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Abstract

To gain insight into how mutant huntingtin (mHtt) CAG repeat length modifies Huntington’s 

disease (HD) pathogenesis, we profiled mRNA in over 600 brain and peripheral tissue samples 

from HD knock-in mice with increasing CAG repeat lengths. We find repeat length dependent 

transcriptional signatures are prominent in the striatum, less so in cortex, and minimal in the liver. 

Co-expression network analyses reveal 13 striatal and 5 cortical modules that are highly correlated 

with CAG length and age, and that are preserved in HD models and some in the patients. Top 

striatal modules implicate mHtt CAG length and age in graded impairment of striatal medium 

spiny neuron identity gene expression and in dysregulation of cAMP signaling, cell death, and 

protocadherin genes. Importantly, we used proteomics to confirm 790 genes and 5 striatal modules 

with CAG length-dependent dysregulation at both RNA and protein levels, and validated 22 

striatal module genes as modifiers of mHtt toxicities in vivo.

Huntington’s disease (HD) is a dominantly inherited neurodegenerative disorder 

characterized by movement disorder, cognitive and psychiatric symptoms1. The hallmark of 

HD neuropathology is selective degeneration of striatal medium spiny neurons (MSNs) and, 

to a lesser extent, cortical pyramidal neurons (CPNs)2. Motor symptom onset for HD has a 

broad range but is usually in middle age. HD is relentlessly progressive, and patients die 

from complications of the disease about 10-20 years after onset. Currently there are no 

therapies to prevent the onset or slow the progression of HD1.

HD is caused by a CAG trinucleotide repeat expansion encoding an elongated polyglutamine 

(polyQ) stretch of the huntingtin (HTT) gene3. Unaffected individuals have fewer than 36 

repeats, whereas HD individuals have 36 to 250 CAG repeats. HD belongs to a group of nine 

neurodegenerative disorders caused by CAG repeat expansion in distinct polyQ proteins4. 

Despite broad expression of these proteins, polyQ disorders present different clinical and 

pathological phenotypes that are attributed to distinct polyQ protein contexts.

A pivotal human genetic clue to pathogenesis of all polyQ disorders is that the length of the 

CAG repeat is inversely correlated with the age of disease onset4,5. Patients with HTT CAG 

lengths in the 40s often have motor onset in the fourth decade of life, while repeat lengths 

greater than 60 lead to juvenile onset1. In contrast to age of onset, the influence of CAG 

length on disease progression is much more modest1,6, suggesting an important effect of 

CAG length in early disease pathogenesis6. Recent imaging studies of HD patients suggest 

that CAG length correlates with caudate atrophy7, and that combined CAG length and age is 

a useful predictor of many clinical outcomes in HD1. Overall, HD patient studies underscore 

a critical role of CAG length in the early stages of pathogenesis.

The central role of CAG length on the age of HD motor symptom onset led to the “polyQ 

molecular trigger” hypothesis that suggests polyQ expansion in HTT leads to repeat-length-

dependent, dominantly acting pathogenic changes in the vulnerable neurons to initiate the 

disease5. To date, the search for mutant HTT (mHTT) CAG length-sensitive molecular 

pathogenic changes has been limited to studies in cultured cells8,9, and very little is known 

about genes and pathways that are dysregulated by the expanded CAG mutant protein in the 

HD-vulnerable and pathogenically-relevant brain regions, namely the striatum and cortex10. 
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Here we undertook a multi-step, integrative systems biology study of both the transcriptome 

and proteome of HD allelic series knock-in mice to identify murine mutant huntingtin 

(mHtt) CAG length- and age-dependent molecular networks, which is complemented by 

functional validation studies in a Drosophila model expressing a mHTT fragment. We also 

created a new interactive online resource (www.HDinHD.org) to disseminate our data.

RESULTS

Longitudinal RNA-sequencing analyses of mHtt allelic series knockin mice

We reasoned that transcriptomic study of HD-vulnerable brain regions (i.e. striatum and 

cortex) and a relatively disease-resistant peripheral tissue (i.e. liver) from an allelic series of 

HD knockin mice at distinct ages (Fig. 1a) could provide crucial systems-level insight into 

CAG length-dependent selective pathogenesis in HD. Using deep mRNA sequencing (RNA-

seq), we profiled the striatum, cortex, and liver of 2-, 6-, and 10-month (denoted “m”) old 

mice that express one wildtype endogenous Htt allele and a second Htt allele with knock-in 

of human mHTT exon 1 carrying one of six different CAG lengths (denoted Q; i.e. Q20, 

Q80, Q92, Q111, Q140, and Q175)11. These Htt knockin mice were chosen to include those 

that exhibit progressive disease phenotypes (Q140 and Q175), as well as those with modest 

(Q111) and no overt phenotypes but with molecular signature changes (Q80, Q92, and 

Q111)12-14. We sequenced 8 animals per genotype and age for each tissue, with a total of 

432 RNA-seq samples. Differential gene expression analyses showed robust age- and CAG 

length-dependent increases in aberrantly expressed genes in the striatum and to a lesser 

degree in the cortex, while such CAG length-dependent gene expression is not a feature of 

the liver transcriptome (Fig. 1b; Supplementary Table 1).

Brain and peripheral tissue transcriptomes in Q175 mice

To evaluate whether CAG length-dependent genes are also dysregulated in other brain 

regions and peripheral tissues, we generated a second set of RNA-seq data (173 samples) to 

survey the transcriptome of five additional brain tissues and six peripheral tissues from Q175 

and wild-type (WT) mice at 6m of age (Fig. 1c; Supplementary Table 2). Although this 

tissue survey used WT controls carrying murine Htt (Q7) and not the Q20 controls used in 

the full series, we found very few if any differentially expressed genes between Q20 and WT 

mice (Supplementary Fig. 1). For consistency with the rest of the tissue survey, we also 

carried out differential analysis between striatum Q175 and WT samples (WT samples for 

liver and cortex were not available). Our tissue survey confirmed that the striatum, the brain 

region most vulnerable in HD, has the largest number of differentially expressed (DE) genes 

(Fig. 1c). Intriguingly, white gonadal fat, a tissue not previously implicated in HD but that is 

adjacent to testes that do show degeneration in HD15, showed the second highest number of 

DE genes. The tissue survey also replicated previously reported results such as the lack of 

gene expression changes in the heart of HD mice16. To gain insight into global tissue 

similarities and differences of transcriptomic response to polyQ expansion within Htt, we 

evaluated the concordance of differential expression among the brain and peripheral tissues 

(Fig. 1d). We observe that the brain tissues cluster relatively tightly together, while 

peripheral tissues form two looser clusters. None of the peripheral tissues is correlated with 
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brain tissue at or above the correlation coefficient threshold of r = 0.20, suggesting that 

Q175 mice exhibit brain-specific differential transcriptome changes at 6m of age.

Huntingtin CAG length- and age-dependent gene co-expression network

We reasoned that a consensus network analysis17 across the 3 time-points would allow us to 

define modules of genes that are co-expressed at all 3 time-points and study their CAG 

repeat-dependent variation across all three ages. The 3 consensus analyses (one per tissue) 

identified 37 striatal, 35 cortical, and 34 liver consensus modules (Supplementary Table 3) 

across a total of 140 striatum, 142 cortex and 141 liver samples. The modules range in size 

from 38 to nearly 1,900 genes and contain a total of 12,654 genes in the striatum, 11,325 

genes in the cortex, and 11,590 genes in the liver (each gene can belong to only one module 

or can be unassigned). In this manner, network analysis reduced thousands of genes across 3 

ages to a relatively small number of coherent gene modules that represent distinct 

transcriptional responses to the varying CAG length alleles in the murine Htt locus. To 

quantify the overall relationship between a module and CAG length across all 3 ages, we 

used a meta-analysis of correlations of module eigengenes (summary expression profiles) 

with CAG length. We identified 13 striatal and 5 cortical modules that pass a meta-analysis 

significance Z statistic threshold of 5 (corresponding to P ≈ 10−7, Fig. 2 and Supplementary 

Table 3). None of the liver modules satisfied this criterion.

The network analyses provide several layers of information. First, the strength and 

significance of associations between modules and CAG length are strongest in the striatum, 

suggesting that CAG length affects entire co-expression modules more strongly in the 

striatum than in the cortex or liver. Second, the meta-analysis significance statistics allow us 

to rank modules by their overall association with CAG length (Fig. 2c-f). Third, a major 

output of network analysis is a continuous (“fuzzy”) measure of module membership (MM) 

for all genes in all modules (Supplementary Table 3). The module membership measures 

how similar the gene expression profile is to the eigengene (summary profile) of the module. 

Genes whose profiles are highly similar to the eigengene can be identified as intramodular 

hub genes18; such genes are often useful for implicating relevant biological pathways and 

prioritizing genes for functional studies19.

To explore the biological implications of the CAG length related modules, we carried out 

gene functional enrichment studies (Supplementary Tables 4-7). Striatal module M2 has the 

strongest negative association with CAG length (Fig. 2c) and is highly enriched with genes 

involved in cAMP signaling, postsynaptic density proteins, and caudate (i.e. striatum) 

marker genes (Supplementary Tables 4 and 7). M11 and M52 appear to be glia-related, and 

M25 is enriched for glutamate receptor signaling. Arguably, one of the most interesting 

modules is M34, which is down-regulated in a CAG length-dependent manner even at 2m, 

and is highly enriched with transcription and chromatin factors.

Among the 8 striatal modules that have positive correlation with CAG length, M20 has the 

strongest correlation and is enriched for P53 signaling, cell division, and protocadherin 

genes. M7, M39, and M46 are involved in stress responses, including cell death (M7), DNA 

damage repair (M39), and glucocorticoid signaling (M46). Intriguingly, DNA damage repair 

has been implicated in modifying pathogenesis in HD mice20 and age-at-onset in HD 
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patients21. Other up-regulated striatal modules reveal the impact of mutant CAG repeats on 

mitochondria (M9, M43) and proteostasis (M1, M10, M39) genes, which have already been 

implicated in HD22,23.

Among the cortical modules correlated with CAG length (Fig. 2e, 2f), M4 has the most 

significant negative correlation and is enriched in genes related to calcium signaling, 

synapses, and glutamatergic neurons (Supplementary Tables 4-6). These pathways are 

consistent with a pathogenic role of cortical neurons in HD10. Cortical M45 is a glial module 

involved in FGF signaling, ensheathment of neurons, and fatty acid biosynthesis, and M6 

and M7 are enriched with axon guidance genes. The latter suggests certain 

neurodevelopmental pathways could be dysregulated by mHtt.

