint displacement versus time for Sample 2 at the flutter speed.
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For Sample 2, on the 5th trial, with an air speed of 32.0 m/s, the structure failed in the form

of a large crack near the clamped end. This air speed was higher than the speeds reached

in the modal analysis experiments, but it is also reasonable to believe fatigue played a role

in its failure. Midpoint displacement data for Sample 2 was recorded at four air speeds, as

shown in Table 5.12.

Table 5.12: Maximum Midpoint Displacement for Sample 2 at Four Air Speeds.

Air Speed (m/s) Maximum Midpoint Displacement (cm)

28.8 2.72

29.6 2.72

30.4 2.67

31.2 2.77

With the exception of the third point, the data in Table 5.12 shows that Sample 2 experiences

a slight increase in maximum displacement when air speed is increased past the flutter speed.

Figure 5.16 shows the midpoint displacement as a function of time for Sample 2 at the flutter

speed.
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Figure 5.16: Midpoint displacement versus time for Sample 3 at the flutter speed.

The maximum displacements for Sample 3, the sample with the lowest stiffness, are shown

in Table 5.13.

Table 5.13: Maximum Midpoint Displacement for Sample 3 at Six Air Speeds.

Air Speed (m/s) Maximum Midpoint Displacement (cm)

15.5 2.40

16.2 2.46

17 2.72

17.8 3.00

18.6 3.02

19.4 3.07
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Sample 3 follows the same trend as Samples 1 and 2: the maximum midpoint displacement

increases as the air speed is increased beyond the flutter speed. For Sample 3, a 20.1 %

increase in air speed resulted in a 22.0 % increase in maximum midpoint displacement. This

shows that air speed has a more significant impact on the amplitude of the LCO than it does

on the modal frequencies.
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5.3 Scaling and data

In this section, the governing equation for bending displacement from the linear structure

model is scaled so that the experimental results can be shown in terms of nondimensional

parameters. The governing equation, where the aerodynamic loading is in terms of the

Kussner doublet function, is:

EI
∂4h (t, y)

∂y4
+m

∂2h (t, y)

∂t2
= −ρU

b∫
−b

A (t, y, U) dx (5.13)

In Equation (5.13) m is the mass of the beam per unit length, b is the half-width of the

beam, and ρ is the density of the fluid. The linearized Kussner doublet function is:

A (t, y, U) = − 1

U
δ

(
∂φ

∂t

)
− δ

(
∂φ

∂y

)
(5.14)

Equation (5.13) becomes:

EI
∂4h (t, y)

∂y4
+m

∂2h (t, y)

∂t2
= −ρU

b∫
−b

[
− 1

U
δ

(
∂φ

∂t

)
− δ

(
∂φ

∂y

)]
dx (5.15)

To scale the equation, define the dimensionless variables:

y∗ =
y

L
(5.16)
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and

h∗ =
h

L
(5.17)

where L is the length of the beam. The nondimensional velocity is defined by:

U∗ =
U

Uch
(5.18)

where Uch is the characteristic velocity defined as:

Uch =
L

tch
(5.19)

and tch is a characteristic time. The nondimensional velocity potential is:

φ∗ =
φ

UchL
(5.20)

Scaling t with the characteristic time, tch, and substituting the nondimensional variables,

Equation (5.13) becomes:

∂4h∗ (t∗, y∗)

∂y∗4
+

mL4

EIt2ch

∂2h∗ (t∗, y∗)

∂t∗2
= −2ρbL4

EItch
UchU

∗

b∗∫
−b∗

A∗dx∗ (5.21)

Or,
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∂4h∗ (t∗, y∗)

∂y∗4
+ C

∂2h∗ (t∗, y∗)

∂t∗2
= −BU∗

b∗∫
−b∗

A∗dx∗ (5.22)

where

C =
mL4

EIt2ch
(5.23)

and

B =
2ρbL4

EItch
Uch (5.24)

The characteristic time is determined by setting B = 1:

2ρbL4

EItch

l

tch
= 1 (5.25)

Thus,

tch =

√
2bρL5

EI
(5.26)
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The characteristic velocity becomes:

Uch =

√
EI

2bρL3
(5.27)

and the dimensionless velocity is:

U∗ = U

√
2bρL3

EI
(5.28)

For a rectangular cross-section, I is given by:

I =
1

12
bd3 (5.29)

where d is the thickness of the beam. Using Equation (5.29), U∗ can be written as:

U∗ = U

√
24ρL3

Ed3
(5.30)

Table 5.14 shows the dimensional velocity, U , and the nondimensional velocity, U∗, for the

measured values for each case.
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Table 5.14: Dimensional and Nondimensional Flutter Speed.

U (m/s) U∗

2024-T3 Aluminum 38.3 17.6

PETG Plastic 28.0 12.8

ABS Plastic 15.5 15.1

The U∗, through its definition, is taken to be a universal constant. The variation in U∗

between the aluminum and plastic cases can be attributed to the variation in the material

properties of the plastics. The flutter speed in terms of U∗ can be written as:

U = U∗

√
Ed3

24ρL3
(5.31)

Using the U∗ from the aluminum case, where the material properties are well defined, an

expression for the flutter speed is:

U = 3.59

√
Ed3

ρL3
(5.32)

The expression in Equation (5.29) is a function of the structural properties, dimensions, and

the density of air only. Therefore, this simple expression can be used to estimate the flutter

speed for any structure provided the material properties are well known. The dimensionless

frequency is defined by:
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ω∗ =
ω

ωch
(5.33)

The characteristic frequency is defined using the characteristic time:

ωch =
1

tch
(5.34)

The dimensionless frequency is:

ω∗ =
ω

tch
(5.35)

Using Equation (5.26), ω∗ becomes:

ω∗ = ω

√
EI

2bρL5
(5.36)

Or, using the expression for I:

ω∗ = ω

√
Ed3

24ρL5
(5.37)

The dimensionless frequencies were calculated for each case as a function of air speed, begin-

ning with the flutter speed. Table 5.15 shows the dimensional and nondimensional frequencies

for the 2024-T3 aluminum case.
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Table 5.15: Dimensional and Nondimensional Frequencies for 2024-T3 Aluminum.

