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Transcriptional analysis of metastatic uveal melanoma 
survival nominates NRP1 as a therapeutic target
Riyue Baoa,b, Oliver Surrigac, Daniel J. Olsond, Jacob B. Allrede,  
Carrie A. Strande, Yuanyuan Zhad, Timothy Carlld, Brian W. Labadied,  
Bruno R. Bastosf,g, Marcus Butlerh, David Hoggh, Elgilda Music,  
Grazia Ambrosinic, Pamela Munsteri, Gary K. Schwartzc and Jason J. Lukea,b        

Uveal melanoma is a rare form of melanoma with 
particularly poor outcomes in the metastatic setting. In 
contrast with cutaneous melanoma, uveal melanoma lacks 
BRAF mutations and demonstrates very low response 
rates to immune-checkpoint blockade. Our objectives 
were to study the transcriptomics of metastatic uveal 
melanoma with the intent of assessing gene pathways 
and potential molecular characteristics that might be 
nominated for further exploration as therapeutic targets. 
We initially analyzed transcriptional data from The Cancer 
Genome Atlas suggesting PI3K/mTOR and glycolysis 
as well as IL6 associating with poor survival. From 
tumor samples collected in a prospective phase II trial 
(A091201), we performed a transcriptional analysis of 
human metastatic uveal melanoma observing a novel role 
for epithelial-mesenchymal transition associating with 
survival. Specifically, we nominate and describe initial 
functional validation of neuropillin-1 from uveal melanoma 
cells as associated with poor survival and as a mediator 

of proliferation and migration for uveal melanoma in vitro. 
These results immediately nominate potential next steps 
in clinical research for patients with metastatic uveal 
melanoma. Melanoma Res 31: 27–37 Copyright © 2020 
The Author(s). Published by Wolters Kluwer Health, Inc.
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Introduction
Melanomas arising within the iris, ciliary body, and cho-
roid of the eye make up the rare subset of uveal mela-
nomas with approximately 2500 cases annually in the 
United States [1]. Despite aggressive management of 
primary uveal melanoma (pUM) with radiation or enucle-
ation, approximately 50% of patients will develop metas-
tasis and this primary disease phenotype is associated 
with specific gene expression patterns [2]. Metastasis of 
uveal melanoma preferentially develops in the liver and 
is thought to be driven by high levels of growth factors 
such as epidermal-, insulin-like-, and hepatic growth fac-
tors [1]. Survival of patients following metastasis is poor at 
6–12 months and the treatment of uveal melanoma has not 
benefited by the recent improvements for melanoma more 

broadly [1,3]. Currently, no systemic therapies are associ-
ated with an improvement in survival. Therapies such as 
immune-checkpoint inhibitors [4,5] and targeted thera-
pies [6] have demonstrated little benefit such that hepatic 
tumor embolization remains a default approach [1].

In contrast to cutaneous melanoma where mutations in 
BRAF, NRAS, NF1, and KIT genes are hallmarks of disease 
[3], pUM rarely if ever harbors these and instead commonly 
carries mutations in the G-protein α proteins q (GNAQ) or 
11 (GNA11) [7,8]. Activated signaling via GNAQ/GNA11 
is mediated through phospholipase C, eventually leading 
to outputs of the Yes-associated protein (YAP) [9,10] and 
mitogen-activated protein kinase (MAPK) pathway [7]. In 
addition to Gα genes, CYSTLR2 [11] and PLCB4 [12] act 
in the same pathway but are mutually exclusive with Gα. 
Additionally, several other genes have also been iden-
tified as recurrently mutated, dysregulated, or over-ex-
pressed such as BAP1, SF3B1, and EIF1AX [13].

The molecular biology of uveal melanoma, and associ-
ations with survival or treatment outcomes, have been 
detailed almost exclusively from pUM samples and 
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cell lines derived from them. The most comprehen-
sive description of uveal melanoma biology to date has 
been provided from The Cancer Genome Atlas (TCGA) 
in which analysis of 80 pUM suggested four molecular 
groups defined the presence or absence of chromosomal 
monosomy 3 (M3) vs. disomy 3 (D3) [13]. More specif-
ically poor-prognosis M3-UM is associated with BAP1 
loss, aberrant DNA methylation, somatic copy number 
aberrations, and RNA alterations relative to good-prog-
nosis D3-UM, where alternative genomic and transcrip-
tional changes are observed. Protein-based analyses have 
also suggested expression patterns associated with sur-
vival in pUM. For example, in a retrospective review of 
pUM samples, c-MET expression was associated with a 
higher risk of death from metastatic disease [14]. This led 
to the rationale for targeting MET kinase therapeutically, 
which despite preclinical support [15] was unsuccessful 
in a randomized study of cabozantinib as compared with 
chemotherapy (A091201) [16]. This experience high-
lights the need for molecular data associated with out-
comes from tumors in the metastatic setting.

