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Abstract

Modifying Membrane Properties with Conjugated Oligoelectrolytes and

Elucidating the Charge Transfer Mechanisms

by

Chelsea Elizabeth Catania

Cellular membranes exist across all domains of life, essentially acting as a

barrier that separates the conditions of life from the non-living environment. In

gram-negative bacteria, such as Escherichia coli, the cell envelope is comprised

of an outer membrane (OM), a peptidoglycan layer (ca. 35–55 nm) and an inner

membrane (IM). The core structural component to each membrane is the lipid

bilayer, which is electrically insulating and impermeable to most ions and po-

lar molecules. Membrane proteins are the other major component in microbial

membranes, conferring function to the membrane and enabling the passive and

active transport of ions, molecules and water. Critical biological processes, such

as energy generation and molecular sensing, are inherently electronic—driven

by the flow of electrons and ions across the membranes of cells. Thus, modifica-

tion of the transmembrane flux of ions or electrons may enable manipulation of
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a wide-range of intracellular biological processes pertinent to biotechnological

applications.

Conjugated oligoelectrolytes (COEs) are a class of small molecules designed

for membrane modification. The structure of COEs are described by a π-

conjugated, phenylenevinylene backbone of a few repeat units tethered at the

two terminal ends by ionic functionalities. COEs have been demonstrated to

spontaneously intercalate and align in lipid bilayers, thereby allowing modifi-

cation of membrane properties and function of cells in bioelectrochemical sys-

tems. One COE, namely DSSN+, has been applied in a variety of microbial

electronic devices utilizing Yeast, E. coli, Shewanella oneidensis, and even nat-

urally occurring microorganisms in wastewater to improve current generation.

It is generally acknowledged that ability of COEs to intercalate into microbial

membranes is paramount for increasing charge transfer in bioelectrochemical

systems, however the specific mechanism of action is not well understood. Pre-

vious investigations on the mechanism for improved current in S. oneidensis

suggest that DSSN+ amplifies the native biological electron transfer pathway.

However, this suggested mechanism does not universally apply across microbial

species. For example, COEs have been demonstrated to increase in current and

power generation in E. coli microbial fuel cells and this organism lacks a native

extracellular electron transfer pathway.
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A unifying mechanism by which COEs improve charge transfer processes and

modify microbial membranes is the underlying motivation for this work. First,

COEs varying in length and structural features are compared with respect to

their association with E. coli. Quantification of COEs associated with the cell

reveals a morphologically impossible amount, approaching or surpassing a 1:1

lipid:COE ratio, indicating association is not exclusive to membrane intercala-

tion. Using zeta potential measurements on COE modified cells, it is determined

that COEs are able to tune cell surface charge. Second, considering permeabi-

lization as one possible mode for improved bioelectrochemical performance, the

effect of DSSN+ on the permeability of the inner and outer membrane of E. coli

is examined, revealing a plausible explanation. Lastly, performance of E. coli in

bioelectrochemical systems is examined while taking these effects on membrane

properties into consideration. An ultimate hypothesis is proposed, that the com-

bined effects of COEs on membrane properties are the underlying cause for the

increased current in E. coli. A better understanding of the effects of COEs on

microbial membrane properties can thus inform the molecular design of future

COEs and uncover potential new areas of application.
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Chapter 1

Introduction

1.1 Motivation

The field of bioelectronics takes advantage of innate cellular behavior for

the “transduction” of chemical information into electronic information and vice

versa. [2] Many biological processes such as energy generation and signal

transduction are inherently electronic—driven by the flow of electrons and ions

across the membranes of cells. [3] Barriers to charge transport across the biotic-

abiotic interface constitute a significant obstacle to utilize such processes in high

performance electronics. [4–7] Advances in the ability to manipulate charge

1The contents of this chapter have appeared in reference 1: H. Yan, C. Catania, and G.
C. Bazan, Membrane-Intercalating Conjugated Oligoelectrolytes: Impact on Bioelectrochemical
Systems, Adv. Mater. 27, 2958–2973 (2015). c©2015 John Wiley and Sons.
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transfer in organisms has far reaching applications for bioenergy [4, 8], bioelec-

trosynthesis [9, 10], diagnostics [11–13], environmental monitoring [14–16]

and bioremediation. [17, 18]

Certain microorganisms, called exoelectrogens, have evolved the innate abil-

ity for extracellular electron transfer (EET) necessary for survival in specific en-

vironments. [19–22] These microbes are inherently capable of accomplishing

EET to (or from) an electrode, which they accomplish mechanistically by either

direct electron transfer (DET) or mediated electron transfer (MET). [23, 24] Mi-

croorganisms capable of DET typically do so by directly transferring electrons via

appendages such as outer membrane-bound redox active proteins and/or con-

ductive pili/nanowires. [25–28] Other microorganisms interact indirectly with

electrodes via the secretion of redox-active electron shuttles. [29–32] These

mechanisms are depicted in Figure 1.1. While microorganisms capable of EET

exist, they are not prevalent. [4] Thus, there is interest in finding general meth-

ods by which EET can be induced or improved in microorganisms to increase

the breadth of potential bioelectronic applications.

For the specific application of microorganisms in microbial fuel cells (MFCs),

exoelectrogenic microorganisms catalyze the conversion of chemical energy to

electrical energy. A general illustration of the electron flow in MFC is provided

in Figure 1.2. In brief, microorganisms in the anode chamber oxidize a sub-

2



Figure 1.1: Cartoon illustration of the different mechanisms of microbial extracel-

lular electron transfer (EET). Left to right: direct electron transfer through outer

membrane-bound proteins; transfer through conductive appendages/pili; and medi-

ated transport via redox active shuttles (sh).
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Figure 1.2: Cartoon illustration of the processes occurring in a microbial fuel cell.

Microbial oxidation of a carbon source and collection of electrons at the anode, which

flow through an external circuit, completed at the cathode where oxygen is reduced

to water, thus generating electricity.

strate, releasing protons, electrons, and carbon-based by-products. Through the

mechanisms illustrated in Figure 1.1, these electrons are donated to the anode.

Electrons then flow through an external circuit across an electrical load to the

cathode where oxygen is reduced to water, thus completing the circuit and gen-

erating electricity.
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A variety of approaches have been examined to improve the transfer of elec-

tron equivalents in non-natively exoelectrogenic microorganisms with the pur-

pose of improving current generation in MFCs. For example, exogenous redox

mediators, such as methylene blue and neutral red, have shown to promote the

ability of mediated charge transfer in weakly exoelectrogenic microorganisms,

i.e. Escherichia coli. [33–37] However, these mediators often have undesir-

able features such as cellular uptake not favoring electron transfer, incompati-

ble redox properties and possible diffusion limited kinetics. Other approaches

have included bioengineering the charge-transport conduit of a model exoelec-

trogenic microbe, i.e. Shewanella oneidensis into the cell membrane of E. coli.

[38, 39] Synthetic materials aimed at modifying electrode surfaces for better

microbial attachment [40], greater surface area [41] or synthetic scaffolds [42]

have been utilized to increase performance. [43] Additionally, microbes have

been modified with redox active polymers [44, 45], nanoparticles [46] and car-

bon nanotubes [47] in order to increase their transmembrane electrical and

ionic conductance. Lastly, membrane-intercalating, π-delocalized conjugated

oligoelectrolytes (COEs) have been demonstrated to improve bioelectronic com-

munication between microorganisms and electrode surfaces without acting as

conventional redox shuttles. [1] The effects of COEs on bacterial membranes

in relation to their mechanism for improved performance in E. coli MFCs is the
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subject of discussion for this dissertation. These molecules have been applied to

a wide range of bioelectrochemical systems as well as various microorganisms,

which provide additional perspective on the potential mechanism(s) of action

and are described in detail below.

1.2 Summary of conjugated oligoelectrolytes

The structures of COEs used in this contribution are distinguished by ionic

functionalities tethered at the two terminal ends of a phenylenevinylene se-

quence, shown in Figure 1.3. Previously, COEs have been utilized to re-

duce charge-injection/extraction barriers as metal/organic thin-film organic-

electronic devices. [48] These bolaamphiphilic structures have been shown

to spontaneously intercalate into lipid bilayers with a concomitant increase

in fluorescence quantum yield. [49] Polarized confocal microscopy has been

used to demonstrate a preferential alignment of the COEs molecular long

axis relative to the membrane plane. They have been implicated in boost-

ing the performance of a variety of microbial electronic devices [1, 43] em-

ploying organisms ranging from non-exoelectrogenic yeast [49], to E. coli

[50, 51] and exoelectrogenic Shewanella oneidensis, [52, 53] and even natu-

rally occurring microorganisms in wastewater. [54] The most widely applied
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COE used in such bioelectrochemical systems has been 1,4-bis(4’-(N,N-bis(6-

(N,N,N-trimethylammonium)hexyl)amino)-styryl)stilbene tetraiodide, referred

to as DSSN+. A major reason DSSN+ has been so widely used is because of its

relative biocompatibility, with a minimum inhibitory concentration to growth of

256 µM in E. coli. [51, 55–57]

Previous studies have indicated that COEs not only increase current genera-

tion in E. coli MFCs but they also decrease the internal resistance, contributing

to an overall increase in power production. [51] Additionally, model membrane

studies have shown that COEs increase ion conductance across the membrane.

[58] To add to mechanistic complexity, recent results suggest that COEs may in-

teract with other components in the cell envelope, such as lipopolysaccharides

and cholic acid. [59–61] Some of these results will be discussed in Chapter 2.

The degree to which such processes dominate bioelectrochemical changes, rel-

ative to electron transfer mechanisms, is not entirely known. Regardless, it

is generally acknowledged that the COEs ability to intercalate into microbial

membranes is paramount for increasing charge transfer in bioelectrochemical

systems. This was demonstrated due to the inability of anionic COEs to stain E.

coli and improve MFC performance. [61]

The mechanism by which COEs improve MFC performance is the underlying

motivation for this body of work and has led to tangental discoveries. For exam-
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Figure 1.3: Chemical structures of COEs used in these studies.
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ple, the inability of anionic COEs to intercalate into E. coli suggests electrostatic

interactions govern intercalation and that additional cell surface components

play a role in COE-cell interactions. Thus motivating the investigation of COE’s

ability to tune cell surface properties in Chapter 2. Discussion of the potential

mechanisms of action COEs may take for increased charge transfer follows be-

low.

1.3 Potential mechanisms of COEs in microbial ex-

tracellular electron transport

One finds in the literature various possible mechanisms by which COEs mod-

ify charge transport between microorganisms and the electrode. Inspired by pre-

vious studies on charge tunneling from a metallic electrode to a tethered redox

species through similar oligophenylenevinylene (OPV) structures, the molecu-

lar structures of COEs were originally designed for molecular wire functional-

ity. [49, 62] This idea proved consistent with cyclic voltammetry (CV) blocking

experiments, where transmembrane electron transport across an insulating sup-

ported lipid bilayer between a glass carbon electrode and aqueous ferricyanide

was facilitated by DSSN+ and DSBN+. [49] Moreover, the oxidation and re-
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duction peaks in the ferricyanide system, at ∼0.3 V and ∼0.1 V vs. Ag/AgCl,

respectively, are below the oxidation potential corresponding to DSSN+ and

DSBN+ (∼0.55 V vs. Ag/AgCl), suggesting that those COEs are not acting sim-

ply like an electron shuttle, but rather they promote direct electron transport

across the insulating membrane. The demonstration of this ability, along with

the compatible nature of COEs with living organisms, played an important role

in motivating the application in bioelectrochemical systems. However, the in-

herent processes pertaining to electron equivalent motion in living systems are

far more complex. Since these mechanisms bear a strong influence on how to

determine possible applications, they are discussed in some detail.

1.3.1 Mechanism 1: Facilitation of direct electron transfer

Much of the previous mechanistic work with COEs has utilized S. oneidensis.

The inherent ability of S. oneidensis MR-1 to participate in two key EET processes

makes this microorganism an interesting platform for study. The two main pro-

posed EET mechanisms of S. oneidensis to an extracellular electron acceptor

include: (1) direct electron transfer (DET) via terminal membrane-bound cy-

tochromes MtrC and OmcA [21, 63–69] and/or biosynthesized nanowires [26–

28, 70–74] and (2) mediated electron transfer (MET) via secreted flavin-based
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molecules that act as electron shuttles. [27, 31, 32, 75–78] These EET processes

are distinguishable by their characteristic redox potential ranges of -0.4 V to 0 V

vs. Ag/AgCl for MET and 0 V to 0.2 V vs. Ag/AgCl for DET. Recent mechanistic

studies on DSSN+ modification in S. oneidensis used this electrochemical iden-

tification to suggest that native cytochrome-based DET is enhanced indepen-

dently of MET. [53] CV and differential pulse voltammetry (DPV) were utilized

to demonstrate that the EET increase from DSSN+ addition originated from

the cytochrome DET machinery, due to the enhanced catalytic CV traces and a

large-amplitude peak increase at E = 0.05 V seen in DPV. Consistent with the im-

proved efficiency of DET over MET due to diffusive losses, coulombic efficiency

increased by ∼1.7 fold. While elevated MET signals were also observed, they

were delayed, and thus argued to be a result of elevated DET.

In a related study, chronoamperometry (CA) of S. oneidensis biofilms poised

at 0 mV and at 200 mV showed enhanced current generation when measured

at 200 mV, while at 0 mV the enhancement was negligible. [79] CV analysis

of these devices indicated that DSSN+ introduces a feature at E > 0 mV, that

is not related to mediation by flavins and correlating with the rapid increase

in current output. However, while Kirchhofer et al [53] postulate that DSSN+

might physically access relative amphiphilic OmcA and MtrC in the S. oneiden-

sis MR-1 membrane, effectively increasing the electronic surface areas between

11



cytochromes and electrode, Wang et al [79] suggest that the DSSN+ EET mech-

anism does not rely on the outer membrane cytochromes (OMCs). Supporting

this idea, CVs of MtrC-OmcA knockout mutants grown at both potentials did not

show any current boost in the CV.

In terms of the mechanistic insights attained regarding S. oneidensis, it is

reasonable that these postulates may not be generally applicable for all micro-

bial species. For example, while DSSN+ is able to improve current and power

generation in E. coli MFCs, [50, 51] E. coli lacks an obvious homologue to cy-

tochrome c or any other outer membrane redox able to undergo DET. [80–83]

Additional consideration should be made regarding the specific effects they may

have to different bacteria species in terms of the EET mechanism and thus the

relevant applications, which will be further discussed subsequently.

1.3.2 Mechanism 2: Enhanced mediated electron transfer via

increased membrane permeabilization

In addition to the possible transfer of electrons via DET, possible facilitation

of transmembrane movement of ions, substrates and electrochemical shuttles

has been considered. COE intercalation was found to facilitate the transmem-

brane movement of ions across mammalian membrane patches. [58] This ini-
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tial study has lead to further investigation on membrane permeabilization via

DSSN+ intercalation and its possible role in increased charge transport.

Sivakumar et al. found an increase in flavin concentration in S. oneidensis

with DSSN+ addition, corresponding to an increase in ferrihydrate reduction.

[84] In addition to increased flavin concentration, DSSN+ increased extracel-

lular ATP and G6PDH activity, which was also claimed as a result of membrane

permeabilization. These observations led to the proposal that membrane perme-

abilization could be responsible for the enhanced bioactivity. Wang et al. noted

the influence of accumulated flavins on current production, but maintained that

the EET mechanism of DSSN+ is independent of flavins. [79] A decrease in

charge transfer resistance was also noted in the regime of E > 0 mV, which was

attributed to membrane structural rearrangement or a release of intracellular

redox active compounds. [79] In Kirchhofer et al’s study, an increase in the

electrochemical current pertaining to flavins was noted as well, however it did

not correlate to the increased coulombic efficiency. [53] No evidence has yet

been found to support that the DSSN+ effected upstream flavin biosynthesis,

suggesting instead COEs enhance the membrane permeability of redox shuttles

such as flavins in S. oneidensis. [84]

When DSSN+ was integrated into E. coli membranes to induce the reduc-

tion of HAuCl4 to form gold nanoparticles, electrochemical experiments by CV
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were consistent with the release of electroactive cytosolic components (possibly

quinones) to the medium. [85] CV traces indicated a redox process occurring

at -270 mV (vs. Ag/AgCl), however it is unclear whether this current correlates

to any of the quinones known to E. coli. [86–88] It is also worth noting that

ultrapure water without any added carbon source was used in performing these

experiments, potentially exposing the cells to osmotic shock, as well as inhibit-

ing the metabolic processes that may contribute to EET. It is possible that COEs

may enhance the leakage of redox shuttles to facilitate the mediated electron

transport in external electron transport process, however certainty is lacking on

whether these conditions correlate to the increased performance observed in

MFCs.