U (m/s) U∗ ω (rad/s) ω∗

36.7 16.9 333 2374

37.5 17.2 335 2388

38.3 17.6 339 2419

39.0 17.9 341 2433

39.8 18.3 345 2464

40.6 18.7 347 2477

Treating ω∗ as a constant, an expression for the dominant frequency at the flutter speed can

be constructed. From Equation (5.37), ω can be written as:

ω = ω∗
√

24ρL5

Ed3
(5.38)

Using the value of ω∗ from the aluminum case, the expression for ω becomes:

ω = 11, 600

√
ρL5

Ed3
(5.39)

Equation (5.39) provides an expression to estimate the dominant frequency in LCO at the

flutter speed. Figure 5.17 shows a plot of the dimensionless frequency versus air speed for

2024-T3 aluminum.
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Figure 5.17: Dimensionless frequency versus air speed for 2024-T3 aluminum.

In Figure 5.17, there is a linear relation between ω∗ and U with an R2 value of 0.987, and the

slope of the line from the curve fit is 27.9 s/m. This information can be used to construct

a relation between the dominant frequency as a function of air speed. Because ω∗ varies

linearly with U :

ω∗ = ω∗F + 27.9 (U − Uf ) (5.40)

The ω∗F is the ω∗ at the flutter speed as determined in Equation (5.39). Combining Equations

(5.40) and (5.38), the frequency as a function of U can be written as:

ω (U) =

√
24ρL5

Ed3
[ω∗F + 27.9 (U − Uf )] (5.41)

where U is in m/s. Or, using ω∗ from Equation (5.39) and the expression for Uf from
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Equation (5.30):

ω (U) =

√
ρL5

Ed3

[
11, 600 + 137

(
U − 3.45

√
Ed3

ρL3

)]
(5.42)

In Equation (5.42), U is in m/s and ω (U) is in rad/s, and the value of U∗ used in Equation

(5.10) is the one from Table 5.15 at the flutter speed. It is important to note that the

expressions developed for ω in Equations (5.39) and (5.42) are based on data where an

accelerometer was attached to the beam, and are therefore only intended to be approximate.

Table 5.16 shows the dimensional and nondimensional frequencies for the PETG plastic case.

Table 5.16: Dimensional and Nondimensional Frequencies for PETG Plastic.

U (m/s) U∗ ω (rad/s) ω∗

25.9 11.8 373 4026

26.7 12.2 373 4026

27.5 12.5 373 4026

28.3 12.9 375 4049

29.1 13.3 375 4049

29.8 13.6 375 4049

Figure 5.17 shows a plot of the dimensionless frequency versus air speed for PETG plastic.
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Figure 5.18: Dimensionless frequency versus air speed for PETG plastic.

In Figure 5.18 the dimensioness frequency is roughly constant with increasing air speed,

which is consistent with the measured dimensional values. The dimensional and nondimen-

sional frequencies for the ABS plastic case are shown in Table 5.17.

Table 5.17: Dimensional and Nondimensional Frequencies for ABS Plastic.

U (m/s) U∗ ω (rad/s) ω∗

17.3 16.8 327 1654

18 17.5 328 1664

18.8 18.2 333 1686

19.6 19.0 337 1708

20.4 19.8 344 1740

21.2 20.6 347 1759

Figure 5.19 shows a plot of the dimensionless frequency versus air speed for ABS plastic.
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Figure 5.19: Dimensionless frequency versus air speed for ABS plastic.

In Figure 5.19, there is a linear relation between ω∗ and U with an R2 value of 0.987.
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6 Discussion of results

6.1 Flutter speed

To evaluate the accuracy of the models and solution methods developed in the previous

chapters, flutter speed calculations for a rectangular, beam-like structure are compared to

experimental measurements. For the three configurations tested, the flutter speed was mea-

sured in a subsonic wind tunnel using the instrumentation and techniques described in

Chapter 5. The uncertainty in the measured flutter speed was found to be 4.93 m/s.

The configuration used to evaluate the accuracy of the flutter speed predictions is the 2024-

T3 aluminum beam, where aluminum was chosen as the material because the properties are

well defined. The dimensions of the structure were chosen so that it was rigid when exposed

to low speed air flow, but flexible enough so that the flutter speed can be measured in a

subsonic wind tunnel. The flutter speed measurement was 38.3 ± 4.93 m/s. It is important

to note that in the wind tunnel experiments, the structure was mounted to a clamp which

can introduce additional flow disturbances not accounted for in the modeling. In the model-

ing, the flow is assumed to approach the leading edge of the structure with uniform velocity

without being disturbed by any objects upstream. The additional disturbances in the air

flow due to the experimental apparatus would result in a flutter speed lower than that if no

disturbances were present.

First, flutter speed calculations were performed using the Balakrishnan Continuum The-

ory (BCT) as originally developed. For the 2024-T3 aluminum configuration, the flutter
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speed obtained from the BCT was 20.3 m/s which corresponds to an underprediction of

39 % from the measured value. This prediction contains numerical error, for example from

using numerical integration methods on definite integrals that cannot be evaluated analyti-

cally. More importantly, as with any mathematical modeling effort, inaccuracy is a result of

simplifying assumptions.

