
Lawrence Berkeley National Laboratory
LBL Publications

Title
Forecasting district-scale energy dynamics through integrating building network and long 
short-term memory learning algorithm

Permalink
https://escholarship.org/uc/item/2r56417r

Authors
Wang, Wei
Hong, Tianzhen
Xu, Xiaodong
et al.

Publication Date
2019-08-01

DOI
10.1016/j.apenergy.2019.04.085
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2r56417r
https://escholarship.org/uc/item/2r56417r#author
https://escholarship.org
http://www.cdlib.org/


Forecasting district‐scale energy dynamics through integrating building network and   

Long short‐term memory learning algorithm 
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a School of Architecture, Southeast University, 2 Sipailou, Nanjing, Jiangsu Province，
China 
b Building Technology and Urban Systems Division, Lawrence Berkeley National 
Laboratory, One Cyclotron Road, Berkeley, CA, 94720, USA 
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Abstract: With the development of data-driven techniques, building energy 

prediction on a district level has attracted increasing attention in recent years for 

revealing energy use patterns and reduction potentials. However, large-group building 

data acquisition is more difficult as buildings interact with each other at the city level. 

To reduce data cost and consider the inter-building impact on the data-driven building 

energy model, this study proposes a deep learning predictive approach to integrate 

building networks with a long short-term memory model to create building energy 

model on a district scale. The building network was calculated via correlations 

between the energy use intensity of buildings; buildings with high correlation were 

applied in predictive model to reduce the required number of buildings. To validate 

the proposed model, five typical building groups with energy use from 2015 to 2018 

on two institutional campuses were selected to develop and test the proposed model 

with the TensorFlow tool. Based on error assessments on the predicted building group 

energy use, the results suggest that for total building energy use intensity prediction, 

the proposed model can achieve a mean absolute percentage error of 6.66% and a root 

mean square error of 0.36 kWh/m2 , compared to 12.05% and 0.63 kWh/m2 for 

artificial neural network model and to 11.06% and 0.89 kWh/m2 for support vector 

regression model. Therefore, the proposed model integrating building network and 
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long short-term memory approaches shows good accuracy in predicting building 

energy use on a district scale. 

Keywords: District-scale, building energy modeling; data-driven prediction; building 

network; long short-term memory network  

1. INTRODUCTION 

Buildings, as main energy end-users in cities, consume more than 40% of 

primary energy produced every year [1]. To achieve the goal of carbon reduction and 

sustainability, many cities have increasingly focused on promoting building energy 

efficiency. The International Energy Agency’s Energy in Buildings and Communities 

(IEA EBC) Programme annexes suggested that analyzing building energy use patterns 

is the key to reducing energy use and its associated emissions [2]. Many studies 

suggested that large-scale building energy modeling can disclose the energy use 

pattern and effectively reduce energy consumption [3]. Among large-scale building 

models, data-driven predictive techniques are widely applied and are a significant 

method alongside with the development of data technologies [4]. Those techniques 

share the key point that using the historical building energy use data at the city level 

can reveal energy use pattern with energy cluster analysis [5], and predict the future 

building energy use trend [6]. In those studies, however, one major challenge usually 

exists in the urban building energy model (UBEM): how to reduce the size of datasets 

required for modeling, which, in turn reduce computation complexity and data cost at 

the city level. Many researchers have started to consider the inter-building effect (IBE) 

since buildings interact with each other at the city level [7]. and then identify the 

reference buildings [8]. However, as far as the author's current knowledge, the 

problem remains unsolved in terms of how to incorporate the effects of buildings and 

the time-series characteristics of the effects and energy pattern in deep learning 

approaches for UBEM. Therefore, this study developed a data-driven building energy 

prediction model on the district level through integration of a building network model 

and a deep learning approach. The buildings in the district were linked with a building 

network model, which was created based on the correlation between the energy use of 



one building and that of buildings collectively. Buildings with a weak network will be 

filtered, and the TensorFlow tool was employed in this study to integrate the long 

short-term memory algorithm for the total energy use prediction. To examine the 

performance of the proposed model, five building groups were selected from 

Southeast University in Nanjing, China, and an electricity use dataset was collected 

for year 2015 to 2018.  

2. LITERATURE REVIEW AND BACKGROUND 

Studies on UBEM can be divided into two branches—simulation engineering 

and data-driven techniques—to simulate energy use with detailed building 

information and historical data-driven models. Therefore, the following review 

includes current studies about techniques applied in UBEM and the data creation 

studies at the city level. 

2.1 Review of simulation studies on UBEM  

With the advancement of information technologies, researchers have developed 

innovative software and web-based applications for multi-building energy 

assessments on the district or city levels. For instance, City Building Energy Saver 

(CityBES), a web-enabled simulation and visualization platform, using EnergyPlus as 

the simulation engine, focuses on energy modeling and analysis for city building 

stocks [9]. Based on CityBES, researchers can assess the impacts of building 

geometry and how a building group performs over time [10]. CitySim simulates urban 

energy use and provides support for urban planners and stakeholders [11]. City 

Energy Analyst (CEA) is a computational framework for building energy system 

analysis and optimization in neighborhoods and city districts [12]. IDA ICE engine is 

also applied for automated urban building energy models within urban districts 

embedded with visualization in the geographical information system (GIS) [13]. 

