
UC Berkeley
Recent Work

Title
Feed Subscription Management

Permalink
https://escholarship.org/uc/item/2r6031th

Authors
Wilde, Erik
Liu, Yiming

Publication Date
2011-05-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2r6031th
https://escholarship.org
http://www.cdlib.org/

Feed Subscription Management

Erik Wilde and Yiming Liu
School of Information, UC Berkeley

UC Berkeley School of Information Report 2011-042
May 2011

Available at http://escholarship.org/uc/item/2r6031th

Abstract

An increasing number of data sources and services are made available on the Web, and in many
cases these information sources are or easily could be made available as feeds. However, the more data
sources and services are exposed through feed-based services, the more it becomes necessary to manage
and be able to share those services, so that users and uses of those services can build on the foundation
of an open and decentralized architecture. In this paper we present the Feed Subscription Management
(FSM) architecture, which is a model for managing feed subscriptions and supports structured feed
subscriptions. Based on FSM, it is easy to build services that manage feed-based services so that those
feed-based services can easily create, change and delete feed subscriptions, and that it is easily possible
to share feed subscriptions across users and/or devices. Our main reason for focusing on feeds is that we
see feeds as a good foundation for an ecosystem of RESTful services, and thus our architectural approach
revolves around the idea of modeling services as interactions with feeds.

Contents

1 Introduction 2

2 Managing Feed Access 2

3 FSM Architecture 4

4 OPML Conversion 6

5 Queryable Feeds 7

6 Spatial Feeds 8

7 Implementation 9

8 Related Work 10

9 Future Work 11

10 Conclusions 11

http://www.ischool.berkeley.edu/
http://escholarship.org/uc/item/2r6031th

UC Berkeley School of Information Report 2011-042 Feed Subscription Management

1 Introduction

Nowadays, a growing number of web applications offer APIs and web services, as means to share data and
interoperate with other services and devices. Moreover, many services now expose RESTful APIs, following a
number of general design patterns. One popular set of implementation technologies for RESTful API design
are feeds, with the most robust standard for them being Atom [1]. Atom has been extended by additional
specifications for the read side of the service (for example introducing capabilities to expose paged feeds [2]),
and it also has been extended to cover services beyond read-only access with the Atom Publishing Protocol
(AtomPub) [3].

iTunes podcasts, for example, are enclosed audio files delivered as a service via feeds, albeit wrapped
within the Apple iTunes client. Large web content management systems, like Wordpress or Blogger, offer
full-featured read-write Web services for publishing, consuming, and managing content. In application areas
such as the Web of Things [4], a large number of sensors, appliances, and other everyday objects may emit
data streams, made accessible on the Web as real-time data feeds. Generally speaking, any federated and
decentralized ecosystem of producers and consumers of information services can be modeled as a feed-based
architecture, and such an architecture rooted in plain Web technologies [5] can be especially advantageous
if the participants may use very different in-house implementation platforms, and still need a shared service
platform for services such as reporting and report aggregation [6, 7].

In this paper, we present and demonstrate an architecture for how consumers of feed-based services can
organize the services that they are using, can share them or subsets of them, and can build tools which
implement a decentralized system for publishing, consuming, and managing feed subscriptions.

This Feed Subscription Management (FSM) architecture is based on the observation that an increasing
number of services are exposed via feed-based interfaces.1 In such an ecosystem, it becomes apparent
that management of all these services becomes essential. FSM allows those services to be aggregated into
subscriptions feeds (which can be nested using bundles), which can then be made available and access
controlled (if required) using standard Web technologies. Since FSM subscriptions are managed in feeds
themselves, managing subscriptions is based on Atom and AtomPub and thus can be done using the same
technologies and toolsets that are used for accessing the managed services themselves. Our goal is to provide
a decentralized architecture where the requirements for supported technologies are as minimal as possible,
so that it is easy to use from a wide variety of programming and runtime environments.

Whether the feeds are consumed by browsers or by applications running on mobile platforms is irrelevant
for our architecture, but access to these feeds can be easily shared between clients on those different platforms,
so that users can for example easily use the same set of services, regardless of whether they use a Web
application, a smartphone application, or an embedded application in a car navigation system.