It should be noted that some of the above mentioned mechanistic studies

may have been overly focused on a DSSN+ EET mechanism that may have been

exclusively explained by either MET or DET function. However, supporting ex-

perimental data may not be comprehensive at this time. For instance, biore-

duction of centrifuged cells in metabolically-limited conditions with DSSN+

does not negate the possibility of alternative EET pathways in conditions rel-

evant to device operation. [85] Similarly, the failure of DSSN+ to recover the

EET pathway of S. oneidensis mutants lacking membrane-bound cytochromes

suggests that DSSN+ cannot substitute the evolution-driven Mtr-pathway com-
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pletely. [79] It may not necessarily indicate complete absence of enabling DET

mechanism. There is, of course, the possibility that COEs modify microbial be-

havior in ways not presently considered, or that they perturb more than one

electron transfer process.

1.3.3 Alternate mechanisms

It is possible that the mechanisms by which COEs influence the charge trans-

fer process in cells are not independent from one another—there can be a com-

bination of effects. Other possibilities where COEs influence charge transfer

exist beyond the two mechanisms discussed above. For example, increased cell

attachment to electrodes would result in an increased current generation due

to increased cells capable of DET on the electrode and/or decreased diffusion

time for soluble mediators participating in MET. Previous reports have observed

differences in E. coli biofilm morphologies after treatment with COEs. [51] Ad-

ditionally, it was shown that DSSN+ promotes electrode colonization in devel-

oping biofilms of S. oneidensis, but did not attribute this to the increase in EET.

[53] These differences in biofilm morphologies must be kept in mind when using

COEs in microorganisms capable of different EET processes.

Another potential mechanism COEs can effect current generation is by alter-
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ing metabolic pathways and/or physiology. There has been limited investigation

specifically probing COEs effects on metabolism, however studies have made

relevant observations. Studies have shown that DSBN+ addition completely

inhibits hydrogen gas oxidation by Geobacter sulfurreducens and repressed hy-

drogen uptake and methane production in mixed culture microbial electrolysis

cells (MECs), however the specific reason for inhibition is not known. [89, 90]

DSBN+ also improved COD removal, indicating that the repression of hydro-

gen uptake relieved the inhibition on acetate utilization by the presence of H2,

although this effect was not observed in mixed culture MECs. In this case how-

ever, adding DSBN+ to MECs did not noticeably improve current generation. In

S. oneidensis electrochemical cells, DSSN+ increased charge collection 2.2-fold

and increased lactate consumption 1.3-fold. During anaerobic respiration, S.

oneidensis utilizes the Mtr pathway to pass electrons liberated from oxidation of

organic electron donors to terminal electron acceptors. Introduction of the Mtr

pathway into non-electrogenic organisms, i.e. E. coli, has been shown to sig-

nificantly alter metabolic flux. [91] Additionally, metabolic manipulations have

been employed to produce greater currents from a wider range of feedstocks

in exoelectrogens. [92] As such, current production is inherent to metabolic

activity.
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1.4 Objectives and Summary

In summary, previous work has established that COEs can spontaneously in-

tercalate and align within lipid bilayers and boost the electrical performance

of a wide range of bioelectrochemical systems. In particular, COEs have been

shown to increase current and power production and decrease internal resis-

tance in non-exoelectrogenic E. coli MFCs. Yet, the mechanism of improved

charge transfer remains incompletely understood. The overall objective of the

research presented in this dissertation is to uncover the mode of action by which

COEs influence bacterial membranes. A better understanding of their interac-

tions with cells can thus inform the molecular design of future COEs, inform

us of the mode of action COEs may take to improve performance of MFCs and

uncover potential new areas of application.

We utilize E. coli as a model organism for the investigation of COE’s mode of

action. Though the outward electron transfer from E. coli is relatively insignifi-

cant in comparison to electrogenic counterparts such as Geobacter sulfurreducens

or Shewanella oneidensis for integration in METs. [93–95]. E. coli is an ideal

model organism for deciphering the modes of action small molecules take on

the cell as all genes, proteins, pathways and molecular interactions have all

been extensively studied. [96, 97]
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In Chapter 2, we examine the effect COEs have on cell surface properties

and quantify their association with E. coli. In Chapter 3 we investigate the effect

DSSN+ has on the permeabilities of the inner and outer membrane of E. coli and

discuss this as a possible mode of action. In Chapter 4, we investigate the origin

of electrochemical performance improvements in situ with DSSN+ modification

in various device configurations. Chapter 5 summarizes our current understand-

ing and provides a future outlook for applications of COEs. Appendix A contains

additional electrochemical experimental data.
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Chapter 2

Tuning surface properties of

Escherichia coli with conjugated

oligoelectrolytes

Cationic conjugated oligoelectrolytes (COEs) varying in length and struc-

tural features are compared with respect to their association with Escherichia

coli and their effect on cell surface charge as determined by zeta potential mea-

surements. Regardless of structural features, at high staining concentrations

COEs with longer molecular dimensions associate less, but neutralize the neg-

1The contents of this chapter have substantially appeared in Reference 60: C. Catania, A.
W. Thomas, G. C. Bazan, Tuning cell surface charge in E. coli with conjugated oligoelectrolytes,
Chemical Science 2015, 51 (45), 9294-9297. c©2016 The Royal Society of Chemistry
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ative surface charge of E. coli to a greater degree than shorter COEs. In the

supplementary information section, we examine the effects of COEs on cell sur-

face hydrophobicity and autoaggregation, finding a similar length dependence

where COEs with longer molecular dimensions increase hydrophobicity and ag-

gregation to a greater degree than shorter COEs.

2.1 Introduction

Although the manipulation of microbial cell properties offers the potential

for harnessing and tuning the abilities of microorganisms, it remains a signifi-

cant challenge due to the aqueous environment and overall structural complex-

ity and diversity. [98] Genetic engineering, while effective, is limited to materi-

als the cell itself is capable of producing. Synthetic materials and molecular sys-

tems offer possible functionalities that are not encountered in nature. With this

in mind, conjugated oligoelectrolytes (COEs) are synthetic molecules generally

characterized by 3 – 5 π-conjugated repeat units (RUs) equipped with pendant

ionic groups to impart solubility in polar media. COEs are related to conjugated

polyelectrolytes used in optoelectronics, [99–102] biosensing [98, 103–105]

and bioimaging. [99–102, 106, 107] COEs thus share attractive photophysical

properties similar to those of their polymeric analogs, but have much smaller
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length scales, on par with biological architectures like proteins [108, 109] and

lipid membranes. [49, 56, 110–112] As such, a variety of COEs have found util-

ity in bioimaging [113–119] and biological detection schemes [108, 120–124]

of their own.

While the lipid membrane intercalation of COEs is well-documented, other

biological interactions of COEs and their consequences have not yet been stud-

ied. Previously we showed that an anionic COE analogous to DSSN+ was pre-

vented from incorporating into E. coli membranes most likely due to electrostatic

repulsion from the innate negative surface charge of the cells. [61] These neg-

ative charges occur mostly as ionized carboxyl and phosphate groups that are

part of lipopolysaccharide (LPS) macromolecules composing the outer leaflet of

most gram-negative bacteria. [125, 126] Thus, electrostatic attraction between

cationic COEs and these anionic sugars in the outermost extensions of E. coli

are reasonable and should allow modulation of the overall surface charge of the

cells. [127–129] Furthermore, in studies concerning the effects of COEs on bi-

ological systems, COE concentrations are chosen in the low micromolar regime

with no consideration given to the total number of cells; the amount of COE

that associates with each cell and that which is left in solution remains to be

quantified. With this purpose, we compare 8 COEs varying in molecular length

and core substitutions for their association with E. coli and effect on cell zeta
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potential, finding a remarkable length dependence on these properties.

The chemical structures of the COEs used in this study are shown in Fig-

ure 1.3; their syntheses have been described in the literature. [49, 51, 130]

Their basic structure can be described by 3 – 5 phenylenevinylene repeat units

(RUs) flanked on both ends by either an amine (COE1 series) or two meta-

positioned alkoxy (COE2 series) linkages carrying trimethylammonium iodide

terminated hexyl chains. Tetrafluorine substitution of the center phenylene ring

of the 3-RU molecules offers variance of the central hydrophobic core to deter-

mine its role, if any, in cell association and cell surface charge.

2.2 Experimental methods

Cell culture

Escherichia coli K-12 (ATCC #10798) was grown aerobically in Luria Broth

(10 g L−1 bacto tryptone, 5 g L−1 yeast extract, 10 g L−1 NaCl) overnight at 37◦C

with shaking.
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Cell staining for microscopy

Before staining, E. coli was rinsed twice from the growth medium with phos-

phate buffered saline (PBS) containing the following: 45.7 mM NaCl, 0.9 mM

KCl, 3.3 mM Na2HPO4 and 0.6 mM KH2PO4 at pH 7.4. 0.5 mL of OD600nm = 0.9

cells were stained with 10µM COE for 1 hour in the dark at room temperature

before rinsing twice. Samples were then resuspended in 100µL of PBS and 5µL

were dropped onto a clean glass slide and a cover slip placed on top. Cover slips

were sealed with clear nail polish and all samples were imaged within 2 hours.

Confocal microscopy

All images were obtained via laser scanning confocal microscopy using

an Olympus FluoView 1000S spectral scanning microscope equipped with a

60×1.30 silicon oil immersion lens. A 405 nm laser was used as the excita-

tion source. For the COE1 series, emission was collected from 480 nm – 580 nm.

For the COE2 series, emission was collected from 410 nm – 510 nm. All images

were processed using ImageJ.
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Cell association experiments

E. coli cells at OD600nm = 1.0 were stained in clear 96-well plates (BD Bio-

sciences, San Jose, CA) at 20◦C for 1 hour in the dark with shaking. Total

volume of each sample was 200 µL and samples were measured in triplicate.

After centrifugation of the plate (3500 rpm, 4 minutes), 100µL of supernatant

was transferred to a clean well for UV-Vis absorption with a Tecan M220 Infinite

Pro plate reader (Tecan, MŁnnedorf, Switzerland). Absorbance was measured at

420 nm for COE1 series and 380 nm for COE2 series molecules. Control samples

with no cells were treated the same and their absorbance values represented

the total COE from which the supernatant values were subtracted to give the

amount associated with cells.

Zeta potential measurements

Stained, twice-rinsed cells were resuspended in PBS to their original

OD600nm = 1.0. 100µL of each sample was diluted into 900µL PBS for zeta

potential measurements on a Malvern Zetasizer Nano ZS (Malvern Instruments,

Malvern, U.K.) at 20◦C . Data points given are an average of 4 biological repli-

cates with 3 measurements each.
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2.3 Results and Discussion

2.3.1 Visualization and quantification of COE association

In order to first visualize how each COE interacts with E. coli, we exploited

the photoluminescent π-conjugated core of the molecules for fluorescence mi-

croscopy. Cells were stained with 10µM solutions of COE for 1 hour and imaged

with a laser scanning confocal microscope, the results of which are shown in

Figure 2.1. As anticipated based on the bolaamphiphilic structure shared by the

molecules, all COEs display an emission pattern around the edges of cells con-

sistent with membrane intercalation. In this regard, the substitution of alkoxy

pendant linkages for amine or the addition of 4 fluorine atoms to the center

phenyl ring of the 3-RU COEs provides no discernible difference in terms of

observable cell localization in E. coli.

Taking advantage of the strong visible light absorbing properties provided by

the conjugated core of the molecules, [49] the amount of each COE that asso-

ciates with E. coli in solution was quantified. Briefly, cells (OD600nm = 1.0) were

stained in different concentrations of COE ranging from 1 – 40µM for 1 hour

in 50 mM phosphate buffered saline (PBS) solutions. All concentrations of COE

used in this study were less than the critical aggregation concentration (CAC)
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Figure 2.1: Laser scanning confocal micrographs and accompanying brightfield images

of E. coli stained with 10µM COE in PBS for 1 hour. Right column is COE1 series

(green) and left is COE2 series (blue). Excitation wavelength was 405 nm for all

images. 5µm scale bar is the same for all images.
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reported for DSBN+, which is at 0.51 mM. [131] A staining time of 1 hour was

found sufficient to establish equilibrium within these experimental conditions

(Figure 2.2). The cells were then centrifuged and the supernatant analysed by

UV-vis absorption to determine the amount of COE left in solution (i.e. not asso-

ciated with the pelleted cells). This method is illustrated in Figure 2.3 for 10µM

and 20µM DSSN+. Comparing the control spectra of the solutions containing

just DSSN+ in PBS (solid lines) to the spectra of the supernatants resulting from

cell staining, one observes that at 10µM, no discernable DSSN+ is left in solu-

tion, meaning that all COE has associated with the cells. In contrast, at 20µM

a significant absorption is observed indicating that some DSSN+ remains in the

solution and did not associate with the E. coli.

In subsequent experiments, the amount of COE associated with cells using

the UV-vis absorption method was quantified by subtracting the absorbance of

the supernatant of stained and centrifuged E. coli at a wavelength of 420 nm

(COE1 series) or 380 nm (COE2 series) from control samples that did not con-

tain cells. Figure 2.4 shows the trends in COE/cell association for the unflu-

orinated COEs at different staining concentrations normalized to 1 OD600nm of

cells. Interestingly, at concentrations between 1 – 15µM for all 6 COEs, 100%

association is observed resulting in a linear increase in COE association with

increasing staining concentration, reaching ∼15 nmol/OD600nm associated at 15
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Figure 2.2: In order to demonstrate that the system had reached equilibrium after 1

hour, the supernatant of E. coli stained with 40µM COE for 1 hour (light blue) and

2 hours (dark blue) were analysed by UV-vs absorption at 420 nm (COE1 series) and

380 nm (COE2 series). Note that a lower absorbance in the supernatant indicates less

COE left in solution and more associated with cells. Shown in grey are 40µM COE

solutions in PBS (i.e. the amount of COE in solution with no cells present).
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Figure 2.3: UV-vis absorption of 20µM (blue, solid) and 10µM (red, solid) DSSN+

in PBS. After staining E. coli (OD600nm = 0.9) for 1 hour with these concentrations

of DSSN+, the cells are centrifuged and the DSSN+ remaining in the supernatant

(dashed lines) is measured in order to determine how much COE associates with cells.
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µM staining concentration. Looking at the COE1 series in Figure 2.3, at concen-

trations greater than 15µM the 4- and 5-RU COEs, DSSN+ and COE1-5C, reach

a maximum association of 20 ± 0.4 nmol/OD600nm and 25 ± 1.0 nmol/OD600nm

respectively. In contrast, the 3-RU COE, DSBN+, does not reach a plateau and

attains a maximum association of 34± 0.2 nmol/OD600nm at 40 µM staining con-

centration. It should be noted that for COEs with minimum inhibitory concen-

tration (MIC) data published (DSBN+ and DSSN+), the MICs (normalized to

cell count) required to reduce growth of E. coli are 2 orders of magnitude higher

than the concentrations used in this study. [55, 56] Moreover, it is pointed out in

another study, where cytotoxicity tests on E. coli with 20 µM of all COE1 series,

that no toxicity phenomena is observed in colony forming units (CFUs). [51]

A similar trend is observed for the COE2 series in Figure 2.4b with maximum

associations of 37 ± 2.4 , 18 ± 0.5, 20 ± 1.1 nmol/OD600nm for the 3-, 4- and

5- RU COEs, respectively. When comparing the two series of COEs, the 3-RU

COE2 series shows slightly greater maximum association than the 3-RU COE1

series DSBN+, suggesting that the structural modification afforded by the alkoxy

pendant linkages provide a modest advantage in this respect. However, the

comparison between the 4- and 5-RU COEs shows a slightly higher maximum

association in the COE1 series than the COE2 series. Interestingly, previous

cytotoxicity tests on E. coli with 20µM of all COE2 series showed no toxicity
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Figure 2.4: COE associated with E. coli cells as a function of staining concentration

for (a) COE1 series and (b) COE2 series molecules. The amount of COE associated

was calculated by subtracting the absorbance at 420 nm (COE1) or 380 nm (COE2)

of the supernatant after centrifugation from that of a control staining solution with

no cells. Approximate number of cells assuming 1 OD600nm = 109 cells mL−1.
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for COE2-3C, while COE2-4C and COE2-5C have demonstrated a ∼30% loss in

CFUs than controls. [51] Regardless of series type, there is a clear dependence

of COE association with E. coli on molecular length: the amount able to associate

with cells for the 4-RU and 5-RU COEs plateaus within the concentration range

tested, while the 3-RU COEs do not.