Remmen et al. developed the TEASER, an open-source tool for an urban energy 

model with an interface for multiple data sources and export of a ready-to-run 

Modelica simulation [14]. Rhino can create 3D urban building blocks with plug-ins, 



such as Ladybug and Honeybee [15,16]. Honeybee supports detailed daylighting and 

thermodynamic modeling [17,18]. With these tools, researchers can develop various 

sophisticated analyses to understand the urban energy dynamics [19,20]. Taleb et al. 

used Rhino and genetic algorithms to generate a building form cluster that adapts to a 

dry and hot climate [21]. Davila et al. created energy models and generated 52 use 

archetypes with the Rhinoceros3D software and EnergyPlus [22]. Although these 

software packages can explicitly model building energy, they consume enormous 

computational resources and requires absorbent amounts of data inputs.  

2.2 Review of data-driven studies for UBEM  

Traditional system-level physical models focus on developing an efficient energy 

model for individual buildings [40,41]. With an increase in the available building 

energy data, data-driven models have become feasible for multi-building performance 

analysis. In the early studies, data-driven models were usually applied to individual 

buildings. For example, Guo et al. used machine learning-based models to predict 

energy demands for building heating [42]. Wei et al. applied blind system 

identification and neural networks to predict office building energy use along with 

occupancy [43]. Fan et al. assessed deep recurrent neural network-based strategies for 

short-term building energy predictions [44]. Wang et al. used long short-term memory 

in predicting internal heat gains for office buildings [45]. In addition to building 

demand side energy use prediction, some researchers have also studied the prediction 

of renewable energy systems coupled in buildings, such as wind, solar, and so on. 

Raza et al. proposed an ensemble predictive framework with five prediction for PV 

integrated buildings and provide accurate seasonal monthly predictions for smart 

buildings with rooftop PV [46]. Gonzalez-Aparicio and Zucker provided a regressive 

approach for accurately predicting the wind power generation with a three-year 

dataset [47]. 

Recently, data-driven studies have paid more attention to building energy 

prediction on a larger scale. For example, Heiple and Sailor estimated daily 

building-level energy uses with annual building simulation results for prototypical 



buildings in Houston, Texas, and matched the prototypes’ simulation output for 

existing buildings [48]. Chen et al. developed an automatic urban building energy 

model generation and simulation tool that considers neighborhood shadings for 

city-scale building retrofit analysis [49]. Li et al. analyzed 51 high-performance 

commercial buildings in the U.S., Europe, and Asia through portfolio analysis and 

case studies [50]. Kontokosta and Tull proposed a data-driven predictive model of 

city-scale building energy use and compared three machine learning algorithms 

(ordinary least squares, support vector regression, and random forest) in an analysis of 

20,000 buildings [51]. Deng et al. utilized six regression and machine learning 

algorithms for urban energy prediction and reported 10%-15% error reductions 

comparing with statistical models [52]. Robinson et al. utilized a small number of 

building features with machine learning algorithm for energy consumption prediction 

and validated the algorithm with the New York City Local Law 84 energy 

consumption dataset [53]. Fonseca and Schlueter proposed a spatiotemporal model for 

consumption patterns in neighborhoods and city districts [54]. The model can 

compute the power and temperature requirements for residential, commercial, and 

industrial sectors with spatial (building location) and temporal (hourly) dimension 

analysis. Kalogirou et al. utilized the electricity data of 225 buildings and applied 

back propagation of neural networks to predict the required heating loads [55]. 

Hawkins et al. applied statistical and an artificial neural network (ANN) method to 

identify the determinants for energy consumption of UK higher education buildings 

[56], resulting in a 34% mean absolute percentage error for electricity use prediction 

and 25% for heating fuel use prediction. Kavgic applied the Monte Carlo method to 

predict space heating energy of Belgrade’s housing stock [57] and analyzed the 

sensitivity of uncertainty for a city-scale domestic energy model [58].  

2.3 Review of data creation techniques for UBEM  

Reducing the size of necessary dataset can effectively reduce the modeling 

complexity and improve the computational efficiency. Therefore, to create building 

dataset, the inter-impact and -relationship between building groups have been 



analyzed first. The concept of the Inter-Building-Effect was introduced to understand 

the complex inter-impacts within multi-buildings [23]. Han et al. explored 

inter-shading and inter-reflection for IBE on building energy performance with two 

realistic urban contexts in Perugia, Italy [24] and embedding phase change materials 

into the building envelopes [25]. Reduce-order building models were also advocated 

to ease the difficulty for computational complexity [26]. Felsmann used reduced order 

models to explore the district heating or cooling systems [27]. Heidarinejad et al. 

developed a framework for rapid urban-scale reduced-order building energy model 

creation with various internal, external, and system thermal loads [28].  

Another data creation technique for UBEM is to replicate buildings using typical 

prototypes. The U.S. Department of Energy has developed 16 commercial reference 

building types across different climate zones covering 80% of the commercial 

building stock to support the analysis of urban energy use [29]. Ilaria et al. used the 

building prototypes to assess the energy saving potentials of residential building 

stocks [30]. Filogamo et al. applied sample typologies to classify residential buildings 

stocks and proposed representatives for typical building constructions [31]. Mastrucci 

et al. analyzed six dwellings types with a GIS-based statistical downscaling approach 

and utilized linear regression to estimate large scale building stocks [32]. Caputo et al. 

used four archetypes to characterize the energy performance in a neighborhood built 

environment [33]. Holistic building energy consumption data can be used for defining 

reference buildings by investigating the closeness of building groups [34]. Deb and 

Lee [35] determined the critical variables that influencing energy consumption with a 

cluster analysis on a small sample of 56 office buildings to represent a large building 

dataset [36]. Tardioli et al. developed a novel framework, that combines classification, 

clustering, and predictive modeling to identify 67 representative buildings out of a 

dataset of 13,614 mixed-function buildings in the city of Geneva [37]. The building 

prototypes and archetypes can extend the knowledge beyond individual buildings for 

large-scale neighborhoods or cities, then can be used to develop an energy 

benchmarking tool and select proper policies [38,39].  