2 Managing Feed Access

Feeds started as a way of representing machine-readable updates on Web sites, often for news sites or blogs.
The first feed formats were various RSS versions, and after RSS ran into problems because of disagreements
in the developer community, the XML-based Atom format was developed as an alternative resolving some
of RSS’s technical problems as well as being developed in a context that has a well-defined process and path
for future developments. For the news and blogs feeds that marked the early days of feeds on the Web, feed
readers emerged, which give users the ability to subscribe to feeds, and then allow users to see updates to
all those feeds in one unified view.

Technically speaking, feed readers exist in various configurations. Some of them are standalone programs
working with any kind of feed, so that users can subscribe to a wide variety of data sources. Others are

1For example, Google’s GData API builds on Atom feeds and AtomPub and adds additional features to this foundation.

May 2011 2 of 13

UC Berkeley School of Information Report 2011-042 Feed Subscription Management

similarly generic in the feed sources/types they accept, but they work Web-based (Google Reader is probably
the most popular example for this kind of feed reader). Others only work with special types of feeds such
as Apple’s iTunes which for its podcast support also manages feed subscriptions (as part of an iTunes user’s
preferences), but only works with feeds that use the specific extensions defined for the podcast format.
Another variety are many of the “single-serving” iOS applications for “company news,” which in many
cases simply consume and render a set of feeds published by that company, because this is the most cost-
effective way to implement such a publishing scenario. This approach restricts users to the small set of feeds
pre-configured in the application.

Some of these single-serving applications consume feeds and implement their own UI and specific func-
tionality, whereas a substantial share of them are essentially nothing more than chrome-less browsers, simply
displaying the HTML contents of a predefined set of HTML-carrying feeds. In this latter case, the applica-
tion often is little more than a thin pre-configured layer of feed access layered over the OS’s native support
for Web content (e.g., WebKit in the case of iOS), packaged and deployed as an application mostly for
non-technical issues, such as visibility in an “app store” and the ability to monetize the application. In
this case of “pseudo-apps” (i.e., applications being essentially feature-reduced browsers being deployed as
applications for non-functional reasons), it becomes apparent that managing feed subscriptions (in this case
subscriptions may be hard-coded into the application, or at least they can not be freely controlled by the
application’s user) becomes an essential part of managing access to Web content, or more generally speaking,
Web services.

Exchange of subscription information between feed readers so far cannot be based on any existing standard
for how to represent this data. The Outline Processor Markup Language (OPML) is the closest thing to
a convention that has emerged, but it is a language that is not very well-suited for the task (since it
was originally intended for a different application scenario) and has no associated protocol for managing
subscriptions in a Web-based way (i.e., it is supported as export/import format in some feed readers, but
does not support network-based synchronization of subscription information). In earlier work about feed
feeds [8], we explored the possibility of serializing feed subscriptions as feeds themselves, and the FSM
architecture presented here builds on this earlier work and extends it in several dimensions:

• Subscription Feeds: The fundamental goal is to use feeds for managing feed subscription informa-
tion. Section 3 explains the details, and in summary our architecture represents feed subscrip-
tions in a subscription feed, and allows AtomPub-based interactions for managing this information
(adding/changing/removing subscriptions in subscription feeds and adding/removing subscription feeds).

• Bundling: In order to provide support for structuring feed subscriptions, FSM supports bundles which
is a way of referring to a subscription feed from within a subscription feed. Bundles always are used
“by reference” (i.e., referred to by URI) and never “by value” (i.e., included literally where they are
used), because feeds are a flat data structure and thus do not support hierarchical structures.

• Decentralization: Since bundles are always used “by reference,” FSM naturally supports decentral-
ization where one subscription feed can reference a bundle (another subscription feed) anywhere on
the Web, as long as it is made available at an accessible URI. This structure can be nested, allowing
arbitrarily complex subscription structures.

• Query Support: Many feed-based services support queries of some kind, sometimes just based on cat-
egories or tags, sometimes based on more sophisticated filter or query capabilities. Section 5 describes
the support for query capabilities built into FSM, which makes sure that both query information and
the resulting URI-based encoding for a feed query can be represented in feed subscription information,
making it easier for clients to “understand” the feeds listed in subscription feeds.