The semi-continuum approach, which uses the fluid side solution from the BCT, along with

a Galerkin method for the structure side, produced a significant improvement in the flutter

speed prediction. Results for two cases using the semi-continuum approach were presented

in Chapter 4: one where both the fluid and structure dynamics are modeled as linear, and

the other where a nonlinear structure model is used alongside the linear fluid model. In

the fully linear case the flutter speed was 50.4 m/s, which overpredicts the experimental

value by 16.4%, as compared to the lower bound on the measurement. The overprediction

is expected for two reasons. The first is due to the fact that the model does not account for

upstream disturbances in the air flow from the experimental apparatus. An overprediction is

also expected from using an Euler-Bernoulii beam model, where the result is a beam stiffer

than that of other models such as the Timoshenko beam.

The semi-continuum method using the nonlinear structure model predicted a flutter speed

of 48.7 m/s, which is within 11.1 % of the measured value. In this model, three modes of

motion (two bending, one torsional) were coupled and the simplifying were therefore not as

restrictive as the linear case. Even though two additional modes of motion were allowed, the

change in the predicted flutter speed was less than 4 %. This is due to the primary mode of
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bending motion being the most dominant in axial flow. In both cases (linear and nonlinear

structure dynamics), the semi-continuum models are subject to numerical error.

While the semi-continuum models have been validated using the 2024 aluminum bench-

mark case, they were tested for two additional configurations. These samples were made of

PETG and ABS plastic where the Young’s modulus for each was much smaller than that

of 2024-T3 aluminum. However, it is important to note that the properties for these ma-

terials are reported in ranges; in this work the average values were taken from literature.

For the PETG case the flutter speed obtained from experiment was 28.0 ± 4.93 m/s. The

calculated flutter speed from the BCT for this case was 32.4 m/s, which is with the range

of uncertainty of the measured value. The fully linear semi-continuum model predicted a

flutter speed of 30.4 m/s and the nonlinear model predicted 22.6 m/s, both of which are

within the uncertainty associated with the measurement. The measured flutter speed for

the ABS plastic beam was 15.5 ± 4.93 m/s. For this case, the calculated flutter speed from

the BCT is 23.1 m/s, which is within 13.1 % of experimental data. The linear and nonlinear

semi-continuum predicted flutter speeds of 20.6 m/s and 8.5 m/s, respectively. The linear

value is within 1% of the experimental value and the nonlinear value is lower by 19.3%. An

interesting observation is that in the plastic cases, which have a Young’s modulus one order

of magnitude smaller than aluminum, there is considerable difference between the linear and

nonlinear flutter speed predictions.
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6.2 Limit cycle oscillation

The objective of the first set of LCO experiments was to determine how, if at all, the fre-

quencies of the oscillations change as the air speed is brought higher than the flutter speed.

For all three configurations, it was observed that the frequencies present in the LCO at

the flutter speed remained as the air speed was increased, and no higher or lower modes

were excited. For the aluminum and ABS samples, there was a noticeable increase in the

modal frequencies as the air speed was increased. For the aluminum case, the frequencies

shifted by about 4 % as the air speed was increased to 7.9 % above the flutter speed. The

ABS sample, which showed 6 frequencies in the FFT’s performed on the accelerometer data,

showed similar behavior. The existing peaks shifted to the right on the FFT by as much

as 6.8 % for a 22.5% increase in air speed above the flutter speed. In Sample 2, the PETG

plastic, the maximum increase in the modal frequency was 1.5 % for an increase in air speed

of 15.1 % above the flutter speed. Although the PETG sample had a much smaller Young’s

modulus than the aluminum sample, the natural frequencies according to Euler-Bernoulli

beam theory were higher than the other two samples.

The experiments with the high speed camera were conducted with the same goals in mind,

where one key advantage was that no accelerometer was required. This results in a less

intrusive experimental apparatus, because the accelerometer acts adds a point mass added

to the structure. These experiments were also used to observe the shape of the structure

while it was undergoing LCO. The images from these experiments show that the calculated

eigenfunctions from Chapter 4 resemble the shape of the bending motion in LCO fairly well.
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Using image processing techniques, the displacement of the midpoint of the structure versus

time was determined. While the resulting time domain data did not produce a signal clean

enough to create a meaningful FFT, it was used to observe the effect of increasing air speed

on the LCO amplitude. It was found that increasing the air speed past the flutter speed

had a substantial impact on the amplitude of the structure’s motion. In the most flexible

sample, the ABS plastic, the maximum midpoint displacement in the oscillation increased

by 26.6 % for a 25.1 % increase in air speed. In the 2024-T3 aluminum case, the maximum

displacement of the structure’s midpoint increased by 18.0 % for a 10.1 % increase in air

speed. As was the case in the modal analysis experiments, the PETG plastic sample was

least affected. For an 8.3% increase in air speed, the increase in midpoint amplitude was

1.87%.
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6.3 Scaling

In Chapter 5 the linear governing equation for bending was scaled and written in terms of

nondimensional variables. This produced a nondimensional air speed, U∗, and a nondimen-

sional frequency, ω∗, which were used to present the data as dimensionless values. Using

the value of U∗ obtained from the flutter speed measurement for 2024-T3 aluminum, an

expression to estimate the flutter speed was developed. Here, U∗ is taken as a universal

constant which is independent of geometry and material properties, and can therefore be

used to estimate the flutter speed for any configuration. While it is only meant to be an

approximation, due to its incredible simplicity a result can be obtained very quickly.