In summary, district- and city-scale building energy modeling have been 

conducted with simulation and data-driven techniques based on detailed and large 

datasets; therefore, such models require simplified and temporal historical inputs for 

reliability and efficiency. The remaining sections were developed to fill this research 

gap. The methodology—including the introduction of prediction models, case study, 

data-processing, and model configuration—is given in Section 3. Section 4 presents 

the results on energy use patterns, network between buildings, energy use prediction 

results, and prediction accuracy assessments. In Section 5, discussions of the findings, 

implications, and the future work beyond the existing results are deliberated. Finally, 

Section 6 concludes this study. 

3. METHODOLOGY  

3.1 Building network and energy prediction models 

In this study, the network theory was applied to extract the building network (BN) 

through historical energy use patterns. The BN investigates the structures of a 

building group and assesses their inter-relationships. The network connection and 

relationship coefficients were determined based on historical energy use data, and this 

study used the Pearson correlation coefficient method to calculate the connections 

between buildings to establish a BN, which infers the closeness of energy use rather 

than the tendency of the building energy use pattern. Three machine learning 

algorithms were adopted to predict district-scale building energy use: long short-term 

memory (LSTM) networks, artificial neural network (ANN), and support vector 

machine (SVR). In this study, TensorFlow, an open source machine learning package 

[59,60] developed by Google Inc., was utilized to integrate the LSTM algorithm and 

compared with ANN and SVR algorithms. The datasets as the input for the three 

algorithms consist of building networks and a dataset of building energy use 

represented in electricity use intensity (EUI), which is calculated as the electricity 

usage divided by the building floor area. 



3.1.1 Long short-term memory network 

The LSTM network algorithm is composed of an input layer, a hidden layer, an 

output layer, a context layer, and a forget layer, as shown in Fig. 1. The hidden layer 

remembers values over arbitrary time intervals and the other layers regulate the flow 

of information into and out of the hidden layer. LSTM is an artificial recurrent neural 

network (RNN) architecture [61] used in the field of deep learning. Unlike 

feedforward neural networks, an LSTM network can use its internal state (memory) to 

process input sequences. Therefore, LSTM is widely studied in the unsegmented and 

connected handwriting recognition [62], speech recognition [63,64], and time-series 

inference [65].  

 

Fig. 1. An illustrative process of the LSTM model with five layers: input layer, 

hidden layer, context layer, forget layer, and output layer. 

In this study, as the building energy use is typical in temporal datasets (time-series 

data), LSTM is highly suitable for predicting the district-scale building energy use.  

The input and output layers are assumed to be X and Y, respectively. S is the state layer, 

and there is also one context layer (C) to store feedback signals for the state layer in the 

next interval and one forget layer (F) to lead the information, which should be formed 

based on the current input and previous output: 

௧ݔ ൌ ሺܫܷܧ௧, ܤ ௧ܰሻ → ௧ݕ   (1) 



where	ݔ௧ ∈ ܺ	, ௧ݕ ∈ ܻ. Then, the formulas to represent each layer and connections 

between layers can be presented as follows: 

௧ݕ ൌ ݂ሺܹ ∗ ௧ݔ  ܷ ∗ ݄௧ିଵ  ܾሻ  (2) 

where y donates the output of one layer and includes ௧݂ , ݅௧, ,௧ݖ ௧ , and  f  is the 

activation function for each layer. W donates the weights of each layer as 

ܹ , ܹ , ௭ܹ, ܹ , and U donates the weights for the last state as ܷ , ܷ , ௭ܷ, ܷ. b donates 

the bias of each layer as ܾ , ܾ, ܾ௭, ܾ. The subscripts (f, i, z,o) represent the forget layer, 

the output and the state of the input layer for next hidden layer, and the output of the 

hidden layer. The subscript t indexes the time step. 

The output of the context layer can be a function (Eq. 3) of the forget layer, the 

context layer at the previous timestep, and the input of the hidden layer. The output of 

the hidden layer ݄௧ can be updated as Eq. 4. 

ܿ௧ ൌ ௧݂ ∗ ܿ௧ିଵ  ݅௧ ∗  ௧ (3)ݖ

݄௧ ൌ ௧ ∗  ௧ (4)݄ܿ݊ܽݐ

Therefore, the output can be calculated where ܹ௬ and ܾ௬ are the weight and 

biases, respectively (Eq. 5). 

௧ݕ ൌ ݂ሺ ܹ௬݄௧  ܾ௬ሻ (5) 

3.1.2 Artificial neural network algorithm 

The ANN algorithm in this study serves as an optional predictive model for 

comparison. The ANN algorithm constructs a neural network, which composes simple 

neuron elements and connection weights, to solve non-linear problems. It can be used 

for various engineering problems, such as classification, prediction, and pattern 

recognition. Backpropagation is the most widely used error minimizing system that 

implement gradient descent to optimize neuron weights to achieve high accuracy. The 

ANN model has similar arrangement as LSTM but without the context and forget 



layers. The results are usually interpreted by an activation function (ݕ௧) (Eq. 6). 