On the secondary y-axes in Figure 2.4 are the estimated number of COE

molecules associated per cell at each staining concentration, with 1 OD600nm cor-

responding to a concentration of 109 cells per mL. [132] With this estimate, it

can be seen that maximum COE associations observed in these experiments are

greater than 107 molecules per cell for 4- and 5-RU COEs and greater than 2

× 107 for both 3-RU COEs. When comparing these numbers to an estimate of

the number of lipids per E. coli cell of ∼2.2 × 107 [97] one can see that the

4- and 5-RU COEs would approach a 1:1 lipid:COE ratio in cells and the 3-RU

COEs surpass this threshold at the 40µM staining concentration. As discussed

in the introduction, much evidence has been presented that COEs intercalate

into microbial membranes, and up until this point, this has been the only inter-

action considered. With ratios at or above 1:1 lipid:COE per cell, which would

be morphologically impossible, it is obvious that not all of the associated COE

is intercalating into lipid bilayers. A plausible hypothesis is that some COE is

associating with the outside of the E. coli, which, with its net negative charge
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[133], is a likely candidate for electrostatic interaction with positively charged

molecules. [129, 134, 135]

2.3.2 Zeta potential measurements

In order to determine the effect of COE association on cell surface charge,

stained E. coli cells from the previous experiment were washed and resuspended

in PBS buffer for zeta potential measurements [133], the results of which are

shown in Figure 2.5. Unstained cells were found to have an average zeta poten-

tial of about -16 mV under these conditions, indicating a net negative charge, as

expected. [134] The cells stained with COE1 series follow a trend of increasing

zeta potential to more positive values as the staining concentration increases.

Maximum zeta potential values of -13.1 ± 0.4, -7.8 ± 1.1, and -2.4 ± 0.4 mV

are reached for the 3-, 4-, and 5-RU COEs, respectively, trending more positive

with increasing molecular length. In addition, zeta potential values reflect the

association trends observed in Figure 2.4a, in that the 4- and 5-RU COEs reach a

plateau at a staining concentration around the same concentration that the cell

association for these COEs plateaus. Despite having the highest maximum cell

association of the COE1 series, the 3-RU COE causes the least change in zeta po-

tential but reflects the association trend in Figure 2.4a in that the zeta potential
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Figure 2.5: Zeta potential measurements of E. coli cells as a function of COE staining

concentration for (a) COE1 series and (b) COE2 series. Dashed line represents the

zeta potential of unstained E. coli.
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does not appear to plateau in the concentration range tested.

The effect on E. coli zeta potential of the COE2 series is shown in Figure 2.5b.

The COE2 series displays a similar length dependence with maximum zeta po-

tential values for E. coli of -13.8 ± 1.1, -11.3 ± 0.6, and -2.9 ± 0.7, observed for

COE2-3C, COE2-4C and COE2-5C, respectively. Cells stained by the 3- and 4-RU

COE2 molecules display noticeably less positive zeta potential values than their

COE1 counterparts but ultimately a similar trend follows in that cells stained by

longer COEs result in more positive zeta potential values. Ultimately the change

from amine to alkoxy linked pendant groups has only a minor influence on the

COE zeta potential effects as a whole.

Rather than observing charge reversal towards high positive values as is seen

with cells being coated with positively charged polyelectrolytes [127, 128, 134],

the trend towards charge neutralization in this experiment suggests that not

many of the COE positive charges are extending beyond the LPS. COEs are much

smaller in size than polyelectrolytes and easily intercalate into lipid membranes

and perhaps also interdigitate with the oligomeric sugars that form the core of

LPS rather than coating the outside cells. In fact, this non-lipid portion of LPS

in E. coli K12 is estimated to be ∼2.1 nm in length. [136, 137] This length is

slightly longer than the 3-RU phenylenevinylene core and slightly shorter than

the 4-RU conjugated core, which are estimated to be 1.8 nm and 2.4 nm re-
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spectively. With the 5-RU core estimated to be around 3 nm, one can begin to

rationalize the length scales with the zeta potential results. More specifically,

the 4- and 5-RU COEs have a greater chance of spanning the full length or

even extending past the outermost LPS units than do the 3-RU COEs, possibly

explaining the molecular length dependence of the zeta potential results.

2.3.3 Fluorinated derivatives

Lastly, cell association and zeta potential experiments were carried out with

the fluorine-substituted 3-RU COEs (4FCOEs), the results of which are plot-

ted with the unsubstituted counterparts for comparison and are shown in Fig-

ure 2.6. Cell association for the 4FCOEs (Figure a) is largely indistinguishable

from their unsubstituted counterparts until staining concentrations of ∼25–

40µM, at which point the 4FCOEs associate slightly less. At the highest stain-

ing concentration tested (40µM), there were approximately 2.0 (±0.06) × 107

and 2.4 (± 0.02) × 107 molecules associated per cell for 4F-DSBN+ and 4F-

COE2-3C, respectively. These values are 23% and 15% less than for DSBN+ and

COE2-3C, respectively. A possible explanation for this deviation at higher stain-

ing concentrations is the polar-hydrophobic nature of fluorinated compounds

[138], making these molecules less likely to aggregate in the lipid membrane
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Figure 2.6: Comparison of 3-ring COEs with and without fluorine substitution. (a)

COE associated with E. coli as a function of staining concentration. Approximate

number of cells assuming 1 OD600nm = 106 cells per mL. (b) Zetal potential measure-

ments of stained E. coli as a function of COE staining concentration. Black dashed

line represents the zeta potential of unstained E. coli
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due to interactions between the cationic pendant groups and the fluorinated

core.[56] Being less likely to aggregate or pack closely would result in less over-

all cell association. It is worth noting, however, that aggregation of COEs in a

lipid membrane has yet to be experimentally proven.

The zeta potential of E. coli stained with the 4FCOEs (Figure 2.6b) follows

the same trend as the unfluorinated COEs, in that a gradual increase in zeta

potential is observed as staining concentration increases. Cells stained with 4F-

DSBN+ reach a more positive maximum (-14.8 ± 0.6 mV) than those stained

with 4F- COE2-3C (-15.4 ± 0.6 mV), with both maxima being slightly less posi-

tive than the corresponding unfluorinated COEs at -13.1 ± 0.4 mV and -13.8 ±

1.1 mV, respectively. Ultimately, fluorine substitution of the center ring of 3-RU

COEs has minimal influence on cell association and zeta potential of stained E.

coli.

2.4 Conclusions

In conclusion, 8 COEs varying in length and substitutions to the aromatic

core have been compared in terms of their association with E. coli and their

effect on cell zeta potential. Confocal microscopy showed patterns consistent

with lipid membrane association for all COEs. At low staining concentrations
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(<20µM) nearly 100% of COE in solution associates with cells, leaving none

remaining in the supernatant of centrifuged samples. At higher concentrations,

3-RU COEs continue to associate while 4- and 5-RU COEs plateau, reaching a

maximum association that cannot be overcome by adding more COE to the stain-

ing solution. The 3-RU COEs associate past a 1:1 lipid:COE ratio while the 4-

and 5-RU COEs approach it, which is morphologically impossible and indicative

of cellular association not exclusive to membrane intercalation. Cells stained

with COEs generally showed more positive zeta potential values with increasing

staining concentration, indicating a neutralization of anionic charges of the LPS

by the cationic charges of the COEs. Additionally, more positive zeta potential

values were observed for longer COEs suggesting that they are able to extend

beyond the negatively charged molecular constructs of the E. coli LPS. The other

structural variations presented here, namely amine vs. alkoxy pendant linkages

and fluorination of the aromatic core, proved less important than molecular

length, as they had minimal effects on cell association and zeta potential, when

compared to analogues with the same number of repeat units. These changes

alter the photophysical properties of the molecules and thus increase the num-

ber of COEs available for applications in bioimaging[114, 115, 139–141] and

optoelectronics. [142, 143] Most importantly, that the zeta potential of bacteria

can be tuned by COE length and concentration has implications for technolo-
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gies such as microbial electronics, wastewater treatment, and others that rely

on bacterial aggregation, adhesion and biofilm formation.[144–150]

2.5 Supplementary Information

The ability to synthetically manipulate cell surface charge has profound im-

plications for technologies such as microbial electronics, wastewater remedi-

ation and others that rely on bacterial aggregation and adhesion to surfaces.

[144–150] Electrostatic and hydrophobic forces are generally recognized as be-

ing important for bacterial adhesion. Bacterial adhesion is often described as

a two step event, i.e. reversible adhesion due to long-range forces and irre-

versible adhesion due to short-range interactions that promote direct contact,

such as hydrophobic interactions and chemical bonds. [146, 151, 152] While

experimental studies have shown the importance of the electric double layer in

bacterial adhesion, they have also revealed discrepancies between theoretical

expectations and observation. [145] Other physico-chemical properties corre-

late with adhesion include cell surface hydrophobicity and aggregation ability.

Therefore to further characterize the effect COEs have on cell surface proper-

ties relevant to bacterial adhesion, we compare COE structures for their effects

on overall hydrophobicity and autoaggregation and find a similar length depen-
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dence on these properties.

2.5.1 Experimental methods

Measurements of cell surface hydrophobicity

The surface hydrophobicity of unstained and stained cells was determined

using microbial adherence to hydrocarbons (MATH) using hexadecane as the

adsorption solvent. [153] Cells grown overnight were washed and resuspended

in 50 mM PBS to an OD600nm∼1.6. 1.5 mL of cells were stained with 1.5 mL

of 2× the target concentration of COEs (2× 5, 10, 15, 20, 25 and 40µM) in

PBS and allowed to equilibrate at room temperature for 15 min. 1 mL of hex-

adecane was added to test tubes containing the cell solution, vigorously shaken

by vortex for 2 min, and then left at room temperature for 30 min to allow for

phase separation. After phase separation, optical density of the PBS phase was

measured using a HACH DR2800 spectrophotometer at 600 nm. The results

were expressed as the percentage from 3 replicates according to the formula

MATH%=1 – (OD /ODt0) × 100, where ODt0 and OD are the optical densities

at 600 nm before and after mixing with hexadecane, respectively.

41



Autoaggregation assay

Bacteria were grown overnight as described previously. Cells were then har-

vested by centrifugation, washed twice with 50 mM PBS and resuspended to

a final OD600nm of 0.98 when diluted in half. 500µL bacterial suspension was

placed in cuvettes with 500µL of 2× the target COE concentration (2× 5, 10,

15, 20, 25 and 40µM). Cells were incubated at room temperature for 5 hours

and OD600nm was measured every hour. Aggregation was expressed as a per-

centage of the total cell population using the formula 1 – (ODt /ODt0) × 100.

2.5.2 Cell surface hydrophobicity

In addition to surface charge, bacterial cell surface hydrophobicity is an im-

portant factor in bacterial adhesion. [154] It had been found that increased

cell surface hydrophobicity would favor cell adhesion on both hydrophilic and

hydrophobic surfaces. [147]E. coli is reported to be hydrophilic in nature

[154, 155], but specific surface structures crucial for biofilm formation impart

local hydrophobicity. [152] Some studies correlate adhesion to cell surface

charge [156], but in most instances overall hydrophobicity has the strongest

correlation. [147, 148] Here, we determined the overall hydrophobicity of E.

coli modified with varying concentrations of COEs using microbial adherence to
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hydrocarbons (MATH). [153, 157] Bacteria were grown overnight and stained

with 0, 5, 10, 15, 20, 25 or 40µM of the 3-, 4-, or 5-RU COE1 series. After

staining equilibration, cells were mixed with hexadecane. Binding affinity to

hexadecane was quantified as the change in OD600nm after phase separation of

hexadecane from the cell buffer solution.

Figure 2.7 plots the percent increase in affinity to hexadecane versus stain-

ing concentration of DSBN, DSSN and COE1-5C. Results show a similar trend

as with zeta potential measurements, where longer molecular length COEs in-

crease the hydrophobicity to a greater extent than shorter COEs. Additionally,

the cells affinity to hexadecane plateaus around 25µM staining concentration.

The concentration where hydrophobicity plateaus is slightly greater than the

association staining concentration plateau. This may indicate that at relatively

higher concentrations, COEs may be disrupting some of the cell surface features

that impart hydrophilicity, such as LPS. Future work is needed for the determi-

nation of specific interactions COEs may have with membrane components.

2.5.3 Autoaggregation

Cell aggregation, or autoaggregation, is a process of cell-to-cell immobiliza-

tion that is inherently related to cell surface hydrophobicity. [147] In many
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Figure 2.7: Affinity of COE-modified E. coli to hexadecane at various staining con-

centrations. Error bars show standard deviations of triplicate measurements.
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Figure 2.8: Autoaggregation of untreated E. coli (Control) and E. coli stained with

10µM COE after 1 (blue), 3 (orange), and 5 (gray) hours.
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cases, aggregation ability is related to cell adherence properties. To further

characterize the effects of COEs on surface properties, autoaggregation of E. coli

modified with varying structures of COEs was examined. Figure 2.8 shows au-

toaggregation of cells stained with 10µM COE over time, where percent autoag-

gregation is calculated as the change in OD600nm with COE treatment compared

to initial. The trend in autoaggregation follows zeta potential measurements,

where cells treated with COEs with longer molecular length aggregate more

than shorter COEs.
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Chapter 3

Permeability effects of conjugated

oligoelectrolytes on Escherichia coli

One possible mode of action COEs may use to improve bioelectrochemical

performance is by permeabilization of the cell envelope. In this chapter, we ex-

amined the effect of the tetracationic conjugated oligoelectrolyte, DSSN+, on

the permeability of the inner and outer membrane of Escherichia coli by de-

tecting extracellular activity of normally periplasmic and cytoplasmic enzymes.

DSSN+ increases the release of the periplasmic enzyme alkaline phosphatase

(ALP) up to 20-fold, but does not significantly change the release of the cyto-

1The contents of this chapter have substantially appeared in Reference 158 C. Catania, C.
M. Ajo-Franklin, and G. C. Bazan, Membrane Permeabilization by Conjugate Oligoelectrolytes
Accelerates Whole-Cell Catalysis, RSC Advances, 2016, 6 (102), 100300-100306. c©2016 RSC.
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plasmic enzyme β-galactosidase. Additionally, DSSN+ caused a 2-fold increase

in the turnover of a cytoplasmic substrate. These studies present a more com-

plete understanding of the mechanism of action in bioelectrochemical systems

and pivot future applications of COEs towards a method for improving whole-

cell catalysis.

3.1 Introduction

The cell envelope acts as a protective barrier that limits the transport of

ions, non-natural sugars and redox-active molecules in the cell. [97, 159, 160]

In gram-negative bacteria, the envelope is comprised of an outer membrane

(OM), a peptidoglycan layer and an inner membrane (IM). [126, 161–163]

The common structural component to each is the lipid bilayer, which is elec-

trically insulating and impermeable to most ions and polar molecules. In the

OM, lipopolysaccharides provide a barrier to hydrophobic and most hydrophilic

molecules. Small hydrophilic compounds (<600 Da) rely on passive diffusion

through OM porins, while large hydrophilic molecules typically require specific

protein-based transport mechanisms. [126, 159–164] In contrast, transport of

hydrophobic molecules through the IM is relatively facile, while the transport of

hydrophilic molecules typically requires specific membrane transport proteins.
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[97] For reactants that do not have a natural uptake system, e.g. non-natural

sugars, passive diffusion through the lipopolysaccharide layer is the only mech-

anism of transport. [159, 160]

The inherent barrier function of the OM can be a limitation in whole-

cell bioprocesses such as bioelectrochemistry, biocatalysis, fermentation and

bioremediation.[3, 165, 166] In an ideal process, uptake of substrates into the

cell would not slow the rate of product formation. In practice, however, whole-

cell catalyzed reactions are generally one to two orders of magnitude slower

than catalysis by isolated enzymes. [167–171] Chemical and physical methods

have been developed to increase membrane permeability and accelerate reac-

tion rates despite possible complications in downstream processing, added pro-

cessing steps, and excessive membrane damage or lysis. [165, 172–174] While

genetic modifications can also improve permeability, they are often more effec-

tive at enhancing transport across the IM than the OM and are complicated to

implement alongside other genetic modifications, such as enzyme overexpres-

sion. [175–179] Thus, there is a paucity of well-characterized, one-step methods

for altering membrane permeability that do not introduce additional limitations.

Given the importance of membrane permeabilization on bioprocesses, a bet-

ter understanding of how COEs alter membranes would open opportunities be-

yond bioelectrochemical applications. Here, we address possible impacts on
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Figure 3.1: Schematic illustration depicting DSSN+ situated in the lipid bilayer (a)

and the scenarios tested in this study (b). DSSN+ intercalation in the membrane

may either: (i) permeabilize the OM to allow the release of periplasmic enzymes,

(ii) permeabilize the IM to release cytosolic enzymes, and/or (iii) increase the rate

of catalysis by intracellular enzymes by increasing the rate of transport of substrate

across the cell envelope.
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membrane permeabilization and whole cell catalysis by using the approach il-

lustrated in Figure 3.1. Specifically, we examine changes in the OM and IM

permeability of E. coli upon exposure by detecting extracellular enzymatic ac-

tivity of normally periplasmic (i) and cytosolic (ii) enzymes. We find that the

permeability of the OM is significantly affected by DSSN+ (scenario (i)) as in-

dicated by extracellular enzyme activity, while we do not yet find evidence for

perturbation of the IM (scenario (ii)). Furthermore, by monitoring turnover

of the substrate utilized by a cytosolic enzyme (scenario (iii)), we demonstrate

DSSN+ increases whole-cell biocatalysis.