• View Support: In addition to “data feeds,” FSM also supports spatial feeds as explained in more detail
in Section 6. In this case, subscriptions not only refer to feed-based services, they also contain views

May 2011 3 of 13

UC Berkeley School of Information Report 2011-042 Feed Subscription Management

subscription_to, alternate

edit

alternate
feed

paged feed

query-enabled feed

query-enabled paged feed

tiled feed

tiled feed

alternate

subscription_to (URI),
alternate (URI & query string)

edit

alternate (URI & query string)

alternate (URI & query string)

b
u
n
d
l
e

b
u
n
d
l
e

alternate

paged feed

s
u
b
s
c
r
i
p
t
i
o
n

s
u
b
s
c
r
i
p
t
i
o
n

b
u
n
d
l
e

v
i
e
w
s

edit

C
ol

le
ct

io
ns

(F
ee

ds
)

Q
ue

ry
ab

le
C

ol
le

ct
io

ns
(Q

ue
ry

ab
le

Fe

ed
s)

Lo
ca

tio
n-

B
as

ed
 S

er
vi

ce
s

(T
ile

d
Fe

ed
s)

subscription_to

subscription_to

FSM Feed (Subscription, View)

FSM Subscription Entry

Data Feed (Regular/Paged, Query-enabled, Tiled)

FSM Entry Data FeedFSM Feed Feed-Based Service

FSM View Entry

Figure 1: FSM Architecture

which are encoding a spatial region for which subscribed services should provide information, as well
as a number of subscriptions which specify which services should be used to populate that view.

In this paper, we focus on the entire set of features listed above, and we describe a use case and an
implementation (Section 7.2) that use all these features. However, it is important to notice that the FSM
architecture has been designed in a way so that it easily usable even in the simplest scenarios (no query
or spatial features supported by the subscribed feeds, i.e. only using feeds in the way how they are used
on the Web today). As such, we envision that FSM can be used as a foundation in any scenario that uses
feed-based data sources and that is in need of representing and/or managing feed subscription information.
Section 3 describes the FSM architecture and the design decisions that have been made when creating it;
Section 4 describes how to convert existing feed subscription data to and from FSM-based implementations;
and Sections 5 and 6 then discuss the specifics of how FSM supports the use cases of query-enabled feeds
and of spatial feeds.

3 FSM Architecture

The main goal of the Feed Subscription Management (FSM) architecture is to provide a foundation on which
providers and/or consumers can build to represent and exchange information about feed-based services.

May 2011 4 of 13

UC Berkeley School of Information Report 2011-042 Feed Subscription Management

From the provider perspective, a typical scenario might be that of an office building where each room has
an associated feed that publishes the room’s current temperature; the manager of the building could create
a representation of all those feeds in an FSM subscription feed. From the consumer perspective, in the same
scenario a tenant of the office building might choose to create a subset of the original dataset to only represent
those rooms which are occupied by him, and might use this dataset as a starting point for implementing
value-added services about the current office environment, combining the room temperature feed with a
bundle that contains the status of all printers located in the office rooms.

Feeds in FSM are always represented as Atom, because FSM is based on both Atom and AtomPub and
requires Atom’s extensibility for its design. This does not mean, however, that the feeds managed with
FSM have to be Atom; those can use any feed format such as the various RSS formats, and as long as
clients understand these RSS versions when accessing the actual feeds, FSM can be easily used to manage
subscriptions to RSS feeds.

It is important to notice that FSM does not attempt to create or represent an aggregate data feed that is
composed out of all the individual feeds which are listed in a subscription feed. Such an aggregation might be
an interesting service to provide, in particular when considering value-added services for this aggregate feed
such as filter/query capabilities or push services, but the FSM architecture is strictly limited to organizing
information about feed subscriptions. As such, the main components of the FSM architecture are two types
of resources (both of them shown in Figure 1, and for the simple case of data feeds shown in the upper part
of the figure labeled “Collections (Feeds)”):

• Subscription Feed: A subscription feed represents a collection of feeds which are exposed by the pub-
lisher of the subscription feed for a specific purpose, either because they are subscribed to by some feed
user, or because they are provided as a possible set of feeds to subscribe to for potential feed users.

• Subscription Entry: Each managed feed in the subscription feed is represented by a subscription
entry which carries all of the subscribed feed’s metadata as exposed in the feed itself (and none of
the entries); subscription feed managers are free to change feed metadata such as the feed’s title or
summary information, though. Subscription entries must have URIs which are linked by edit URIs.
The entries link to the feed they are representing by using subscription to and alternate links.

FSM covers both read-only scenarios as well as scenarios in which subscription feeds can be managed
using AtomPub. Because AtomPub has no support for creating or removing collections, FSM augments
AtomPub with link relations for linking from FSM feeds to the AtomPub service document, and for linking
from the AtomPub workspace to edit URIs where clients can add new collections to a workspace (which will
be represented as FSM feeds). Those links are optional (because they are only required if the FSM provider
is supporting AtomPub) and are not shown in Figure 1.