௧ݕ ൌ ݂ሺܹݔ௧  ܾሻ (6) 

3.1.3 Support vector regression  

The SVR algorithm is another alternative algorithm for comparison. SVR 

integrates hinge loss functions to minimize the prediction error and intends to create a 

rigid or flexible boundary to include as many samples for reliability as possible. The 

errors of SVR can be determined by following equations. 

݊݅ܯ
1
2
‖߱‖ଶ (7) 

ݐ	ݐ݆ܾܿ݁ݑݏ ൜
௧ݕ െ 〈߱, 〈௧ݔ െ ܾ  ߝ
〈߱, 〈௧ݔ  ܾ െ ௧ݕ  ߝ

 (8) 

where ݔ௧  is training samples and ݕ௧  is the label. ε is an arbitrarily determined 

boundary. 〈߱,  ௧〉 is the inner product and ܾ is a bias. Samples within the hingeݔ

boundary satisfy the conditions in Eq. 8.  

3.2 Case Study 

3.2.1 Data description 

The validation experiment was conducted on the campus of Southeast University 

(SEU) in Nanjing, China. The university has two main campuses; the old campus has 

a gross area of 0.6 km2 with 53 buildings while the new campus has a gross area of 

2.5 km2. Fig. 4 shows the layout of both campuses. 



 

Fig. 4. Layout of case buildings on the new campus (top) and the old campus(below) 

with different building groups. 



 This study applied the analysis based on the actual building energy use 

(electricity) combined with building floor areas. The datasets are provided by the SEU 

Department of General Affairs (DGA). As shown in Fig. 4, five major building types 

are identified: office buildings (O), research buildings (R), education buildings (E), 

dormitory buildings (D), and service buildings (S). Meanwhile, the functions of those 

buildings (O, R, E, D, S) are easily visible by their names, and services buildings 

denote the retail stores, canteen, security, equipment rooms, and so on. The buildings’ 

monthly electricity use datasets were collected from January 2015 to October 2018. 

After a preliminary analysis, several observations were identified: (a) electricity use 

of some buildings is missing for a long period (more than 3 months); (b) some 

buildings have 1-2 months of missing electricity data; and (c) DGA faculties merged 

the electricity use for multiple months. Those buildings have the problematic data are 

marked in grey. Finally, after eliminating buildings with data quality issues, 33 

buildings were selected from the old campus (15 office buildings, 5 research buildings, 

4 education buildings, 4 dormitory buildings, and 5 service buildings) and 23 

buildings were selected from the new campus (8 office buildings, 4 research buildings, 

1 education building, 3 dormitory buildings, and 7 service buildings). 

3.2.2 Data preprocessing 

This study assumed there are no significant functional changes of the 

experimental buildings during the experiment period. The inputs are formulated as 

follows  

ିଵݔ
 : ݔ

: ାଵݔ
 ൌ ିଵݔ

 : ݔ
: ାଵݔ

  (9) 

and  

ିଵݔ
  ݔ

  ାଵݔ
 ൌ ௧௧ݔ

  (10) 

where ݔ is the electricity data at time step ݇.  and ܿ denote the previous year 

and current year, respectively. ݔ௧௧ is the total electricity use of time step ݇ െ 1, ݇, 

݇  1. Then, 



ݔ
 ൌ

ݔ
 ∗ ௧௧ݔ



ିଵݔ
 ∗ ݔ

  ݔ
  ݔ

 ∗ ାଵݔ
  (11) 

While pre-processing the raw data, the exponential moving average (EMA) filter 

is applied to smooth electricity use profiles for its computational efficiency and 

causality (Eq. 12).  

ݔ̅ ൌ
݊

݊  1
ିଵݔ̅  ሺ1 െ

݊
݊  1

ሻݔ (12) 

Where ࢞ഥ and ࢞ഥି are the EMA filtered value at time step k and k-1, respectively. 

Once the measured electricity data has been filtered, those data can proceed as the 

input data for the three machine learning techniques. 

3.3 Model integration and error assessment 

Fig. 2 shows the LSTM graph used in this study in TensorBoard, which is the 

visualization tool of TensorFlow to help understand the processing of model training 

and learning in the neural networks. The LSTM cell is the structure shown in Fig. 1. 

Compared with LSTM, the ANN algorithm has a simplified neural structure, which 

includes the input, hidden, and output layers. While for weights learning, the gradient 

descent rule (Adagrad method) was selected for the learning process. The gradient 

descent rule is the basic method to minimize the loss function in machine learning 

discipline, the details of which are therefore not included in this study. For ANN and 

LSTM initialization, weights and biases are randomly selected while in the training 

iteration. Then weights and biases can be updated based on loss function (L) as 

ܮ ൌ
∑ ሺ୷ି୷ೌ,ሻమ

సభ


  (13)

where ݊ is the size of training time samples, and y,௧ is the actual electricity use. 

For activation function selection, the ௦݂ௗ, described as Eq. 6, is used for the 

output of the input, forget, and hidden layers. The ௧݂, described as Eq. 7, is used 

for the state function of the input layer, and ோ݂ is used for the final output 

function. The equations are given below. 