Preservation of module-CAG length associations in independent HD mouse model and 
patient datasets

We next studied whether genes in the 18 CAG length-dependent modules are dysregulated in 

other brain regions or peripheral tissues of HD mice. We found that average module-CAG 

length correlations are more preserved among the brain tissues; none of the modules 

strongly change with genotype in the peripheral tissues in Q175 mice (Fig. 3a and 

Supplementary Table 8). Interestingly, striatal M34 and M43 modules appear striatum-

specific, as they show few correlations with genotype in other brain regions. Three modules 

enriched with glial genes (M11, M20, and M45) exhibit high correlation across multiple 

brain regions, suggesting that glial gene changes may be more widespread in HD mouse 

brains.

We next asked whether the CAG length dependence of these modules derived from allelic 

series knockin mice are preserved in other HD mouse models (Fig. 3b; see Methods and 

Supplementary Table 9 for a description of the data). We find that the majority of the 

module-genotype associations are preserved in R6/2 (13 of 13) and BACHD-∆N17 mice (12 

of 13, Fig. 3b), both of which express neuropathogenic fragments of mHTT, and in two 

other full-length mHtt mouse models (Q150 knockin and YAC128).

Finally, three striatal modules (M2, M25, and M7) are significantly preserved in two human 

post-mortem HD caudate datasets24,25, and one cortical module (M4) is preserved in two out 

of four HD cortical datasets24,26 (Fig. 3c and 3d). These modules are mostly not preserved in 

cerebellar datasets, consistent with selective vulnerability in HD. Furthermore, we found 543 

of our striatal CAG length-dependent module genes are significantly altered (FDR < 0.05) in 

at least one of the publicly available HD caudate gene expression datasets24,25, and 

importantly, 431 of these genes are significantly altered in both patient datasets 

(Supplementary Table 10). Similarly, we found 25 CAG length-dependent cortical module 

genes that are significantly differentially expressed in at least one of the available HD patient 

cortical samples (Supplementary Table 10)24,26. As expected, these genes are significantly 

enriched in the three striatal modules (M2, M7 and M25) and one cortical module (M4), 

with M2 containing by far the largest number of such genes (Fig. 3e; Supplementary Table 

10).
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M2 module implicates mHtt CAG length in age-dependent impairment of striatal medium 
spiny neuron identity gene expression in HD mice

Our network analyses identified M2 as the module with the strongest association with CAG 

length and the largest number of dysregulated genes. Hub genes for module M2 (i.e. those 

with highest correlation with the M2 eigengenes; Fig. 4a) contain well-known striatal MSN 

marker genes (e.g. Ppp1r1b/Darpp-32, Drd1a, Drd2, Gpr6). Although striatal marker gene 

down-regulation has been shown before in HD mice and HD patients24,27, these studies 

could not rule out confounding effects such as neuronal loss (in postmortem brains), 

expression of only mHTT fragments, or transgene expression levels11.

Our current study directly addresses whether striatal marker gene dysregulation is an early 

and CAG length-dependent pathogenic event in HD mice with endogenous levels of full-

length mHtt expression. To assess striatal marker gene dysregulation, we used a collection of 

striatum-specific marker genes ranked by Allen Brain Atlas (ABA)28 that are also marker 

genes of the striatal MSNs29. Remarkably, M2 contains 70 of the 88 top striatum-specific 

ABA marker genes that are present in our striatal transcriptome datasets (hypergeometric p-

value 3.3×10−51; Fig. 4b; Supplementary Table 11). These striatal marker genes exhibit 

striking patterns of down-regulation that are both CAG length- and age-dependent (Fig. 4b), 

which is not observed for ABA pan-neuronal marker genes in the striatum (Fig. 4c; 

Supplementary Table 11). This finding reveals surprisingly that Htt CAG length expansion 

selectively impairs age-dependent maintenance of striatal marker gene expression.

To further strengthen this observation, we asked specifically whether CAG expansion 

differentially impacts striatal direct-pathway MSNs (i.e. D2-MSNs) that are affected earlier 

in HD compared to indirect pathway MSNs (i.e. D1-MSNs) that are affected later in HD30. 

Indeed, the M2 module is significantly enriched with genes in two independently generated 

D2-MSN gene sets while such enrichment is absent for D1-MSN gene sets31,32 (Fig. 4e; 

Supplementary Table 11). This latter finding provides fresh evidence that mHtt CAG length 

selectively affects D2-MSN enriched genes. Finally, module M2 genes are also well 

preserved in laser-captured HD patient striatal MSNs24, suggesting MSN identity genes may 

also be affected in HD patients (Fig. 4e; Supplementary Table 11).

Emerging concepts suggest that operationally defined neuronal identity genes are the genes 

that are relatively unique to, and stably expressed in, a group of neurons throughout their 

lifetime and subserve critical functions33,34. Our finding that the M2 module contains the 

most known MSN marker genes (e.g. ABA) implies that mHtt CAG expansion may impair 

age-dependent maintenance of striatal MSN identity gene expression. Importantly, we found 

that mHtt CAG length may also modestly affect the ABA cortical marker genes (i.e. M4 

module; Fig. 4d); Supplementary Table 11, suggesting that mHtt CAG expansion may 

impair age-dependent maintenance of striatal and likely cortical neuronal identity genes, but 

with the magnitude of dysregulation much more robust in the striatum.

M7 module reveals up-regulation of cell death signaling genes in HD mouse striatum

Annotation of the striatal M7 module surprisingly reveals the CAG length- and age-

dependent up-regulation of 17 cell death related genes in HD mouse striata (Fig. 5a, 5b). The 
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cell death genes in M7 are differentially expressed in brain but not peripheral tissues in 

Q175 mice, and their differential expression is also preserved in other HD mouse and patient 

striata (Fig. 5c-5e; Supplementary Table 12). This finding is surprising, since heterozygous 

HD knockin mice do not show striatal MSN cell loss up to 12m of age13,14. We used 

unbiased stereology to confirm that Q175 heterozygous mice do not show changes in the 

striatal neuron and GFAP+ astrocyte cell numbers up to 12m of age (Supplementary Fig. 2). 

Thus, we conclude that the up-regulation of cell death genes in M7 as well as down-

regulation of MSN marker genes in M2 are unlikely due to cellular composition changes 

(e.g. MSN loss or proliferation of astrocytes); instead, they likely reflect CAG length-

dependent increase in the vulnerability of MSNs to degeneration (akin to a prodegenerative 

state) in HD mice.

Dysregulation of protocadherin clusters in striatal modules

Our results raise the question of how relatively subtle mutation changes (i.e. CAG repeat 

expansion) in Htt lead to graded transcriptional changes among the 18 modules. A potential 

clue to this question is that four of the 18 modules (M20, M34, M39, and M46) are highly 

enriched with cadherin and protocadherin genes (Pcdhs; Fig. 6). Cadherins and 

protocadherins function in neurodevelopment, intercellular signaling, adhesion, synaptic 

function, and neuronal survival35, with a combinatory code of protocadherins thought to 

underlie single neuron identity in vivo36. Prior studies have unraveled critical roles of 

transcriptional and chromatin factors, Ctcf, Rad21 and Rest, in regulating the expression of 

Pcdhs in neurons37,38. Our current study reveals striking dysregulation of 37 out of 58 

clustered Pcdhs (Fig. 6). Intriguingly, among the known Pcdh transcriptional regulators, 

REST is already known to be dysregulated by mHTT in vitro and in vivo39, and both Ctcf 
and Rad21 are present in prominent CAG length-dependent modules (M34 and M7, 

respectively). Bioinformatic analyses reveal that the two highest Htt CAG length dependent 

modules (M2 and M20) are significantly enriched with known Ctcf binding sites in the brain 

(Supplementary Fig. 3). Together, our findings suggest the study of Pcdh gene clusters may 

be a tractable route to dissect the upstream regulatory mechanisms underlying mHtt CAG 

length-dependent molecular networks in HD mouse brains.

Proteomic validation of CAG length-dependent genes and modules

An important step in a transcriptome profiling study is to validate transcriptional changes by 

orthogonal methods, ideally at the protein level. Although we (Supplementary Fig. 4) and 

others12 have verified more than a dozen genes in the M2 module that are dysregulated in 

Q175 mice; we believe more relevant evidence for validation of CAG length-dependent 

transcriptome changes is unbiased validation at the proteome level. To this end, we utilized 

striatal tissues from the same 6-month mouse brains used for RNA-seq to perform 

quantitative proteomic analyses with mass spectrometry40 (MS, Fig. 7a). Prior studies have 

shown that such proteomic studies allow the identification and quantification of a substantial 

proportion of all proteins expressed in the investigated cells41. Furthermore such studies can 

be used as input for WGCNA to build unbiased protein networks42. In the current study, we 

quantified relative protein abundance in 45 of the 48 striatal samples using an accurate label-

free quantitation method (MaxLFQ43; Supplementary Table 13) that permits application of 

standard statistical tests. In total, 254,543 unique peptides and 10,047 proteins were 
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identified according to an accepted FDR of less than 1% on the protein and peptide level 

after removing contaminants (36) and reverse hits (250). Not all proteins could be quantified 

in every sample, but on average 7,774 proteins were identified and quantified per sample.

Across the 45 common striatal samples and 7,039 protein-mRNA pairs present in both 

filtered protein data (Methods) and mRNA network analysis, the correlation of protein LFQ 

intensities and variance-stabilized mRNA data was 0.42. This agrees with other high-

throughput proteomic studies44 which have found similar correlations.

Using the quantitative protein readouts from MaxLFQ, we found CAG length-dependent 

increases in dysregulated proteins in Q111, Q140, and Q175 mice, with a total of 1,370 

proteins found to be CAG length correlated. Moreover, we confirmed 790 proteins with 

continuous CAG length-dependent changes in both RNA and protein levels in the striatum, 

with 133 proteins in Q111 mice, 301 proteins in Q140 mice, and 533 proteins in Q175 mice 

(Fig. 7b; Supplementary Tables 14 and 15). We have validated a substantial number of genes 

that are altered at both the RNA and protein level in a CAG length-dependent manner, hence 

presenting a valuable list of candidate genes for future functional studies in HD model 

organisms.