3.2 Experimental Methods

Cell culture

Escherichia coli (ATTC #10798, ATCC, VA) was cultured aerobically

overnight from a frozen stock by growth in Luria Broth (10 g L−1 bacto tryp-

tone, 5 g L−1 yeast extract, 10 g L−1 NaCl) at 37◦C with shaking. For cells

cultured for β-galactosidase activity assays, Luria Broth was supplemented with

2% lactose for induction of lacZ. Cells were washed three times by centrifuga-

tion in M9 minimal media (6.8 g L−1 Na2HPO4, 3 g L−1 KH2PO4, 1 g L−1 NH4Cl,
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0.5 g L−1 NaCl) before use in assays.

Assay of outer membrane permeability

Cell suspensions were resuspended to a final OD600nm= 1.0 in M9, stained

with varying amounts of 1 mM DSSN+ in ultrapure water to achieve final con-

centrations of 0, 5, 10, 15 and 25 µM, and then incubated at room temperature

for 1, 4 and 10 hours. Samples were removed at each time point and filtered

using a 0.2 µm filter. Non-fluorescent 4-methylumbelliferyl phosphate disodium

salt (MUP) from an alkaline phosphatase activity assay kit (Biovision, K422-

500) was used to measure the activity of extracellular ALP. Filtered samples

were incubated with 80 µM MUP at 25◦C in a 96-well plate while monitoring

fluorescence (Ex/Em = 360nm/440nm) over 90 min using a Spectra Max Plus

384 microplate spectrophotometer. Filtrates samples without MUP added were

measured for background correction. All samples were measured in triplicate.

Assay of inner membrane permeability

Cell suspensions were resuspended to a final OD600nm= 0.6 in M9, stained

with varying concentrations of DSSN+ (0, 5, 10, 15 and 25 µM) and then in-

cubated at room temperature for 5 hours. The permeability of the inner mem-
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brane of E. coli K-12 was determined by measuring the release of β-galactosidase

activity into the medium. Cell suspensions were filtered, and the result-

ing filtrates were incubated with 1.3 mM 2-nitrophenyl β-D-galactopyranoside

(ONPG, Sigma Aldrich) at 37◦C for 2 hours in a 96-well plate while monitoring

the absorbance at 420 nm using a Spectra Max Absorbance plate reader. All

samples were measured in triplicate.

Calibration against cell lysate

For both permeability assays, activities were compared against the activity of

lysed cell suspensions. Cell suspensions of the same OD600nm and same culture

conditions used in the comparative assays were lysed via probe sonication in

an ice bath. Complete lysis was confirmed by measuring OD600nm to be equal

to 0. Lysates were then serially diluted in M9 in ratios of 1:2, 1:4, 1:8, 1:16,

1:32 and 1:64 to produce solutions of 50, 25, 12.5, 6.1, 3 and 1.5% cell lysate.

These solutions were then tested following the respective assay procedures. The

cell lysate activities for ALP and β-galactosidase are shown in Figure 3.2 and

3.3, respectively. Specifically, to generate an ALP activity calibration curve, we

calculated the average rate of fluorescence change using the slopes of plots con-

taining fluorescence intensity vs. time. The resulting rates were linearly related

to the amount of cell lysate in order to generate a calibration curve to deter-
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Figure 3.2: ALP activity of cell lysates dilutions (1:2, 1:4, 1:8, 1:16, 1:32, 1:64)

determined by fluorescence intensity of 4-MU measured at 440 nm over time. All

measurements are an average of triplicates.

mine the relative degree of cell lysis of samples. The linear trend is plotted in

Figure 3.4. The same calculations were performed for β-galactosidase activity in

cell lysates using the rate of absorbance change vs. time from the linear region.

Whole-cell ONPG turnover assay

Cell suspensions were resuspended to an OD600nm = 0.6 in M9, stained with

varying concentrations of DSSN+ (0, 5, 10, 15 and 25µM) for 30 minutes to
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Figure 3.3: β-galactosidase activity of cell lysates dilutions (1:2, 1:4, 1:8, 1:16, 1:32,

1:64) determined by absorbance measured at 420 nm over time. All measurements are

an average of triplicates.
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Figure 3.4: ALP calibration curve determined by measuring the rate of fluorescence

change in different concentrations of cell lysate solutions, where L% is equivalent to

the ratio of cell lysate to buffer as a percentage.
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allow for membrane intercalation, then centrifuged and resuspended in M9 to

a final OD600nm = 0.6. Cell turnover of ONPG, indicated by the linear rate of

absorbance increase, was examined in triplicate for each staining concentration

using a Spectra Max Absorbance plate reader to measure absorbance at 420 nm

over 2 hours while cells were incubated with 1.3 mM ONPG. Background cor-

rections were made by subtracting the absorbance at 420 nm of DSSN+ stained

cell suspensions that were not incubated with ONPG.

Control test for DSSN+ interference with ALP activity

To determine whether DSSN+ has an effect on the hydrolysis of MUP or

interferes with the activity of ALP, a standard curve was generated in accordance

to the BioVision (#K422-500) Assay kit protocol. Using a 96-well plate, varying

amounts of MUP (0, 0.1, 0.2, 0.3, 0.4, 0.5 nmol/well) were dispensed in the

assay buffer. The same amount of ALP enzyme solution was added to each

well. To test the effect of DSSN+, DSSN+ solution was added to each well to

achieve a final concentration of 2µM in order to mimic the maximum amount

of DSSN+ left in solution after cell staining. Fluorescence was monitored in

duplicates of the standard without DSSN+ and with DSSN+ at 440 nm and is

plotted in Figure 3.5.
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Figure 3.5: ALP hydrolysis of MUP measured by fluorescence intensity at 440 nm

in standards prepared without and with DSSN+. All measurements performed in

duplicate.
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Control test for DSSN+ interference with β-galactosidase activity

To determine whether DSSN+ interferes with the hydrolysis of ONPG or

interferes with the activity of β-galactosidase, a control experiment was per-

formed on the standard measurements. A standard curve was generated using

lysed cells that were previously stained with 10µM DSSN+. Lysates were then

serially diluted in M9 in ratios of 1:2, 1:4, 1:8, 1:16, 1:32 and 1:64 to pro-

duce solutions of 50, 25, 12.5, 6.1, 3 and 1.5% cell lysate. These solutions were

then tested following the outer membrane permeability assay procedure. The β-

galactosidase activities from dilutions of UT and DSSN+ modified E. coli lysates

are shown in Figure 3.6.

3.3 Results and Discussion

3.3.1 Outer membrane permeability

A standard protocol was used to test changes in OM permeability (scenario

(i) in Figure 3.1b). We measured the extracellular activity of the periplasmic

enzyme alkaline phosphatase (ALP) after E. coli was exposed to different con-

centrations of DSSN+ for varying lengths of time. Specifically, E. coli cells were

washed, resuspended in buffer, and then stained with 5, 10, 15 and 25 µM
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Figure 3.6: β-galactosidase activities measured by absorbance at 420 nm of different

concentrations of cell lysate solutions from UT (solid lines) and 10µM DSSN+ treated

(dashed lines) cells to determine if DSSN+ interferes with hydrolysis of ONPG. Traces

display an average of triplicate measurements.
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DSSN+ for 1, 4 or 10 hours then filtered. The resulting filtrates were probed

for extracellular ALP activity by monitoring conversion of non-fluorescent 4-

methylumbelliferyl phosphate (MUP) to fluorescent 4-methylumbelliferone (4-

MU). [84, 180, 181] The fluorescence intensity linearly increased over 60 min

for filtrates from both unstained, untreated (UT) and DSSN+ treated cells

(selected examples are shown in Figure 3.7). However, the rate of fluores-

cence increase was greater in filtrates from DSSN+ treated cells relative to UT

cells (Fig. 3.7). Thus, DSSN+ alters the OM permeability sufficiently to facili-

tate periplasmic release of ALP, which is a moderately-sized macromolecule of

89 kDa. [182–184]

To quantitatively assess the degree of OM permeabilization under different

conditions, we calibrated the ALP activity of different percentages of E. coli cell

lysate. As with the filtrates of DSSN+ stained and UT samples, the 4-MU fluo-

rescence of the cell lysates linearly increased with time (e.g. 50% cell lysate so-

lution, Fig. 3.7). A linear trend was generated between the rate of fluorescence

change and amount of cell lysate, thus providing a calibration curve between

extracellular ALP activity and the relative degree of OM lysis, described as a

percentage of total intracellular ALP. We use this calibration curve to determine

the relative degree of cell lysis, notated by LOM%, in which LOM% values of 100

and 0 correspond to a fully lysed and fully intact cell population, respectively.
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Figure 3.7: Extracellular ALP activity of filtrates from UT, E. coli stained with 25µM

DSSN+ for 10 hours and a 50% cell lysate solution, determined by fluorescence in-

tensity of 4-MU measured at 440 nm over time. All measurements are an average of

triplicates.
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Figure 3.8: Permeabilization of the OM of E. coli from varying concentrations of

DSSN+ measured as a percentage of total ALP activity (LOM%) released extracellu-

larly over staining time. Error bars show standard deviation of an average of triplicates.
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We compared the effective OM lysis of E. coli cells as a function of DSSN+

staining concentration and time (Figure 3.8). As summarized in Table 3.1 and

plotted in Fig. 3.8, the LOM% values increased with both DSSN+ staining con-

centration and time. Specifically, E. coli cells stained with the greatest DSSN+

concentration (25 µM) showed the most pronounced increase in OM permeabil-

ity. The OM permeability of these cells was 20-fold higher than UT cells at 4 h,

and at 10 h had the greatest LOM%, i.e. 45%. Given that the DSSN+ exposure

in these experiments do not cause measurable cytotoxicity [51, 55, 56], these

data indicate DSSN+ is able to increase OM permeability without significantly

altering E. coli cell viability. These observations demonstrate that scenario (i),

namely enzyme transport across the OM, is accelerated for cells that are labeled

with DSSN+. It is worth noting that freeze/thaw methods used to release sim-

ilar concentrations of recombinant proteins are poorly effective for proteins of

ALPs dimensions. [185]

From Fig. 3.8, one observes that changes in OM permeability increase as

the cells are exposed to more DSSN+; however, the magnitude of this increase

tapers with both DSSN+ staining concentration and time. At concentrations

over 10 µM, the effect of additional DSSN+ on OM lysis is diminished. It is

worth pointing out that the maximum association of DSSN+ with E. coli, pre-

viously shown to be 20 nmol/OD600nm, is equivalent to a staining concentration
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Table 3.1: Effect of DSSN+ staining on OM permeability at 4 h, IM permeability at

5 h, and the rate of ONPG hydrolysis, defined as the linear rate of absorbance increase.

[DSSN+] (µM) LOM% LIM% Turnover rate (a.u. min−1)

0 (WT) 1.7 ± 0.12 0.8 ± 0.002 0.009 ± 0.001

5 14.9 ± 0.27 1.0 ± 0.003 0.013 ± 0.003

10 31.8 ± 0.36 1.2 ± 0.006 0.018 ± 0.007

15 33.7 ± 0.79 1.3 ± 0.005 0.018 ± 0.007

25 34.2 ± 1.01 1.3 ± 0.005 0.018 ± 0.004

of 12µM in our experimental conditions.[60] These data thus suggest that little

additional DSSN+ associates with cells above 10µM, causing only a minor addi-

tional impact on OM permeability. Additionally, the OM permeability increases

rapidly over the first 4 h of staining, then tapers for all DSSN+ concentrations.

These data indicate that DSSN+ association with cells reaches a steady-state af-

ter 4 h of staining. Taken together, these data are consistent with the suggestion

that the degree of OM permeability is related to the amount of DSSN+ associ-

ated with the cell and that DSSN+ association with E. coli cells saturates at a

staining concentration of ∼10µM and a staining time of ∼4 h.
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3.3.2 Inner membrane permeability

To determine whether DSSN+ had a similar impact on IM permeability (sce-

nario (ii) in Figure 3.1b), we measured the release of the cytoplasmic hydrolase

enzyme, β-galactosidase (β-gal), into the medium, which is commonly used as

an indicator of inner membrane damage. [186–189] As before, E. coli cells were

washed in buffer, stained with varying concentrations of DSSN+ for 5 hours

and then filtered. Extracellular β-gal activity in the resulting filtrates was mea-

sured by monitoring cleavage of colorless 2-nitrophenyl β-D-galactopyranoside

(ONPG) into yellow o-nitrophenol (ONP) by using absorption spectroscopy. For

filtrates from both UT cells and cells stained with DSSN+, the ONP absorbance

at 420 nm linearly increased with time (Figure 3.9). In contrast to the ALP

experiments, there was no marked difference in the rate of change of A420nm

between UT and DSSN+-stained cell filtrates, even when DSSN+ concentration

was increased up to 25µM. This observation indicates that IM permeability for

β-gal did not change significantly upon DSSN+ staining and therefore scenario

(ii) is not operational under our experimental conditions.

To more precisely quantify the effects of DSSN+ staining on IM permeabil-

ity, we assessed the ONP production rate for different amounts of IM lysis and

calculated LIM% for each staining concentration (Table 3.1). The ONP forma-
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Figure 3.9: Permeation of E.coli IM by DSSN+ determined optically by measuring

absorbance of ONP at 420 nm. Extracellular β-galactosidase activity in the filtrates

from UT and 10 µM DSSN+ stained E. coli shown over incubation time with ONPG

and compared with absorbance of 1.5% and 3% cell lysate solutions. All measurements

are an average of triplicates.
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tion rate for 3% cell lysate was significantly higher than both the UT and 10 µM

DSSN+ stained cell filtrates (Fig. 3.9), while the rate for 1.5% lysate was com-

parable to these samples. These data show that the amount of β-gal released by

DSSN+ staining is both comparable to unstained cells and very small. Taken to-

gether, these data indicate that the IM is not sufficiently disrupted to accelerate

β-gal diffusion out of the cell. This is an important improvement to our current

understanding of how DSSN+ improves charge transport in E. coli, which was

previously suggested to be caused by cell lysis. [85]

When considering the difference DSSN+ has on OM and IM permeability, it

is important to consider that the OM and IM permeabilities were probed with

different size proteins. With a molecular weight of 465 kDa, β-gal is ∼5× larger,

than ALP (MW = 89 kDa). [182–184, 190, 191] While the mode by which

DSSN+ increases membrane permeability is unclear, it is possible that these

changes in permeability are size dependent. Regardless, as release of β-gal is

often used as evidence of cell lysis, it is clear that DSSN+ does not cause E. coli

lysis under the experimental conditions studied here. [85, 186, 188, 189, 192]
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Figure 3.10: Turnover of ONPG by whole cells monitored by absorbance of ONP at

420 nm over time. Error bars are standard deviations of triplicates and plotted for

every 10 minutes.
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3.3.3 Influence on whole-cell catalysis

Considering the ability of DSSN+ to increase the OM permeability, we

hypothesized DSSN+ could improve the transport of much smaller substrate

molecules through the cell envelope (scenario (iii) in Figure 3.1b). Because

ONPG hydrolysis is rate limited by its passive diffusion through the OM, we

chose to test this hypothesis using a modified β-gal assay on whole E. coli cells

stained with DSSN+.[188, 193–195] Cells were therefore incubated with vary-

ing concentrations of DSSN+ for 5 hours, washed, and then monitored for ONP

production as a function of time. The time dependence of the background-

corrected A420nm versus time provides a measure of product formation (Fig-

ure 3.10). The faster increase in A420nm for DSSN+ stained cells shows that

DSSN+ stained cells produce ONP more rapidly than unstained counterparts.

To quantify the relative ONP production rate, we determined the slope of the

linear region in A420nm versus time plots shown in Fig. 3.10. As observed with the

ALP experiments, this increase in turnover rate increased with DSSN+ staining

concentration up to ∼10 µM. This limiting value reinforces the idea that per-

meability changes are proportional the amount of DSSN+ associated with the

cell. [60] A comparison of these turnover rates (Table 3.1) shows that DSSN+

stained cells hydrolyzed ONPG up to 2-fold more rapidly than unstained cells.
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This 2-fold increase in turnover does not match with the 20-fold increase in OM

permeabilization, indicating a different rate limiting process may be occurring.