௦݂ௗሺxሻ ൌ
1

1  ݁ି௫
 (14)

௧݂ሺxሻ ൌ
1 െ ݁ିଶ௫

1  ݁ିଶ௫
 (15)

ோ݂ሺxሻ ൌ maxሺݔ, 0ሻ (16)

 

Fig. 2. The LSTM processing and structure visualized in TensorBoard. 

As buildings have different capacities and then different EUI values, to simplify 

the model, this study normalized the inputs of EUI values based on their size (i.e., 

total floor area). For the BN selection, only the buildings with an absolute correlation 

higher than 0.6 were selected in the building network, where the correlation denotes 

the building network by calculating correlation between the EUI of one building and 

the total EUI of all buildings. For model cross validation, this study selected the 

cross-fold validation method, which splits the time-series dataset from year 2015 to 

year 2017 into 80% for the training and 20% for the validation, and total EUI of all 

buildings in the corresponding group in year 2018 (10 months) as prediction for the 



test. The entire prediction process is illustrated in Fig. 3. For ANN and LSTM, the 

maximum training iterations are 100000, the size of the hidden layer is 10, the 

learning rate is 0.1, the batch size is 3, and the activation function is RELU. For SVR, 

this study applied the grid search method to match best set of parameters for model 

configuration, where kernel function is among rbf, sigmoid, and poly. In the model, ܥ 

equals 1, 10, 100, and 1000, and gamma equals 0.1, 0.2, 0.3, 0.4, and 0.5, respectively. 

This study used Python 3.6 with TensorFlow 1.12 for data preprocessing, model 

training, and prediction.  

 

Fig. 3. Scheme of the proposed predictive model and the comparison process in this 

study. 

To assess the model performance, two indices were used to compare the results 



for accuracy: 

Mean absolute percentage error (MAPE): the mean percentage error between the 

predicted EUI ሺy௧ሻ and the actual EUI of the building ሺy,௧ሻ, where n is the sample 

size: 

ܧܲܣܯ ൌ ଵ


∑ หሺy௧ െ y,௧ሻ y,௧⁄ ห
ୀଵ   (17)

Root mean squared error (RMSE): the magnitude of the estimation error: 

ܧܵܯܴ ൌ ට∑ ሺ୷ି୷ೌ,ሻమ

సభ


  (18)

4. RESULTS 

4.1 Building EUI 

Figs. 5 and 6 show the building EUI distributions on the old campus and the new 

campus. For brevity, the presented EUI result is the average of building electricity use 

from year 2015 to 2017. Fig. 7 shows the building network between buildings on the 

old and new campuses, respectively.  

 

Fig. 5. The average building EUI results distribution on the SEU new campus. 



 

Fig. 6. The average building EUI results distribution on the SEU old campus. 
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Fig. 7. The example illustration of the building network in (a) the old campus and (b) 

the new campus. 

Tables 1-5 show the total minimum, maximum and standard deviation of EUI 

results for each type of building in years 2015, 2016, and 2017, respectively. On the 

old campus, the total EUI of the office buildings significantly increased from 58.62 

kWh/m2 to 89.89 kWh/m2 by year, and the standard deviation of EUI between office 

building groups also increased considerably, which shows energy use is not steady. 

Compared with the old campus, the EUI of office buildings on the new campus did 

not show one clear trend; however the standard deviation is much higher than of the 

old campus and the variation between individuals is much bigger. Research buildings 

on both two campuses consumed more energy in year 2017 when compared with 

energy in year 2015 although the differences are not very distinct. Similarly, the 

standard deviation for the new campus is much higher than for the old campus.  

Table 1. The total, minimum, maximum and standard deviation of EUI results 

(kWh/m2) for office buildings in years 2015, 2016, and 2017. 

 Old campus New campus 

 2015 2016 2017 2015 2016 2017 

Total EUI 58.62 68.98 89.89 41.24 39.24 48.53 

Min. 21.12 23.06 18.32 3.48 2.81 4.06 

Max. 125.08 134.36 225.70 196.69 219.55 315.65 

Std. 33.97 35.37 56.04 60.13 64.37 93.28 

Note: total areas of old and new campuses are 114088 and 153722 m2, respectively. 

Table 2. The total, minimum, maximum and standard deviation of EUI results 

(kWh/m2) for research buildings in year 2015, 2016, and 2017. 

 Old campus New campus 

 2015 2016 2017 2015 2016 2017 

Total EUI 31.03 26.08 40.98 54.62 56.58 60.54 

Min. 11.24 4.46 3.57 4.66 12.81 10.59 

Max. 66.70 66.46 83.86 135.76 145.02 171.78 

Std. 21.66 25.47 31.14 51.01 52.70 64.14 

Note: total areas of old and new campuses are 9416 and 101206 m2, respectively. 

Table 3. The total, minimum, maximum and standard deviation of EUI results 

(kWh/m2) for education buildings in year 2015, 2016, and 2017. 



 Old campus New campus 

 2015 2016 2017 2015 2016 2017 

Total EUI 41.09 49.61 50.43 23.92 30.3 27.28 

Min. 20.22 18.23 18.37 - - - 

Max. 83.59 97.50 101.16 - - - 

Std. 26.17 30.46 32.57 - - - 

Note: total areas of old and new campuses are 19566 and 67219 m2, respectively. 

Table 4. The total, minimum, maximum and standard deviation of EUI results 

(kWh/m2) for dormitory buildings in year 2015, 2016, and 2017. 

