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Abstract

The ISCT MSC committee has been an interested observer of community interests in all matters 

related to MSC identity, mechanism of action, potency assessment and etymology and it has 

regularly contributed to this conversation through a series of MSC pre-conferences and committee 

publications dealing with these matters. Arising from these reflections, we propose that an 

overlooked and potentially disruptive perspective is the impact of in vivo persistence on potency 

that is not predicted by surrogate cellular potency assays performed in vitro and how this translates 

to in vivo outcomes. Systemic delivery or extravascular implantation at sites removed from the 

affected organ system seem to be adequate in affecting clinical outcomes in many pre-clinical 

murine models of acute tissue injury and inflammatory pathology, including the recently EMA 

approved use of MSC in Crohn’s related fistular disease. We further propose that MSC viability 
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and metabolic fitness likely dominate as a potency quality attribute, especially in recipients poised 

for salutary benefits as defined by emerging predictive biomarkers of response.

Introduction

Culture adapted mesenchymal stromal cells (hereafter MSC[1]), were first clinically 

tested in human subjects in the United States in 1995[2]. Nearly a quarter century later, 

the European Medicines Agency (EMA) approval of darvodstrocel, an adipose-derived 

MSC product for treatment of Crohn’-related perianal fistular disease, inaugurates the 

endorsement of MSCs as a bona fide pharmaceutical[3–5]. This approval foreshadows 

the good likelihood that other allogeneic MSC products derived from marrow, adipose 

and possibly puerperal discards, such as umbilical cord currently undergoing advanced 

clinical trials internationally, may meet the exacting bar of marketing approval for additional 

clinical indications. The common thread amongst these platforms is the use of MSC, 

but substantial divergence exists in practice in handling and delivery of this living cell 

product. Continuously evolving pre-clinical data in animal systems provide insights on MSC 

function, fate and host response that may well optimize a pharmaceutical strategy first 

deployed 25 years ago. This perspective seeks to capture these insights and how they inform 

the evolving clinical investigational use of MSCs.

Ontogeny of culture adapted MSC

For biologists with an interest in the cellular elements of the marrow hematopoietic stem 

cell (HSC) niche, the in vitro CFU-F assay remains a necessary functional attribute for 

identifying endogenous mesenchymal stem cells with HSC niche sustaining competency[6]. 

Murine in vivo marrow mesenchymal fate mapping and cell tracking studies have 

demonstrated that leptin receptor (LepR) marks CXCL12 and stem cell factor (SCF)-

expressing HSC-sustaining Prx1+ niche cells [eg: CXCL12-abundant reticular (CAR) 

cells] with robust CFU-F competency[7–10]. LepR+ mesodermal progenitor cells represent 

0.3% of endogenous cells in adult mouse bone marrow and single cell RNAseq analysis 

marrow resident LepR+ cells demonstrates that this population is not monolithic but 

rather is constituted by at least fourteen LepR+ subsets distinguished by distinct gene 

signatures. As an aggregate, LepR+ mesodermal progenitor cells generate more than 94% 

of serum-responsive CFU-Fs in vitro[11, 12]. Indeed, endogenous LepR+ mesodermal 

progenitor cells constitutively express both PDGFRα and PDGFRβ that likely drives 

their CFU-F competency in vitro in response to PDGF-rich, serum containing cell culture 

media[13]. Interestingly, LepR is dispensable for CFU-F competency since LepR-deficient, 

but PDGFR+ marrow mesodermal progenitor cells maintain the ability to form CFU-F in 
vitro[12]. The pivotal role of PDGF responsiveness to generate CFU-F is further reinforced 

by the observation that dasatinib (a PDGFR signaling inhibitor) abolishes replicative 

capacity of CFU-Fs in vitro[14]. Therefore, LepR/PDGFRαβ marks endogenous murine 

marrow mesodermal progenitor with CFU-F competency, but PDGFRαβ is sufficient to 

initiate and sustain culture adapted mesenchymal stromal cell expansion. Analogous analysis 

of human marrow derived CD271+ MSCs maps CFU-F ontogeny to LepR+/PDGFRαβ+ 

Galipeau et al. Page 2

Cytotherapy. Author manuscript; available in PMC 2025 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



progenitors which highlights the functional convergence of PDGFRαβ from a comparative 

biology perspective between mouse and human CFU-F properties[15, 16].

MSC form and function

Culture adapted MSC meeting the 2006 ISCT minimal identity definition[17] can be derived 

from multiple tissue sources. Amongst these, MSC derived bone marrow (M), adipose (A) 

and umbilical cord (UC) tissue are the most commonly studied in human clinical trials[18]. 