Intriguingly, although the majority of proteins that are significantly correlated with CAG 

length are positively correlated with their mRNA (i.e. of the 1,370 CAG length-correlated 

proteins identified at the FDR level of 0.1, 1,023 or 75% have positive correlation with their 

mRNA), a small number of proteins (29) with significant CAG length correlation have a 

negative and nominally significant (P < 0.05) correlation with their mRNA levels (Fig. 7c 

and Supplementary Table 15). This subset of genes may reflect the impact of mHtt CAG 

expansion on post-transcriptional regulation of a subset of proteins (e.g. translation, protein 

stability, or clearance). Among these proteins, F8a (or Hap40) is a known HTT interactor 

that mediates vesicular trafficking45. F8a is down-regulated at protein levels but up-regulated 

at RNA levels with increasing CAG length. Our data are consistent with a previously 

observed reduction of Hap40 in the synaptosome of Q175 mice46, suggesting the need to 

study how mHtt may regulate Hap40 as well as other proteins (e.g. Ogt, Golgb1; Fig. 7c) 

with opposing variation in RNA and protein levels and whether such regulation could be 

pathologically relevant.

The advantage of performing high-throughput proteomic validation, instead of validating 

individual proteins, is the ability to examine CAG length-dependent molecular networks at 

both RNA and protein levels. We first used enrichment analyses to show that 8 CAG length-

dependent transcriptome modules are significantly enriched with differentially expressed 

proteins in HD mice, with the M2 and M7 modules having most of such proteins (Fig. 7d; 

Supplementary Table 14). Moreover, by performing WGCNA directly on the proteomic 

dataset using label-free quantitative protein inputs42,43, we defined protein network modules 

(pMs), with several modules showing association with CAG length (Supplementary Table 

15). Summary profiles (eigen-proteins) of 5 protein modules that pass a stringent 

significance threshold |Z| > 4.5 (P ≈ 10−5) are shown in Figures 7e-7i. Impressively, these 

independently created CAG length-dependent protein modules show remarkable overlap 

with the transcriptome modules (i.e. pM2 with M2, pM7 with M7; Fig. 7j; Supplementary 
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Table 16), demonstrating the robustness of these CAG length-dependent molecular (RNA 

and protein) networks and strengthening the confidence of selecting hub genes from such 

modules for further functional studies.

Modifiers of mHTT toxicity in Drosophila

An important step to explore the functional significance of the CAG length-dependent 

modules is to genetically perturb top hub genes in an established HD animal model system. 

To this end, we tested 49 striatal module hub genes (Supplementary Table 17) as genetic 

modifiers in a Drosophila model expressing a mHTT fragment, using age-dependent 

climbing deficits as a sensitive readout of mHTT-induced motor dysfunction42,47. 

Impressively, we found 22 modifier genes using such an in vivo assay, 11 of which are in the 

M2 module, including the top hub genes Arpp21, Camk2b, and Chn1 (Fig. 8a, 8b; 

Supplementary Figs. 5 and Supplementary Tables 18 and 19). Four M7 hub genes and hub 

genes from M20, M34, M43 and M9 are also modifiers in this assay. In support of our 

hypothesis that the hub genes of M34, such as Ctcf, may be critical regulators of mHtt CAG-

dependent transcriptional deficits and neuronal toxicities, we have found that two 

independent heterozygous loss-of-function alleles of the Drosophila Ctcf gene can 

significantly, albeit partially, ameliorate climbing deficits in this Drosophila model (Fig. 8a, 

8b; Supplementary Tables 18 and 19). Moreover, 11 of our validated modifier genes are 

those shown to be CAG length dependent at both RNA and protein levels (Supplementary 

Table 18), providing particularly strong evidence that these genes may be relevant for future 

study in mammalian HD models. Although one may not simply translate fly modifier results 

to those in mammalian models, we reason that loss-of-function mutants may mimic genes in 

modules with negative CAG length correlation (e.g. M2) and overexpression mutants may 

mimic the positively correlated modules (e.g. M7 and M20). Based on such estimation, it is 

intriguing that 9 out of 11 modifiers in M2 module are LOF suppressors, suggesting their 

down-regulation in HD mice may represent compensatory changes to mitigate mHtt 

toxicities. On the contrary, two genes (Camkv and Nagk) showed CAG-dependent changes 

that may result in enhanced toxicities. Future genetic analyses of CAG length-dependent 

module genes in both fly and mouse models of HD will help to systematically validate genes 

that are modifiers of HD pathogenesis in vivo.

HDinHD: an online resource for HD research

Raw and processed data, as well as network analysis plots and phenotypic data related to the 

allelic series HD mice, are hosted on a dedicated website and server at www.HDinHD.org 

(see Methods). Currently, HDinHD comprises three sections: 1) a data repository and gene 

expression browser, allowing access to genomic and proteomic data from the allelic series, 

including raw and normalized RNA-seq counts and relative protein expression values 

(MaxLFQ) from MS; 2) a network browser for online mining of the WGCNA analysis 

reported here; 3) a suite of analysis tools that allow the user to save, share and annotate gene 

lists, which can be compared with existing gene sets, either published or generated by other 

HDinHD users. A long-term goal of HDinHD is to compile a structured catalog of the HD-

related genomic proteomic, and phenotypic datasets. We envision that HDinHD will help 

access the large-scale HD allelic series RNA-seq and proteomic data and consensus network 

analysis results, and will provide a collaborative environment for HD researchers to access 
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and share both published and unpublished datasets. Online analysis tools will allow the user 

to annotate gene lists and to test hypotheses in silico in order to facilitate mechanistic and 

therapeutic research for HD.

DISCUSSION

A key advance of our study is the application of extensive genome-wide transcriptomics 

with deep RNA-seq using mice with CAG repeat expansion in the endogenous gene, 

followed by strategic proteomics-based validation studies, to elucidate for the first time the 

CAG length-dependent molecular networks in disease-relevant brain regions. One novel 

finding in our study is the number of CAG length-dependent genes and modules appearing 

to correlate with known vulnerabilities in HD (i.e. striatum more than cortex and none in 

liver), hence supporting the hypothesis that CAG length-dependent molecular changes are 

likely relevant to the underlying vulnerability in the disease.

Our study identified 13 striatal and 5 cortical gene co-expression modules that are strongly 

associated with Htt CAG length. These modules highlight several biological pathways 

impacted by Htt CAG repeat expansion in the striatum and cortex. A continuous measure of 

module membership identifies module hub genes that, at least from a statistical point of 

view, deserve prioritization for genetic perturbation studies. The HD relevance of these CAG 

length-dependent modules is strengthened by the preservation of their association with mHtt 

expression in multiple HD mouse and HD patient datasets. Moreover, our proteomics data 

provide high confidence validation of about 790 proteins as being Htt CAG length 

dependent at both RNA and protein levels in the striatum of HD mice. We show that five 

independently generated, CAG length-dependent protein modules (e.g. M2 and M7) are 

highly preserved with the transcription modules, and are also preserved in other HD models 

and patients. Hence, the hub genes in such modules should be prioritized for further target 

validation studies in HD mice.

A major insight from this study is that CAG repeat expansion in endogenous Htt impairs the 

age-dependent maintenance of striatal MSN identity gene expression. While previous 

studies have shown that a subset of MSN marker genes are dysregulated in HD mice and 

patients24,27, these studies were not designed to assess the impact of endogenous mHtt CAG 

length and evaluated only a subset of MSN identity genes. Our comprehensive 

transcriptomic analyses of Htt knockin allelic series mice allow us to uncover, for the first 

time, the graded effect of mHtt CAG length and age in selective down-regulation of the vast 

majority of MSN identity genes, but not general neuronal marker genes, in the striatum. 

Remarkably, module M2 also is enriched with genes from D2-MSNs, the most vulnerable 

neuronal cell type in HD. Our results are consistent with the emerging concept that neuronal 

cell type identity genes need to be actively maintained in postnatal brains by a specific set of 

transcription and chromatin factors33,34. Disruption of such a program likely leads to 

progressive and selective loss of neuronal identity followed by neurodegeneration, which has 

been found in animal models34. Our study highlights the importance of future studies to 

unravel the molecular program involved in maintaining striatal MSN identity gene 

expression, and to elucidate how mHtt CAG expansion may cause age-dependent 
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interference of such a program. Ultimately, we need to test whether restoring such a program 

could prevent disease onset or progression in HD.

An important long-term goal of our systems level study of HD pathogenesis is to identify the 

precise molecular mechanisms linking mHTT polyQ expansion to transcription and 

chromatin dysregulation. To this end, several clues have already emerged from our analyses. 

First, the dysregulation of a large number of clustered Pcdh genes in four of our modules 

(Fig. 6) suggests that known regulatory factors for Pcdh expression (i.e. Ctcf, Rad21 and 

Rest) may also be involved in mHtt-induced transcriptional dysregulation. Indeed, Rest is a 

known polyQ length dependent interactor of mHttthat is involved in age-dependent neuronal 

transcription48. Hence it would be interesting to study the role of Rest in Htt CAG length 

dependent gene expression in vivo. Similarly, Ctcf and Rad21 are critical chromatin loop 

regulators49, with Ctcf known to be involved in cell identity gene expression50. Since Ctcf 

binding sites are enriched in the promoter region of M2 and M20 genes (Supplementary Fig. 

3), and two independent heterozygous null alleles of Ctcf can ameliorate behavioral deficits 

in a Drosophila model of mHTT fragment toxicities (Fig. 8), it is now important to 

investigate whether Ctcf is dysregulated in HD striatum and contributes to mHtt CAG 

length-dependent transcriptionopathy, including MSN identity gene down-regulation. 

Finally, M34 is not only enriched with transcription and chromatin factors (Supplementary 

Tables 3 and 4) but is also altered in a CAG length-dependent manner at an early age (i.e. 

2m). Hence, M34 module genes (e.g. Ctcf and Ezh2) should be prime candidates to study 

early and causal transcriptional regulators that underlie CAG length- and age-dependent 

modules in HD mouse striatum.

In summary, our study provides a large-scale, comprehensive transcriptomic and proteomic 

characterization of the effects of CAG repeat expansion in endogenous murine Htt in vivo, 

identifying a consistent set of genes (both RNA and proteins) and networks that are 

dysregulated in a CAG length- and age-dependent manner in HD mouse brains. We provide 

integrative genomic evidence to show converging molecular networks that are perturbed in 

both HD mice and patients, and provide proof-of-concept that 22 genes from such networks 

modify mHTT fragment toxicities in Drosophila. Together, our integrative systems findings 

and online database (HDinHD) constitute a rich and novel resource to facilitate the 

discovery of mHtt CAG length-dependent pathogenic mechanisms and novel therapeutic 

targets for HD.