An inadequate literature describes the biology of human 
uveal melanoma metastases, although some studies have 
begun to report somatic mutational landscapes similar 
to that described in primary lesions. From a study of 52 
metastatic samples obtained in a prospective clinical trial 
of metastatic disease [17], massively parallel sequencing 
of clinically relevant cancer genes identified mutations 
known from pUM within TCGA [13] and other data-
bases [12] including GNAQ, GNA11, BAP1, PLCB4, and 
amplification of chromosome arm 8q. An analysis of 33 
uveal melanomas (including nine metastases) described 
similar findings with low mutation frequency among 
similar genes, although also describing novel mutated 
genes such as CSMD1, TTC28, DLK2, and KTN1 at low 
frequency [18]. More recently, targeted sequencing of 
500 genes in pUM and matched metastases from 35 
patients revealed new driver mutations in genes such as 
CDKN2A, PBRM1, EZH2, PIK3R2, PIK3CA, PTEN, and 
MED12 with clonal and subclonal events [19]. Minimal 
data exists surrounding gene expression patterns in met-
astatic UM (mUM); however, analysis by TCGA primary 
tumors suggested four-clusters in pUM that separated 
M3- and D3-UM [13]. Pathway profiling of these data 
suggested the importance of signatures including DNA 
damage response, hypoxia, MYC signaling, and MAPK/
AKT programs differentiated subgroups within both the 
M3-UM and D3-UM subgroups.

Although current systemic treatments are limited, there 
is some suggestion that emerging immune insights [20] 
and immuno-therapeutics may have utility [21–23]. 
Recently, single-cell sequencing of mUM samples sug-
gested a complex landscape of tumor and immune cell 
interactions [24,25]. In this context, a better understand-
ing of mUM biology may nominate molecular targets 
worth further exploration. Here, we investigated gene 
expression patterns in metastatic tumor specimens from 

patients with uveal melanoma (Supplementary Table 1, 
Supplemental digital content 1, http://links.lww.com/MR/
A245) correlating these with survival and performing 
differential gene expression based on patient survival. 
These data nominate an important role for epitheli-
al-mesenchymal transition (EMT) impacting outcomes 
for metastatic disease and nominate neuropilin-1 (NRP1) 
as a novel therapeutic target for future translational and 
potentially clinical investigation.

Methods
Tumor sample collection
Nineteen formalin-fixed paraffin-embedded (FFPE) 
metastatic tumor samples were collected and analyzed 
(Supplementary Table 1, Supplemental digital content 
1, http://links.lww.com/MR/A245). Tumor percentage per 
sample was graded by a pathologist (T.C.) for 15 out of 
19 samples, where sufficient tumor tissue remained after 
nucleic acid extraction. On average, 66% tumor content 
was observed per sample.

RNA sequencing of tumor samples
Total RNA was isolated from tumor FFPE tissue sections 
using QIAGEN Allprep DNA/RNA FFPE kit (Qiagen, 
Inc.) according to manufacturer’s instruction at the Human 
Immunologic Monitoring Facility at the University of 
Chicago. The quality and quantity of RNA was measured 
on an Agilent 2100 Bio-analyzer using Agilent reagents 
and protocols (Agilent Technologies, Santa Clara, USA). 
RNAseq libraries were generated using Illumina TruSEQ 
Total RNA stranded library making kits using Illumina 
protocols (Illumina, San Diego, USA). The quality and 
quantity of the library was determined using an Agilent 
2100 Bio-analyzer using Agilent reagents and protocols. 
RNAseq libraries were sequenced on an Illumina HiSeq 
4000 instrument using Illumina reagents and protocols at 
the University of Chicago Genomics Core Facility.