 Old campus New campus 

 2015 2016 2017 2015 2016 2017 

Total EUI 20.39 35.74 67.58 52.48 38.04 58.88 

Min. 14.00 32.58 32.27 28.41 36.32 26.91 

Max. 55.58 51.69 99.40 64.93 39.96 73.09 

Std. 17.51 7.72 25.01 15.01 1.26 19.07 

Note: total areas of old and new campuses are 26285 and 24656 m2, respectively. 

Table 5. The total, minimum, maximum and standard deviation of EUI results 

(kWh/m2) for service buildings in year 2015, 2016, and 2017. 

 Old campus New campus 

 2015 2016 2017 2015 2016 2017 

Total EUI 73.45 77.71 80.94 36.35 18.45 15.56 

Min. 4.02 3.64 3.68 25.08 2.02 1.53 

Max. 612.69 595.87 618.36 211.84 293.03 59.62 

Std. 236.73 228.05 237.04 64.84 94.19 19.13 

Note: total areas of old and new campuses are 22654 and 45094 m2, respectively. 

Since there is only one education building with an available electricity dataset for 

the new campus, the minimum, maximum, and standard deviation results of EUI of 

this building are ignored in Table 3. Comparing the total EUI results, both campuses 

have a relatively steady trend of energy use across three years, although the old 

campus consumed more energy than the new campus. Dormitory buildings have the 

lower standard deviations compared with other types of buildings. For example, the 

standard deviation in new campus is only 1.26 in year 2016. The EUI results of the 

two campuses show that energy usages also increased compared to years 2015 and 

2017. In addition, the energy use increased for services buildings on the old campus, 

but decreased on the new campus. However, the reasons for the different EUI results 



between two campuses might be difficult to pinpoint. Although the function of each 

type of building group is the same, the occupancy rate, end-user behavior, and 

operation varied significantly, highlighting that further exploration is needed. 

The building networks consist of two parts, (a) between the EUI of each 

individual building and the total EUI of the corresponding type of buildings; (b) 

between the total EUI of different types of building groups and the total EUI of the 

corresponding campus. The building network is applied to filter those buildings, 

which have a weak network to the total EUI. The network at the current timestep is 

dynamically created using the previous three-month electricity use data; Fig. 7 

presents building networks for January 2017. For those buildings indicating weak 

networks, the prediction algorithm excluded them from the algorithms. For example, 

on the old campus, for the building group D, all three buildings (D1, D2, D3) are 

inputs for models; however, for the building group E, building E1, E2, and E3 are 

inputs, but E4 is not. 

4.2 Prediction model accuracy 

Figs. 8-13 show the model prediction results of the district-level building 

electricity use for different building types. From those figures, it can be seen that, 

although the buildings have the same functions, the EUIs are quite different between 

the old and new campus. Usually, buildings on the old campus have higher EUIs than 

those on the new campus. SEU planned to gradually move all disciplines from the old 

campus to the new one starting in year 2015. Most buildings on the new campus have 

low occupancy rates. As discussed in the methodology, the LSTM, ANN, and SVR 

models are compared to validate the prediction accuracy, using the TensorFlow tool. 



 

Fig. 8. EUI prediction results for office buildings using LSTM, ANN, and SVR, 

respectively, for (a) the old campus and (b) the new campus. 

Table 6. Prediction accuracies of LSTM, ANN, and SVR models for office buildings. 

 Old Campus New Campus Total  

 MAPE RMSE MAPE RMSE MAPE RMSE 

BN+LSTM 6.73% 0.55 1.05% 0.11 3.89% 0.4 

BN+ANN 8.82% 0.70 33.6% 2.98 21.21% 2.17 

SVR 2.30% 0.30 7.75% 1.40 5.01% 1.01 

For office building type (O) in Fig. 8, the actual EUI of office buildings is 

gradually increasing on the new campus while decreasing on the old campus and in a 

few years, the office building EUI on the old campus will gradually decrease to a very 

low level. Table 6 concludes the accuracies of the LSTM, ANN, SVR models for total 

the EUI prediction for office buildings. The table clearly shows that all three models 

can provide good prediction accuracies for the old campus with MAPE of 6.73%, 

8.82%, and 2.3% for the LSTM, ANN, and SVR models, respectively, and 1.05%, 

33.6%, and 7.75%, respectively, for the new campus. According to the total accuracy, 

LSTM can achieve better prediction results than the ANN algorithm and a little better 

than the SVR model where MAPE accuracies are 3.89%, 21.21%, and 5.01%, 

respectively. Additionally, overall results show that the LSTM model has the lowest 

RMSE (0.4 kWh/m2) and that prediction results are much steadier. Looking at Fig. 9 

for research buildings, interestingly, the trend of total EUI is opposite to the trend of 

office buildings. Results also show that the total EUI of research buildings is 

relatively lower than that of office buildings. On the old campus, LSTM model can 

have good performance as the SVR and ANN models also perform good predictions; 
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however, on the new campus, the SVR model has the best performance with a MAPE 

of 4.14% and RMSE of 0.11 kWh/m2, while the ANN model is poor, which shows 

that the MAPE reaches 53.82% and RMSE reaches 1.47, respectively. Overall, the 

LSTM and SVR models can achieve over 90% prediction accuracy.  

 

Fig. 9. EUI prediction results of research buildings using the LSTM, ANN, and SVR 

models, respectively, for (a) the old campus and (b) the new campus. 

Table 7. Prediction accuracies of the LSTM, ANN, and SVR models for research 

buildings. 