METHODS

Animal breeding and husbandry

We analyzed 6 heterozygous Htt KI lines expressing CAG repeats of 20, 80, 92, 11151, 

14052, and 17512. For each one of the 6 lines, male heterozygous (HET) mice were crossed 

with C57BL/6J female mice at Jackson Laboratory (Bar Harbor, ME). For each line, animals 

born within 3-4 days from litters having 4 to 8 pups were identified by ear tags, tail sampled 

for genotyping and weaned at around 3 weeks of age. HET mice were selected based on the 

CAG repeat to allow a Gaussian distribution of CAG repeats in the experimental cohort to 

avoid skewed distributions. Best Gaussian fit was judged by eye. Body weight cut off: 

experimental animals had to weigh more than 11 g (females) and more than 13 g (males) by 
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5 weeks of age. Animals presenting any anomaly were excluded. Unacceptable anomalies 

were cataracts, malocclusion, missing/small eye, ear infection, unreadable or missing tag. 

Mice were housed in cages enriched with two play tunnels, a plastic bone and enviro-dri® 

(Shepherd Specialty Papers). Animal cage changes occurred weekly. The cages were 

maintained on a 12:12 light/dark cycle. Water and food were freely available at all times.

This study was carried out in strict accordance with the recommendations in the Guide for 

the Care and Use of Laboratory Animals, NRC (2010). The protocols were approved by the 

Institutional Animal Care and Use Committee of PsychoGenics, Inc., an AAALAC 

International accredited institution (Unit #001213).

Tissue selection and mRNA sequencing

Striatum, cortex, and liver were selected for full profiling. Specifically, at each of 3 time 

points (2, 6, 10 months), four female and four male heterozygous KI mice from each of the 6 

Htt CAG repeat lengths were profiled, resulting in 48 samples from each tissue and each 

time point. Additional samples from wild type littermates from the Q20 line were profiled as 

well (striatum at all 3 ages, cortex and liver at 2 and 10m only). In addition to the fully 

profiled tissues, 11 other tissues were selected for a smaller study (referred to as the Tissue 

Survey) involving 8 (4 male and 4 female) wild type mice from the 6-month Q=20 line, and 

8 (4 male and 4 female) heterozygous mice from the 6-month Q175 line, for a total of 16 

samples per tissue. The 11 tissues include 5 brain regions (brainstem, cerebellum, 

hippocampus, hypothalamus/thalamus, and corpus callosum) and 6 peripheral tissues (white 

gonadal adipose, white intestinal adipose, brown adipose, skin, heart, and gastrocnemius 

muscle). Messenger RNA was extracted and prepared using the Illumina TruSeq RNA 

sample prep kit and sequenced on an Illumina HiSeq2000 sequencer using strand-specific, 

paired end, 50-mer sequencing protocols to a minimum read depth of 40 million reads per 

sample. The sequencing was performed in 2 separate batches (6-month samples in batch 1, 

2- and 10-month samples in batch 2). Clipped reads were aligned to mouse genome mm9 

using the STAR aligner53 using default settings. Read counts for individual genes were 

obtained using HTSeq54.

Data preprocessing

While differential expression and association testing in DESeq2 package uses raw counts, 

properly normalized and pre-processed data are necessary for downstream analyses such as 

WGCNA. For each tissue, we retained those mRNA profiles whose observed counts are 5 or 

more in at least 8 samples. This resulted in 17,197, 17,308 and 15,406 gene mRNA profiles 

retained for further analysis in the striatum, cortex and liver, respectively. We then applied 

the variance stabilizing transformation implemented in DESeq2 version 1.2.1055. Next, we 

removed variation due to gender using ComBat56 as well as possible outlier samples, 

identified as samples whose standardized sample connectivity is below −5 (that is, 5 

standard deviations below the mean)57. Outlier identification was performed in an 

unsupervised manner, without regard to genotype or any other sample characteristics. All 

sample numbers after outlier removal are presented in Supplementary Table 20. At each 

step, we checked sample clustering trees for presence of strong clusters; if these were 
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present, we reduced the inter-cluster variation using Empirical Bayes-moderated linear 

regression.

Weighted Gene Co-expression Network Analysis

Weighted Gene Co-expression Network Analysis (WGCNA)58,59 starts by constructing a 

matrix of pairwise correlations between all pairs of genes across the measured samples in a 

data set. To minimize effects of possible outliers, biweight midcorrelation60 was used with 

argument maxPOutliers=0.05. A “signed hybrid” pairwise gene co-expression similarity was 

then formed; it equals the gene-gene correlation if the correlation is positive, and equals zero 

otherwise. Next the co-expression similarity was raised to the power β=6 (WGCNA default) 

to arrive at the network adjacency. This procedure has the effect of suppressing low 

correlations that may be due to noise. The result is a network adjacency that is zero for 

negatively correlated genes and is positive for positively correlated genes. Adjacency of 

weakly correlated genes is nearly zero due to the power transformation.

Consensus Module Analysis

Consensus modules are defined as sets of nodes that are highly connected in multiple 

networks; loosely speaking, one could identify the consensus module in individual network 

analyses across multiple sets, so the module can be said to arise from a consensus of 

multiple data sets17. Within WGCNA, consensus modules are identified using a consensus 

dissimilarity that is used as input to a clustering procedure. To describe our definition of the 

consensus dissimilarity, we introduce the following component-wise quantile function for a 

set of k matrices A(1), A(2), …, A(k):

Quantileq, ij A 1 , A 2 , …, A k = Quantileq Aij
1 , Aij

2 , …, Aij
k .

Thus, each component of the quantile matrix is the given quantile (0≤q≤1) of the 

corresponding components in the individual input matrices. Using this notation, we define 

the consensus network corresponding to input networks A(1), A(2), …, A(k) and quantile q as

Consensusq A 1 , A 2 , …, A k = Quantileq cTOM 1 , cTOM 2 , …, cTOM k ,

where cTOM stands for calibrated Topological Overlap Measure (TOM). The calculation of 

cTOM starts with calculating the standard TOM58 in each input data set (network). The 

calibration aims to make TOM values comparable between different networks. In this work 

we use as calibration the quantile normalization implemented in the R package 

preprocessCore61. For purposes of quantile normalization we treat the independent 

components (say the lower triangle) of TOM for each input network as a vector of 

measurements corresponding to one “sample;” thus, quantiles of the calibrated TOM 

matrices in each network equal each other and equal the average of the corresponding 

quantiles in the original, uncalibrated TOM matrices.

Given the consensus network defined above, one defines the consensus dissimilarity 

ConsDissij as
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ConsDissij = 1 − Consensusq A 1 , A 2 ,  …, A k .

The consensus dissimilarity is used as input to average-linkage hierarchical clustering. 

Modules are defined as branches of the resulting dendrogram and are identified using the 

Dynamic Tree Cut algorithm62. Modules are labeled by (in principle arbitrary) numeric 

labels and, for easier visualization, also by colors. Not all genes will be assigned to modules; 

the label 0 and color grey are reserved for genes not assigned to any module. This procedure 

results in exclusive module assignments: each gene can be assigned to at most one module 

(below we define a continuous measure of module membership that is non-exclusive). To 

make it easier to compare different network analyses (e.g., consensus analyses of different 

tissues), we have chosen the labels such that, whenever possible, modules from different 

analyses that overlap significantly in their gene content carry the same label. For example, 

striatum module 2 and cortex module 2 overlap significantly and hence carry the same label 

2 and color blue.

Consensus module eigengenes

The module identification procedure results in modules containing genes with highly 

correlated expression profiles. It is useful to summarize such modules using a single 

expression profile per input data set. We use the module eigengene E, defined as the left-

singular vector of the standardized expression matrix with the largest singular value58. Since 

consensus modules are defined across k independent data sets, one can form their summary 

profiles in each of the data sets. Thus, a consensus module gives rise to k eigengenes, one in 

each input data set, that provide a summary “expression value” for each sample in the data 

set. This allows one to relate consensus module eigengenes to other sample information, for 

example to disease status or other traits, in each data set, and study similarities and 

differences between the input data sets in terms of the module-trait associations.

Continuous measure of module membership

Module eigengenes lead to a natural measure of similarity (membership) of all individual 

genes to all modules. We define a continuous (“fuzzy”) measure of module membership of 

gene i in module I as

MM j
I = cor xi, EI ,

where xi is the expression profile of gene i and EI is the eigengene of module I. This 

definition is applicable to every individual network (data set). The value of module 

membership lies between −1 and 1. Higher MMi
I indicate that the expression profile of gene 

i is similar to the summary profile of module I. Since we use signed networks here, we 

consider module membership near −1 low. The advantage of using correlation to quantify 

module membership is that the corresponding statistical significance (p-values) can be easily 

computed. Genes with highest module membership are called hub genes. Hub genes are 

centrally located inside the module and represent the expression profiles of the entire 

module. Some genes may have high continuous module membership in two or more 
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modules and may, in this sense, be considered members of (or intermediate between) several 

modules.

Module membership in consensus modules

In a consensus module analysis, we calculate the fuzzy module membership MM for each 

gene in each data set. Thus, for each consensus analysis of 3 data sets there are 3 values for 

the module membership of each gene in each module. We then use meta-analysis to 

summarize the 3 module memberships into a single meta-analysis Z statistic19. Genes with 

the highest module membership meta-analysis Z statistics are called consensus hub genes. It 

has been shown that consensus hub genes can be useful in studying functional categories 

associated with clinical traits19.

Meta-analysis

Our analysis methods make extensive use of meta-analysis since we often pool association 

and module membership statistics across the 3 time points. A simple, yet powerful meta-

analysis method relies on combining the Z statistics from individual data sets63,64. 

Specifically, for each gene i and data set a, one obtains a Z statistic Zia, for example, by the 

inverse normal transformation of the p-value. Next, a meta-analysis Zi statistic for each gene 

is calculated as

Zi = 1
Nsets

∑
a = 1

Nsets
Zia .

The meta-analysis statistic Zi is approximately normally distributed with mean 0 and 

variance 1; the corresponding p-value is then calculated using the normal distribution.