The CFU-F colony assay used by developmental biologist to define, in part, the stemness 

of endogenous marrow mesenchymal progenitors is directly analogous to passage 0 (P0) 

output which seeds the first step in culture-adapting polyclonal MSC expanded in number 

to form a cellular pharmaceutical. Culture adapted bone MSC maintained in serum-rich 

media preserve some of the functional attributes of the tissue progenitors from which 

they are derived[19–21], such as the MSC(M) homeostatic expression of hematopoietic 

niche maintaining morphogens such as CXCL12 and SCF[13, 22]. However, distinct from 

their replicative quiescent marrow resident forbearers, post CFU-F MSC will activate the 

expression of morphogens and leukines not otherwise expressed in vivo under homeostatic 

conditions[23, 24]. An argument can be made that PDGFR expression as a functional marker 

of MSC CFU-F progenitors is a self-fulfilling prophecy considering that PDGF-rich serum 

is typically used as a source of mitogens when culture adapting MSC. Whereas endogenous 

mesodermal progenitors are in replicative quiescence in steady state, mitogen activated MSC 

deploy a robust replicative activity in response to serum. There is a strong consensus that 

culture adapted, polyclonal MSCs, are not a clonally pure population[25] but rather cell 

product with shared mesodermal identity features and replicative fitness of continuously 

expanding MSCs is associated with the expression of Twist1[26, 27].

Replicating MSC deploy an altered transcriptome reminiscent of their innate response to 

injurious cues in vivo such as the expression of chemokines like CCL2 in addition to 

their canonical expression of factors like CXCL12 and SCF. An argument can be made 

that mitogen activated, mitotically active culture adapted MSC adopt a pre-programmed 

functionality primed for tissue injury response. Indeed, factors comprising the secretome 

of culture adapted MSCs that convey anti-inflammatory and regenerative effects in murine 

models of tissue injury include CCL2, HGF, TSGL-1 and COX2, which are not expressed 

in quiescent endogenous progenitors[28]. A similar profile can be observed in human 

culture adapted MSC as well. Interestingly, many of the acquired in vitro functionalities 

of culture adapted MSC(M) mirror the response of endogenous LepR+ progenitors to 

marrow injury or alarmins. The marrow endogenous LepR+ mesodermal compartment also 

will dynamically respond to TLR4 agonists such as LPS by upregulating expression of 

CCL2 that triggers egress of CCR2+ marrow resident myeloid cells and monocytes to the 

periphery[29] and provides a mechanistic link to the necessary immune modulating role of 

CCL2 arising from use of culture-adapted MSC[30–33] . Considering that TLR4 agonists 

also include alarmins such HMGB1, we can hypothesize that endogenous mesodermal 

progenitors can be activated by sterile tissue injury as well[34, 35]. These in vivo 
responses of LepR+ marrow cells to injurious somatic cues likely foreshadow the functional 

activation of PDGF-driven culture adapted MSCs and their distinct transcriptome. In 

essence, CFU-F competency may well mirror the endogenous physiological tissue injury 
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response of marrow-resident LepR+ cells. Indeed, close analysis of endogenous LepR 

responses to injury may provide important mechanistic insights on the pharmacology of 

MSCs as a cell drug. Of note, the transcriptome of culture adapted MSC(M) can be 

modulated to optimize functional properties by manipulating culture conditions such as 

oxygen tension[36], glucose restriction, as well as addition of recombinant morphogens or 

licensing cytokines[37]. For example, adding interferon-γ alone or in tandem with TNF-α 
to culture media for a few hours markedly augments the expression of chemokines CCL2, 

CXCL9/10/11 and induces expression of IDO and PD-L1[38]. Functional tuning of MSC in 

this manner has been shown to substantially alter the pharmaceutical properties of live MSC 

administered in preclinical models of disease[39] and are now being evaluated as part of 

human clinical trials[40]. Conversely, overexuberant culture expansion of MSC morphs the 

mixed population of mesodermal-sourced cells to become clonally impoverished, with loss 

of mesodermal tissue plasticity and acquisition of a Twist1null phenotype and senescence 

that adversely impacts their functionality[41].

Considering that the MSC-dependent mechanism of action is anchored in its secretome[42], 

a cogent argument can be made that the best cell therapy is done without any cells but 

rather using elements of the secretome such as components derived from extracellular 

vesicles (EV) like exosomes[43]. Indeed, characterization and translational development 

of MSC-derived exosomes[44, 45] and related EVs are of great interest[46, 47]. Whether 

this biological product can serve as an effective alternative to MSC therapy remains to be 

determined.