Gene expression quantification and differential gene 
expression detection
The quantification of gene-level expression and detec-
tion of differentially expressed genes (DEGs) were per-
formed using a protocol similar as previously published 
[26]. In brief, the quality of raw reads was assessed by 
FastQC (v0.11.5) [27]. Transcript-level read counts were 
quantified by Kallisto (v0.44.0) [28] in a strand-specific 
mode with GENCODE [29] annotation of human refer-
ence transcriptome (v28, GRCh38). Kallisto implements 
a kmer-based pseudoalignment algorithm to accurately 
quantify transcripts from RNASeq data while robustly 
detecting errors in the reads. Transcript-level abundance 
was summarized into gene level by tximport (v1.4.0) 
[30], normalized by trimmed mean of M values (TMM) 
method, and log2-transformed. Out of 19 883 protein-cod-
ing genes in total, 14  307 genes that are expressed 
[defined as, counts per million of reads  >  3] in at least 
six samples were kept for further analysis. Genes differ-
entially expressed between groups were identified using 
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limma voom algorithm with precision weights (v3.38.3) 
[31], followed by Benjamini-Hochberg (BH)-FDR cor-
rection for multiple testing [32].

Gene set enrichment analysis
Gene set enrichment analysis (GSEA) was performed 
by fGSEA (v1.8.0) [33]. The human Hallmark (H) gene 
sets from the Molecular Signatures Database (MSigDB) 
(v6.2) [34] was used for analyzing the full list of 14 307 
genes from the differential gene expression analysis. 
Genes were preordered by the log2-transformed expres-
sion fold change metrics (log

2
FC). Enrichment nominal 

P-values were calculated by permutation test (10  000 
permutations), with BH-FDR correction for multiple 
testing [32]. Enrichment score was computed same as 
in Broad GSEA implementation [34], and normalized 
enrichment score was computed by normalizing enrich-
ment score to mean enrichment of random samples of 
the same size [33].

The Cancer Genome Atlas primary cancer cohorts
Raw sequencing FastQ files of tumor RNAseq data were 
downloaded from TCGA pUM cohort (primary tumors, 
n = 80) using the Genomic Data Commons data portal 
(https://portal.gdc.cancer.gov/) (accessed 9/17/2018). 
Demographic and clinical data of pUM were obtained 
from supplementary tables of the published TCGA study 
[13]. All RNAseq data were harmonized using the same 
analysis pipelines described above.

Survival analysis
The significance of association between molecular mark-
ers and patients’ overall survival (OS) was tested by Cox 
proportional hazard univariable or multivariable model 
using coxph function from R library survival (v2.42-3), 
which also estimates hazard ratio between patient groups. 
Patients alive upon last follow-up were censored.

Cell culture
Mel290 and OCM3 were received from Robert Folberg 
in 2009 (University of Illinois, Chicago, IL). Mel285 
and OMM1.3 were kindly provided by Boris Bastian in 
2010 (Memorial Sloan-Kettering Cancer Center, New 
York, NY). Mel290, Mel285, and OCM3 were established 
from primary tumors by Bruce Ksander (Schepens Eye 
Research Institute, Boston, MA) [35]. OMM1.3 was estab-
lished from liver metastases also by Bruce Ksander [36]. 
OCM3 uveal melanoma cell lines have been sequenced 
for the presence of activating mutations in codons 209 
(exon 5) and 183 (exon 4) of GNAQ and GNA11. OMM1.3 
had GNAQ mutation while Mel290, Mel285, and OCM3 
are wild-type for the gene. A karyotype test was also per-
formed for each cell line in 2012. Cells were cultured in 
RPMI medium supplemented with 10% FBS, 100 units/
ml penicillin, and 100  mg/ml streptomycin and main-
tained at 37°C in 5% CO

2
.

Gene silencing
The small interfering RNA (siRNA) sequences for 
scramble control (sc-37007) and NRP1 (sc-36038) were 
purchased from Santa Cruz Biotechnology (Dallas, TX). 
NRP1 siRNA was a pool of three siRNA duplexes:

5′-GAAGGCAGACAGAGAUGAA-3′

5′-CGAGACAGUCCAUUCAUCU-3′

5′-GAAGGAAAGCACUAAGAAA-3′

Mel290, Mel285, OMM1.3, and OCM3 cells were plated 
on 60-mm plates, and transfected with scramble con-
trol or NRP1 siRNA using Lipofectamine RNAiMAX 
(Invitrogen, Carlsbad, CA) according to the manufactur-
er’s protocol. The transfections were performed twice, 
each time in overnight incubations with a recovery phase 
of 6 h in between transfections.

Quantitative real-time PCR
Total RNA was harvested from cells transfected with 
either scramble control or NRP1 siRNA using PureLink 
RNA Mini Kit (Invitrogen, Carlsbad, CA) according to 
manufacturer’s instructions. cDNA was then synthe-
sized from 1 µg total RNA using SuperScript IV First-
Strand Synthesis System (Invitrogen, Carlsbad, CA). 
TaqMan mutation detection assays specific for NRP1 
primer-probe set (Applied Biosystems, Foster City, 
CA) were used to quantitate mRNA expression of tar-
get genes normalized to GAPDH. Quantitative real-time 
PCR (qRT-PCR) assays were done using the 7500 Real-
Time PCR System (Applied Biosystems, Foster City, 
CA). The relative quantity of genes was determined by 
the ΔΔC

T
 method.