Matching of genes across data sets and organisms

To compare gene expression between different sets, we used the following gene matching 

procedure. We first transform all expression data to gene-level measurements. For 

microarray data where several probes or probe sets may represent a single gene, the probe-

level data were turned into gene-level data using the function collapseRows65. For 

Affymetrix and Illumina microarrays we use the default settings of collapseRows (this 

implies selecting the probe with the highest mean expression as the representative for each 

gene); for two-color Agilent microarray data we select the most variant probe. For 

comparisons between different species, we map genes using the gene homology mappings 

provided by the Mouse Genome Informatics website, The Jackson Laboratory, Bar Harbor, 

Maine. World Wide Web (URL: http://www.informatics.jax.org/homology.shtml), retrieved 

April 2014.

Conversion between gene symbols and Entrez identifiers

We consistently used Entrez identifiers to unambiguously identify genes. Since many 

external resources identify genes by symbols, we used the Bioconductor package 

org.Mm.eg.db to convert gene symbols to Entrez identifiers. Typically not all gene symbols 

can be unambiguously mapped to an Entrez ID; genes with such ambiguous mappings were 
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discarded. For example, from the top 100 ABA striatum markers28, only 88 could be 

mapped to an unambiguous Entrez ID.

CTCF enrichment analysis

A list of Ctcf target genes was created by scanning the canonical promoter region (1,000bp 

upstream of transcription start site) of Mus musculus RefSeq genes (assembly mm9) for the 

presence of Ctcf peaks in the “Cortex Adult 8 weeks CTCF TFBS Chip-Seq Peaks from 

ENCODE/LICR” UCSC track66. For each of the 18 consensus top modules, overlap with 

Ctcf target genes was determined, as well as the overlap of randomly generated RefSeq gene 

lists (with the same number of genes in the module) with the Ctcf Target Genes (10,000 

permutations). Z-score was calculated as the number of standard deviations our observed 

value was above the mean of the observed values within the empirical null distribution.

Preservation studies in independent human and mouse data

To quantify module association with genotype or disease status in independent data, we 

downloaded the following 8 human and 4 mouse data sets (sample numbers below reflect 

our outlier removal):

Durrenberger (2011) CN (GSE26927)—19 human post-mortem caudate nucleus 

samples25, assayed on the Illumina HumanRef-8 v2.0 expression beadchip.

Hodges (2006) CN, BA4, BA9, CB (GSE3790)—Human post-mortem data from HD 

patients and controls from 4 different brain regions24, assayed on the Affymetrix U133A and 

B microarrays.

Harvard Brain Tissue Resource Center PFC, VC, CB—The roughly 800 individuals 

in these datasets are composed of approximately 400 Alzheimer’s disease (AD) cases, 230 

Huntington’s Disease and 170 controls matched for age, gender, and post mortem interval 

(PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource 

Center (HBTRC). Three brain regions (cerebellum (CB), visual cortex (VC), and 

dorsolateral prefrontal cortex (PFC) were profiled on a custom-made Agilent 44K 

microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, 

including splice variants, miRNAs and high-confidence non-coding RNA sequences. 

Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel 

scores (HD), regional brain enlargement/atrophy. The data can be accessed at http://

www.synapse.org under accession ID syn4505. An analysis of AD samples and controls has 

been reported previously26; here we only used the HD and control (non-AD) samples.

BACHD-∆N17 (GSE64386)—Striatum samples from 4 wildtype and 4 BACHD-∆N17 

mice at each of 2, 7, and 11 months of age67. For our analysis we discarded the 2-month data 

and treated the BACHD-∆N17 7- and 11-month mice as the transgenic group, with the 7- 

and 11-month wild type samples as controls.
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R6/2 (GSE9857)—Striatum samples from 9 mice expressing a short N-terminal fragment 

of mutant huntingtin (R6/2) and 9 wild type controls27 assayed on the Affymetrix Mouse 

Genome 430 2.0 Array.

Q150 (GSE32417)—Striatal samples from 4 Hdh Q150 mice and 4 wild-type littermates 

each at 6, 12 and 18 months68, assayed on the Affymetrix Mouse Gene 1.0 ST Array. In our 

analysis of preservation of association with genotype we only used the 12- and 18-month 

samples.

YAC128 (GSE18551)—Striatal samples from 9 transgenic mice (4 at 12 months and 5 at 

24 months) expressing human huntingtin with 120 CAG repeats (YAC128) and 9 wildtype 

littermates69, assayed on the Affymetrix Mouse Genome 430 2.0 Array.

Preprocessing of independent data

For Illumina and Agilent data we have started our pre-processing from the author-

normalized data available online; for Affymetrix data sets we started from the raw data 

contained in CEL files and applied the Robust Multi-chip Average (RMA) normalization 

method61. We then applied the following steps: (1) removal of low-expressed probes whose 

expression indices are likely mostly noise; (2) log-transformation of the expression data 

(only for data which had not been log-transformed yet) which makes the data more 

amenable to standard statistical analysis; (3) removal of potential outliers identified using 

Sample Network methodology57; (4) adjustment for technical covariates, including batch 

effects, and for gender and age where necessary; (5) quantile normalization61 where there is 

evidence of significant correlation of quantiles of individual samples. Finally, to facilitate 

cross-platform and cross-organism comparisons, the probe-level data were turned into gene-

level data using the function collapseRows. Although our aim was to pre-process all data 

sets in a uniform manner, the pre-processing differs by necessity somewhat from data set to 

data set depending on platform, availability of technical and biological sample information, 

sample number, and other factors.

Module-genotype association in independent data

We calculated weighted average correlations of module genes with mutant genotype in 

mouse data and HD patient status in human data. The weight of each gene equals its module 

membership Z score raised to power 4, thus emphasizing module hub genes. We further 

identified human genes that change in the same direction in allelic series striatum and in the 

2 human CN datasets and pass the FDR threshold of 0.1 (suggestive significance) in each 

human CN dataset. For the cortex, we analogously identified genes that change in the same 

direction in allelic series cortex and human cortex data and pass the FDR threshold of 0.1 in 

3 out the 4 human cortex datasets. Genes that pass the above criteria are summarized in 

Supplementary Table 9.

Proteomic sample preparation and profiling

Striata were lysed in 100μl lysis buffer (8M urea, 50mM Tris-HCl pH 8.2, 75mM NaCl, 

5mM EDTA, 5mM EGTA, 10mM sodium pyrophosphate, protease inhibitor cocktail 

Complete Mini (Roche, Mannheim, Germany). Tissues were crushed using forceps and 
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extracts were sonicated using the beaker resonator BR30 (Bandelin Electronic, Germany). 

Samples were centrifuged at >14,000g, 4°C for 20 min to remove tissue/cell debris and the 

protein concentration of the supernatant was determined by Bradford Assay.

For each sample, 200μg of protein was reduced with 10mM dithiothreitol for 30 min and 

alkylated with 55mM iodoacetamide for 30 min in the dark. Subsequently, endoproteinase 

Lys-C (Wako) was added at an enzyme-to-substrate ratio of 1:200 and incubated for 4 h at 

room temperature. Samples were thereafter diluted 1:4 with 20mM Tris-HCl pH 8.2 before 

adding trypsin (Promega) at an enzyme-to-substrate ratio of 1:100 followed by overnight 

incubation. The resulting peptide mixtures were acidified by addition of TFA to a final 

concentration of 0.5% and subsequently desalted using C18 Sep-Pak columns (100mg 

sorbent weight, Waters). Peptides were eluted with 50% ACN, 0.5% acetic acid, samples 

split into two aliquots (100μg each), snap-frozen in liquid nitrogen, and lyophilized.

Of each sample 100μg of peptides were subsequently fractionated by high pH reversed 

phase chromatography70. Briefly, lyophilisates were reconstituted in 20mM ammonium 

formate, pH 10 (buffer “A”), and loaded onto an XBridge C18 200 × 4.6 mm analytical 

column (Waters) operated with the Äkta Explorer system (GE Healthcare). Peptides were 

eluted and separated at a flow rate of 1mL per minute applying a linear gradient with 

increasing acetonitrile concentration from 7% to 30% buffer “B” (buffer “A” supplemented 

with 80% acetonitrile) over 15 min followed by an increase to 55% over 5 min, a washing 

phase for 5 min at 100% and a final equilibration phase at 0% B for 10 min. The collected 

18 fractions of eluting peptides were combined in a concatenated way to generate 6 fractions 

for each individual sample70. Samples were frozen in liquid nitrogen and lyophilized. After 

desalting via C18 Sep-Pak columns (100mg sorbent weight, Waters), sample fractions were 

snap-frozen, lyophilized, and reconstituted in 0.1% FA for MS analysis.

Samples were loaded onto a reverse phase analytical column packed in-house with 1.9μM 

C18 beads (Dr. Maisch) by an EASY nLC1000 UPLC system (Thermo Fisher Scientific) at 

flow of 400nL/min at 95% buffer A (5% DMSO, 0.1% FA). Peptides were resolved by a 

linear gradient over 96 min from 10% to 30 % buffer (5% DMSO, 80% acetonitrile) 

followed by an increase over 50% B in 13 min to 60% B in 6 min. Eluting peptides were 

electrosprayed via a nanoelectrospray ion source into a Q Exactive mass spectrometer 

(Thermo Fisher Scientific). The Q Exactive mass spectrometer was operated in the data-

dependent acquisition mode acquiring full scans at a resolution of 70,000 and fragmentation 

spectra (MS/MS mode) of the ten most abundant peptide ions at a resolution of 17,500 in the 

Orbitrap mass analyzer.

Processing of MS Data

All raw files acquired were processed with the MaxQuant software suite (version 1.5.2.10) 

using the Andromeda search engine for peptide and protein identification and 

quantification71. The experiments were collectively searched against a Uniprot mouse 

database (version 11/2014). Carbamidomethylation of cysteine was set as a fixed 

modification and oxidation of methionine and N-terminal acetylation were set as variable 

modifications. The minimum required peptide length was seven amino acids and up to two 

missed cleavages were allowed. A false discovery rate (FDR) of 1% was selected for both 
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protein and peptide identifications and a posterior error probability (PEP) less or equal to 1% 

for each peptide-to-spectral match was required. The match between runs option was 

enabled for a time window of 0.5 min. For protein quantification, the MaxLFQ feature of 

MaxQuant was enabled and used with default parameters. In particular, the minimum LFQ 

ratio count was set to 2 as suggested in Cox et al.43.