Subscription feeds and subscription entries are the main components of FSM and can be used with any
feed-based service. Whether the managed feeds provide additional capabilities such as paging is of no concern
to FSM, as long as the feeds are published at URIs. The topmost row of Figure 1 shows this basic structure
of FSM feeds and entries. It also shows an additional entry type (in the leftmost column) that can be used in
a subscription feed, which is a bundle entry. A bundle entry represents a pointer to a subscription feed, and
can be regarded as the equivalent of a “folder” in feed readers that do support this feature for managing feed
subscriptions. A bundle in a subscription feed always points to a subscription feed, and the bundle entry’s
title is the “folder name” for the linked subscription feed. Since bundles in subscription feeds simply link to
subscription feeds, this structure allows the decentralized storage and management of subscription feeds.

Since subscriptions and bundles are two types of entries that can occur in FSM subscription feeds and that
need to be distinguishable for FSM clients, FSM uses an extension element that signifies the subtype of an
entry. This design has been chosen because on the media type level, both subscribed feeds and subscription
feeds are of type application/atom+xml, but since they are representing different concepts on the FSM
level, there has to be a way how to differentiate between those two cases.

May 2011 5 of 13

UC Berkeley School of Information Report 2011-042 Feed Subscription Management

The FSM architecture has no built-in support for the identification, authentication, or authorization of
users. These issues are left to mechanisms that can be determined by specific FSM implementations and
deployments, and since FSM is based on the principles of Web architecture and all information is managed
through URI-identified resources, and since all interactions are modeled according to the principles of Repre-
sentational State Transfer (REST), layering access control mechanisms on top of FSM can be accomplished
fairly easily.

4 OPML Conversion

Figure 2: View of OPML Imports and one Import

The Outline Processor Markup Language (OPML) is not as expressive or backed by a protocol as FSM
is, but it currently is the most widely supported import/export format supported by feed readers. We have
thus implemented transformations from OPML to FSM and vice versa, so that feed subscriptions in existing
readers can be easily migrated, and so that FSM subscriptions can be exposed in a way that makes them
accessible to feed readers supporting OPML. In this latter case, feed subscriptions will only be used in
the simple way supported by plain feed readers, and the more sophisticated features for query-enabled and
spatial feeds (as described in Sections 5 and 6) will not be supported.

May 2011 6 of 13

UC Berkeley School of Information Report 2011-042 Feed Subscription Management

<entry xmlns="http://www.w3.org/2005/Atom" xmlns:fsm="http://dret.net/fsm/1.0">

<title>Uploads from dret</title>

<summary>Uploads from dret, tagged campanile</summary>

<id>...</id>

<link rel="edit" href="..."/>

<link rel="alternate" href="http://api.flickr.com/services/feeds/photos_public.gne?

id=20266194@N00&format=atom&tags=campanile"/>

<link rel="http://dret.net/fsm/1.0/subscription_to"

href="http://api.flickr.com/services/feeds/photos_public.gne"/>

<fsm:subtype>subscription</fsm:subtype>

<fsm:query scheme="http://api.flickr.com/services/feeds/" uri="true">

format=atom&id=20266194@N00&tags=campanile

</fsm:query>

</entry>

Figure 3: FSM Subscription for Flickr’s Query-Enabled Feed API

A single OPML document may produce several FSM feeds as output. The reason for this is that OPML
supports hierarchical structures within one file (in hierarchically structured XML), whereas FSM feeds are
flat structures, and an OPML hierarchy is thus mapped to bundles that refer to other FSM subscription
feeds (as shown in Figure 1). If the FSM feeds are to be added to a FSM server that supports AtomPub,
the software running the upload process must take each feed and create a new FSM subscription feed for it,
and then POST individual entries to this feed either representing FSM subscriptions (OPML subscriptions),
or FSM bundles (OPML folders).

Figure 2 shows the iOS client views (more about the client in Section 7.2) of two OPML imports being
managed in one subscription feed as two bundles (two individual OPML imports of Google Reader subscrip-
tions have been grouped in this scenario), and the list view of one of these bundles, which corresponds to
the OPML subscriptions as they have been transformed into FSM. Because OPML folders are translated
into FSM bundles and individually referencable FSM feeds, OPML imports can also be used in a way where
individual folders of imported OPML subscriptions can be shared and thus be reused as FSM bundles in
multiple subscription feeds. In the simple OPML-based scenario shown in Figure 2, the iOS feed client
essentially becomes a feed reader that is configured with Google Reader feed subscriptions.