The dimensionless frequency, ω∗, was calculated and plotted for versus air speed for each

configuration. For the PETG plastic case, which had the highest bending stiffness, the di-

mensionless frequency was roughly constant with increasing air speed. This is consistent

with the measured dimensional values. For the aluminum and ABS cases, it was determined

that there is a linear relation between the dimensionless frequency and air speed. The R2 on

the linear curve fit was 0.987 for both cases. An expression for the frequency as a function of

air speeds higher than the flutter speed, ω (U), was constructed using the ω∗ and U∗ deter-

mined from experiment. Here, it is only meant to be an approximation because the modal

analysis experiments were performed on a beam with an accelerometer near the clamped

end. However, the methods used to obtain this result open the door to future work.
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7 Conclusions

In the most general sense, the goal of this dissertation was to connect the beauty of a math-

ematically rich aeroelasticity theory to the practicality of engineering calculation. One of

these cannot survive without the other, and the Balakrishnan Continuum Theory (BCT)

does not disappoint in providing the former. As with many mathematical modeling efforts,

simplifying assumptions are made throughout the development at the expense of accuracy.

This is often justified by the reduction in computational time by arriving at a simpler set

of equations to solve. This is true for the BCT, where there is no costly finite element

method required to obtain a result. Furthermore, the mathematics developed by the BCT

were used to arrive at two physical hypotheses about aeroelasticity in axial flow. The first is

that torsional motion is unconditionally stable, and the second is that the divergence speed

is undefined. In this work the former could not be verified or disproven experimentally;

torsional motion was observed in one experiment and not in others.

Instead of pursuing more mathematical detail within the framework of the BCT or attempt-

ing to draw physical conclusions from it, the aim of this research was to put the BCT to use

for engineering purposes. The first step to doing this was to modify the stability technique

so that all functions in the BCT are defined. Another task associated with implementing the

BCT was to condition singular integrals so they could be evaluated using numerical integra-

tion methods. These modifications and methods were applied to the BCT, without altering

the mathematics of the BCT itself, to obtain flutter speed predictions. It was found that

much improvement could be made to the accuracy of the BCT predictions. The path chosen
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to accomplishing this was to stray from the purely continuum mathematics, and introduce

solution methods more commonly used in engineering practice.

When studying the BCT, it is immediately clear that the difficulty lies in solving the fluid

side of the problem. Once this is done, in the form of a solution for the aerodynamic loading

on the structure, the remaining work is much more straightforward. To avoid finite differ-

ence or series approximations, the BCT proceeds to solve the structure side of the problem

by eliminating the dependence of the aerodynamic loading on the structural displacements.

This is done by forming a Nuemann expansion and keeping only the first term, after which

the linear differential for the bending displacement can be solved analytically. This simpli-

fication can be avoided by using a Galerkin method to solve the governing equation for the

structure, while preserving the continuum solution for the fluid. In this work, this is referred

to as the semi-continuum approach; it uses a continuum solution for part of the problem and

a non-continuum solution for the other. Another advantage of this method is that it is not

restricted to linear governing equations.

By comparing the flutter speed predictions obtained from the semi-continuum modeling

to the BCT predictions and experiment, it was determined that the use of a semi-continuum

method reduced the error by over a factor of two. This demonstrated that any error asso-

ciated with a Galerkin method was outweighed by relieving simplifying assumptions made

in the BCT. Because the semi-continuum approach sets up the system as an eigenvalue

problem, and as a result produces eigenfuncitons, it can be further validated by comparing

these eigenfunctions to experiment. It was found that the eigenfunctions calculated using
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both linear and nonlinear structure models resembled the shape of the beam obtained from

images taken by a high speed camera.

The BCT and semi-continuum methods are limited to cases where the structural displace-

ments are very small, which is acceptable when the only quantity of interest is the flutter

speed. In some applications (e.g. piezoelectric energy harvesting) the bounded motion of

the structure after the flutter speed is reached, known as Limit Cycle Oscillation (LCO), can

be of great importance. The modeling tools described thus far fall short in describing such

motion. LCO was analyzed by experiment to determine how air speeds above the flutter

speed affect the frequencies and amplitude of the oscillations. The modal analysis experi-

ments showed that higher air speeds did not excite additional frequencies in the structure,

but shifted the existing frequencies slightly higher. The experiments to determine the am-

plitude changes as a function of air speed used a high speed camera and image processing

techniques to measure the structural displacement as a function of time. The measurements

showed that substantial increases in amplitude can occur with increasing air speed.

As part of the experimental work, a scaling analysis was performed on the governing equation

for bending motion to obtain a set of dimensionless parameters. This analysis was used to

present the experimental results in a more useful form, and the nondimensional parameters

were used to produce expressions for the flutter speed and the dominant LCO frequency as

a function of air speed. While these expressions are approximate, their simplicity allows for

obtaining a very rapid result. There is great deal of future work that can be done
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A Numerical methods

A.1 Composite Simpson’s Rule.

The formula for the Composite Simpson’s Rule is:

b∫
a

f (x) dx ∼=
h

3

N
2∑
j=1

[f (x2j−2) + 4f (x2j−1) + f (x2j)] (A.1)

Where N is the number of points used in the approximation, which must be an even number,

and h is:

h =
b− a
N

(A.2)
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A.2 Newton Raphson method for a system of equations

The Newton-Raphson method for a 2×2 system of equations is as follows. For a system

represented by:

f1 (x1, x2) = 0 (A.3)

f2 (x1, x2) = 0 (A.4)

Define the vectors:

⇀
x =

x1

x2

 (A.5)

And

⇀

f
(
⇀
x
)

=

f1 (x1, x2)

f2 (x1, x2)

 (A.6)

For a system of equations the Jacobian, ¯̄J
(
⇀
x
)
, is defined by:

¯̄J
(
⇀
x
)

=

 ∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2



The updated roots
⇀
x
k+1

are given by:

⇀
x
k+1

=
⇀
x
k −¯̄J−1

(
⇀
x
k
)
⇀

f
(
⇀
x
k
)

(A.7)
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Where ¯̄J
−1
(
⇀
x
k
)

is the inverse of ¯̄J
(
⇀
x
k
)

. If ¯̄J
(
⇀
x
)

is a 2×2 matrix, its inverse is given by:

¯̄J−1
(
⇀
x
)