Immunoblotting
Cells transfected with either scramble control or 
NRP1 siRNA were lysed with radioimmunoprecip-
itation assay (RIPA) buffer supplemented with pro-
tease inhibitor cocktail tablets (Roche Diagnostics) 
and 1  mmol/l Na

3
VO

4
. Equal amounts of protein were 

loaded on 4–12% PAGE gels (Invitrogen, Carlsbad, CA). 
Polyvinylidene difluoride (PVDF) membranes were 
blocked with 5% nonfat dried milk and probed with 
NRP1, GAPDH (Cell Signaling Technology, Danvers, 
MA), and p27Kip1 (Santa Cruz Biotechnology, Dallas, TX)  
antibodies.

Flow cytometry
Cells transfected with either scramble control or NRP1 
siRNA were washed and fixed in ice-cold 70% eth-
anol before staining with propidium iodide (50  μg/
ml) containing RNase (5 μg/ml) to measure DNA con-
tent. Samples were sorted using LSR II Cell Analyzer 
(BD Biosciences, Franklin Lakes, NJ) for cell-cycle 
distribution and analyzed using the FCS Express 6 
software. A total of 10  000 events were examined per  
sample.
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Cell viability assays
Cells transfected with either scramble control or NRP1 
siRNA were plated in 96-well plates in triplicates. 
Viability was assessed after 72 h of treatment using the 
Cell Counting Kit 8 (CCK8) from Dojindo Molecular 
Technologies (Rockville, MD) according to the manufac-
turer’s instructions. Survival is expressed as a percentage 
of untreated cells.

Cell invasion assays
Cells transfected with either scramble control or NRP1 
siRNA were seeded in triplicates for 24 h in media with 

0.1% serum on BioCoat Matrigel Invasion Chambers (BD 
Biosciences, San Jose, CA) according to manufacturer’s 
instructions. RPMI medium with 10% serum was used as 
chemoattractant. Noninvading cells were then removed 
from the matrigel and cells on the other side of the matrix 
were fixed with 100% methanol and stained with 1% 
Toluidine Blue. Images of stained cells were obtained 
from three random sections of each matrigel to account 
for cell distribution. Invading cells were then quantified 
by adding cells from the three sections and calculating 
the mean of each triplicate. Cell invasion is expressed as 
the number of cells migrated.

Fig. 1

Transcriptional programs associated with overall survival in primary uveal melanoma (pUM) from The Cancer Genome Atlas (TCGA). (a) Kaplan–
Meier survival curves of MTORC1 signaling and IL6/JAK/STAT3 signaling gene expression in pUM, split by median expression of each signature 
(high vs. low). Survival risk table is shown below the Kaplan–Meier plot in each panel. (b) Forest plots showing the hazard ratio and P-values in 
Cox proportional hazards (PHs) multivariable model of the signaling pathways with demographic and clinical covariates. n = 80 patients in the 
TCGA primary UM cohort were shown for (a) and (b). Log-rank test was used in (a), and Cox PH multivariable model was used in (b).
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Statistics
For the analysis of gene signature expression between 
groups, two-sided Student’s t-test was used. Differential 
gene expression comparison between groups was per-
formed using linear regression models implemented in 
limma voom with precision weights [31]. For multiple 
comparisons, P-value was adjusted using BH-FDR cor-
rection for multiple testing [32]. Statistical analysis was 
performed using R (v3.5.1) and Bioconductor  (release 
3.8). qPCR experiment was performed twice, and all in 
vitro experiments were carried out three times; P-values 
were calculated using two-sided Student’s t-test, stand-
ard error was calculated as the SD divided by the square 
root of the number of samples.

Study approval
Tumor samples were collected within the context of 
Alliance for Clinical Trials in Oncology A091201 [16], 
which was reviewed and approved by the NCI Central 
Institutional Review Board (CIRB) or the IRB of 
each participating site (ClinicalTrials.gov Identifier: 
NCT01835145). Each participant signed an IRB-
approved, protocol-specific informed consent document 
in accordance with federal and institutional guidelines.