Converting from FSM to OPML requires an approach which takes FSM’s decentralized approach and
turns it into a single OPML document. In this case, FSM subscription feeds are “harvested” (following
the links found in bundle entries) and then converted into one OPML document, where each FSM bundle
in a subscription feed is converted into an OPML folder. The conversion from FSM to OPML is also
implemented in XSLT and uses the built-in support for document access to GET individual FSM subscription
feeds. Queryable feeds are converted to OPML by hardcoding the query string into the URI of the subscribed
feed, so that the exported OPML information reflects the subscribed-to query that is represented in the query
information that is managed by FSM for queryable feeds (as described in the following section).

5 Queryable Feeds

For simple data feeds and subscriptions to them, the basic architecture shown in the upper part of Figure 1
is sufficient. However, in many cases, feeds are more than one-dimensional datastreams and can be regarded
as query result serializations [9].2 There have been proposals for standardizing query languages for feeds,

2Since collections exposed as feeds have no inherent structure, feeds as they are often found on the Web actually can be
regarded as having a built-in “query” of always returning the most recent entries first. Explicit query features simply add the

May 2011 7 of 13

UC Berkeley School of Information Report 2011-042 Feed Subscription Management

examples for this are the Feed Item Query Language (FIQL) [10] and the Resource Query Language (RQL).
No such language has been standardized or has gained widespread adoption so far. However, despite the lack
of an established standard or de-facto standards, many feeds backed by structured data sources or services
do provide service-specific query languages or filtering capabilities.

As one example, the feeds provided by the popular flickr photo sharing service provide a limited set of
query capabilities. They allow to query for user ID(s) and tag(s), and they allow to specify how to query for
specified tags (supported operators are and and or). The flickr API3 defines a simple set of parameters that
can be used in the URI query string. This constitutes a query-enabled feed service, but it requires specific
knowledge of the API to understand the syntax and semantics of the query parameters. The parameters are
then composed into a query string according to the same rules that are used for HTML form parameters.
While this query parameter encoding is by no means required for feed query parameters, it is a widely used
practice because it is easy to understand for users of the feed, and because it is well-supported by standard
URI parsers (which are part of many Web-oriented development frameworks) on the provider side of the
feed.

FSM supports extensions to the Atom format that allow to capture query parameters. The idea behind
this design is that, as shown in Figure 1, it thus becomes possible to specifically support query-enabled feed
services. Since it currently is impractical to assume the existence of a single feed query language, query
information for feed subscriptions requires a query scheme, which is identified by a URI. Based on the query
scheme, the extension element then contains the query string, which is a serialization of the query for a
subscription. An example for this is the flickr API subscription shown in Figure 3.

In this example, the query string not only encodes the query parameters (a user ID and a tag), it also
can be used directly as a URI query string, which is indicated by uri="true" attribute. The alternate link
points to the feed URI containing the query string, whereas the subscription to link only uses the feed’s
base URI without the query string. This means that even without knowing anything about queryable feeds,
a generic feed client can follow the alternate link and will see the contents of the subscribed feed using
the query string. An FSM-aware feed client, on the other hand, can use the feed’s base URI as specified in
the subscription to link, and can, if it does understand the http://api.flickr.com/services/feeds/

query scheme, give the subscriber the ability to change the query, by parsing the current subscription query
string, and giving the user the possibility to change it. If the FSM client wants to change the subscription’s
query parameters, it has to be able to PUT an updated version of the FSM subscription entry to the member
URI that is specified in the edit link.

6 Spatial Feeds

Spatial feeds represent a more complex use case for FSM. By spatial feeds, we mean not only the relatively
simple idea of putting geospatial features into a feed-based format for reader consumption (one example for
this approach is GeoRSS [11]), but also the delivery of full-featured location-based services via open and
standard feed-based mechanisms and protocols. In earlier work [12], we explored the problem of providing
open, scalable, and mashable location-based services on the Web.