=
1

∂f1
∂x1

∂f2
∂x2
− ∂f1

∂x2

∂f2
∂x1

 ∂f2
∂x2

− ∂f1
∂x2

− ∂f2
∂x1

∂f1
∂x1

 (A.8)

The individual roots are given by:

⇀
x
k+1

1 =
⇀
x
k

1 −
[
∂f1

∂x1

∂f2

∂x2

− ∂f1

∂x2

∂f2

∂x1

]−1 [
∂f2

∂x2

f1

(
xk1, x

k
2

)
− ∂f1

∂x2

f2

(
xk1, x

k
2

)]
(A.9)

And

⇀
x
k+1

2 =
⇀
x
k

2 −
[
∂f1

∂x1

∂f2

∂x2

− ∂f1

∂x2

∂f2

∂x1

]−1 [
−∂f2

∂x1

f1

(
xk1, x

k
2

)
+
∂f1

∂x1

f2

(
xk1, x

k
2

)]
(A.10)

The roots are computed by iterating upon Equations (A.9) and (A.10) until sufficient con-

vergence is obtained. Many times it is convenient to use a finite difference approximation for

the derivatives in Equations (A.9) and (A.10). Using a two-point backward difference results

in what is sometime’s called the Secant method. These finite difference approximations are:

∂f1

∂x1

=
1

∆x1

[f1 (x1, x2)− f1 (x1 −∆x1, x2)] (A.11)

∂f1

∂x2

=
1

∆x2

[f1 (x1, x2)− f1 (x1, x2 −∆x2)] (A.12)
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∂f2

∂x1

=
1

∆x1

[f2 (x1, x2)− f2 (x1 −∆x1, x2)] (A.13)

∂f2

∂x2

=
1

∆x2

[f2 (x1, x2)− f2 (x1, x2 −∆x2)] (A.14)

Where ∆x1 and ∆x2 are chosen to be sufficiently small.
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A.3 Gaussian elimination

The following description closely resembles that found in Atkinson [1]. Consider the system of

equations, at the step where the first row operation in forward elimination is to be performed:

A(1)⇀x =
⇀

b
(1)

(A.15)

Where the following notation is used for the matrix A(1) and vector
⇀

b
(1)

, , for an n×n system

of equations.

A(1) =
[
a

(1)
ij

]
(A.16)

And

⇀

b
(1)

=
[
b

(1)
1 , ..., b(1)

n

]T
(A.17)

The elimination process starts by defining a row multiplier, for each row i :

mi1 =
a

(1)
i1

a
(1)
11

(A.18)

For i = 2, 3, . . . , n. The row multipliers are then used eliminate the elements below the

diagonal in column 1 using the following operations:
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a
(2)
ij = a

(1)
ij −mi1a

(1)
1j (A.19)

For j = 2, 3, . . . , n. And:

b
(2)
i = b

(1)
i −mi1b

(1)
1 (A.20)

For i = 2, ..., n. For an arbitrary step k , the row multiplier is:

mik =
a

(k)
i1

a
(k)
11

(A.21)

For i = k + 1, ..., n. The corresponding row operations are:

a
(k+1)
ij = a

(k)
ij −mika

(k)
kj (A.22)

And

b
(k+1)
i = b

(k)
i −mikb

(k)
k (A.23)

After n steps are performed, the forward elimination is complete and the solution for xn is

given by:

218



xn =
b

(n)
n

a
(n)
nn

(A.24)

The subsequent xk , starting at row k = n− 1 are obtained using the expression:

xk =
1

a
(n)
kk

[
b

(n)
k −

n∑
j=k+1

a
(n)
kj xj

]
(A.25)

Where k = n − 1, n − 2, . . . , 1 . This concludes the Gaussian elimination method, but the

intermediate steps provide a result that will be useful in calculating the determinant and

eigenvectors. This result is the LU decomposition of the matrix A , where A is written as a

product of a lower diagonal matrix L and an upper diagonal matrix U :

A = LU (A.26)

After the forward elimination is completed in Gaussian elimination, the matrix A(n) has the

form:

A(n) =



a
(n)
11 . . . . . . a

(n)
1n

0
. . .

...

...
. . .

...

0 . . . 0 a
(n)
nn


(A.27)

The matrix in Equation (A.27) is indeed the upper diagonal matrix U . It can be shown

219



that the lower diagonal matrix consists of 1’s on the diagonal and the row multipliers below

the diagonal:

L =



1 0 . . . 0

m21 1
...

...
. . . 0

mn1 . . . mn−1,n 1


(A.28)

Equations (A.27) and (A.28) complete the LU decomposition.
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A.4 Determinant of a matrix

To calculate the determinant of the matrix A , the LU decomposition produced by Gaussian

elimination can be used. Using the product rule for determinants, the determinant is:

det (A) = det (L) det (U) (A.29)

For an upper or lower diagonal matrix the determinant is equal to the product of the diagonal

elements. Thus, det (L) = 1, leading to:

det (A) = det (U) (A.30)

Or,

det (A) =
n∏
i=1

a
(n)
ii (A.31)
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A.5 Inverse of a matrix

The inverse of matrix A is calculated by performing the Gaussian elimination method n

times. The matrix inverse A−1 can be obtained by solving the system:

AX = I (A.32)

Where I is the identity matrix and the n × n x matrix solved for will be the inverse of A .