Results
Association of transcriptional programs with survival in 
uveal melanoma
Uveal melanoma has previously been described as a 
relatively simple genomic disease characterized by four 
overarching molecular subtypes [13]. Given the lack 
of therapeutic options for treatment of advanced dis-
ease, we were interested in investigating pathways and 
potential therapeutic targets that might be relevant to 
survival outcomes. To pursue this, we analyzed the asso-
ciation between cancer-associated signaling pathways 
and survival in the pUM cohort from TCGA. To reduce 
false discovery rate, we focused on 50 curated gene sets 
representative of cancer-associated pathways defined 
by human Hallmark (H) category from the Molecular 
Signatures Database (MSigDB; v6.2) (Supplementary 
Table 2, Supplemental digital content 1, http://links.lww.
com/MR/A245). One score was assigned to each gene 
set by taking the average of expression across all genes 
involved in that gene set, and then testing for signifi-
cant associations with OS. Using Cox proportional haz-
ard univariable models, we observed higher expression 
score of 18 gene sets significantly associating with longer 
OS (FDR-adjusted P  <  0.05; Supplementary Table 3, 
Supplemental digital content 1, http://links.lww.com/MR/
A245). Using multivariable models, after adjusting for 
covariates including demographic factors (age and gen-
der) and previously reported significant clinical vari-
ables from TCGA (histology and pigmentation) [13], 
we observed top gene sets (ranked by P-value from 
low to high) of MTORC1 signaling, glycolysis, PI3K/

AKT/MTOR signaling, and IL6/JAK/STAT3 signaling 
(Supplementary Table 3, Supplemental digital content 
1, http://links.lww.com/MR/A245). As the first three gene 
sets share some degree of functional redundancy, Fig. 1a 
conveys the impact of MTORC1 signaling as an example 
as well as the other distinct pathway of IL6/JAK/STAT3 
signaling. The adjusted P-values and HRs for gene sets 
of interest and covariates are shown in Fig. 1b. Results of 
glycolysis and PI3K/AKT/MTOR signaling are provided 
in Supplementary Figure 1, Supplemental digital content 
1, http://links.lww.com/MR/A246. As previous studies have 
suggested that pUM can be categorized into low-risk 
(Disomy 3, D3) and high-risk (Monosomy, M3) groups 
based on genomic signatures [13], we repeated the same 
analysis within the high-risk M3 group (42/80 patients), 
and observed no gene sets demonstrating significant 
association with OS by cox proportional hazard univari-
able or multivariable models at FDR-adjusted P < 0.05 
(Supplementary Table 3, Supplemental digital content 1, 
http://links.lww.com/MR/A245).

Epithelial-mesenchymal transition signature separates 
1-year overall survival in metastatic uveal melanoma
We recently completed a prospective phase II study in 
metastatic uveal melanoma demonstrating no difference 
in outcome between cabozantinib and chemotherapy 
(Alliance for Clinical Trials in Oncology A091201) [16]. 
From this study, we obtained adequate pretreatment 
tissue from a group of patients (n  =  19) and pursued 
RNAseq analysis. To identify the molecular factors asso-
ciated with survival in mUM, we investigated the 50 
transcriptional programs outlined above comparing OS, 
as the time from the start of treatment in the trial until 
death from any cause, in A091201 [16]. Using Cox pro-
portional hazard univariable model, EMT was the top 
gene program associated with OS ranked by P-values 
(P = 0.02), with higher EMT expression score predicting 
worse outcome (Supplementary Table 4, Supplemental 
digital content 1, http://links.lww.com/MR/A245). This 
association lost significance after adjusting for multiple 
testing correction (FDR-adjusted P = 0.61), potentially 
due to small size. Considering these findings from a clin-
ical context, we then split patients into two groups cen-
tered on 1 year of survival from starting treatment on 
the clinical trial (Supplementary Figure 2, Supplemental 
digital content 1, http://links.lww.com/MR/A246), observ-
ing that patients with OS ≤ 1 year showed higher expres-
sion of the EMT gene expression signature (P  =  0.15, 
Student’s t-test, two-sided) (Fig.  2a). Considering the 
OS is a time-to-event endpoint, we next tested the asso-
ciation between EMT gene signature expression as a 
continuous variable in Cox proportional hazard univar-
iable model of OS and observed a significant association 
(P = 0.046, HR = 2.45) (Fig. 2b). Taking together, these 
data suggested that EMT may be a prognosis predictor 
in mUM.
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Patients with overall survival of less than 1 year 
demonstrated differential gene expression including 
expression of NRP1
Cognizant of the lack of effective systemic therapeutic 
options for patients facing mUM, we were interested to 
investigate possible targets associated with differential 
survival outcomes observed in A091201. To pursue this, 
we initially compared the whole transcriptome profiles 
of patients with OS ≤ 1 year to those with OS > 1 year. 
We ranked individual genes by P-value smaller to larger 
and selected top DEGs at P  <  0.005 (unadjusted) and 
fold change ≥2.0 or ≤ –2.0 (Fig. 3a). A total of 76 genes 
passed the threshold, with 22 upregulated in patients 
who lived less than 1 year (Fig.  3b; Supplementary 
Table 5, Supplemental digital content 1, http://links.lww.
com/MR/A245). Among those, NRP1, encoding a trans-
membrane glycoprotein neuropilin-1 that binds various 
vascular endothelial growth factor isoforms and TGFβ, 
has been shown to be associated with EMT in multi-
ple tumor types [37–40]. Additionally, previous [41] and 
on-going clinical trials (clinicaltrials.gov: NCT03565445) 
are investigating monoclonal antibodies targeting neu-
ropilin-1, raising therapeutic interest. Considering the 
overall lower tumor purity in the metastatic samples from 
A091201 compared to primary tumors from TCGA, we 
sought to confirm that differences observed in NRP1 
gene expression were not due to tumor purity differences 
between groups and observed no significant tumor purity 