In particular, spatial feed support in FSM introduces the additional concept of views. Each view consists
of a particular spatial region and a set of feed subscriptions providing data of interest for that region. For
example, a researcher may be interested in exploring earthquake occurrences relative to population density
figures in the San Francisco Bay Area. In this case, a view may be created consisting of the Bay Area as
the region, and two data feeds of earthquakes and population density figures as data subscriptions for that
view. The bottom section of Figure 1 provides a depiction of FSM’s relationships with spatial feeds.

capability to augment or overwrite those default query semantics.
3http://www.flickr.com/services/feeds/docs/photos_public/

May 2011 8 of 13

http://www.flickr.com/services/feeds/docs/photos_public/

UC Berkeley School of Information Report 2011-042 Feed Subscription Management

The FSM architecture manages not only the set of interesting geospatial data sources as feeds, but also
the set of views that the user is interested in, and any query parameters that may be used for feeds within
that view.

7 Implementation

To prove the concept and demonstrate all of the features of FSM, we have implemented a read/write enabled
FSM server and an iOS-based spatial FSM client prototype that not only processes normal feed subscriptions
and queryable subscriptions, but also supports spatial service subscriptions and views.

7.1 FSM Server

The prototype FSM Server is a general-purpose AtomPub server, implemented in Ruby on Rails, that is
modified with our previously documented FSM extensions. As a prototype, it assumes that it will only
handle subscriptions and views for one user, but is otherwise fully functional.

The server exposes two workspaces, which are feeds and views. Following the FSM extension to Atom-
Pub workspaces, it also links to edit URI for each workspace within the service document. Sending an
HTTP POST with an appropriately formatted feed document will create a new collection, which will then
be published as an FSM subscription feed. Re-reading the service document and the new collection will be
reflected, with its own edit link so that its attributes can be updated via PUT or deleted via DELETE.

For each collection thus created, subscriptions and views can be added to them. Again, via the Atom-
Pub protocol, sending an HTTP POST with an appropriately formatted subscription entry document to a
subscription feed will create a subscription. To create a bundle, a two-step process is needed. The client
first creates the collection via the workspace, and then creates the bundle reference with a link to to the new
subscription feed by POSTing a bundle entry document to an existing subscription feed. Because creating
the “bundled subscriptions” and the bundle entry are two separate steps, they can be executed on different
servers, thus creating a bundle that references an FSM subscription feed managed elsewhere.

The server is seeded with subscriptions and bundles imported from OPML documents. As described in
Section 4, converting from OPML to FSM is implemented using XSLT which takes a single OPML as input
and produces potentially multiple FSM subscription feed documents on output. We currently use OPML
files exported from a user’s Google Reader account — but one can conceivably use any form of OPML output
produced by a feed-managing piece of software. A second tool then parses the base FSM feed generated,
retrieves each entry in turn (dereferencing links to other files if the entry is a bundle), and POSTs them as
individual entry documents to an appropriate collection (or workspace) on the FSM server. This process
highlights that the FSM server does not support “batch uploads”, but this is a restriction of AtomPub itself.

7.2 iOS FSM Client

The FSM client prototype is intended as a proof of concept FSM feed reader. It focuses on read-based
interactions with the FSM server. It has two main views. In the first tab (shown in Figure 2), the user
interacts with his subscriptions as retrieved via FSM subscription feeds. In the example shown, there are
two sets of subscription feeds in the user’s workspace, created from Google Reader OPML files. As per
the decentralization benefit of FSM, each subscription feed can be hosted by a different organization on a
different FSM server, or even in a hypothetical FSM cloud service. They may not even “belong” to the same
user. As long as the user has read access, a subscription feed can be imported/shared with another user’s
own subscription feed, and can thus show up in the client interface. Any changes to the subscriptions are
reflected on the next refresh, in a typical pull-based feed interaction.

May 2011 9 of 13

UC Berkeley School of Information Report 2011-042 Feed Subscription Management

Tapping a bundle feed will dereference the bundle into its component subscriptions and any bundle
references of its own. Tapping a normal data feed will show a typical feed reader interface, with an option of
opening the HTML alternate in the iOS standard browser, Mobile Safari. Tapping a spatial feed or a view
will present a map-based visualization.

Figure 4: iOS FSM client — in (a) showing views, and in (b) showing map visualization of the Berkeley view

8 Related Work

There are few direct analogues to FSM-style feed-based subscription management, beyond aforementioned
OPML – which itself is not a feed-based subscription language, but a generic representation language for
URIs. Research in mobile push services often discuss service subscription management (for example, in [13]),
especially for push-based content delivery to mobile clients, but more specifically intended for notification
and SMS-like services than Web-based services. On the WS* front, web service management involve fairly
tightly coupled mechanisms, via WSMF implementations [14].