Consider and written in terms of their columns:

X =
[
⇀
x

(1)
, ...,

⇀
x

(n)
]

(A.33)

And

I =
[
⇀
e

(1)
, ...,

⇀
e

(n)
]

(A.34)

The jth column of the inverse,
⇀
x

(j)
, is obtained by applying Gaussian elimination to the

system:

A
⇀
x

(j)
=

⇀
e

(j)
(A.35)

For j = 1, . . . , n . The computational cost associated with computing the inverse is n times
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that of the Gaussian elimination. For this reason inverting matrices is usually avoided, for

example when all that is needed is the solution of a linear system.
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A.6 Calculation of eigenvectors

The method used to calculate the eigenvectors is the inverse iteration method. For an

eigenvalue λi of a matrix A , the eigenvector
⇀
xi is given by:

A
⇀
xi = λi

⇀
xi (A.36)

The inverse iteration method begins with the LU decomposition:

A− λI = LU (A.37)

Combining Equations (A.36) and (A.37):

LU
⇀
xi =

⇀
xi (A.38)

The method proceeds by using the vectors
⇀
z

(m)
and

⇀
w

(m+1)
at iteration m , defined by:

LU
⇀
w

(m+1)
=

⇀
z

(m)
(A.39)

The inverse iteration method starts with an initial guess for the eigenvector,
⇀
z

(0)
. Wilkinson

[Wilk] recommends:

⇀
z

(0)
= L

⇀
e (A.40)
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Where

⇀
e = [1, 1, ..., 1]T (A.41)

The updated eigenvector,
⇀
z

(m+1)
, is calculated using three stages. First, a vector

⇀
y

(m+1)
is

obtained from:

L
⇀
y

(m+1)
= z(m) (A.42)

Next, the vector
⇀
w

(m+1)
is calculated using:

U
⇀
w

(m+1)
=

⇀
y

(m+1)
(A.43)

Finally, the updated eigenvector is obtained from:

⇀
z

(m+1)
=

⇀
w

(m+1)∥∥∥⇀w(m+1)
∥∥∥
∞

(A.44)

The iterations continue until there is sufficiently small change in
⇀
z :

∥∥∥⇀z (m+1) − ⇀
z

(m)
∥∥∥
∞
≤ ε (A.45)
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It was generally observed that in this work no more than 10 iterations are required to obtain

the eigenvector.
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B Experimental data

B.1 Modal analysis data for 2024-T3 aluminum.

The following figures show the FFT diagrams for 2024-T3 aluminum obtained from the

modal analysis experiments.

Figure B.1: FFT for 2024-T3 aluminum at U = 36.7 m/s.
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Figure B.2: FFT for 2024-T3 aluminum at U = 37.5 m/s.

Figure B.3: FFT for 2024-T3 aluminum at U = 38.3 m/s.
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Figure B.4: FFT for 2024-T3 aluminum at U = 39.1 m/s.

Figure B.5: FFT for 2024-T3 aluminum at U = 39.8 m/s.
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Figure B.6: FFT for 2024-T3 aluminum at U = 40.6 m/s.
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B.2 Modal analysis data for ABS plastic.

The following figures show the FFT diagrams for ABS plastic obtained from the modal

analysis experiments.

Figure B.7: FFT for ABS plastic at U = 17.3 m/s.

Figure B.8: FFT for ABS plastic at U = 18.0 m/s.
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Figure B.9: FFT for ABS plastic at U = 18.8 m/s.

Figure B.10: FFT for ABS plastic at U = 19.6 m/s.
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Figure B.11: FFT for ABS plastic at U = 20.4 m/s.

Figure B.12: FFT for ABS plastic at U = 21.2 m/s.
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B.3 Modal analysis data for PETG plastic.

The following figures show the FFT diagrams for PETG plastic obtained from the modal

analysis experiments.

Figure B.13: FFT for PETG plastic at U = 25.9 m/s.

Figure B.14: FFT for PETG plastic at U = 25.9 m/s.
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Figure B.15: FFT for PETG plastic at U = 26.7 m/s.

Figure B.16: FFT for PETG plastic at U = 27.5 m/s.

235



Figure B.17: FFT for PETG plastic at U = 28.3 m/s.

Figure B.18: FFT for PETG plastic at U = 29.1 m/s.
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Figure B.19: FFT for PETG plastic at U = 29.8 m/s.
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B.4 Image processing data for 2024-T3 aluminum.

The following figures show the midpoint displacement data for 2024-T3 aluminum obtained

from the image processing program. The figures show the data from the entire time elapsed,

and for a shorter duration to make the waveform more visible.

Figure B.20: Midpoint displacement versus time for U = 36.7 m/s for 0.5 seconds duration.

Figure B.21: Midpoint displacement versus time for U = 36.7 m/s for 5.4 seconds duration.
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Figure B.22: Midpoint displacement versus time for U = 37.5 m/s for 0.5 seconds duration.

Figure B.23: Midpoint displacement versus time for U = 37.5 m/s for 5.0 seconds duration.
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Figure B.24: Midpoint displacement versus time for U = 38.3 m/s for 0.5 seconds duration.

Figure B.25: Midpoint displacement versus time for U = 38.3 m/s for 5.0 seconds duration.
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Figure B.26: Midpoint displacement versus time for U = 39.0 m/s for 0.5 seconds duration.

Figure B.27: Midpoint displacement versus time for U = 39.0 m/s for 5.0 seconds duration.
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Figure B.28: Midpoint displacement versus time for U = 39.8 m/s for 0.5 seconds duration.

Figure B.29: Midpoint displacement versus time for U = 39.8 m/s for 5.0 seconds duration.
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Figure B.30: Midpoint displacement versus time for U = 40.6 m/s for 0.5 seconds duration.

Figure B.31: Midpoint displacement versus time for U = 40.6 m/s for 5.0 seconds duration.
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B.5 Image processing data for ABS plastic.

The following figures show the midpoint displacement data for ABS plastic obtained from

the image processing program. The figures show the data from the entire time elapsed, and

for a shorter duration to make the waveform more visible.

Figure B.32: Midpoint displacement versus time for U = 17.3 m/s for 0.5 seconds duration.