The proteinGroups-output table of MaxQuant was used for further analysis. In particular this 

table contains the UniProt identifiers and the label-free quantification (LFQ) values for each 

sample analyzed. A protein group can potentially refer to several UniProt identifiers, if the 

detected peptides do not allow distinguishing between these identifiers. In these cases, the 

identifier of the protein that was identified with the most peptides (the “leading” protein) 

was used as main identifier. LFQ values equal to zero represent missing data and were 

replaced by NaN (not-a-number) flags. All protein groups containing proteins from the 

contaminant sequence database or the decoy sequence database were removed.

For differential and network analyses, we excluded one apparent outlier (normalized sample 

connectivity Zk<−4) and retained those of the 10,747 quantified proteins that had no more 

than 50% missing values across the 46 samples (i.e., at most 23 missing values). This 

resulted in 7,711 proteins for differential abundance and network analyses. For analysis of 

concordance between protein and mRNA data, we retained 7,039 protein-mRNA pairs that 

were retained in both protein and mRNA network analysis.

Statistical testing

All mRNA differential expression analyses were performed in R using the Bioconductor72 

package DESeq2 version 1.4.5. We have removed samples that were identified as potential 

outliers in the pre-processing described above. We have used the default settings (Wald test 

with a beta prior), with gender as a covariate. We have disabled the independent filtering and 

Cooks distance cutoff options in DESeq2. We tested differential expression in two-sample 

tests of higher Q (80, 92, 111, 140, 175) vs. Q20 samples (this results in 5 comparisons), and 

we also tested association of the expression profiles with Q viewed as a continuous numeric 

variable. Modeling of RNA-seq data within the DESeq2 package explicitly models the 

dependence of variance on genotype and mean expression.

Differential expression and association testing for non-count data (module eigengenes, 

proteomic data and others) was carried out using a robust correlation test (Student t-based p-

value based on the value of biweight mid-correlation, a robust estimator of correlation). For 

purposes of association testing, missing values, if any, were treated as missing at random, 

avoiding problems with imputation and/or estimation of censored correlation. We expect that 

our treatment makes the significance statistics conservative in the case of proteomic data, 

where missing values indicate no detected peaks. All non-count data were transformed, if 

necessary, so that the expected variance is approximately independent of value (e.g. variance 

stabilization within DESeq2 and log-transformation for other data).

Two-sided tests were used for all association and differential expression tests. For 

enrichment testing, one-sided tests (alternative of over-enrichment) were used.
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The Benjamini-Hochberg False Dicovery Rate estimates73 was used to adjust significance p-

values for multiple comparisons. For simplicity, the FDR estimates were computed 

separately for each association test.

Enrichment was tested using the Fisher exact (equivalently, hyper-geometric) test.

Code availability

R scripts used in the present work are available from the authors upon request.

Quantitative PCR Validation

An independent cohort of 6m Q175 and WT mice (n = 4 per genotype) was used to validate 

selected RNA-seq expression data from our network analyses as performed previously77. 

Statistical testing was performed using one-sided Student’s T tests. Primers used were: ActB 
For 5′-ATGCTCCCCGGGCTGTAT-3′ Rev 5′-CATAGGAGTCCTTCTGACCCATTC-3′, 

Pde10a For 5′-CTATCGGCGGGTTCCTTACC-3′ Rev 5′-

TGGGAGAAGTGGTGTTGCTC-3′, Ddit4l For 5′-GCTTACAGATGCCCAGGTTCT-3′ 
Rev 5′-AGCCTCCTTCAGCCATTACT-3′, Penk For 5′-TTGCAGGTCTCCCAGATTTT-3′ 
Rev 5′-AGCCAGGACTGCGCTAAAT-3′, Cnr1 For 5′-

CAGGCTCAACGTGACTGAGA-3′ Rev 5′-CCTTGTAGCAGAGAGCCAGC-3′, Gpx6 
For 5′-CCTAAAGAACTCCTGCCCTCC-3′ Rev 5′-

TGACCGAGTGGAACAAAGACA-3′, Gpr6 For 5′-ACACGCAGCCATGTGGCGTT-3′ 
Rev 5′-GGGCGGTGCTAGGCAATGCT-3′, Npas4 For 5′-

AGCATTCCAGGCTCATCTGAA-3′ Rev 5′-GGCGAAGTAAGTCTTGGTAGGATT-3′, 

Darpp32 For 5′-TCCTCCTTCCCCTACCAGTG-3′ Rev 5′-

AGCACAAACAAAACGCAGCA -3′, Drd1a For 5′-GGCCTCTTCCTGGTCAATC-3′ 
Rev 5′-GAGCGTAGTCTCCCAGATCG-3′, Drd2 For 5′-TGAACAGGCGGAGAATGG-3′ 
Rev 5′-CTGGTGCTTGACAGCATCTC-3′, Igfbp4 For 5′-

GCAGGTGGGGGACTCAGTGC-3′ Rev 5′-GGCCAGAGGCAGACAGCCAG-3′, Actn2 
For 5′-GGTGAAACAGCTGGTGCCGGT-3′ Rev 5′-GGCGCCGCAGACGCTCATTA-3′, 

Nfe2l3 For 5′-GGAAAACGAGGAAGGGGTGT-3′ Rev 5′-

TGCTCAGAAAAGGTGGAATGT-3′, Gsto1 For 5′-

ACCTGAAGAATAAGCCCGAGTG-3′ Rev 5′-GAGAATCCCCACCAAGGAAGC-3′, 

Il33 For 5′-TCCTTGCTTGGCAGTATCCA-3′ Rev 5′-

ACCGTCGCCTGATTGACTTG-3′, Mobp For 5′-GTGGACGCCTGCTGATGTAA-3′ Rev 

5′-CCAAAAGACCCGTTCCCTGA-3′, Mal For 5′-GTCAGCCCATCTTCCCCATT-3′ 
Rev 5′-TCAAGGTTCCCAGTTCCCAC-3′, Hdac1 For 5′-

GTGCCTGCTTAGGAGCTCTG-3′ Rev 5′-CCTCCACCCTACAGAATTGG-3′, Onecut1 
For 5′-CAGCCGATGTGAAGACTGGA-3′ Rev 5′-CGGTGGTGGTGGTGGTAATC-3′, 

and Wt1 For 5′ AAGGACACGACTGTGGATCTACATC-3′ Rev 5′-

TTCCGGCAAACCTGATAGGA-3′.

Unbiased stereology

Unbiased stereological counting of the total numbers of NeuN+ neurons and GFAP+ 

astrocytes in striatum at 4.5 and 10 month WT and Q175 het mice (N=6 per age per 

genotype) were performed by MBF Labs (Williston, VT) using the optical fractionator 
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method. Serial 60-μm thick coronal sections of the striatum were prepared and every 6th 

section was stained free-floating with anti-NeuN (1:100,000, Millipore MAB377) followed 

by horse anti-mouse (1:250, Vector BA-2001) or anti-GFAP (1:20,000, DAKO Z033401-2) 

followed by goat anti-rabbit (1:250, Vector BA-1000) for cell counting.

Screening in Drosophila

Mutant and overexpression alleles were obtained from the Bloomington Drosophila Stock 

Center at Indiana University (http://flystocks.bio.indiana.edu/). The inducible shRNAs were 

obtained from the Vienna Drosophila Resource Center (http://stockcenter.vdrc.at/control/

main). Nervous system expression was achieved using elav-Gal4 (C155). The NT-HTT128Q 

(F33A) line used for this study has been previously reported74 and expresses human 

HTTN231Q128. Motor performance tests were carried out using two replicates of 15 age-

matched females per genotype and 10 trials per time point as previously described42. All 

genes except Ctcf were tested in one batch (41 genotypes) against common controls; Ctcf 
was tested in a second batch of 30 genotypes. Dunnett’s test following ANOVA was used to 

quantify statistical significance of differences in motor performance. Supplementary Figure 

6 lists the relevant test statistics (ANOVA F values and Dunnett’s test p-values).

HDinHD Database Access

Server, data sets, and network browser for the allelic series transcriptome study and 

consensus network analyses will be made available to the public at https://www.hdinhd.org.

Accession Codes

All of our transcription data are available at Gene Expression Omnibus (GSE65776) and our 

online tool (HDinHD). The mass spectrometry proteomics data have been deposited to the 

ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier 

PXD003442 (http://www.ebi.ac.uk/pride/archive/projects/PXD003442).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The research was supported by CHDI Foundation, Inc. HD research in the Yang lab is also supported by 
NINDS/NIH grants (R01NS074312, R01NS049501 and R01NS084298). X.W.Y is also supported by the David 
Weill fund from Semel Institute and Carol Moss Spivak Scholar in Neuroscience from Brain Research Institute at 
UCLA. We acknowledge the support of the NINDS Informatics Center for Neurogenetics and Neurogenomics (P30 
NS062691). We also thank PsychoGenics for help in breeding the knockin allelic series and dissecting the tissues as 
part of a contract research agreement with CHDI.

References

1. Ross CA, et al. Huntington disease: natural history, biomarkers and prospects for therapeutics. 
Nature reviews. Neurology. 2014; 10:204–216. [PubMed: 24614516] 

2. Vonsattel JP, DiFiglia M. Huntington disease. Journal of neuropathology and experimental 
neurology. 1998; 57:369–384. [PubMed: 9596408] 

Langfelder et al. Page 21

Nat Neurosci. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://flystocks.bio.indiana.edu/
http://stockcenter.vdrc.at/control/main
http://stockcenter.vdrc.at/control/main
https://www.hdinhd.org
http://www.ebi.ac.uk/pride/archive/projects/PXD003442


3. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s 
disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell. 1993; 
72:971–983. [PubMed: 8458085] 

4. Orr HT, Zoghbi HY. Trinucleotide repeat disorders. Annual review of neuroscience. 2007; 30:575–
621.

5. Gusella JF, MacDonald ME. Molecular genetics: unmasking polyglutamine triggers in 
neurodegenerative disease. Nature reviews. Neuroscience. 2000; 1:109–115. [PubMed: 11252773] 

6. Gusella JF, MacDonald ME. Huntington’s disease: seeing the pathogenic process through a genetic 
lens. Trends in biochemical sciences. 2006; 31:533–540. [PubMed: 16829072] 

7. Aylward EH, et al. Regional atrophy associated with cognitive and motor function in prodromal 
Huntington disease. Journal of Huntington’s disease. 2013; 2:477–489.