Regardless, while DSSN+ staining does not release β-gal from the cytoplasm, it

does increase transport of ONPG across the cell envelope, resulting in increased

microbial catalysis.

While it is possible that DSSN+ may affect transport of molecules or pro-

teins with a low molecular weight across the IM, at this point we do not have

definitive proof that DSSN+ is permeabilizing or, to what extent, even reaching

the IM. Regardless, this interest in structural elucidation has led to the discov-

ery of a new way to accelerate whole-cell catalysis by improved transport across

the OM. Beyond whole-cell catalysis, these observations have broader implica-

tions where membrane permeabilization is relevant, for example antimicrobial

susceptibility. [159, 160]

The data presented here also offers mechanistic insight into how DSSN+

increases current production in E. coli microbial fuel cells (MFCs). [50, 51] In

contrast to previous reports, the IM remains primarily intact under our exper-

imental conditions. [85] Since the conditions described herein closely mimic

that used in MFCs, it is unlikely that the increased extracellular electron trans-

fer (EET) in MFCs is due to cell lysis. Rather, given the substantial increase

in OM permeability with DSSN+ staining, we suggest DSSN+ increases trans-
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port of redox active molecules or electron donors in the media across the OM.

[50, 51] Increased transport of either set of molecules would increase the ob-

served current in an E. coli MFC. Supporting this idea, increasing the perme-

ability of the OM in E. coli via directed evolution [196–198], overexpression of

porins [179, 195], and introduction of permeabilizers [199] have all been previ-

ously used to increase mediated EET. Additionally, a recent study demonstrated

that released enzymes in certain microorganisms can mimic direct EET. [200]

It is also important to note that COEs alter the physiochemical properties of the

cell in a manner that may affect cell-electrode interactions. [60] Thus we cannot

rule out that DSSN+ improves E. coli MFC performance through a combination

of effects, such as increased permeability and cell attachment.

While the specific mechanism of membrane perturbation is yet to be defined

experimentally, molecular dynamic simulations demonstrated distortions and

disorder in the phospholipid bilayer upon COE modification and aggregation of

COEs. [56] To what extent the LPS layer is modified is less well understood. It

is not unreasonable to suggest COE interactions with LPS cause disorder, which

is a common cause of OM permeability. [159]
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3.4 Conclusions

In summary, we have shown that DSSN+ increases the permeability of the

OM and improves transport of a small molecule through the cell envelope. By

measuring the release of the periplasmic ALP enzyme into the extracellular

medium, it is possible to unify changes in the OM permeability with accumu-

lation of DSSN+. This process led to a 20-fold increase in OM permeability.

This effect was observed in staining concentrations far below those needed for

toxicity. We did not observe significant release of β-gal, indicating DSSN+ does

not adequately disturb the IM to allow outward diffusion of this enzyme. This

does not rule out accumulation of DSSN+ in the IM since the dimensions of the

protein may be too large for diffusion. It may be possible that smaller macro-

molecules could diffuse, but this requires additional tests. Nonetheless, it is

important to note these results have led to the discovery of a new way to accel-

erate whole-cell catalysis. Last, we show that DSSN+ staining increases the rate

of ONP formation up to 2-fold.

The deeper understanding of DSSN+s impact on OM permeability suggests

COEs may be suited for wide range of whole-cell applications.[165, 201] Here,

we have shown DSSN+ improves passive transport across the OM. Thus, COEs

provide a synthetic, one-step method to either release a periplasmic product
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or increase transport of substrate across the OM by using specifically designed

synthetic molecules with limited influence on cell viability. Thereby, use of COEs

for increased transport across the OM has the potential to improve microbial

catalysis, recombinant protein recovery, or even decrease antibiotic resistance,

where the OM is limiting.

3.5 Supplementary Information

3.5.1 Effect of COE structure on whole-cell catalysis

We have demonstrated the ability of DSSN+ to increase the permeability of

the OM and improve transport of a small molecule through the cell envelope.

This investigation of solely DSSN+ was motivated based on the wide application

of DSSN+ in bioelectrochemical systems.[1] These results provided important

insight regarding permeabilization as a possible mode of action this COE takes

on bacterial membranes, which would result in increased current generation in

E. coli MFCs when in the presence of redox mediators. To further our under-

standing on the relationship between COE molecular structure and membrane

properties, we continued these experiments using COEs with different molecular

structures. The COE structures investigated have phenylenevinylene cores of 3–
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5 repeat units (RUs) and either an amine (COE1 series) or two meta-positioned

alkoxy (COE2 series) linkage groups. The chemical structures of the COEs used

are shown in Figure 1.3.

To determine how COE molecular structure effects the rate of whole-cell

catalysis, we followed the procedure previously described for the whole-cell

ONPG turnover assay using cells stained with varying concentrations (0, 5,

10, 15, 25 and 40µM) of COE1 series (DSBN+, DSSN+, COE1-5C) and

COE2 series (COE2-3C, COE2-4C, COE2-5C) molecules. E. coli cells were pre-

pared as described in Section 3.2, then resuspended to an OD600nm such that

OD600nm = 0.6±0̇.04 in assay conditions. In contrast to the previous experiment,

which incubated cells for 5 hrs with DSSN+, cells were incubated at 37◦C with

COE solutions for 2 hrs prior to the assay. E. coli from separate cultures were

used for COE1 and COE2 series experiments. Whole-cell turnover of ONPG by

UT and COE-treated E. coli was monitored via absorbance at 420 nm over time.

Figure 3.11 displays absorbance over time of control cells (untreated E. coli)

and 25µM COE stained E. coli from (a) COE1 series and (b) COE2 series. One

notes that the rate of absorbance change in COE1 series molecules is fastest

in DSBN+ stained cells, followed by DSSN+, then COE1-5C and the control—

where the COE1-5C trace is indistinguishable from the control trace. A similar

trend is observed in COE2 series stained cells, shown in Figure 3.11b, however
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there is a slight rate increase in COE2-5C modified cells compared to the control.

Turnover rates were calculated by fitting the linear region of the plots and taking

the slope; rates are expressed in a.u. min−1 and listed in Table 3.2. These data

demonstrate that there is a rate dependence of ONPG turnover on the molecular

length, where the rate of catalysis increases with decreasing molecular length.

Negligible differences are seen between the turnover rates of COE1 and

COE2 series when comparing molecules of the same backbone length (Ta-

ble 3.2). However, control sample turnover rates were comparable between the

COE1 and COE2 control experiments. The difference between control rates are

likely because COE1 and COE2 series experiments were performed using sep-

arate E. coli cultures. Slight differences in handling could account for altered

physiologies. Comparing COE-modified cell turnover rate with their control

rate, we observe a greater net improvement with COE2 series modified cells.

This likely indicates that COE2 series are permeabilizing the cell envelope to a

greater extent.

ONPG turnover in whole cells modified with varying concentrations of COEs

are plotted separately by COE structure as a function of A420nm versus time in

Figure 3.12. One notes in Figure 3.12a and b that rates of absorbance change

over time generally increase with increasing concentration. Thus, cells modi-

fied with 3-RU COEs, i.e. DSBN+ and COE2-3C, show a greater sensitivity to
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Figure 3.11: Absorbance over time measuring ONPG turnover in control (unstained)

E. coli and E. coli stained with 25µM COEs from (a) COE1 series and (b) COE2

series. All measurements are an average of triplicates, error bars are displayed every

10th measurement show standard deviation.

Table 3.2: Comparison ONPG turnover rates between untreated (UT) E. coli and E.

coli cells modified with 25µM COEs from COE1 series and COE2 series. Turnover

rates expressed in terms of a.u. min−1.

COE1 series Turnover rate COE2 series Turnover rate

UT 0.008 UT 0.004

DSBN+ 0.014 COE2-3C 0.013

DSSN+ 0.013 COE2-4C 0.012

COE1-5C 0.008 COE2-5C 0.006
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Figure 3.12: Absorbance over time measuring ONPG turnover in whole cells of E.

coli stained with varying concentrations of (a) DSBN+, (b) COE2-3C, (c) DSSN+,

(d) COE2-4C, (e) COE1-5C and (f) COE2-5C. All measurements are an average of

triplicates, error bars show standard deviation.
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concentration compared to the longer COEs. In longer COE structures we see

a slight increase in rates of A420nm with increasing concentration, however dif-

ferences are less apparent between cells modified with concentrations >10µM.

This reinforces the idea postulated in Section 3.3.3 that permeability changes

are proportional to the amount of COE associated with the cell. Where, in Chap-

ter 2, we noted plateaus in COE association with E. coli beginning at ∼15µM for

the 4- and 5-RUs, where 3-RU COEs did not exhibit plateaus in association.

Little change in ONPG turnover rates are observed between the 5-RU mod-

ified cells and controls, displayed in Figure 3.12e and f. Interestingly, at 5µM

COE2-5C, the rate of A420nm over time is slower than the control. These results

suggest that longer COE structures have less of an effect on whole-cell catalysis

compared to the 3- and 4-RU structures. Considering this, it is likely that 5-RU

COEs have less of an effect on membrane permeability.

An interesting analogy is made by comparing the relationship of molecular

structure to the catalysis rate and antimicrobial effects. Yan et al has demon-

strated that COE structures with longer backbone lengths are significantly less

toxic than the 3-RU COE structures. [57] Another study demonstrated that the

relative toxicity of DSBN+ and DSSN+ are positively correlated with the extent

of mismatch between the length of backbone and the bilayer thickness. [56]

Hinks et al suggested that the mode of toxicity was due to membrane thinning;
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molecular dynamics simulations demonstrated that DSBN+ thinned the mem-

brane more than DSSN+, thus perturbing it to a greater extent. It is reasonable

to suggest that the trend of COE molecular structure on membrane perturba-

tion is related to trends observed in whole-cell catalysis rate, whereby increased

rates are due to increased membrane perturbation.

5-RU COEs, whose the molecular length (≈5 nm) exceeds the thickness of

the bilayer (≈4 nm), are suggested to perturb lipid bilayers less than 3- and 4-

RU COEs, due to their positive hydrophobic mismatch compared to the negative

mismatch of 3- and 4-RU COEs. [56, 202] COE1-5C has shown to impart rigidity

to the lipid bilayer and has thus been used to mitigate membrane destabiliza-

tion by organic solvents. [203] Thus, the ability of this 5-RU COE to stabilize

the membrane may work against increasing permeability and whole-cell catal-

ysis. However, when applied in E. coli MFCs, 5-RU COEs show an increase in

power production regardless of their ability to increase membrane permeability.

[51] Considering 5-RU COEs influence cell surface charge to the greatest extent

[60], our previous argument that the mode of action COEs take on increasing

performance in MFCs is a combination of effects, such as increased permeability

and cell attachment, is likely.
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Chapter 4

Origin of electrochemical

performance improvements in

DSSN+ modified E. coli fuel cells

In this chapter we examine the mechanism for improved electrochemical per-

formance of Escherichia coli in a variety of device configurations. First, we aim to

determine whether the improved performance originates from the microbes on

the electrode or by released soluble components or planktonic cells. In U-tube

microbial fuel cells, we find that the mechanism of performance improvements

induced by conjugated oligoelectrolytes (COEs) is dependent on physical con-
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tact of microorganisms with the electrode. Modifying device configuration and

conditions, we investigate the electrochemical performance in the absence of ex-

ogenous mediators and the possible effects DSSN+ has on redox activity in situ.

Last, we examine the effect of DSSN+ on cell adhesion to the electrode. From

these studies, we confirm that COEs increase cell accumulation on the electrode

and this is the mechanism by which COEs increase current production in these

conditions.

4.1 Introduction

Technologically relevant microbial electrochemical technologies (METs) such

as microbial fuel cells (MFCs) and microbial electrosynthesis cells (MECs) rely

on the inherent ability of microorganisms for extracellular electron transfer

(EET) to or from an electrode. [4, 8, 9, 204] While electrogenic microorganisms

capable of EET exist, they are not prevalent nor are they widely used in biotech-

nology. Thus broadening the variety of cell types capable of transferring charge

across membranes is of general interest. The limited number of electrogenic

microbes has led to varied approaches to the application of synthetic molecules

and materials, as well as genetic modifications to influence non-electrogenic

systems, as discussed in detail in Chapter 1. [43]
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As such, it is desirable to modify microorganisms with synthetic structural

features that enable transmembrane electron transport and that do not impede

their metabolic function. As discussed in Chapter 1, COEs have been designed

for this purpose and improve electrochemical performance in a variety of METs.

In particular, DSSN+ is able to increase current and power generation in E. coli

MFCs. While mechanistic studies on DSSN+ modification in S. oneidensis show

evidence for enhanced direct electron transfer (DET) [53] and an increase in

released flavins [79, 84], this mechanism would not explain such phenomena in

E. coli. E. coli lacks the ability to utilize flavins as redox mediators in anaerobic

conditions as well as any obvious redox or conductive membrane protein in the

outer membrane capable of DET. [80, 82] Recent examination of E. coli modified

with DSSN+ for the production of gold nanoparticles suggested that DSSN+

perturbs the membrane, leading to the release of cytosol components. [85] It

is worth noting, however, that these experiments were performed in ultrapure

water, potentially exposing the cells to osmotic shock, which could lead to cell

damage. [56, 205, 206] Addressing these concerns in Chapter 3, we demon-

strated that release of cytosolic enzymes is negligible in conditions mimicking

those in an MFC. Regardless, it is unclear to what extent these observations are

related to the increased power observed in MFCs.

In the first part of this chapter, we provide evidence that DSSN+ improves
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current generation in E. coli MFCs in cells directly in contact with the electrode

as opposed to planktonic cells or by extraneous species generated by cells in

solution. We utilize U-tube MFCs as the test devices for the examination of ex-

tracellular electron transfer (EET) in E. coli. Operational MFCs were interrupted

after a specific period of time and their components transferred into new MFC

devices, as illustrated in Figure 4.1. This approach was used to deconvolve the

overall performance into the contributions made from (i) the cells attached to

the electrode and (ii) the solution components, which consist of planktonic cells

and any extraneous species generated. The question we wish to answer is to

what extent increased current production and power generation is a function of

the modified cells in physical contact with the electrode surface or as a result of

released soluble materials in the planktonic cell solution.

We find that the cells on the electrode are the underlying factor for the in-

creased current and power generation utilizing this U-tube device configuration.

However, it is possible that DSSN+ increases the cell population of loosely ad-

hered bacteria to the electrode and that device-specific constraints prohibit an

accurate account of cell populations. We hypothesize that improvements in cur-

rent with COEs may be due to a combination of effects, such as increased per-

meability and increased population of loosely adhered bacteria to the electrode.

The next question we wish to answer is three-fold; (1) to what extent is current

84



Figure 4.1: Cartoon illustration of the U-tube E. coli MFC devices and the separation

process occurring at day 3. Anode components from the original MFCs (O-MFCs)

were separated and transferred into new devices; (i) A-MFCs, which contain the anodes

from O-MFCs with added LB media and (ii) S-MFCs, which contain the solution from

the O-MFC anode chambers and an added carbon felt electrode.
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increased in the absence of mediators, (2) if COE intercalation enables and al-

ternate redox pathway or releases redox active species, and (3) to what extent

is current increased due to increased cell adhesion.

The second part of this chapter aims to answer this question. Here, we use 3-

electrode, two chamber bioreactors employing defined media as the electrolyte

devoid of exogenous mediators. Use of 3-electrode bioreactors enables the abil-

ity of electrochemical characterization in situ, compared to the U-tube device

configuration which lacks a reference electrode. Chronoamperometry is used

to examine current improvements and cyclic voltammetry is used to examine

possiblealtered redox processes in the cell or released redox active components

by DSSN+ intercalation. Last, we examine cell adhesion by monitoring the de-

creasing planktonic cell density and examining total protein content.

4.2 Experimental Methods

Cell culture

E. coli K-12 (10798, ATCC, VA) was cultured aerobically overnight from

frozen stock in sterile Luria Broth (10 g L−1 bacto tryptone, 5 g L−1 yeast ex-

tract, 10 g L−1 NaCl) at 37◦C while shaking. In experiments utilizing defined
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media bioreactors, cells were additionally centrifuged and rinsed twice in 1×M9

salts, then resuspended in 1×M9 (6.8 g/L Na2HPO4, 3 g/L KH2PO4, 1 g/L NH4Cl,

0.5 g/L NaCl).

4.2.1 U-tube MFCs

MFC construction and operation

Twelve U-tube MFCs were constructed as reported previously. [49, 50, 54]

Devices were assembled from two L-shaped glass tubes separated by a Nafion R©

N117 membrane and sealed using an O-ring and a 28/15 stainless steel pinch

clamp. Nafion R© membranes were treated by soaking at 80◦C in a sequence of

solutions for 1 hour each in the following order: 3% hydrogen peroxide solu-

tion, ultrapure water, 0.5 M sulfuric acid solution, and ultrapure water again.