Figure B.33: Midpoint displacement versus time for U = 17.3 m/s for 5.0 seconds duration.
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Figure B.34: Midpoint displacement versus time for U = 18.0 m/s for 0.5 seconds duration.

Figure B.35: Midpoint displacement versus time for U = 18.0 m/s for 5.0 seconds duration.
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Figure B.36: Midpoint displacement versus time for U = 18.8 m/s for 0.5 seconds duration.

Figure B.37: Midpoint displacement versus time for U = 18.8 m/s for 5.0 seconds duration.

246



Figure B.38: Midpoint displacement versus time for U = 19.6 m/s for 0.5 seconds duration.

Figure B.39: Midpoint displacement versus time for U = 19.6 m/s for 5.0 seconds duration.
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Figure B.40: Midpoint displacement versus time for U = 20.4 m/s for 0.5 seconds duration.

Figure B.41: Midpoint displacement versus time for U = 20.4 m/s for 5.0 seconds duration.
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Figure B.42: Midpoint displacement versus time for U = 21.2 m/s for 0.5 seconds duration.

Figure B.43: Midpoint displacement versus time for U = 21.2 m/s for 5.0 seconds duration.
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B.6 Image processing data for PETG plastic.

The following figures show the midpoint displacement data for PETG plastic obtained from

the image processing program. The figures show the data from the entire time elapsed, and

for a shorter duration to make the waveform more visible.

Figure B.44: Midpoint displacement versus time for U = 26.7 m/s for 0.5 seconds duration.

Figure B.45: Midpoint displacement versus time for U = 26.7 m/s for 5.0 seconds duration.
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Figure B.46: Midpoint displacement versus time for U = 27.5 m/s for 0.5 seconds duration.

Figure B.47: Midpoint displacement versus time for U = 27.5 m/s for 5.0 seconds duration.
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Figure B.48: Midpoint displacement versus time for U = 28.3 m/s for 0.5 seconds duration.

Figure B.49: Midpoint displacement versus time for U = 28.3 m/s for 5.0 seconds duration.
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Figure B.50: Midpoint displacement versus time for U = 29.1 m/s for 0.5 seconds duration.

Figure B.51: Midpoint displacement versus time for U = 29.1 m/s for 5.4 seconds duration.
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B.7 Uncertainty in measured frequencies for 2024-T3 aluminum.

The following tables show the calculated uncertainty values for 2024-T3 aluminum not shown

in Chapter 5.

Figure B.52: Uncertainty values for 2024-T3 aluminum.
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B.8 Uncertainty in measured frequencies for ABS plastic.

The following tables show the calculated uncertainty values for ABS plastic not shown in

Chapter 5.

Figure B.53: Uncertainty values for ABS plastic.
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B.9 Uncertainty in measured frequencies for PETG plastic.

The following tables show the calculated uncertainty values for PETG plastic not shown in

Chapter 5.

Figure B.54: Uncertainty values for PETG plastic.

256



C Galerkin coefficients from semi-continuum method.

C.1 Galerkin coefficients for linear fluid and structure dynamics.

Table C.1: Galerkin Coefficients for 2024-T3 Aluminum.

n Bn, Real Bn, Imaginary n Bn, Real Bn, Imaginary

1 1.0000E+00 1.0000E+00 11 1.0531E-05 1.0275E-05

2 -2.9113E-01 -2.9595E-01 12 -5.8407E-07 1.1121E-06

3 2.3488E-02 4.8547E-02 13 -3.0907E-06 -3.5816E-06

4 -1.1100E-03 -9.7022E-04 14 3.8335E-06 1.4681E-05

5 -1.3920E-03 -1.8138E-03 15 -2.7128E-06 -1.9788E-06

6 1.2515E-05 5.4401E-05 16 -1.0979E-06 -2.1559E-06

7 4.0250E-04 6.5210E-04 17 -1.3529E-06 -2.1464E-07

8 -7.0667E-06 -1.0634E-05 18 1.8476E-06 6.0167E-06

9 -5.7399E-05 -7.3905E-05 19 2.3841E-06 9.3301E-06

10 5.0783E-06 8.1193E-06 20 -4.1975E-07 6.3864E-06
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Table C.2: Galerkin Coefficients for PETG Plastic.

n Bn, Real Bn, Imaginary n Bn, Real Bn, Imaginary

1 1.0000E+00 1.0000E+00 11 -8.3065E-05 4.1733E-04

2 -1.0528E-01 -2.1316E-01 12 6.9060E-03 -1.9482E-04

3 -1.4879E-02 2.6368E-02 13 4.8868E-03 -6.4265E-05

4 1.4361E-02 -2.9079E-02 14 3.6684E-03 -1.6164E-04

5 2.2118E-03 -4.9537E-02 15 2.3186E-03 7.4659E-04

6 -3.9283E-05 1.8090E-04 16 2.1558E-03 -1.9157E-04

7 -3.7978E-04 4.9775E-04 17 1.6301E-03 -4.9947E-05

8 3.7994E-05 4.8038E-05 18 1.2916E-03 2.7180E-06

9 7.7366E-04 -1.6936E-03 19 6.4210E-04 3.2476E-06

10 -4.5408E-04 1.0768E-03 20 3.4210E-04 1.2476E-06
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Table C.3: Galerkin Coefficients for ABS Plastic.

n Bn, Real Bn, Imaginary n Bn, Real Bn, Imaginary

1 1.0000E+00 5.5336E-01 11 6.2944E-06 -1.3798E-05

2 -3.0974E-02 -1.0000E+00 12 1.4381E-05 -2.1203E-03

3 8.3577E-02 7.4018E-02 13 3.1169E-05 2.9062E-04

4 -7.3367E-03 -4.7403E-02 14 -1.1741E-05 -9.1213E-05

5 -3.6565E-03 -3.9820E-02 15 9.2985E-05 1.0074E-03

6 1.4604E-04 -4.7475E-02 16 -1.2611E-05 -1.0323E-04

7 2.3644E-04 2.4786E-03 17 -2.8060E-06 2.7019E-04

8 -2.1928E-05 -1.5163E-04 18 -1.6248E-06 -2.1238E-05

9 -2.0271E-04 -2.2605E-03 19 6.4805E-06 6.2649E-05

10 8.5923E-05 6.9660E-04 20 6.9755E-06 5.2704E-05
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C.2 Galerkin coefficients for linear fluid and nonlinear structure

dynamics.