MSC viability and necrobiology

Dead MSCs do not have a functional secretome and fail to inhibit immune cell function 

using standard in vitro functional assays[48]. Yet intravenous transfusion in mice of dead 

human MSC will trigger a vigorous host lung tissue transcriptional response leading to 

expression of a cascade of leukines[49]. The transcriptional response can be mapped to lung 

resident phagocytic macrophages that engulfed the dead MSCs and thus laden secondarily 

migrated to liver within 72 hours and promptly vanished thereafter[50]. A similar 

abbreviated transient persistence occurs following intravenous administration of MSCs 

with impaired fitness arising from product handling protocols such as cryobanking[51] 

and thawing at time of infusion. The necrobiological host response is entirely autonomous 

from any MSC functionality and has to do with cell recycling of necrotic/apoptotic cellular 

elements. In itself, the necrobiological immune dampening host response may have salutary 

effects in systemic inflammatory syndromes[52, 53]. However, the effect would be expected 

to be short lived considering the virtual absence of any MSC functionality or transient 

engraftment permissive for a MSC-dependent pharmaceutical effect. Indeed, the negative 

outcome of a placebo-controlled randomized study of IV delivered allogeneic MSC in 

ARDS was plausibly linked to poor product viability at release[54]. More so than any other 

quality attribute, MSC product viability and metabolic fitness at the time of administration to 

recipient most likely influences clinical potency of final formulation[55, 56].
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MSC fate following adoptive transfer – the competing forces of transient 

engraftment and efferocytosis

When culture adapted MSC(M) are transfused intravenously in mice they display a brief 

period of engraftment predominantly in lung and within days disappear either from 

apoptosis or efferocytosis. The host lung efferocytotic response is unleashed whether the 

infused MSC product be viable or deliberately rendered apoptotic. Host phagocytosis of 

transfused MSC was first considered a biologically silent event, but a mounting body of 

evidence informs that efferocytosis (phagocytosis of cells) triggers a profound host immune 

suppressive event driven by IL-10-polarized phagocytic macrophages, let the MSCs be dead 

or alive[5]. In contrast, live MSCs administered in the extravascular space can persist in 

vivo for weeks or months and provides a pharmacologically plausible argument that MSC 

secretome provide over an extended period of time for paracrine factors acting on bystander 

somatic and immune cells[57]. If the host efferocytotic response was the sole mechanism 

via which adoptive transfer of MSC lead to clinical effects in vivo, then dead MSCs should 

be as potent as live cells, which they are not[58]. However, a host efferocytotic response 

may suffice to gain clinical benefit under certain circumstances such as in acute GVHD. 

A powerful argument that functional transient engraftment and metabolic activity of MSCs 

play a role in their salutary effects in vivo is supported by perfusion experiments of MSC 

separated from subject blood by permeable membranes that allow for secreted factors to be 

released yet cloaks MSC from phagocytosis. Indeed, in such a system it was shown that 

MSC secretome profoundly alters host myeloid cell biology and that live MSCs substantially 

alter their secretome including massive release of extracellular vesicles and a matrix of 

leukines[59].

Route of administration impacts MSC persistence in vivo, potency and 

adverse event risks

Route of administration of MSC for any given ailment follows one of three typical clinical 

approaches: the most common being intravenous transfusion, followed by directly to 

afflicted tissue or target organ (eg: intrathecal, intra-articular or arterial inflow to target 

organ) and as a depot in an extravascular compartment (subdermal, intraperitoneal or 

intramuscular)[60]. Direct delivery to an afflicted organ is predicated on the premise that 

pharmaceutical potency is dependent on direct tissue engraftment to maximize paracrine 

effect. This line of thought rationally informs anatomically targeted tissue engineering 

where MSC regenerative effect is sought at a specific locale such as bone repair, 

vascular insufficiency or monoarticular joint degeneration[61]. The successful development 

of darvodstrocel for Crohn’s associated enterocutaneous fistular disease is an example 

of the successful outcome of this strategy[5]. Along these lines, embedding of MSC 

in biomaterials and delivered as an implant can have profound effects on persistence 

and clinical effects[62, 63]. However, where tissue injury and inflammation intersect, 

organ targeted delivery may not necessarily be the optimal means of MSC delivery to 

optimize clinical outcome. This theorem has been aggressively pursued in the cardiovascular 

space where direct myocardial delivery has been examined in an array of clinical trials, 

including an unsuccessful phase III trial of endomyocardial delivery of autologous MSC 
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[64]. Indeed, tissue targeted delivery can be counterproductive since post hoc analysis 

suggested an inverted U dose/response relationship [eg: injecting more cells directly in 

heart made things worse] [65]. A revisionist approach is that intravenous delivery of 