Electrodes were constructed out of carbon felt (2 cm × 5 cm) and threaded with

titanium wire. The anode chamber was sealed with a silicone stopped while the

cathode chamber was loosely capped with a glass scintillation vial. Assembled

devices were filled with ultrapure water and sterilized by autoclaving. After

autoclaving, the water was removed and concentrated, sterile DSSN+ solution

(1 mM) was added to the anode chambers. The anode and cathode chambers

were filled with sterile LB then inoculated with the appropriate amount of cell
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culture for an optical density of 0.1 and a final DSSN+ concentration of 10µM.

Cathodes were partially submerged for the purpose of “air-wicking. The devices

were connected to an external resistor (10 kΩ), a multiplexer and a digital mul-

timeter (PXI-2575, PXI-4065, National Instruments, Austin, TX) controlled by a

LabView program for automated data acquisition. Polarization measurements

were taken by switching through a series of external resistors (1, 10, 51, 100,

200, 500 and 1000 kΩ) for 20 minutes at each resistance. Power density was

calculated and normalized by the 2D area of the felt electrodes (10 cm2) for

comparison to previous results.[50] All devices were operated in a temperature

regulated incubator at 30◦C .

New U-tube MFCs were constructed to test the performance of the cells

attached to the electrode and planktonic cells separately. For A-MFCs, anode

electrodes with attached E. coli cells were carefully removed from O-MFCs and

transferred into new U-tubes devices. Both anode and cathode chambers were

filled with sterile LB medium and the cathode chamber was inoculated with

suspended E. coli cells that were grown overnight. No additional DSSN+ was

added. For S-MFCs, the solution was removed from the anode chambers of the

O-MFCs and transferred into newly constructed U-tube devices containing car-

bon felt anodes. Only the cathode chambers were filled with LB medium and

inoculated with E. coli. Remaining O-MFCs were kept operational. Each MFC
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condition was run in triplicate devices.

Scanning electron microscopy (SEM)

Anodes were collected at the end of operation for SEM analysis. The carbon

felt anodes were fixed in 2% formaldehyde solution prepared in 10 mM PBS for

24 hours. The electrodes were then rinsed twice in 10 mM phosphate buffer

then ultrapure milli-Q water before dehydration in ethanol. Electrodes were de-

hydrated by soaking in a 70% and 100% ethanol solution for 30 minutes each

then subsequently dried under ambient conditions for 72 hours before analysis.

SEM images were taken using a FEI XL40 Sirion FEG Digital Scanning Micro-

scope at an acceleration voltage of 5 keV.

Confocal microscopy

An approximately 1 cm2 square was cut from the carbon felt anode elec-

trodes for laser scanning confocal microscopy. Samples were dipped twice in

PBS to dislodge loosely attached cells. Anodes without DSSN+ modification

were stained with DAPI. For DAPI staining, the electrode samples were sub-

merged in a solution of 5µM DAPI in PBS for 30 minutes. All samples were

also stained with propidium iodide (PI) in a similar fashion; submerged in a

89



solution of 5µM PI in PBS for 30 min. Excessive moisture was removed via

wicking with a paper towel in contact with one edge of the square sample. A

large drop of silicone immersion oil was placed directly onto the sample, then

the sample was placed face down onto a cover slide. Tape was used to secure

the sample before imaging. Laser scanning confocal microscopy was performed

using an Olympus FluoView 1000 spectral scanning microscope equipped with

a 60 × 1.30 silicon oil immersion lens. Confocal laser excitation for DSSN+

and DAPI was at 405 nm with emission collected at 600 nm and 420–520 nm for

DSSN+ and DAPI, respectively. Excitation for PI was at 559 nm and emission

was collected at 600–700 nm. All images were processed using ImageJ.

Colony forming unit (CFU) assay

Anodes from control and test O-MFCs were removed after 3 days of op-

eration, placed in 20 mL of 50 mM PBS and vortexed. Samples of 1ṁL of PBS

solution containing cells dislodged from the anodes were serially diluted in PBS.

100µL of dilutions of 1:106 and 1:107 sample:PBS were plated on LB agar plates

and incubated overnight at 30◦C . Colony forming units (CFUs) were quantified

by the average total number of colonies that grew overnight. All plates were

made in triplicate.
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4.2.2 Defined media bioreactors

Bioreactor construction and operation

Experiments were conducted in batch bioelectrochemical reactors. Reactors

were comprised of two chambers containing 140 mL of solution and separated

by a cation exchange membrane (CMI-7000, Membranes International, Ring-

wood, NJ). Each chamber was filled with the appropriate amount of solution

and autoclaved at 121◦C for 20 min. The working electrode chamber contained

M9 growth media with 40 mM D,L-lactate, and the counter electrode chamber

contained only M9 media. Vitamins, minerals and lactate solutions were fil-

ter sterilized and added after autoclaving. The working electrode was a piece

of graphite felt cut to the dimensions of 2.5×2.5 cm (GF-S6-06, Electrolytica)

threaded with a piece of Pt wire. The counter electrode was a piece of Pt wire

and the reference electrode was Ag/AgCl in saturated KCl.

The bioreactors were kept at 30◦C in an incubator, continuously sparged

with N2 gas, and stirred at ∼200 rpm by magnetic stir bars. The potential of the

working electrode was set to + 0.2 VAg/AgCl using a potentiostat (Model 1000B,

CH Instruments). After overnight N2 sparging and background electrochemical

measurements, the working electrode chambers were inoculated with E. coli

to a final OD600mn = 0.55±0.04. Cells were cultured overnight and prepared
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as described above. After 3.6 h, DSSN+ solution was added to the working

electrode chamber of the test devices to a final concentration of 10µM. After

day 1, current was manually recorded.

Cyclic voltammetry was performed after one day of operation and day 6 of

all bioreactors. Scans were run without stirring from -0.7 V to 0.5 V at 100 and

50 mV/s for two cycles and at 2 mV/s for one cycle.

Sampling from bioreactors and measurements

Samples (1.5 mL) were removed from each reactor periodically. OD600nm

was measured for each sample. After one week of operation, bioreactors were

removed and agitated to dislodge loosely attached cells. OD600nm measurements

were taken before and after agitation. Total protein content of all samples

and electrodes were determined using the Pierce R© BCA Protein Assay Kit (No.

23225, Thermo Fisher Scientific). Briefly, cell samples were centrifuged (5 min

at 12,000 rpm), resuspended in 200µL of 0.2 M NaOH then incubated at 50◦C

for 40 min. Electrodes were placed in 25 mL of 0.2 M NaOH and incubated at

50◦C for 1 hr. The standard procedure for the BCA Assay was followed.
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4.3 Results and Discussion

4.3.1 Performance in U-tube MFCs

Performance contributions from cells on the anode vs. cells in solution

Briefly, MFCs were constructed in a U-tube configuration using Luria Broth

(LB) as the medium and inoculated with E.coli. Test devices contained 10µM

DSSN+ while control devices were unmodified. Devices from the test and con-

trol groups left in operation over the course of 10 days are referred to as O-

MFCs. These devices represent the original performance of test and control

groups, which is considered to be the sum of contributions from cells residing

on the anode surface and the planktonic cell solution. Meanwhile, groups of

test and control devices were interrupted after three days of operation; anode

components were separated and installed into newly constructed U-tubes, as

demonstrated in Figure 4.1. Specifically, anode electrodes were installed in the

anode chamber of newly constructed U-tubes and filled with LB. Representa-

tive of the performance contribution from cells on the anode, these devices are

referred to as A-MFCs. Anode solutions removed were used to fill the anode

chamber of devices containing new anodes. These devices were used to repre-

sent the performance contribution from soluble species; referred to as S-MFCs.
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No additional DSSN+ was added to either group. All MFCs were operated in

connection to an external resistance of 10 kΩ.

Averaged current traces from triplicate devices are shown in Figure 4.2. One

notes that the addition of DSSN+ to the O-MFCs results in a 6.0-fold increase in

current production compared to control O-MFCs over the course of operation.

When separated on day 3, one observes significantly higher current production

in the A-MFCs containing DSSN+. Specifically, the peak current from DSSN+

containing A-MFCs was 4.2-fold larger than from the current generated by the

control devices. These data indicate DSSN+ has a significant impact on the per-

formance of cells attached on the electrode. Inspection of Figure 4.2 also shows

a slight enhancement of the S-MFCs with DSSN+ addition. However, note that

both control and test S-MFCs produce less than 0.5µA. These results clearly

relate the overall improvement in current production to the cells in physical

contact with the electrode.

To visualize O-MFCs as the overall sum of A- and S-MFC, representative cur-

rent contributions from the cells on the electrode and soluble species, respec-

tively, are displayed as a stacked bar graph and compared to the total current

in Figure 4.3. With DSSN+ modification, the sum of current generation from

A- and S-MFCs is comparable to the O-MFCs, with the most appreciable cur-

rent contribution originating from the A-MFCs. All of the control devices per-
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Figure 4.2: Average current generated as a function of time. Only O-MFCs with

and without DSSN+ are present for the first three days. A group of O-MFCs are

separated into A- and S-MFCs with and without DSSN+ at t = 3 days, while some

O-MFCs are left in operation. Breaks in the traces at t = 5 days are due to polarization

measurements. All measurements are an average of triplicates.
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Figure 4.3: Bar graphs showing the averaged current generation at each day of the

O-MFCs compared to the sum of A- and S-MFCs. Top: DSSN+ modified test devices.

Bottom: control devices.
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formed similarly, resulting in the sum of A- and S-MFCs to surpass the O-MFCs.

These data suggest that DSSN+ enhances MFC performance by increased elec-

tron transfer occurring at the anode surface rather than through soluble cell

components from the planktonic cell solution and highlights the importance of

physical contact between cells and the electrode.

Polarization measurements were taken of each MFC on day 5; average power

densities and the i-V curve are shown in Figure 4.4. DSSN+ increased the power

density by ∼10-fold in O-MFCs, 3.3-fold in A-MFCs and 2.3-fold in S-MFCs, fol-

lowing the same trend of improved power performance between devices as with

improved current generation in DSSN+ modified devices. Internal resistances

were calculated from the slopes of the polarization curves (Fig. 4.4b). Rela-

tive to the control group, the internal resistance decreased substantially with

DSSN+ modification in the O- and A-MFCs, from 172±0.5 and 169±11.2 kΩ

to 24.7±5.1 and 57.3±20.4 kΩ, respectively. There was little different in the

internal resistance between the control and DSSN+ S-MFCs. These data fur-

ther support the conclusion that the increased MFC performance with DSSN+

is derived from the cells on the electrode surface.
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Figure 4.4: Polarization measurements from day 5 of the O-, A- and S-MFCs with

and without DSSN+. (a) Calculated power densities and (b) i-V curves from control

and test devices. All measurements are an average of triplicates.
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Assessing the effect of DSSN+ on cell populations in U-tube MFCs

One possible mechanism to consider for the increased performance with

DSSN+ is the increased presence of viable cells on the electrode surface. To

assess this hypothesis, carbon felt anodes were examined using confocal mi-

croscopy. Electrodes were rinsed in PBS before imagining. For unmodified de-

vices, cells were imaged by staining with 5µM DAPI, a nucleic acid stain. In

the case of DSSN+ containing electrodes, we utilized the intrinsic emission of

DSSN+ for cell imaging. Cells stained with DSSN+ displayed emission patterns

characteristic of membrane incorporation. To assess the viability of cells on the

anode, all anodes were additionally stained with 5µM propidium iodide (PI),

which is used as an indicator for dead cells or cells with compromised mem-

brane integrity. [207] The results of these staining methods for the test and

control O- and A-MFCs are collected in Figure 4.5; the results from the test and

control S-MFCs are displayed in Figure 4.8. Further imaging was performed us-

ing scanning electron microscopy (SEM) to confirm trends in electrode coloniza-

tion and are shown in Figure 4.6. Additionally, optical densities were measured

at 600 nm of the anode solutions to monitor planktonic cell growth, OD600nm

measurements are listed in Table 4.1.

Comparison of electrode cell coverage in Figures 4.5A and 4.5C shows no
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Figure 4.5: Representative confocal micrographs of graphite felt fibers from anodes

after operation. O-MFC (A) and A-MFC (B) anode fibers from control groups are

compared with O-MFC (C) and A-MFC (D) fibers from DSSN+ modified devices. No

emission was detected without COE modification, therefore unmodified cells (A,B)

were stained with 5µM DAPI (green). All fibers were also stained with 5µM propidium

iodide (PI) to observe necrotic cells (red). Laser excitation was 405 nm with emission

collected from 420–520 nm for DSSN+ and DAPI. Laser excitation was 559 nm with

emission collected from 600–700 nm for PI. Scale bars are 10µm.
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Figure 4.6: Representative SEM of anodes from O-MFCs at the end of operation:

without (left) and with DSSN+ modification (right). Scale bars are 20 µm.

discernible difference between the control and DSSN+ modified O-MFCs. The

same trend was observed in SEM imagine (Figure 4.6). The average OD600nm of

the control and test anode solutions from O-MFCs on day 3 showed no signif-

icant difference in planktonic cell growth at this time (Table 4.1). On day 10,

the OD600nm between control O-MFC and DSSN+ O-MFCs were still not signifi-

cantly different. The similarity of cell densities in solution and on the electrode

between control and DSSN+ devices suggest that the performance increase ob-

served in Fig 4.2 and Fig. 4.4 is not due to an increase in cell growth in solution

nor due to increased colonization on the electrode.

Similarly, in the control A-MFCs and DSSN+ modified A-MFCs, no dis-

cernible difference in colonization was observed under confocal microscopy, dis-

played in Figure 4.5. SEM imaging confirmed this observation (Figure 4.7). The
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Table 4.1: OD600nm measurements at day 3 from O-MFCs transferred with and without

DSSN+ and day 10 from U-tube O-, A- and S-MFCs with and without DSSN+

t = 3 t = 10

Sample O-MFC O-MFC A-MFC S-MFC

Control 0.68±0.04 0.60±0.12 0.89±0.08 0.58±0.06

With DSSN+ 0.65±0.05 0.68±0.01 0.79±0.04 0.58±0.06

Figure 4.7: Representative SEM of anodes from A-MFCs at the end of operation:

without (left) and with DSSN+ modification (right). Scale bars are 20 µm.
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OD600nm of the anode solution in control A-MFCs was significantly higher than

in DSSN+ A-MFCs (Table 4.1). Although there was a clear difference in cell

densities, this was not a positive effect on cell growth in the test group. There-

fore, the hypothesis that DSSN+ improves current by increasing cell population

in solution in A-MFCs is not supported.

Differences in cell colonization of the anodes were observed between the

control and DSSN+ modified S-MFCs in both confocal microscopy and SEM

(Figure 4.8 and 4.9, respectively); more cells were present at the electrodes with

DSSN+. Although differences were observed, the improvement in performance

was negligible compared to the O- and A-MFCs. Cell density in solution was con-

sistent between control and test devices. OD600nm of both control and DSSN+

anode solutions decreased from the OD600nm measured on day 3 to 0.58±0.06

on day 10, indicating some cell death has occurred.

In all cases, no significant difference was observed in PI fluorescence be-

tween the anodes with and without DSSN+ (Fig. 4.5 and 4.8), indicating cell

death occurs at the same rate in DSSN+ modified cells as in untreated cells.

Additionally, this observation signifies DSSN+ insertion does not permeabilize

the inner membrane to allow for PI transport into the cytosol. In Chapter 3, we

discussed the possibility that small macromolecule transport across the inner

membrane may be effected by DSSN+. However, results of PI staining suggest
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Figure 4.8: Representative confocal micrographs of graphite felt fibers from anodes

of S-MFCs after operation. Anode fibers without DSSN+ modification were stained

with 5µM DAPI and 5µM PI (A), DSSN+ modified fibers were stained with 5µM PI

(B). Scale bars are 10µm.
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Figure 4.9: Representative SEM of anodes from S-MFCs at the end of operation:

without (left) and with DSSN+ modification (right). Scale bars are 20 µm.

that DSSN+ has little effect on improving the transport of this molecule, which

has a molecular weight of ∼ 668 Da.

It is important to note that for all imaging techniques, anodes were first

rinsed with PBS. This process is necessary to fix cells for imaging, however it

results in dislodging loosely attached cells from the electrode. Imaging of the

electrodes by confocal and SEM did not show differences in cell populations on

the electrode, but it is possible that differences may lie in loosely bound cells to

the electrode. In order to probe the differences in viable, loosely bound cells,

colony forming units (CFUs) were quantified from the cells dislodged from elec-

trodes from O-MFCs after 3 days of operation. CFUs recovered from the anodes

of control and DSSN+ modified devices were measured at 6.1 (±3.6)×108

and 1.8 (±0.5)×109 CFU/mL, respectively. This confirms the hypothesis that
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DSSN+ affects the population of loosely bound cells to the electrode, however

the ∼3-fold increase in CFUs does not correlate with the 10-fold increase in cur-

rent observed in O-MFCs. This difference could potentially be resolved by the

permeability effects DSSN+ has on the outer membrane of E. coli, as discussed

in Chapter 3, considering LB is known to contain mediators. [95, 208] This

hypothesis is further examined in the following section.