Table C.4: Galerkin Coefficients for 2024-T3 Aluminum.

n Bn, Real Bn, Imaginary Cn, Real Cn, Imaginary Dn, Real Dn, Imaginary

1 8.7852E-01 8.4557E-01 2.40E-06 5.0443E-03 -1.3261E-19 -1.8930E-16

2 -1.0000E+00 -1.0000E+00 -2.10E-06 -2.1457E-03 3.1594E-20 3.7265E-17

3 8.0597E-01 2.6049E-02 3.38E-07 -2.6126E-03 -3.4600E-21 -1.5667E-17

4 -8.2013E-02 5.5817E-03 -4.66E-07 6.6377E-03 2.5910E-21 3.3004E-18

5 -1.6078E-01 -5.7060E-02 7.36E-07 -5.0243E-03 -2.8351E-22 9.4080E-19

6 1.5986E-04 1.5477E-03 3.19E-08 4.6848E-04 -2.8642E-21 -2.2320E-18

7 1.4537E-03 7.4207E-04 1.12E-08 1.6719E-04 2.7363E-22 1.5978E-18

8 -1.9522E-04 8.9830E-05 -2.72E-08 4.0785E-04 2.6724E-22 2.1241E-19

9 -5.1632E-03 -1.2984E-03 2.40E-08 -5.4847E-04 6.0733E-22 -6.9639E-19

10 3.2928E-03 8.3727E-04 7.87E-08 1.7526E-03 -2.4179E-22 1.6333E-19
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Table C.5: Galerkin Coefficients for PETG Plastic.

n Bn, Real Bn, Imaginary Cn, Real Cn, Imaginary Dn, Real Dn, Imaginary

1 1.0000E+00 1.0000E+00 2.02E-13 -4.4571E-13 3.3559E-26 -1.1066E-24

2 -7.9532E-01 -8.5188E-01 2.01E-13 2.4143E-13 -6.1738E-27 -2.3441E-25

3 4.3299E-02 -9.3464E-02 -6.19E-14 -2.1707E-13 -2.1173E-27 1.3074E-25

4 -4.3391E-02 1.7839E-03 -1.27E-13 -2.3158E-14 6.5909E-28 -2.7345E-26

5 -8.1649E-02 -1.5322E-01 -5.26E-14 6.3561E-14 7.1781E-28 -1.4166E-26

6 1.3557E-03 2.1086E-02 6.01E-14 7.0242E-14 2.4981E-30 3.4317E-26

7 7.7985E-04 6.4510E-04 5.17E-14 1.0220E-15 -2.0045E-28 -3.2079E-26

8 -1.0338E-04 2.9311E-04 -4.89E-15 -3.0933E-14 -6.5094E-29 4.6231E-27

9 -2.6412E-03 -4.1796E-03 -2.49E-14 -7.0160E-15 4.0077E-29 8.9323E-27

10 1.6755E-03 2.5238E-03 -8.48E-15 4.0382E-16 3.1988E-29 -1.2400E-27

11 3.4624E-04 1.2712E-03 9.58E-15 -4.00E-16 -2.01E-30 -2.21E-27

12 1.5840E-23 9.4499E-04 1.58E-23 2.00E-16 -9.08E-30 -9.24E-28
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Table C.6: Galerkin Coefficients for ABS Plastic.

n Bn, Real Bn, Imaginary Cn, Real Cn, Imaginary Dn, Real Dn, Imaginary

1 1.0000E+00 1.0000E+00 2.71E-08 -8.5018E-05 -2.6851E-22 -2.5485E-17

2 -9.1773E-01 8.6108E-01 -3.02E-09 1.3979E-05 1.3110E-24 6.1684E-19

3 -2.1474E-01 -3.1918E-01 -3.11E-09 -4.5829E-06 4.5556E-23 -8.0926E-20

4 2.0743E-01 2.1997E-01 3.35E-10 4.2674E-07 -9.7837E-24 1.9490E-20

5 -2.5890E-02 -3.5207E-02 4.44E-10 1.7410E-06 -6.9361E-24 -3.2284E-21

6 -9.9928E-03 1.2156E-02 -2.82E-12 -1.9472E-07 2.4292E-24 -1.6485E-21

7 -3.0069E-03 1.6075E-02 -6.89E-12 -3.0698E-08 1.0459E-25 2.1286E-21

8 4.6157E-03 -9.3917E-03 1.15E-12 -2.2188E-08 -3.8899E-25 -1.5521E-21

9 -9.2667E-03 -6.9172E-03 1.57E-11 7.6000E-08 -1.1006E-25 9.0294E-22

10 -3.8321E-05 4.9334E-03 -9.51E-12 -5.4063E-08 1.7747E-25 -6.0274E-22

11 1.9812E-05 6.5918E-07 -1.52E-12 -8.41E-09 2.62E-27 4.14E-22

12 6.8960E-06 2.2789E-07 -1.89E-13 -5.16E-08 -3.78E-26 -2.33E-22

13 -4.1687E-06 2.2252E-07 -1.15E-12 3.63E-09 3.91E-26 1.35E-22

14 6.8937E-07 8.4560E-07 1.98E-208 9.22E-09 -9.20E-27 5.84E-24
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