differences between mUM patient OS groups (P = 0.182, 
Student’s t-test, two-sided). Collectively, these analyses 
suggest expression of NRP1 in patients with OS > 1 year 
may represent disease-specific biological context.

To confirm our analysis by an orthogonal approach, we 
additionally investigated the overall pattern of signaling 
pathway changes between the two OS groups utilizing the 
full list of genes without P-value or fold change cutoffs. 
We calculated enrichment scores and significance level of 
50 HALLMARK gene sets from MSigDB database. EMT 
genes and IL6/JAK/STAT3 signaling genes were identi-
fied to be significantly enriched and activated in patients 
with OS  ≤  1 year relative to >1 year (FDR-adjusted 
P  <  0.05) (Supplementary Figure 3, Supplemental dig-
ital content 1, http://links.lww.com/MR/A246). This result 
supports our findings above investigating association 
between gene sets and survival using Cox proportional 
hazard analysis. Despite no genes passing FDR-adjusted 
P  <  0.05 in multivariable models previously, we subse-
quently demonstrate that using the GSEA approach, the 
same transcriptional programs are significantly enriched 
in tumors from patients who lived less than 1 year.

Knockdown of NRP1 gene expression in vitro induces 
G1 arrest and inhibits cell proliferation and invasion
Observing association between NRP1 expression and 
OS < 1 year, we were interested to assess the functional 
impact of blocking NRP1 in uveal melanoma cells. To 

Fig. 2

Epithelial-mesenchymal transition (EMT) signature is significantly associated with overall survival (OS) in patients with metastatic uveal melanoma. 
(a) Expression of the EMT gene signature in patient survival groups split by 1-year OS; n = 14 in patients with OS ≤ 1 year, n = 5 in patients with 
OS > 1 year. (b) Kaplan–Meier survival analysis of OS in patients with tumors EMT

high
 and EMT

low
, split by median expression of the EMT gene 

signature. Nineteen patients were shown in (a) and (b), split by two different metrics [1-year OS in (a), and median EMT expression in (b)]. Survival 
risk table is shown below the plot. Two-sided Student’s t-test was used in (a). Cox proportional hazards univariable model was used in (b).
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Fig. 3

Differentially expressed genes of metastatic uveal melanoma in patient survival groups split by 1-year overall survival (OS). (a) Expression heatmap 
of 76 differentially expressed gens (DEGs) comparing tumors from patients who lived less than 1 year to those who lived longer. Genes were 
filtered by P < 0.005 (unadjusted) and fold change ≥2.0 or ≤–2.0. Samples were clustered on the column with dendrogram shown above the 
heatmap. Annotation bar labels patient groups with OS ≤ or >1 year. Genes are shown in the boxes to the right of the heatmap, following the 
same order as the gene dendrogram to the left side of the heatmap. (b) Expression of 22 DEGs upregulated in tumors from patients with OS ≤ 1 
year relative to those with OS > 1 year. FC = expression fold of change calculated by comparing patients with OS >1 year to patients with OS ≤1 
year. 1 yr = one year. The limma voom regression model with precision weights was used in (a) and (b).
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pursue this, we initially evaluated the gene expression of 
NRP1 in several uveal melanoma cell lines and identified 
at least two NRP1 expressing cell lines (Mel290, Mel285), 

and two with relatively low NRP1 mRNA expression 
(OMM1.3, OCM3) (Fig.  4a). Western blot analysis of 
uveal melanoma also showed greater protein expression 