 Old Campus New Campus Total 

 MAPE RMSE MAPE RMSE MAPE RMSE 

BN+LSTM 2.3% 0.10 17.26% 0.63 9.92% 0.45 

BN+ANN 11.07% 0.61 53.82% 1.47 32.45% 1.12 

SVR 2.58% 0.13 4.14% 0.11 3.22% 0.1 

 

Fig. 10. EUI prediction results of education buildings using the LSTM, ANN, and 

SVR models, respectively, for (a) the old campus and (b) the new campus. 

Table 8. Prediction accuracies of the LSTM, ANN, SVR models for education 

buildings. 

 Old Campus New Campus Total  
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 MAPE RMSE MAPE RMSE MAPE RMSE 

BN+LSTM 5.14% 0.62 22.13% 0.19 13.63% 0.46 

BN+ANN 12.59% 1.29 35.68% 0.40 24.14% 0.96 

SVR 1.90% 0.21 56.68% 0.49 29.26% 0.38 

Education buildings have very close trends for the old and new campuses, 

however, the current education buildings on the new campus consume much less 

electricity than those on the old campus. The results show that for the old campus, those 

models can all achieve good accuracies, especially the LSTM and SVR models. 

Conversely, on the new campus, the performance decreases, especially in the SVR 

model. Therefore, prediction accuracies in total show that the LSTM model has the best 

performance and the MAPE is about 13.63%. For building type D, the EUI decreases 

gradually on the old campus, but, on the new campus, increases and then decreases in 

April. In such a building type, results clearly show that the LSTM model can have the 

best performance, although the SVR and ANN models can predict EUI well when 

considering MAPE, which are 2.94%, 9.09%, and 8.48%, respectively. However, the 

RMSE shows that the LSTM model can reach the lowest of 0.27 kWh/m2. The same 

case can be found in service buildings. The LSTM model has obviously better 

accuracies for EUI predictions for the old, new, and both campuses. Fig. 13 and Table 

11 show the prediction results and accuracy assessment for total energy use on the old 

and new campuses. Both campuses have very close EUI trends, and the EUIs are also 

approximate, except for the EUI in April when the old campus consumed more 

electricity. On the old campus, the LSTM and SVR models achieved approximately 

accurate EUI predictions with MAPEs of 11.66% and 11.39%, respectively, however, 

comparing the RMSEs of the  two models, the LSTM model shows the smallest root 

square error with only 0.51 kWh/m2, while the SVR model has an RMSE result of 1.15 

kWh/m2. For the ANN model, the accuracy reaches 82.83%. Overall, all models 

achieved good performance in predicting the EUI for all buildings, and comparatively 

LSTM has more accurate predictions. The MAPE results for the three models are 

6.66%, 12.05%, and 11.60%, respectively, and the RMSE results are 0.36, 0.63, and 

0.89 kWh/m2, respectively.  



  

Fig. 11. EUI prediction results of dormitory buildings using LSTM, ANN, and SVR 

models, respectively, for (a) the old campus and (b) the new campus. 

Table 9. Prediction accuracies of the LSTM, ANN, and SVR models for dormitory 

buildings. 

 Old Campus New Campus Total  

 MAPE RMSE MAPE RMSE MAPE RMSE 

BN+LSTM 1.5% 0.11 4.3% 0.37 2.94% 0.27 

BN+ANN 4.59% 0.44 13.6% 1.03 9.09% 0.79 

SVR 8.37% 1.24 8.59% 0.93 8.48% 1.10 

 

Fig. 12. EUI prediction results of service buildings using the LSTM, ANN, and SVR 

models, respectively, for (a) the old campus and (b) the new campus. 

Table 10. Prediction accuracies of the LSTM, ANN, and SVR models for service 

buildings. 

 Old Campus New Campus Total  

 MAPE RMSE MAPE RMSE MAPE RMSE 

BN+LSTM 17.08% 1.16 6.48% 0.21 11.78% 0.83 

BN+ANN 110.71% 4.75 27.13% 0.99 68.92% 3.43 

SVR 30.35% 3.00 40.62% 1.27 55.48% 2.3 
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Fig. 13. EUI prediction results of total buildings using the LSTM, ANN, and SVR 

models, respectively, for (a) the old campus and (b) the new campus. 

Table 11. Prediction accuracies of the LSTM, ANN, and SVR models for total 

buildings. 

 Old Campus New Campus Total  

 MAPE RMSE MAPE RMSE MAPE RMSE 

BN+LSTM 11.66% 0.51 1.65% 0.07 6.66% 0.36 

BN+ANN 17.17% 0.85 6.94% 0.26 12.05% 0.63 

SVR 11.39% 1.15 11.81% 0.51 11.60% 0.89 

5. DISCUSSION 

To predict multi-building energy use with data-driven models, this study 

proposed to integrate the building network with the long short-term memory network 

in the prediction model. Two models, ANN and SVR, were used to compare the 

performance of models. The total results clearly show that the proposed BN+LSTM 

model has better accuracies than the ANN and SVR models; they also suggested that, 

even with a reduced dataset, considering the relationship between buildings and the 

time-series characteristics can benefit multi-building energy use prediction. On the 

other hand, dynamic energy use awareness is critical to knowing where and how 

energy is being consumed. Large-scale buildings’ energy prediction can estimate the 

dynamic energy use, which is one key feature of grid-interactive efficient buildings 

[66]. Forecasting the demand at building side on the district level is also important 

objective of this study, to support electricity supply optimization. A campus consists 

of big groups of buildings in a region and has significant energy-savings potentials. In 

current campus development, building electricity datasets are usually obtained 
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manually or inferred from electricity bills. In upcoming sustainable campus projects, 

smart meters can be applied to monitor the electricity use of every building and 

upload the data to a server. The TensorFlow tool can provide application program 

interfaces (APIs) to help visualize the implementation of machine learning techniques. 