MSC can be as effective as direct cardiac delivery despite near absence of demonstrable 

myocardial tropism of transfused cells[66]. A similar paradigm informs most clinical trials 

for neuroinjury where MSCs are administered IV rather than directly in to brain substance to 

achieve clinical ends[60], especially considering the effectiveness of IV delivered MSCs to 

improve experimental rodent neuroinjury[67]. When sought, tropism of MSC to target organ 

following intravenous delivery can be demonstrated albeit the fraction of input making its 

way to target is vanishingly small[68, 69]. Indeed, there is no conclusive in vivo evidence 

that direct tissue tropism is required for the beneficial effects MSCs for improving tissue 

injury or inflammatory syndromes. For example, subdermal delivery of MSC – far removed 

from injured tissue – was the most effective means of improving colitis outcomes in 

mice[58]. This observation speaks to the likely systemic effect of viable MSCs on triggering 

a reparative response by injured tissue, and this response is also likely linked to in vivo 

persistence allowing for prolonged host delivery of MSC secretome[70].

MSC quality attributes and pharmacological disposition inform potency

Culture adapted MSCs that retain replicative fitness will produce a matrix of factors, 

including extracellular vesicles which as an aggregate drive anti-inflammatory and tissue 

regenerative functionality. However, these theoretically desirable features are forfeited if at 

time of administration the cells are dead, dying or damaged defaulting towards a canonical 

host efferocytotic response[28]. Furthermore, the administration of MSC intravenously – let 

the product be fit or compromised – does not allow for meaningful in vivo persistence which 

compromises the window of time for mass action to take place. Tissue targeted delivery of 

MSCs can address this issue in part but can be clinically unfeasible or counterproductive. 

The observation that extravascular depot of MSCs is associated with substantially greater 

cell drug persistence and is associated with meaningful clinical response in organ systems 

far removed from the depot, speaking the systemic mobilization of host bystander cells that 

remodel the immune milieu of injured tissue. These observations gleaned from pre-clinical 

animal model systems inform that undead MSC delivered as an extravascular depot may 

well provide a potent mechanistically informed alternative to intravenous administration 

with its attendant limitations on transient engraftment[58]. Furthermore, the avoidance of 

IBMIR and concerns related to thrombogenesis[71], especially if MSCs are “tuned” in a 

manner which leads to companion increased surface expression of Tissue Factor or other 

potentially injurious factors, provides for clinically deployable alternates which can allow 

for second generation, gene enhanced, MSC products[72, 73].

Predictive biomarkers of MSC response – the next frontier

Notwithstanding the quality attributes of MSC defining their potency in pre-clinical animal 

systems, the human condition entails genetic and acquired diversity of subjects that muddies 

the predictable MSC responsiveness seen in inbred animal systems. These animal systems 

are not well adapted to identify host biological genetic or functional features predictive 

of response to an otherwise identical cell pharmaceutical. It is therefore not surprising, 
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despite use of MSCs bearing identical identity and functional features, that human subject 

clinical response will lack uniformity. Hence, the value in defining demographic, clinical 

and biological features of human subjects that are predictive of MSC response prior to 

initiation of therapy[74]. The utility of such biomarkers is critical for reasoned attribution 

of targeted therapies in many clinical conditions. The same line of thought applies for 

MSC therapies where the pharmacoeconomic and opportunity costs of delivering costly 

treatments to subjects unlikely to respond may forfeit the value proposition of MSC[75]. 

A patient unlikely to respond can pivot to alternates rather than be subjected to futility. 

The MSC in GVHD experience highlights the reasoned restriction to pediatric subjects due 

to their observed higher rate of response than their elders as a simple demographically 

defined biomarker[76]. The identification of subject functional properties, such as the ability 

of patient blood lymphocytes to lyse MSCs in vitro as a potential predictor of response 

of adults with GVHD is also showing promise[77]. The identification and prospective 

validation of host predictive markers of response to MSC may well pave the way to targeted 

testing and deployment of MSC cell technologies in clinical trials that complement the 

parallel efforts in optimizing their cell intrinsic potency potential.

Conclusion

MSC have graduated from investigational to regulatory approved cell drug treatments in 

major jurisdictions. This development foreshadows likely positive outcomes for treatment 

of an expanding pool of inflammatory and tissue injury syndromes. Evolving understanding 

of mechanism of action and empirical clinical experience is informing upon heretofore 

poorly understood quality attributes as well as pharmacological disposition that markedly 

affect clinical potency. This knowledge base will inform the ISCT espoused ethical and 

scientifically sound clinical development of “tuned” MSC and their byproducts as useful 

tools in addressing disorders poorly responsive to conventional medicinal chemistry by 

soliciting host intrinsic repair mechanisms.
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