Fig. 4

Knockdown of neuropillin-1 (NRP1) gene expression in vitro induces G1 arrest and inhibits cell proliferation and invasion. (a) NRP1 mRNA 
expression in uveal melanoma cell lines Mel290, Mel285, OMM1.3, and OCM3. n = 2 in each of the four cell lines, quantitative PCR was 
performed in triplicates, experiment was repeated two times. (b) Western blots of Mel290, Mel285, OMM1.3, and OCM3 cells transfected 
with NRP1 small interfering RNA (siRNA) shows inhibition of NRP1 expression and induction of p27Kip1 expression. (c) Cell cycle analysis 
of uveal melanoma cells transfected with NRP1 siRNA for 72 h shows a significant increase in G1 population in Mel290 (P < 0.0001) and 
Mel285 (P = 0.035) cells but not OMM1.3 and OCM3 cells; n = 3 in each of the four cell lines, with two groups each, experiment was repeated 
three times. (d and e) The siRNA knockdown of NRP1 expression significantly inhibits cell viability (d) after 72 h (Mel290 P = 0.009, Mel285 
P = 0.003, OMM1.3 P = 0.18, OCM3 P < 0.001) and cell invasion (e) after 24 h of uveal melanoma cells that highly express NRP1 (Mel290 and 
Mel285). In (d), n = 3 in each of the four cell lines, with two groups each, experiment was repeated three times. (f) Quantitation of migrated cells 
shows the selective inhibition of invasion by NRP1 siRNA knockdown in Mel290 (P = 0.046) and Mel285 (P = 0.007) cells but not OMM1.3 
(P = 0.40) and OCM3 (P = 0.42) cells. n = 3 in each of the four cell lines, with two groups each, experiment was repeated three times. In (c), (d), 
and (f), each bar is shown as mean ± S.E.M, with standard error calculated as the SD divided by the square root of the number of samples. Two-
sided Student’s t-test was used in (c), (d), and (f); ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05.
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of NRP1 in Mel290 and Mel285 relative to OMM1.3 and 
OCM3 (Fig.  4b). NRP1 has been shown to stimulate 
GIPC1 and Syx complex formation and activating RhoA 
thus inducing p27Kip1 degradation and that suppression 
of NRP1 expression by siRNA results in increased p27Kip1 
expression [42]. In our study, siRNA knockdown of NRP1 
markedly induced p27Kip1 expression compared to the 
scramble transfected control. Since p27Kip1 is induced by 
NRP1 suppression, we conducted a cell cycle analysis of 
uveal melanoma cells transfected with scramble control or 
NRP1 siRNA (Fig. 4c). We found that NRP1 suppression 
for 72  h significantly induced G1 arrest in Mel290 and 
Mel285 cells (P < 0.0001 and P < 0.05, respectively) while 
cells that do not express NRP1, OMM1.3 and OCM3 
were not affected, when compared to scramble controls. 
Similarly, in viability assays, NRP1 siRNA for 72  h sig-
nificantly inhibited cell proliferation in NRP1 express-
ing cell lines Mel290 (P = 0.009) and Mel285 (P = 0.003) 
(Fig.  4d). In contrast, NRP1 downregulation induced 
lesser effects in cells with low expression of NRP1, as cell 
viability was slightly reduced in OCM3 cells (P < 0.001) 
or increased in OMM1.3 cells (P = 0.18) (Fig. 4d). In cell 
invasion assays through matrigel, NRP1 siRNA knock-
down significantly suppressed cell migration of Mel290 
(P < 0.05) and Mel285 (P < 0.01) but not OMM1.3 and 
OCM3 after 24 h (Fig. 4e and f), conditions under which 
cell viability is not affected (data not shown).

Discussion
Treatment options for patients with mUM are limited 
and outcomes are poor emphasizing a high, unmet need 
for patients facing this rare disease [1]. While the biology 
of pUM is increasingly understood through efforts such 
as TCGA, comparatively less has been known about met-
astatic disease. In our transcriptional analysis of patient 
samples derived from a prospective clinical trial, we 
identify transcriptional signatures associated with patient 
survival in metastatic disease and a number of DEGs 
associated with poor outcomes. Of these, NRP1 may 
be especially interesting as knockdown experiments in 
uveal melanoma cells suggest a functional role in prolif-
eration, migration, and other processes relevant to metas-
tasis and cancer progression in mUM.