Research in geospatial and enterprise mashups are perhaps the most closely related to the spatial feeds use
case. Damia [15] is an enterprise system that generates feeds from multiple sources — such as IT intranets,
user desktop machines, and the Web, and allows users to create on-the-fly data integrations and mashups.

May 2011 10 of 13

UC Berkeley School of Information Report 2011-042 Feed Subscription Management

Similarly, mashups are becoming more important in various scientific and government contexts, such as water
management [16], which currently still require toolkits to construct and are cumbersome to share. An FSM
back-end would relieve much of the infrastructural responsibility from these mashup systems, allowing them
to focus on visualization or other techniques that enhance user experience or efficiency.

The combined architecture of FSM and spatial feeds is targeted at similar use cases as the standards
produced by the Open Geopspatial Consortium (OGC), in particular the Web Feature Service [17]. Our
architecture avoids the heavier WS-* stack of protocols employed by the OGC standards, and instead builds
on simple and widely supported coupled Web standards. The goal of this design is to avoid the focus of the
OGC standards, which is mostly back-end integration on fully-featured platforms, and design an architecture
which can be easily used across all kinds of platforms, from fully-featured back-end integration scenarios to
resource-constrained environments of embedded devices bandwidth-constrained networks.

9 Future Work

The current FSM architecture is based on plain feeds and thus works pull-based. The assumption is that
clients of FSM subscription feeds learn about all feeds in a subscription, and then aggregate those feeds
themselves (often using simple GETs to retrieve the contents of all subscribed feeds). One attractive service
that might be provided based on FSM would be to provide PubSubHubbub (PuSH) support for all feeds listed
in an FSM subscription feed. In such a scenario, a value-added FSM-based service would not only manage
FSM subscription feeds, it would also implement PuSH services for those feeds, allowing clients to subscribe
to the subscription feed’s PuSH service via the PuSH protocol. We believe that such a notification service
aggregating multiple data sources and pushing them to one consumer might be a very interesting scenario
for how to implement near-realtime notifications in an efficient way; it could be using PuSH as a delivery
mechanism or could even be tunneled through platform-specific push channels such as the iOS Apple Push
Notification (APN) service, Android’s Cloud to Device Messaging (C2DM), or HTML5’s server-sent events
or Web sockets. One part of our future work will be to explore this facet of adding push capabilities to FSM
as an additional service layer.

Also referring to PubSubHubbub (PuSH), FSM could be more immediately useful for exposing and maybe
even managing PuSH subscriptions. Currently, PuSH has no way how a client can find out about its current
subscriptions on a PuSH hub. FSM could be a natural choice for this, and going even further, the current
PuSH-specific subscription and unsubscription interactions could be replaced by using FSM’s AtomPub
based methods of POSTing and DELETEing FSM subscriptions. PuSH still needs some custom interactions
(such as verifying a subscription as legitimate), but we believe that be reusing more of Atom and AtomPub
standard interactions and FSM’s way of using them for feed subscription scenarios, PuSH could be improved
to be easier usable.

We plan to use FSM as the management platform for “Web of Things” scenarios such as aggregating and
consolidating electrical appliances and their energy consumption [18], where the services often have different
properties because there are many more feed sources (sensor networks often manage large numbers of data
providers), and there is typically little interest in consuming unfiltered datastreams (such as measurements
in 10sec intervals). In those scenarios, managing a large set of feeds and managing query parameters for them
becomes essential for building useful services, and we hope that FSM will make it easier to build services
and share service parameters openly.

10 Conclusions

This papers presents the Feed Subscription Management (FSM) architecture, which is used for managing
feed subscriptions for plain data feeds as well as for more sophisticated query-enabled and spatial feeds. FSM

May 2011 11 of 13

UC Berkeley School of Information Report 2011-042 Feed Subscription Management

itself is feed-based and thus models all representations according to Atom, and all interactions according
to the AtomPub protocol. FSM is designed RESTfully, which means that it is only based on standardized
media types (with some extensions) and standardized link relationships (also with few additions). It is
meant to provide a management foundation for a decentralized ecosystem of feed-based services, and itself
is built in a way which supports the decentralized management and use of FSM subscription data. While
work on this management layer has finished and is the main topic of this paper, we see a lot of opportunities
in further work (as described in Section 9), both implementing more sophisticated service layers on top of
FSM, such as in the areas of push capabilities and better models for LBS information, as well as for using
FSM in specific application scenarios that need scalability and decentralization in terms of how they manage
data sources and services.