4.3.2 Performance in defined media bioreactors

In the previous section, we utilized a U-tube device configuration to deter-

mine the origin of performance improvement within cell populations separated

into (i) cells on the electrode and (ii) cells and soluble components in solu-

tion. These experiments identified performance improvements from DSSN+ to

rely on cells on the electrode. However, total cell population on the electrode

may have not been accurately accounted for due to device constraints and cell

preparation for imaging. It is possible that DSSN+ increases the cell popula-

tion of loosely adhered to the electrode. Although the increase in CFUs from

the DSSN+ modified electrodes did not correlate directly with the increase in

current in DSSN+ MFCs.

Here, we utilize a two chamber bioreactor containing a reference electrode
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in the anode chamber, sampling ports and use defined media as the electrolyte.

By this modification of device configuration, we are able to examine the ability

of DSSN+ to improve current production in the absence of exogenous mediators

and more accurately assess cell populations in solution verses on the electrode.

Additionally, we are able to investigate any changes in redox activity or the

release of redox active molecules upon DSSN+ modification in situ.

Electrochemical characterization of DSSN+ modified E. coli

To understand how DSSN+ improves the current production of E. coli in

the absence of exogenous mediators, we first compared the electrochemical be-

havior of E. coli with and without DSSN+ modification in defined media bio-

electrochemical reactors. Triplicate bioelectrochemical reactors containing M9

media with 40 mM lactate and a graphite felt electrode poised at +0.2 VAg/AgCl

were inoculated to an initial OD600nm of 0.5 – 0.6 with E. coli. After inoculation,

bioreactors produced a current that was ∼0.2µA higher than background lev-

els. A concentrated solution of DSSN+ was added to a group of bioreactors at

t = 3.6 h to reach final concentration of 10µM, resulting in an immediate in-

crease of ∼0.6µA, a 2.3-fold improvement from untreated E. coli bioreactors

(Figure 4.10). This immediate current response is consistent with the response

of DSSN+ treated S. oneidensis observed in previous studies. [53] In both E.
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Figure 4.10: Increased current production of DSSN+ treated E. coli occurs instan-

taneously. Current production of untreated (black) E. coli and E. coli stained with

10µM DSSN+ is displayed over time. Bioreactors were inoculated at t = 1.5 h and

DSSN+ was added at t = 3.6 h. The most significant improvement to current pro-

duction with DSSN+ is observed during first 24 h of operation, current differences

between untreated and DSSN+ modified bioreactors are negligible afterwards. All

values are means of triplicate bioreactors, shading shows area between highest and

lowest traces.
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Figure 4.11: Representative cyclic voltammograms of E. coli defined media bioreac-

tors without (black) and with 10µM DSSN+ (red) scanned at (a) 2 mV/s and (b)

100 mV/s.

coli and S. oneidensis bioreactors, the current difference between reactors with

and without DSSN+ decreased at the end of 24 h, however S. oneidensis was not

monitored past that time. After t = 72 h, the current of DSSN+ modified E. coli

bioreactors is within standard deviation of the current produced by untreated E.

coli bioreactors (data not shown). These results indicate that the main enhance-

ment to current production occurs immediately after DSSN+ addition and this

improved performance may not be sustainable in these device configurations.

In order to determine whether or not the increase in current generated by

DSSN+ addition is due to an alternative redox mechanism or released redox
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active components extracellularly, cyclic voltammetry was performed. Repre-

sentative cyclic voltammograms of bioreactors with and without DSSN+ are

displayed in Figure 4.11. A slow scan rate of 2 mV/s, we expect to examine the

catalytic activity of the cells. However, E. coli is not naturally electrogenic and

has a limited ability to respire on lactate, thus the resulting cyclic voltammo-

gram of unmodified E. coli shows negligible catalytic activity. DSSN+ does not

appear to effect the catalytic ability of E. coli in Figure 4.11a. At a higher scan

rate of 100 mV/s, mass-transfer limited reactions are probed, where oxidation

at the electrode would be faster than the biological reduction reaction. In this

regime, if redox active intracellular species were released from the cells, we

would expect to see resulting peaks. However, as in the slower scan rate CV,

little difference is observed between reactors with and without DSSN+ (Fig-

ure 4.11b). From these CVs, we can conclude that DSSN+ has little to no effect

on redox activity and redox species in E. coli. Though, it should be noted that

CV is not the most accurate method for mediator identification. [209] To ac-

curately identify release of mediators, future spectroscopic analysis should be

performed.
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Assessing the effect of DSSN+ on cell populations in bioreactors

From Figure 4.12(a) and (b), one notes that the solution in the bioreactors at

the time of DSSN+ addition (t = 3.6 h) is visibly turbid due to the high optical

density of cells. Along with the immediate increase in current due to DSSN+ ad-

dition, it is apparent that DSSN+ affects cell aggregation on the electrode after

overnight operation. At t = 12 h, comparison between Figure 4.12 (c) and (d),

one notes a decrease in turbidity in DSSN+ modified reactors, with visible cell

mass aggregating on the carbon felt electrode. Optical density measurements

throughout the course of operation confirm that DSSN+ removes cells from so-

lution at a considerably faster rate than cells inherently fall out of solution, as

shown in Figure 4.13. Similar to the difference seen in current generated, the

difference in OD600nm between untreated and DSSN+ modified bioreactors is

most notable on day 1.

Since we did not see any changes in redox activity with DSSN+ addition,

we hypothesize that increased current is likely due to increased cell density on

the electrode. To determine whether the increased current produced by DSSN+

modified E. coli was due to a greater amount of cells at the electrode, we com-

pared the current recorded as a function of the percent of cells on the electrode

from the original inocula from bioreactors with and without DSSN+, calculated
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Figure 4.12: Photographs of bioreactors at time of DSSN+ addition (t = 3.6 h) and at

t = 12 h. At t = 3.6 h, bioreactor solutions were visibly turbid at OD600nm = 0.55± 0.04

for all (a) untreated and (b) DSSN+ treated bioreactors. After overnight operation

(t = 12 h) solutions from (c) untreated bioreactors were still visibly turbid, while so-

lutions from (d) DSSN+ modified bioreactors were visibly less turbid with cell mass

adhered to electrodes.
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Figure 4.13: Optical density of bioreactor solutions measured at 600 nm over time,

representing the rate of cells being removed from solution and adhering to the electrode

with (red) and without (black) DSSN+. Measurements are an average of triplicates,

error bars display standard deviation.
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Figure 4.14: Current generated of bioreactors with (red) and without (black) DSSN+

displayed as a function of the percent of cells estimated on the electrode. All mea-

surements are in triplicate, with error bars displaying standard deviation.
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as:

cells on electrode(%) =
OD0 −ODt

OD0

× 100

where OD0 and ODt are the measured OD600nm of the inoculum and of the biore-

actor solution at time t of the current measurement, respectively. This calculated

current per cells on electrode is displayed in Figure 4.14. One notes that the

overall trend of current per cell percent follows the same overall trend with and

without DSSN+. These observations indicate that DSSN+ contributes signifi-

cantly to graphite binding and therefore enhanced adhesion is the direct cause

of increased current production by the DSSN+ modified E. coli under these con-

ditions.

At the end of device operation, we aimed to directly quantify cell mass on

electrodes using total protein content to better characterize the increase in cell

adhesion with DSSN+. However, during device operation, we observed that

the DSSN+-modified cell mass on the electrode was easily disturbed, indicat-

ing that cell adhesion to the electrode was weak. As mentioned previously, we

hypothesize that DSSN+ affects cell populations loosely adsorbed onto the elec-

trode. To characterize the cell populations (i) adhered to the electrode, (ii)

loosely adsorbed to the electrode, and (iii) in solution, we performed the bicin-

choninic acid (BCA) total protein assay at the end of device operation. Before

devices were removed from operation, samples were carefully taken and total
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Table 4.2: Bicinchoninic acid (BCA) assay of DSSN+ treated and untreated E. coli

bioreactors measuring total protein content from cells adhered on electrodes, cells

loosely bound to the electrode and cells in solution. Values are averages of triplicate

measurements with standard deviations.

Total protein content (g)

Sampling location Untreated DSSN+

Electrodes 5.6 ± 0.5 2.1 ± 0.2

Loosely bound to electrodes 0.5 ± 2.8 8.5 ± 1.6

Solution 5.1 ± 1.1 4.0 ± 1.3

Sum of total protein 11.2 ± 4.4 14.6 ± 3.1
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Figure 4.15: Bar graph displaying total protein content in bioreactors from cells ad-

hered on electrodes (dark blue), cells loosely bound to electrodes (patterned blue) and

cells in solution (orange). All measurements are averages of triplicates, error bars are

standard deviations.
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protein content was measured as a representation of the planktonic cell popu-

lation. Once devices were removed from operation, they were were disturbed

by shaking in order to remove loosely adsorbed cell mass from the electrode.

Total protein of loosely adsorbed bacteria was quantified as the difference be-

tween the total protein of samples after shaking and the total protein in solution.

Lastly, total protein content of the electrodes were quantified. Results from this

assay are displayed in Figure 4.15 and Table 4.2.

The sum of the total protein content from all cell populations between biore-

actors with and without DSSN+ were within error of one another, indicating

that cell growth was not significantly influenced by the presence of DSSN+.

Protein content measured of the solutions in DSSN+ treated and untreated re-

actors were within standard deviation, which is consistent with the OD600nm

measurement in Figure 4.13, indicating little difference in the planktonic cell

count. Protein measured from untreated electrodes was >2-fold greater than

DSSN+ treated electrodes. Meanwhile, there was a 16-fold increase in the pro-

tein content of cells loosely bound to electrodes with DSSN+ compared to the

protein content of loosely bound, untreated cells on the electrode. From these

results, it is apparent that DSSN+ affects cell-cell and cell-electrode interactions.

These interactions have little influence over the current generation at the end of

device operation.
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The observation that DSSN+ altered cell-cell and cell-electrode interactions

is consistent with our previous observations of COEs effects on cell surface prop-

erties, discussed in Chapter surfaceprop. It is important to note that in this case,

electrostatic attraction of cells to the positively poised electrode does not favor

DSSN+ modified cells over untreated cells, due to DSSN+’s ability to neutralize

surface charge. [60] The relationship between surface charge and cell adhesion

has been utilized to explain increased cell adhesion in net negative charged cells

on surfaces. [91, 156] It is therefore possible to attribute this preference of cell-

cell interactions in DSSN+ modified cells to the increase in cell hydrophobicity,

which was also shown to influence autoaggregation. Thus, it is plausible to

attribute the instantaneous increase in current observed to the spontaneous in-

tercalation of COEs into cells and modification of cell surface properties, which

would have the most significant effect on current generation at the beginning

of device operation. Towards the end of operation, we expect cell adhesion past

the total surface coverage of the electrode would no longer influence current

generation. This is a plausible hypothesis for the current response with see in

DSSN+ treated E. coli.
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4.4 Conclusions

This work embodies an improvement in elucidating how DSSN+ impacts

the increased current and power generation in E. coli MFCs. In U-tube MFCs,

DSSN+ modification resulted in a 6-fold increase in current and a 10-fold in-

crease in power. This increase in performance originates from the cells on the

electrode, which was probed by transferring the anodes from operational MFCs

into a new A-MFCs. This resulted in a 4.2-fold increase in current and 3.3-fold

increase in power in DSSN+ modified anodes. Enhancements were observed in

the S-MFCs, but to a much lesser extent, indicating that the primary improve-

ment to current was not due to released redox active species from the cells with

DSSN+ intercalation. This result is not surprising because it is well known that

E. coli does not produce shuttles. It is inconclusive whether or not the perme-

abilization of cells by DSSN+ results in the increased current, as this device

configuration is limited in its ability to probe electrochemical mechanisms.

In an attempt to separate direct and indirect electron transfer processes into

biofilm (A-) versus planktonic (S-) cell MFCs, it was found that A-MFCs contain-

ing cells on the electrode had the highest performance improvement compara-

tively. Unfortunately, this result does not confirm that this improvement is due

to increased direct electron transfer, as other mechanisms are still possible, i.e.
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increase cell adhesion. In U-tube MFCs, increased cell adhesion on the electrode

was not observed via microscopy techniques, however CFU assays indicate that

DSSN+ may potentially be increasing loose cell adhesion to the electrode. It

should also be noted that an attached biofilm can more effectively utilize intra-

cellular components as an electron shuttle than planktonic cells. Therefore, the

biofilm versus planktonic cell study is not evidence for direct electron transfer.

Electrochemical analyses can readily discriminate between direct electron

transfer to an electrode and electron transfer with a shuttle. A similar ex-

periment was performed in three-electrode, two chamber bioreactors using a

defined media. Increased current was observed in DSSN+ modified E. coli in-

stantaneously upon addition. This improvement was not sustainable over time.

Using cyclic voltammetry, electrochemical mechanisms were probed. Alternative

redox pathways, released intracellular redox species and an improved catalytic

current investigated was not observed in DSSN+ treated cells. It was obvious

that DSSN+ effects cell adhesion to the electrode, as an aggregated cell mass

was visible on the carbon felt electrode. Quantification of cells in solution com-

pared to on the electrode indicated that current production was directly corre-

lated to the amount of cells on the electrode, and that DSSN+ increased cell

adhesion. Last, adhesion of DSSN+ treated cells to the electrode was weak,

indicating a preference of cell-cell interactions over cell-electrode interactions.
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Chapter 5

Summary and future outlook

5.1 Current understanding of conjugated oligo-

electrolytes

We have explored in depth and presented an understanding of the effects

of COEs on both the membrane properties of E. coli and performance of E. coli

MFCs. COEs were originally designed for molecular wire functionality across

lipid bilayers, thus motivating application in MFCs for increasing current and

power generation. In this thesis, other hypotheses for the origin of improved

MFC performance were investigated. In Chapter 2, we found that COEs modu-

late cell surface charge and hydrophobicity. Whereby COEs with longer molec-
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ular dimensions effect surface properties to a greater degree than shorter COEs.

COE association with E. coli was quantified and challenged our original assump-

tions of COE situation within the cell. It is morphologically impossible for the

number of COEs associated with cells to be fully intercalated in the cell mem-

brane while maintaining viability. The ability of COEs to modify surface prop-

erties suggests that cell-cell and cell-electrode interactions may play a role in

increasing MFC performance.

In Chapter 3, we investigated membrane permeabilization by DSSN+ as a

possible mode of action COEs may have on E. coli that would influence bioelec-

trochemical performance. We found that DSSN+ is acting as an outer mem-

brane permeabilizer, however specific effects on the inner membrane are still

unclear. DSSN+ did not significantly permeabilize the inner membrane for

the release of the cytoplasmic enzyme β-galactosidase. The release of smaller

molecules from the cytoplasm has yet to be investigated.

In Chapter 4, we examined the mechanism for improved electrochemical per-

formance of DSSN+ modified E. coli in a variety of device configurations. Im-

proved performance by DSSN+ was shown to arise from cells adhered to the

electrode, while little to no effect was observed on redox activity. It is likely

that COEs affect bioelectrochemical performance by multiple modes of action.

By modification of surface properties, we observe increased cell adherence to
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electrodes resulting in an increase in current production. Increasing membrane

permeability allows for improved mediator transport in systems containing re-

dox mediators, such as found in LB media used in U-tube MFCs, which could

also improve performance.

These improvements in understanding the modifications of bacterial mem-

branes by COEs pivot future applications towards those where increasing mem-

brane permeability would be most beneficial. For the overall goal of under-

standing the functionality of these molecules in microbial systems for the ratio-

nal design of novel membrane-intercalating molecules based on COEs, further

understanding of molecular interactions with the cell and on cell behaviors are

needed. Future applications and areas of investigation are briefly discussed be-

low.

5.2 Future outlook and applications

5.2.1 Characterization of membrane permeability effects

Conjugated oligoelectrolytes (COEs) have been demonstrated to have a sig-

nificant effect on the permeability of the outer membrane in gram-negative bac-

teria, however elucidation of effects on the inner membrane is not well estab-
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lished. Further characterization of the influence of COE structure on membrane

permeabilities as well as the transport of molecules across the inner and outer

membrane is needed for the determination of specific applications of COEs for

the improvement of biocatalysis reactions.