We initiated our analysis focusing on pUM via analysis 
of TCGA observing growth signals through PI3K/mTOR 
and IL6 signaling being associated with progression 
and death from primary lesions. Multiple studies have 
described pUM as paradoxically demonstrating a tumor 
microenvironment densely packed by immune cells [1]; 
however, large-scale sequencing efforts also suggest the 
majority of pUM lack an active tumor microenvironment 
or T cell-inflamed phenotype [43]. Relevant to this, sign-
aling through the PI3K cascade has been associated with 
immuno-suppression [44] and despite the lack of genomic 
alterations observed in pUM, transcriptional activation 
through PI3K may be driving this phenotype as has been 
described for other oncogenes such as β-catenin [45]. 

Additionally, the tumor microenvironment of pUM has 
been described as macrophage rich [1] and our finding 
of IL6-associated pathway activation is consistent with 
this. Considering these findings, it may be interesting to 
speculate on the utility of PI3K or mTOR inhibitor hav-
ing a potential adjuvant role for patients with pUM after 
definitive therapy to limit metastasis and eventual death 
from disease.

Our analysis of transcriptional programs from patients 
with mUM suggests a potentially important role for 
EMT programs in dictating survival outcomes for this 
population of patients. An impact of EMT on survival in 
patients with metastatic cancer has been described across 
multiple tumor settings [46], although it previously had 
not been described in tumors from patients with mUM. 
Identification of the EMT process in uveal melanoma is 
potentially of relevance toward drug development and 
clinical trials, as approaches targeting EMT-related mole-
cules such as β-catenin, TGF-β, and MYC have not been 
previously prioritized. It is also potentially noteworthy 
that EMT or stem-like states have been linked to the 
non-T-cell-inflamed tumor microenvironment and resist-
ance to cancer immunotherapy [20,45,47,48]. In this set-
ting, inhibitors of EMT may be useful as combination 
partners for immunotherapy, especially in mUM.

Our analysis of DEGs, in the context of patient survival, 
nominated a group of potentially intriguing genes that 
might be explored as therapeutic targets. While it should 
be noted that the sample size of the analysis was rela-
tively small, mUM is an orphan disease and this is one of 
the first reports of transcriptional data from human tumor 
samples collected in a clinical trial. In our analysis, we 
observed that expression of NRP1 was associated with 
survival of patients of less than 1 year. NRP1 is particu-
larly interesting as it has well-described functions relating 
to angiogenesis [49], EMT [37] as well as immune-mod-
ulation of T

reg
 cells [50] and M2 macrophages [51]. Here, 

we particularly observed a cell-intrinsic role for NRP1 in 
regulating uveal melanoma proliferation, viability, and 
invasion, which could be reversed with NRP1 siRNA 
exposure in cell line experiments. A previous genera-
tion of anti-NRP1 monoclonal antibodies was brought 
unsuccessfully into cancer clinical trials in attempts to 
target angiogenesis in advanced solid tumors [41]. More 
recently, a new generation of NRP1 antibodies, including 
ASP1948 and others, has come forward with intent to be 
used as checkpoint blocking antibodies either alone or 
with anti-PD1 agents. These data suggest that considera-
tion of a clinical trial in mUM might be prioritized.

We acknowledge that there are limitations to our report. 
As a rare cancer, investigation of patient-derived bio-
specimens of mUM is inherently limited by sample size. 
The tumor samples analyzed here were obtained in the 
context of a National Clinical Trials Network clinical 
trial (A091201) in which diagnostic tumor samples were 
obtained predominantly from the community practice 
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setting. While extremely valuable, this approach has the 
potential to limit sample quality and limits the discov-
ery power for differential gene expression analysis (e.g. 
multiple testing correction). This approach also elim-
inates the availability of further tissue to do confirma-
tory protein-based studies (e.g. immunohistochemistry). 
Obtaining biospecimens in this manner does have the 
utility of facilitating prospective clinical annotation and 
limiting the biases surrounding analysis of samples col-
lected and analyzed in retrospective cohorts.

In summary, we have performed a transcriptional analy-
sis of human mUM and observed novel associations with 
survival in the metastatic setting. We identified from the 
prospective clinical trial A091201 an impact of EMT on 
survival and both nominated and performed preliminary 
functional validation of NRP1 as a potential therapeutic 
target. These results immediately suggest avenues for 
novel investigation and clinical trials for patients with 
metastatic uveal melanoma. ClinicalTrials.gov Identifier: 
NCT01835145.
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