References

[1] M. Nottingham and R. Sayre, “The Atom Syndication Format,” Internet RFC 4287, December 2005.

[2] M. Nottingham, “Feed Paging and Archiving,” Internet RFC 5005, September 2007.

[3] J. Gregorio and B. de Hóra, “The Atom Publishing Protocol,” Internet RFC 5023, October 2007.

[4] T. Berners-Lee, “The Web of Things,” ERCIM News, no. 72, p. 3, January 2008.

[5] E. Wilde, “The Plain Web,” in First International Workshop on Understanding Web Evolution (We-
bEvolve2008), Beijing, China, April 2008, pp. 79–83.

[6] E. Wilde, E. C. Kansa, and R. Yee, “Web Services for Recovery.gov,” School of Information, UC
Berkeley, Berkeley, California, Tech. Rep. 2009-035, October 2009.

[7] R. Yee, E. C. Kansa, and E. Wilde, “Improving Federal Spending Transparency: Lessons Drawn from
Recovery.gov,” School of Information, UC Berkeley, Berkeley, California, Tech. Rep. 2010-040, May
2010.

[8] E. Wilde and I. Pesenson, “Feed Feeds: Managing Feeds Using Feeds,” School of Information, UC
Berkeley, Berkeley, California, Tech. Rep. 2008-025, May 2008.

[9] E. Wilde and A. Marinos, “Feed Querying as a Proxy for Querying the Web,” in Eighth International
Conference on Flexible Query Answering Systems, ser. Lecture Notes in Artificial Intelligence, vol. 5822.
Roskilde, Denmark: Springer-Verlag, October 2009, pp. 663–674.

[10] M. Nottingham, “FIQL: The Feed Item Query Language,” Internet Draft draft-nottingham-atompub-
fiql-00, December 2007.

[11] Open Geospatial Consortium, “An Introduction to GeoRSS: A Standards Based Approach for Geo-
enabling RSS feeds,” OGC 06-050r3, July 2006.

[12] Y. Liu and E. Wilde, “Scalable and Mashable Location-Oriented Web Services,” in 10th International
Conference on Web Engineering (ICWE 2010), ser. Lecture Notes in Computer Science, B. Benatallah,
F. Casati, G. Kappel, and G. Rossi, Eds., vol. 6189. Vienna, Austria: Springer-Verlag, July 2010, pp.
307–321.

[13] I. Podnar, M. Hauswirth, and M. Jazayeri, “Mobile push: delivering content to mobile users,” in
Distributed Computing Systems Workshops, 2002. Proceedings. 22nd International Conference on, 2002,
pp. 563 – 568.

May 2011 12 of 13

UC Berkeley School of Information Report 2011-042 Feed Subscription Management

[14] M. P. Papazoglou and W.-J. v. d. Heuvel, “Web Services Management: A Survey,”
IEEE Internet Computing, vol. 9, pp. 58–64, November 2005. [Online]. Available: http:
//portal.acm.org/citation.cfm?id=1100860.1100912

[15] D. E. Simmen, M. Altinel, V. Markl, S. Padmanabhan, and A. Singh, “Damia: Data Mashups for
Intranet Applications,” in 2008 ACM SIGMOD International Conference on Management of Data,
J. T.-L. Wang, Ed. Vancouver, Canada: ACM Press, June 2008, pp. 1171–1182.

[16] C. Granella, L. Dı́aza, and M. Goulda, “Geospatial Web service integration and mashups for water
resource applications,” in Proceedings of the XXI Congress of the International Society for Photogram-
metry and Remote Sensing (ISPRS 2008). Citeseer, 2008, pp. 661–666.

[17] Open Geospatial Consortium, “Web Feature Service Implementation Specification,” OGC 04-094, Ver-
sion 1.1.0, May 2005.

[18] D. Guinard, V. Trifa, and E. Wilde, “A Resource Oriented Architecture for the Web of Things,” in
Second International Conference on the Internet of Things (IoT 2010), Tokyo, Japan, November 2010.

May 2011 13 of 13

http://portal.acm.org/citation.cfm?id=1100860.1100912
http://portal.acm.org/citation.cfm?id=1100860.1100912

	Introduction
	Managing Feed Access
	FSM Architecture
	OPML Conversion
	Queryable Feeds
	Spatial Feeds
	Implementation
	Related Work
	Future Work
	Conclusions