We have thus determined that DSSN+ is acting as an outer membrane per-

meabilizer. For inner membrane permeability effects, we observed less than a

2% release of the total cytoplasmic enzyme target in E. coli. When considering

the difference between the outer membrane and inner membrane permeability,

its important to consider that they were probed by the examination of differ-

ently sized proteins. With a molecular weight of 465 kDa, β-galactosidase is ∼5

times larger than alkaline phosphatase (M.W. = 89 kDa). [182–184, 190, 191]

It is possible that these differences in permeability may be size dependent. and

do not reflect intrinsic changes in membrane structure. At this point, we do

not have definitive proof that DSSN+ is permeabilizing or, to what extent, even

reaching the inner membrane.

That DSSN+ has a significant impact on outer membrane permeability sug-

gests that COEs may be suited for a wide range of whole-cell application. Char-

acterization of the extent of this permeability effects is needed in order to best

determine the possible applications of these molecules; for example, the range

of macromolecular sizes that can be transported, what extent the inner mem-
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brane is affected and the effect of COE structure on membrane permeability.

Investigation of COE molecular structure on outer and inner membrane

permeability

Section 3.5 began investigating this subject looking at the overall ONPG

turnover in E. coli modified with COE1 and COE2 series molecules. Other struc-

tural variables can be studied, such as the composition of the backbone and the

functionality and number of pendant linkage groups. Characterization of the in-

ner and outer membrane permeability of E. coli modified with COE1 and COE2

series is still needed. This can be performed by monitoring extracellular activity

of alkaline phosphatase for the determination of outer membrane permeability,

and extracellular activity of β-galactosidase for inner membrane permeability,

as previously described in Chapter 3.

Examination of permeabilization of E. coli is needed in greater detail. The

overall level of release protein should be characterized more globally and with

the size-dependence of release. To quantify the overall amount of protein re-

leased by COE exposure, one can use the bicinchoninic acid assay as well as

SDS-Page. The relative abundance of different sized proteins in the media from

fully lysed cells, COE treated cells, osmotically shocked or freeze/thaw treated
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cells and intact cells can thus be characterized to give a better idea of the extent

of COE-induced permeabilization.

Investigation of the size-dependence of released cytoplasmic proteins can be

performed utilizing colorimetric and fluorescent assays. Lactate dehydrogenase

is a cytoplasmic enzyme with a molecular weight of 114 kDa and the extracellu-

lar activity of this enzyme can be monitored using the Pierce LDH Cytotoxicity

Assay Kit. Similarly, β-glucuronidase is a cytoplasmic enzyme (MW = 290 kDa)

that catalyzes hydrolysis of β-D-glucuronic acid. Quantifying the amount of this

enzyme released can be measured by fluorescence spectroscopy, which would

monitor the hydrolysis of 4-methylumbelliferyl β-D-glucuronidase into a fluo-

rogenic product. Additionally, engineered strains of E. coli expressing green or

red fluorescent protein (∼28 kDa) in the periplasm and/or the cytoplasm can be

utilized to characterize permeability by the release of GFP/RFP into the media.

Confocal microscopy may also be used to examine the dynamics of COE inser-

tion and GRP/RFP release simultaneously. With these assays, one could probe

the release of intracellular molecules ranging from 28 kDa to 465 kDa, which

would provide a measure of enzymes that can be transported out of the cell by

COE modification for specific biocatalysis applications.
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5.2.2 How do COEs influence cell physiology?

Little is known about COEs influence on the physiology of microorganisms,

apart from viability, which differs in effect between gram-negative and gram-

positive microorganisms. [57, 210] It is known that the bacterial cell surface

is particularly important in regard to maintaining optimal cell function. [133]

The bacterial cell surface is involved in disparate physiological functions such

as envelope diffusion, shape maintenance, growth and division, turgor support,

chemical sensing and protection from both chemical and physical damage to the

cell. Bacteria invest a major part of their metabolic energy for the maintenance

of the cell surface. [211] Chemical and physical modification of the cell surface

can thus have profound effects on their physiology. A better understanding of

COE action may allow control over a wide range of biological processes perti-

nent to biotechnology as well as the rational design of molecular structures for

specific applications.

Do COEs induce a stress response?

It is possible that COE intercalation may induce a stress response specific to

the cell envelope, which may have profound influence over energy metabolism

and membrane integrity. E. coli has been intensively investigated in relation
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to stress responses and provides an ideal model to observe the response to

COE modification. Five major envelope stress responses have been identified in

this organism: the σE, Cpx, Rcs, phage-shock protein (Psp) and Bae responses.

[212] In studies examining the stress response induced by carbon nanotubes, an

up-regulation of σs and σE were observed, as well as up-regulation in genes re-

lating to glycolysis, fatty acid beta-oxidation, fatty acid biosynthesis, the Tol/Pal

system and the PhoPQ two-component system. [213] Another study examin-

ing the response of E. coli to cationic nanomaterials discerned gene clusters in

the lipopolysaccharide biosynthetic pathway, outer membrane transport chan-

nels, ubiquinone biosynthetic pathways, flagellar movement, and DNA repair

systems as significant to the bacterial response. [214] Both of these previous

studies indicate the breadth of cellular processes that can be affected by nano-

material interactions. To understand the response of E. coli to COE exposure,

transcriptomic analysis could be performed by either microarray analysis or next

generation sequencing.

Is increased current related to metabolic changes?

While COEs have been attributed the ability to link cellular metabolism to

electrodes, this effect has yet to be demonstrated in E. coli MFCs. Although

unlikely considering our presented results, to determine whether COEs are en-
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abling a metabolic connection between the intracellular state and extracellular

electron transfer, the metabolic activities of E. coli should be examined during

device operation to test this alternative hypothesis. The alternate hypothesis is

that COEs increase current production due to either by a differential oxidation

of substrate or a more rapid catabolism of a substrate. It is most likely that rapid

catabolism is the case, considering the improved rate of biocatalysis presented

in Chapter 3, however changes in cell metabolism are still possible.

Under anaerobic conditions with lactate as the sole carbon source, E. coli is

limited in its ability for anaerobic respiration and cannot ferment. In these con-

ditions, it is likely that E. coli generates ATP and maintains redox balance using

an alternative metabolism, such as overflow metabolism. Overflow metabolism

allows for the production and reduction of reduced metabolic products, such as

ethanol, to mitigate redox balance in the cell. [215, 216]

Previous work has demonstrated that a synthetic conduit for electron trans-

fer can be engineered into E. coli through the expression of the Mtr pathway pro-

teins found in Shewanella oneidensis, which is shown to couple lactate oxidation

to current production. [91] The ability of this strain, referred to as cymA-mtr E.

coli, to utilize lactate under these conditions is likely due to their ability to access

the electrode as an electron acceptor via the Mtr pathway. Under the hypothesis

that COE modification increases electron transfer to the electrode, a similar ef-
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fect shift in metabolic products would be observed. Investigations of the E. coli

metabolism has shown that the production of formate and ethanol under anaer-

obic conditions are caused by a high NADH:NAD+ ratio. [216] Alternatively,

increased acetate production and decreased formate and ethanol production

are evidence to enhanced oxidation of NADH. [217] The same shift is observed

in cymA-mtr E. coli, suggestive of increased NADH oxidation and improved re-

dox balance. Similarly, if COEs are enabling E. coli to utilize the electrode, we

expect to see a similar shift in metabolite production. Currently, no significant

evidence of shifts in metabolite production has been observed (data not shown).

An area of study left unexamined is the bioenergy utilization/production by COE

modified bacteria in order to determine the electron balance in the system. Con-

sideration should be taken when choosing the appropriate carbon source in such

experiments.

5.2.3 COE interactions with membrane components

The quantification of COE association with E. coli in Chapter 2 suggests that

COEs are associating with cells in additional situations other than membrane

intercalation. Other situations of COE association with the cell could include,

but are not limited to, aggregation on the cell surface or interactions with the
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LPS layer. COE disruption of the LPS layer, or removal of LPS from the outer

leaflet, are effects that need to be considered. The effects of removing LPS from

the outer membrane are inline with the surface property effects of COEs. LPS

removal by cationic peptides and surfactants have also shown to render cells

more hydrophobic and facilitate uptake of lipophilic carbon substrates. [159,

218, 219]

5.2.4 Future applications

The ability of COEs to increase membrane permeability while maintaining

cell viability has promising applications in a wide range of biotechnologies, such

as improving the rate of microbial catalysis, recombinant protein recovery, and

increasing antibiotic susceptibility. Use of whole cells as biocatalysts is advanta-

geous in processes requiring cofactors and/or multiple enzymatic steps, but the

cell envelope is limiting as it provides a permeability barrier for the substrate

and product, resulting in low productivities in whole-cell catalytic reactions. E.

coli is a poor secretor of proteins, but is widely used for recombinant protein

production and metabolic engineering. [220] Release of periplasmic proteins

by COEs suggests possible application towards extracellular recombinant pro-

tein production, with the possibility of mitigating issues in protein purification
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and cell toxicity seen in solvent of detergent treatments. [185] Gram-negative

bacteria are resistant to a large number of antibiotics due to the effective per-

meability barrier function of their outer membrane. [159, 160] Application of

COEs in combination with antibiotics typically unable to penetrate the outer

membrane is a possible method to improve antibiotic susceptibility.
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Appendix A

Additional electrochemical
characterization experiments

A.1 Cyclic voltammetry of U-tube MFC components

U-tube MFC devices were utilized in Chapter 4 to determine the origin of
DSSN+ performance improvements by physical separation of components to
discern between cells adhered on the electrode vs. planktonic cells. In these de-
vices, it is difficult to ascertain the mechanism of improved charge transfer due
to the lack of in situ electrochemical characterization. In an attempt to elucidate
charge transfer mechanism using cyclic voltammetry (CV), anode components
from U-tube MFCs are once again transferred into 3-electrode electrochemical
cells.

A.1.1 Experimental Methods

3-electrode electrochemical cell construction and cyclic voltammetry (CV)

3-electrode electrochemical cells were constructed following previous exper-
iments. [53] Glass reactor vials with a 20 mL working volume were sealed with
rubber septa. Ag/AgCl reference electrodes were constructed out of silver wire,
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treated with bleach, in 3.5 M KCl and a 3.2 mm Vycor frit. The counter electrode
was a coiled 0.25 mm Ti wire. The working electrode was either a new piece
of graphite felt (1 cm × 1 cm) woven with Ti or the anodes (2 cm × 5 cm) re-
moved from the U-tube devices. Anaerobic conditions were maintained through
constant purging of the headspace with humidified N2:CO2 (80:20), however
anodes were still briefly exposed to aerobic conditions.

Devices were connected to a Gamry potentiostat (Reference 600) and multi-
plexer (model ECM8) for cyclic voltammetry (CV) analyses. CVs were measured
of the anodes removed from U-tubes in the anode solution, of anodes in 50 mM
PBS and of new working electrodes in the anode solution. After CV of anodes in
the anode solution, anodes were then rinsed in 50 mM PBS prior to CV analysis
in PBS to remove any residual LB media. Control CVs were measured of abiotic
LB and PBS with and without 10µM DSSN+. Potentials were scanned from -
0.7 V to 0.2 V vs Ag/AgCl at a scan rate of 5 mV/s for 3 or 4 cycles. The last scan
of representative devices was used for comparison.

A.1.2 Results and Discussion

Cyclic voltammetry (CV) was utilized to determine whether DSSN+ im-
proves current by increasing catalytic activity, inducing redox processes, or re-
leasing redox mediators from the cell. In order to perform CV analyses, com-
ponents from U-tube devices needed to be transferred to a 3-electrode electro-
chemical cell, since the U-tube configuration lacks a references electrode. An-
odes and anode solutions from O-, A- and S-MFCs were carefully transferred
from U-tube devices to electrochemical cells. Voltammograms of anodes in an-
ode solutions are displayed in Figure A.1. In both the O- and A-MFCs, DSSN+
increased both the anodic and cathodic currents. Less of an effect was observed
in the S-MFC CVs (Figure A.1c).

The use of LB as the electrolyte solution in this study, as well as in previous
studies [50, 51], convolutes the mechanism of electron transfer with DSSN+
in MFCs. LB is known to contain mediators, such as flavins, present in yeast
extract [93, 95, 208]. The presence of redox mediators makes it difficult to ob-
serve any potential signals from redox active components that were potentially
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Figure A.1: Representative cyclic voltammograms of anodes in media from the anode

chambers removed from (A) O-MFCs, (B) A-MFCs and (C) S-MFCs with and without

DSSN+ modification. The anode from the U-tubes were used as the working electrode

and have a geometric area of 10 cm2 Scan rate: 5 mV/s

released from the cells. Redox activity of abiotic LB shows two reversible reac-
tions in Figure A.2a, representing the background redox activity. It is possible
that membrane disruption by DSSN+ would produce an increased current when
in the presence of a sufficient concentration of mediators, therefore it is hard to
ascertain this effect of DSSN+ to be from mediators in the media or a release of
intracellular components upon DSSN+ intercalation.

To address this concern, anodes from all devices were rinsed in 50 mM PBS
solution in order to remove any soluble mediators then transferred to a 3-
electrode electrochemical cell for cyclic voltammetry (CV) analyses in a buffer
solution devoid of potential mediators. Thus, CV was performed on cells re-
maining on electrodes under non-turnover conditions and scans are displayed
in Figure A.3. Similar increases in anodic and cathodic currents are observed
from the O- and A-MFC electrodes under non-turnover conditions and the char-
acteristic peaks from LB media are no longer present (Figure A.3a-b). This could
suggest enhanced electroactivity in the DSSN+ modified biofilms, however it is
unclear as to what reactions are taking place under these conditions.

CV was also performed on the anode solutions from the U-tube MFCs using
a new carbon felt working electrode with an area of 1 cm2. Negligible differ-
ences in currents are observed between DSSN+ and control CVs in all O-, A-,
and S-MFCs, displayed in Figure A.4. Under these conditions, release of redox
mediators from E. coli upon DSSN+ intercalation is not apparent.
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Figure A.2: Cyclic voltammograms of sterile abiotic solutions of (a) LB and (b) PBS,

with and without 10µM DSSN+. The carbon felt working electrode used has a

geometric surface area of 1 cm2. Scan rate: 5 mV/s

Figure A.3: Representative non-turnover cyclic voltammograms of anodes removed

from the (a) O-MFCs, (b) A-MFCs, and (c) S-MFCs with and without DSSN+ mod-

ification in PBS. Scan rate: 5 mV/s
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Figure A.4: Representative cyclic voltammograms of planktonic cell solutions from

anode chambers of devices after operation from (a) O-MFCs, (b) A-MFCs and (c)

S-MFCs with and without DSSN+ modification. The working electrode used was new

carbon felt (1 cm2). Scan rate: 5 mV/s

A.2 3-electrode electrochemical cell experiments

In order to beat a dead horse, similar experiments were performed in 3-
electrode electrochemical cells. In these experiments, as well at the previous
bioreactor experiments from Chapter 4, lactate was chosen as the carbon source.
Under anaerobic conditions with lactate as the sole carbon source, E. coli is
limited in its ability for anaerobic respiration and cannot ferment. However, if E.
coli is able to utilize an external electron acceptor, such as the electrode, lactate
can be metabolized. Current production is evaluated via chronoamperometry
under a poised potential of 0.2 V. Additionally, cyclic voltammetry is performed
to probe any changes in redox or catalytic behavior with the addition of DSSN+.
Four devices were used for each test group; control, 10µM DSSN+ present
initially (t=0 hr), and 10µM DSSN+ added after 23 hours. Two devices in each
group were running chronoamperometry uninterrupted, while the other two in
the group were used for cyclic voltammetry.

Figure A.5 shows the current data from chronoamperometry. As demon-
strated previously, DSSN+ is shown to improve current production compared
to untreated E. coli up to 200%. Adding DSSN+ to devices at t=23 hr results in
an instantaneous increase in current. CV was taken immediately before and af-
ter DSSN+ addition in devices not continuously poised for chronoamperometry,
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Figure A.5: Chronoamerometry of E. coli in 3-electrode electrochemical cells. Current

generation is plotted over time from E. coli with no COEs (blue), initial DSSN+

modified E. coli (gold), and DSSN+ added at t=23 hr (orange).

shown in Figure A.6. No significant redox activity appears after DSSN+ mod-
ification. Figure A.7 shows CV data at the end of device operation of the two
devices that were consistently under chronoamperometric conditions. Similar
to results shown in Chapter 4, OD measurements were taken over time, indicat-
ing a significant decrease in planktonic cells after DSSN+ addition (Figure A.8).
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Figure A.6: Cyclic voltammetry before (dotted) and after (solid) DSSN+ addition.

Figure A.7: Cyclic voltammetry of DSSN+ modified electrochemical cells at the end

of operation.
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Figure A.8: Optical density measurements in electrochemical cells over time from

untreated (blue), initially treated (gold), and DSSN+ added at t=23 h treated E. coli.

Error bars show standard deviation of quadruplicates.
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