Those APIs can efficiently and conveniently enhance users’ ability to create online 

modeling of large-scale building energy uses with machine learning techniques. 

Additionally, the LSTM in TensorFlow proposed in this study provides high 

accuracies for energy use prediction for a sustainable campus and intelligent energy 

management. With increasing attention focused on building integrated photovoltaics 

(BiPV), forecasting large-scale building energy uses can provide significantly 

predictive supports to manage electricity production of BiPV, allocate energy and 

identify cost-efficient savings opportunities across the city based on building energy 

loads. In this way, this study can also contribute to studies of the corresponding 

micro-grids that can be implemented on campuses.  

However, this study still yields some limitations and unsolved issues. Firstly, for 

large- or city-scale building energy prediction, one big challenge is data deficiency, 

which exists because some buildings in urban block area have no energy records at all, 

some miss energy data in some months, and so on. However, detailed building 

datasets are usually difficult to acquire, and a limited dataset can restrain accuracies of 

machine learning techniques so that reasonable dataset preprocessing might influence 

the validation of algorithms. On one hand, while dealing with this problem, this study 

assumed the energy use pattern (trend) is similar in each year. For brevity, however, 

this study did not discuss the impact of different preprocessing method in the machine 

learning models, which would provide one vital research for modeling city-scale 

building energy use. On the other hand, the amount of data is another type of data 

deficiency problem. In this study, three-year monthly energy usage dataset was 

applied in the district-scale building energy modeling with LSTM, which could be 

one of the main limitations in this study; however, in the future, this study will 

involve more datasets from the campus or other district-scale building groups for 



further validation of the proposed model.  

Secondly, according to the building network, creating networks between 

buildings that are more like human’ networks and applying building networks in 

city-scale studies (e.g. modeling building energy use with reference buildings) are 

increasing, interesting, and significant research topics. This study used the historical 

monthly electricity use dataset to calculate the correlation between buildings, which 

denotes the network. Since the building network consisted of inputs for multi-building 

energy prediction, it could impact the implementation of the algorithm if the energy 

use dataset is not available. Therefore, it might be better to illustrate building 

networks using buildings’ physical information when no electricity data is available. 

Physical-information-based building networks can be better applied in an urban 

building block integrated energy simulation. 

Thirdly, occupancy rate and occupant behavior information are quite important 

whether in individual or district-/city-level building energy prediction [67–69]. 

However, such information changes dynamically and daily, and introduces obvious 

challenges to obtaining the relevant data, especially for district-/city-level buildings. 

Some other issues, such as weather conditions, are also important factors that 

influence the urban building model. This problem will be a vital issue for future 

research seeking to create UBEMs in simulation as well as data-driven techniques; 

meanwhile, it is also necessary and significant to compare data-driven with simulation 

techniques to find the potential of fusing two techniques to compensate for their 

respective weaknesses.  

Finally, this study integrated the BN and LSTM as the predictive model and 

compared it with ANN and SVR models. However, other effective deep learning 

techniques (e.g. transfer learning, convolutional Neural Networks) exist. Such models 

could also be potentially significant in future works for a wider comparison of 

data-driven UBEMs and validation of adaptability of the approach.  



6. CONCLUSION 

This study proposed an integrated building network and the long short-term 

memory model to predict district-level building energy use. The building network was 

created by the coefficient between individual buildings in one building group, and the 

long short-term memory model was performed in the TensorFlow tool. This study 

used the Southeast University in Nanjing, China as the case study, and five types of 

buildings groups with monthly electricity datasets from years 2015 to 2018 on the old 

and new campuses were applied for validation. Finally, mean absolute percentage 

error and root mean square error indices were used for model assessment. Via 

comparisons of different types of buildings, the results revealed that the proposed 

model can achieve very good prediction accuracies in each type of building when 

compared with two machine learning models (artificial neural network and support 

vector regression models). For the total energy use intensity prediction of buildings on 

the two campuses, the long short-term memory model can achieve a mean absolute 

percentage error of 6.66% and root mean square error of 0.36 kWh/m2, compared to 

12.05% and 0.63 kWh/m2 for the artificial neural network model and 11.06% and 

0.89 kWh/m2 for the support vector regression model, respectively.  

Therefore, the proposed model can enhance multi-building prediction accuracy 

on the district level while considering building connections to reduce the dataset and 

time-series characteristics of building energy datasets. In the campus area, the high 

accuracy of district-level building electricity prediction results can also provide good 

feedback to department of general affair regarding the awareness of energy usage. 

Meanwhile, this study can benefit the intelligent management of the campus-level 

micro-gird to support a green campus. In the future, on one hand, this study might 

involve more datasets and influencing factors in the deep learning model to test the 

adaptability. On the other hand, this study can inspire the integration of deep learning 

techniques in district- or city-level renewable energy analysis according to the 

demand at building side and provide significant insights into data-driven techniques 



for urban building energy models to understand the building energy dynamics and 

support sustainable studies on the district and city levels.  
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