8. Biagioli M, et al. Htt CAG repeat expansion confers pleiotropic gains of mutant huntingtin function 
in chromatin regulation. Human molecular genetics. 2015; 24:2442–2457. [PubMed: 25574027] 

9. Seong IS, et al. HD CAG repeat implicates a dominant property of huntingtin in mitochondrial 
energy metabolism. Human molecular genetics. 2005; 14:2871–2880. [PubMed: 16115812] 

10. Wang N, et al. Neuronal targets for reducing mutant huntingtin expression to ameliorate disease in 
a mouse model of Huntington’s disease. Nature medicine. 2014; 20:536–541.

11. Pouladi MA, Morton AJ, Hayden MR. Choosing an animal model for the study of Huntington’s 
disease. Nature reviews. Neuroscience. 2013; 14:708–721. [PubMed: 24052178] 

12. Menalled LB, et al. Comprehensive behavioral and molecular characterization of a new knock-in 
mouse model of Huntington’s disease: zQ175. PloS one. 2012; 7:e49838. [PubMed: 23284626] 

13. Menalled LB, et al. Early motor dysfunction and striosomal distribution of huntingtin 
microaggregates in Huntington’s disease knock-in mice. The Journal of neuroscience: the official 
journal of the Society for Neuroscience. 2002; 22:8266–8276. [PubMed: 12223581] 

14. Smith GA, et al. Progressive axonal transport and synaptic protein changes correlate with 
behavioral and neuropathological abnormalities in the heterozygous Q175 KI mouse model of 
Huntington’s disease. Human molecular genetics. 2014; 23:4510–4527. [PubMed: 24728190] 

15. Van Raamsdonk JM, et al. Testicular degeneration in Huntington disease. Neurobiology of disease. 
2007; 26:512–520. [PubMed: 17433700] 

16. Mielcarek M, et al. Dysfunction of the CNS-heart axis in mouse models of Huntington’s disease. 
PLoS genetics. 2014; 10:e1004550. [PubMed: 25101683] 

17. Langfelder P, Horvath S. Eigengene networks for studying the relationships between co-expression 
modules. BMC systems biology. 2007; 1:54. [PubMed: 18031580] 

18. Horvath S, Dong J. Geometric interpretation of gene coexpression network analysis. PLoS 
computational biology. 2008; 4:e1000117. [PubMed: 18704157] 

19. Langfelder P, Mischel PS, Horvath S. When is hub gene selection better than standard meta-
analysis? PloS one. 2013; 8:e61505. [PubMed: 23613865] 

20. Lu XH, et al. Targeting ATM ameliorates mutant Huntingtin toxicity in cell and animal models of 
Huntington’s disease. Sci Transl Med. 2014; 6:268ra178.

21. Identification of Genetic Factors that Modify Clinical Onset of Huntington’s Disease. Cell. 2015; 
162:516–526. [PubMed: 26232222] 

22. Labbadia J, Morimoto RI. Huntington’s disease: underlying molecular mechanisms and emerging 
concepts. Trends in biochemical sciences. 2013; 38:378–385. [PubMed: 23768628] 

23. Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. 
Nature. 2006; 443:787–795. [PubMed: 17051205] 

24. Hodges A, et al. Regional and cellular gene expression changes in human Huntington’s disease 
brain. Human molecular genetics. 2006; 15:965–977. [PubMed: 16467349] 

25. Durrenberger PF, et al. Common mechanisms in neurodegeneration and neuroinflammation: a 
BrainNet Europe gene expression microarray study. Journal of neural transmission. 2014

26. Zhang B, et al. Integrated systems approach identifies genetic nodes and networks in late-onset 
Alzheimer’s disease. Cell. 2013; 153:707–720. [PubMed: 23622250] 

27. Kuhn A, et al. Mutant huntingtin’s effects on striatal gene expression in mice recapitulate changes 
observed in human Huntington’s disease brain and do not differ with mutant huntingtin length or 

Langfelder et al. Page 22

Nat Neurosci. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



wild-type huntingtin dosage. Human molecular genetics. 2007; 16:1845–1861. [PubMed: 
17519223] 

28. Lein ES, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007; 
445:168–176. [PubMed: 17151600] 

29. Grange P, et al. Cell-type-based model explaining coexpression patterns of genes in the brain. Proc 
Natl Acad Sci U S A. 2014; 111:5397–5402. [PubMed: 24706869] 

30. Reiner A, et al. Differential loss of striatal projection neurons in Huntington disease. Proc Natl 
Acad Sci U S A. 1988; 85:5733–5737. [PubMed: 2456581] 

31. Heiman M, et al. A translational profiling approach for the molecular characterization of CNS cell 
types. Cell. 2008; 135:738–748. [PubMed: 19013281] 

32. Lobo MK, Karsten SL, Gray M, Geschwind DH, Yang XW. FACS-array profiling of striatal 
projection neuron subtypes in juvenile and adult mouse brains. Nature neuroscience. 2006; 9:443–
452. [PubMed: 16491081] 

33. Fishell G, Heintz N. The neuron identity problem: form meets function. Neuron. 2013; 80:602–
612. [PubMed: 24183013] 

34. Deneris ES, Hobert O. Maintenance of postmitotic neuronal cell identity. Nature neuroscience. 
2014; 17:899–907. [PubMed: 24929660] 

35. Chen WV, Maniatis T. Clustered protocadherins. Development. 2013; 140:3297–3302. [PubMed: 
23900538] 

36. Toyoda S, et al. Developmental epigenetic modification regulates stochastic expression of clustered 
protocadherin genes, generating single neuron diversity. Neuron. 2014; 82:94–108. [PubMed: 
24698270] 

37. Guo Y, et al. CTCF/cohesin-mediated DNA looping is required for protocadherin alpha promoter 
choice. Proc Natl Acad Sci U S A. 2012; 109:21081–21086. [PubMed: 23204437] 

38. Monahan K, et al. Role of CCCTC binding factor (CTCF) and cohesin in the generation of single-
cell diversity of protocadherin-alpha gene expression. Proc Natl Acad Sci U S A. 2012; 109:9125–
9130. [PubMed: 22550178] 

39. Zuccato C, et al. Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-
controlled neuronal genes. Nat Genet. 2003; 35:76–83. [PubMed: 12881722] 

40. Mann M, Kulak NA, Nagaraj N, Cox J. The coming age of complete, accurate, and ubiquitous 
proteomes. Molecular cell. 2013; 49:583–590. [PubMed: 23438854] 

41. Geiger T, Wehner A, Schaab C, Cox J, Mann M. Comparative proteomic analysis of eleven 
common cell lines reveals ubiquitous but varying expression of most proteins. Molecular & 
cellular proteomics: MCP. 2012; 11 M111 014050. 

42. Shirasaki DI, et al. Network organization of the huntingtin proteomic interactome in mammalian 
brain. Neuron. 2012; 75:41–57. [PubMed: 22794259] 

43. Cox J, et al. Accurate proteome-wide label-free quantification by delayed normalization and 
maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics. 2014; 13:2513–2526. 
[PubMed: 24942700] 

44. Sharma K, et al. Cell type- and brain region-resolved mouse brain proteome. Nat Neurosci. 2015; 
18:1819–1831. [PubMed: 26523646] 

45. Pal A, Severin F, Lommer B, Shevchenko A, Zerial M. Huntingtin-HAP40 complex is a novel 
Rab5 effector that regulates early endosome motility and is up-regulated in Huntington’s disease. 
The Journal of cell biology. 2006; 172:605–618. [PubMed: 16476778] 

46. Valencia A, et al. Striatal synaptosomes from Hdh140Q/140Q knock-in mice have altered protein 
levels, novel sites of methionine oxidation, and excess glutamate release after stimulation. Journal 
of Huntington’s disease. 2013; 2:459–475.

47. Kaltenbach LS, et al. Huntingtin interacting proteins are genetic modifiers of neurodegeneration. 
PLoS genetics. 2007; 3:e82. [PubMed: 17500595] 

48. Lu T, et al. REST and stress resistance in ageing and Alzheimer’s disease. Nature. 2014; 507:448–
454. [PubMed: 24670762] 

49. Phillips JE, Corces VG. CTCF: master weaver of the genome. Cell. 2009; 137:1194–1211. 
[PubMed: 19563753] 

Langfelder et al. Page 23

Nat Neurosci. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



50. Dowen JM, et al. Control of cell identity genes occurs in insulated neighborhoods in mammalian 
chromosomes. Cell. 2014; 159:374–387. [PubMed: 25303531] 

51. Jacobsen JC, et al. HD CAG-correlated gene expression changes support a simple dominant gain of 
function. Human molecular genetics. 2011; 20:2846–2860. [PubMed: 21536587] 

52. Menalled LB, Sison JD, Dragatsis I, Zeitlin S, Chesselet MF. Time course of early motor and 
neuropathological anomalies in a knock-in mouse model of Huntington’s disease with 140 CAG 
repeats. The Journal of comparative neurology. 2003; 465:11–26. [PubMed: 12926013] 

53. Dobin A, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013; 29:15–21. 
[PubMed: 23104886] 

54. Anders S, Pyl PT, Huber W. HTSeq–a Python framework to work with high-throughput sequencing 
data. Bioinformatics. 2015; 31:166–169. [PubMed: 25260700] 

55. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq 
data with DESeq2. Genome biology. 2014; 15:550. [PubMed: 25516281] 

56. Johnson WE, Rabinovic A, Li C. Adjusting batch effects in microarray expression data using 
Empirical Bayes methods. Biostatistics. 2007; 8:118–127. [PubMed: 16632515] 

57. Oldham MC, Langfelder P, Horvath S. Network methods for describing sample relationships in 
genomic datasets: application to Huntington’s disease. BMC systems biology. 2012; 6:63. 
[PubMed: 22691535] 

58. Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. 
Statistical Applications in Genetics and Molecular Biology. 2005; 4

59. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC 
bioinformatics. 2008; 9:559. [PubMed: 19114008] 

60. Langfelder P, Horvath S. Fast R Functions for Robust Correlations and Hierarchical Clustering. 
Journal of statistical software. 2012; 46

61. Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high 
density oligonucleotide array data based on variance and bias. Bioinformatics. 2003; 19:185–193. 
[PubMed: 12538238] 

62. Langfelder P, Zhang B, Horvath S. Defining clusters from a hierarchical cluster tree: the Dynamic 
Tree Cut library for R. Bioinformatics. Nov.2007 :btm563.

63. Stouffer, SA. The American soldier. Princeton University Press; Princeton: 1949. 

64. Zaykin DV. Optimally weighted Z-test is a powerful method for combining probabilities in meta-
analysis. Journal of evolutionary biology. 2011; 24:1836–1841. [PubMed: 21605215] 

65. Miller JA, et al. Strategies for aggregating gene expression data: the collapseRows R function. 
BMC bioinformatics. 2011; 12:322. [PubMed: 21816037] 

66. Shen Y, et al. A map of the cis-regulatory sequences in the mouse genome. Nature. 2012; 488:116–
120. [PubMed: 22763441] 

67. Gu X, et al. N17 Modifies Mutant Huntingtin Nuclear Pathogenesis and Severity of Disease in HD 
BAC Transgenic Mice. Neuron. 2015

68. Giles P, et al. Longitudinal analysis of gene expression and behaviour in the HdhQ150 mouse 
model of Huntington’s disease. Brain research bulletin. 2012; 88:199–209. [PubMed: 22001697] 

69. Becanovic K, et al. Transcriptional changes in Huntington disease identified using genome-wide 
expression profiling and cross-platform analysis. Human molecular genetics. 2010; 19:1438–1452. 
[PubMed: 20089533] 

70. Wang Y, et al. Reversed-phase chromatography with multiple fraction concatenation strategy for 
proteome profiling of human MCF10A cells. Proteomics. 2011; 11:2019–2026. [PubMed: 
21500348] 

71. Cox J, et al. A practical guide to the MaxQuant computational platform for SILAC-based 
quantitative proteomics. Nature protocols. 2009; 4:698–705. [PubMed: 19373234] 

72. Gentleman RC, et al. Bioconductor: open software development for computational biology and 
bioinformatics. Genome biology. 2004; 5:R80. [PubMed: 15461798] 

73. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate - a Practical and Powerful 
Approach to Multiple Testing. J Roy Stat Soc B Met. 1995; 57:289–300.

Langfelder et al. Page 24

Nat Neurosci. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



74. Al-Ramahi I, et al. CHIP protects from the neurotoxicity of expanded and wild-type ataxin-1 and 
promotes their ubiquitination and degradation. The Journal of biological chemistry. 2006; 
281:26714–26724. [PubMed: 16831871] 

Langfelder et al. Page 25

Nat Neurosci. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Workflow and differential expression analysis with respect to Htt CAG length
(a) Overview of experiment design and analysis strategy. (b) Numbers of significantly 

(FDR<0.05) differentially expressed (DE) genes in striatum, cortex and liver. Blue (red) bars 

represent genes significantly down- (up-) regulated with increasing CAG length (Q). (c) 
Numbers of DE genes in the 14 tissues for which we profiled Q175 samples and controls 

including striatum, cortex, liver, and 11 additional tissues. The screening in the cortex and 

liver corresponds exactly to that presented in panel (b); the numbers for striatum are slightly 

different since the analysis in panel (b) used Q20 controls, while the one in panel (c) used 
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WT controls. (d) Heatmap shows correlation of differential expression Z statistics of 

individual genes across the 14 data sets. Correlations whose absolute value is at least 0.2 are 

shown explicitly. Ad., adipose; intest., intestinal; Hypothal./Thal., hypothalamus/thalamus.
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Figure 2. Consensus coexpression network analysis of striatum and cortex identifies multiple 
CAG length-dependent modules
(a and b) Striatum (a) and cortex (b) gene clustering trees. Each module (cluster) is labeled 

by a unique non-grey color, shown below the tree in the first color band, and a numeric 

label. For clarity, the numeric labels are shown only for modules that are strongly associated 

with CAG length Q (meta-analysis Z statistic |Z| > 5). The three-row heatmap below the tree 

indicates associations of individual genes with Q at each timepoint (2, 6, 10 months); blue 

and red indicate genes down- and up-regulated, respectively, with increasing Q. (c-f) 
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Variation of module eigengenes with Q at each of the 3 ages (black: 2 months, blue: 6 

months, orange: 10 months). Points represent means of eigengene “expression” across 

samples with a single CAG length. Error bars give SEM. Inset gives the number of genes in 

the module (n) and the meta-analysis association Z statistics for Q. Only modules with |Z| > 

5 are shown. Eigengene expression values for the 6 month samples were shifted so that their 

mean equals the mean of the Q20 samples across 2 and 10 months. Panels (c) and (d) show 

eigengenes of striatum modules and (e) and (f) of cortex modules negatively and positively 

associated with Q, respectively.
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Figure 3. Association of modules with genotype in mouse and disease status in human data and 
enrichment in human HD-dependent genes
(a-d) Weighted mean correlations (Methods) of module genes with genotype (mouse data) 

or HD status (human data). Statistical significance was determined from a permutation test 

and is indicated by the stars below each mean (*, P<0.05; **, P<0.01; ***, P<0.001; the p-

values are listed explicitly in Supplementary Table S8). Red and blue color indicates the 

same and opposite direction, respectively, of differential expression in the discovery 

(striatum or cortex) and test set. (e) Enrichment of the CAG length-dependent striatal and 
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cortical modules in genes that change consistently and significantly across human CN and 

cortex data (Methods). Bars show hypergeometric test p-values and numbers of common 

genes. Red line indicates Bonferroni-corrected threshold of 0.05. The enrichment p-value 

axis is truncated to 10−20 for clarity.
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Figure 4. Striatal markers in module M2 undergo early and progressive CAG length-dependent 
changes
(a) Network of the top 50 hub genes in M2. Strong red, weak red or white color indicates 

significant change (FDR<0.1) in both, one of two or none of the human CN datasets; blue 

color indicates membership in top 100 ABA striatal markers; green indicates significant 

association with HD status in laser capture microdissection (LCM) data. (b, c) Heatmaps of 

striatum differential expression Z statistics of top ABA striatum neuronal marker genes (b) 

and ABA general neuronal marker genes (c). Genes that overlap with module M2 are 
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marked with a blue bar and listed. Blue and red colors represent genes under- and over-

expressed in higher CAG length compared to Q20, respectively. Bottom row shows the 

permutation test significance of the average of the Z statistics in each column. The y-axis 

range is restricted to 10 for clarity. Red line represents the significance threshold P=0.05. (d) 
Hypergeometric enrichment p-values of striatum module M2 and cortex module M4 in top 

ABA striatal and cortical markers. Red line indicates the Bonferroni-corrected threshold of 

0.05. (e) Hypergeometric enrichment p-values of striatum module M2 in D1- and D2-MSN 

specific genes determined by FACS and bacTRAP, and in genes significantly associated with 

HD status in LCM data.
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Figure 5. Cell death genes in striatum module M7
(a) Network plot of the top 50 hub genes in striatum module M7. Strong red, weak red and 

white color indicate significant (FDR<0.1) and consistent DE between HD samples and 

controls in both, one or none of the human CN datasets; blue color indicates genes 

implicated in cell death. (b) Graphical representation of the cell death pathway with 

dysregulated genes from striatum module M7 highlighted in red. (c-e) Association of cell 

death genes in striatum module M7 with genotype or HD status in other mouse striatum data 

(c), the tissue survey (d), and human post-mortem data (e). Bars show the weighted average 
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correlation of the cell death M7 genes with the relevant genotype or HD status; stars show 

the corresponding permutation test significance (*, P<0.05; **, P<0.01; ***, P<0.001). The 

correlations and p-values are also listed in Supplementary Table S12.
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Figure 6. Protocadherin dysregulation across multiple modules
(a) Schematic of the clustering of mouse protocadherins. Each vertical bar represents one of 

the protocadherin genes. Colored bars show protocadherins that are members of CAG 

length-dependent allelic series consensus modules. (b-e) Network plots of top 10 hub genes 

(center ring), and other hub genes and protocadherins (outer ring) in striatal modules M20 

(b), M34 (c), M39 (d), and M46 (e). Colored circles indicate clustered (colors corresponding 

to schematic above: green, Pcdhα; purple Pcdhβ; blue, Pcdhγ) and unclustered 

protocadherins (pink).
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Figure 7. High-throughput proteomic analysis confirms CAG length-dependent changes in 6-
month striatum of HD mice
(a) Workflow of proteomic profiling. (b) Left barplot represents numbers of proteins 

significantly (FDR<0.1) associated with CAG length (Q). Blue (red) bars denote proteins 

down- (up-) regulated with increasing CAG length. Right barplot represents numbers of 

significant proteins whose mRNA also changes significantly (FDR<0.1) and in the same 

direction. Values in brackets are hypergeometric p-values of overlaps of significant protein 

and gene mRNA profiles. (c) Z statistics for protein association with Q vs. the corresponding 
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mRNA Z statistics. Blue (red) dots represent proteins whose abundance decreases 

(increases) with increasing CAG length. Selected concordant and discordant genes are 

labeled. (d) Bars show hypergeometric enrichment p-values of mRNA module genes in 

proteins that are significantly differentially abundant in the same direction as the module. 

Numbers give the corresponding gene counts. For clarity, the p-value axis is truncated to 

10−15. (e-i) Summary profiles of the 5 protein network modules with strongest association 

with Q, as a function of Q. Boxes indicate the median, interquartile range and confidence 

interval for the median. Whiskers indicate the range of data up to 1.5 of the inter-quartile 

range; points beyond the range of whiskers (if any) are shown individually. (j). Numbers of 

common genes and hypergeometric overlap p-values among selected protein (rows) and 

mRNA (columns) modules. Row and column labels indicate module sizes within the 7,039 

genes common to both mRNA and protein network analyses.

Langfelder et al. Page 38

Nat Neurosci. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. Genetic perturbation studies in a fly model expressing mHTT fragment
Summary of motor performance tests for selected modifiers. Blue line represents controls, 

black line represents transgenic (NT-HTT[128Q]) flies, and red line represents transgenic 

flies with an active modifier. Each data point represents two replicates of 15 age-matched 

females per genotype and 10 trials (n=20). Error bars indicate SEM. Dunnett’s test following 

ANOVA was used to quantify statistical significance. Supplementary Figure 6 lists the 

relevant test statistics (ANOVA F values and Dunnett’s test p-values). Stars indicate pairs of 

means that are significantly different between NT-HTT[128Q] and NT-HTT[128Q]/modifier 

(p<0.05).
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