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Abstract 
Networks of every kind and in numerous fields are 

omnipresent in today’s society (e.g. brain networks, social 
networks) and are the intense subject of research. It would 
be of great utility to have a computationally efficient and 
generally applicable method for assessing similarity of 
networks. The field (going back to the 1950s) has not come 
up with such a method (albeit a few moves in this direction 
exist, such as Jaccard coefficients, QAP--quadratic 
assignment procedure, and more recently Menezes & Roth, 
2013, and Asta & Shalizi, 2014). I present a Bayesian-based 
metric for assessing similarity of two networks, possibly of 
different size, that include nodes and links between nodes. I 
assume the nodes are labeled so that both the nodes and 
links between two nodes that are shared between the two 
networks can be identified.   

 
The method calculates similarity as (a monotonic 

transformation of) the odds that the two observed networks, 
termed V and W, were produced by random sampling from 
a single master network, termed G, as opposed to generation 
by two different but similar networks, termed Gv and Gw. 
The simplest form of the method ignores strengths that 
could be assigned to nodes and links, and considers only 
nodes and links that are, or are not, shared by the networks. 
Suppose there are nV nodes and NV links only in V, nW 
nodes and NW links only in W and nc nodes and Nc links 
shared between the networks. Thus the number of nodes in 
V is nc+ nV and the number in W is nc + nW. The number of 
unique nodes in both V and W is nc+ nV + nW = n. The 
number of links in V is Nc+ NV and the number in W is Nc + 
NW. The number of unique links in both V and W is Nc+ NV 
+ NW = N.  

 
The single master network, G, is assumed to consist of the 

union of the nodes and links in the two networks, and has n 
nodes and N links. The probability a given shared node will 
be randomly and independently sampled twice is 
[(nV+nc)/n][(nW+nc)/n]. The probability a given shared link 
will be randomly and independently sampled twice is 
[(NV+Nc)/N][(NW+Nc)/N]. 

 
If there are two generating networks I assume they each 

have n nodes and N links. I also assume they are similar, 

because we would not be comparing dissimilar networks. 
The degree of similarity is controlled by ‘tuning’ 
parameters1: Gv and Gw are assumed to share αn	
  nodes and 
βN links. The probability a given shared node will be 
sampled twice is then α[(nV+nc)/n][(nW+nc)/n], and the 
probability a given shared link will be sampled twice is 
β[(NV+Nc)/N][(NW+Nc)/N]. The likelihood ratio λjs for G vs 
(GV, GW) as generator of a given shared node is then 1/α 
and the likelihood ratio πjs of a given shared link is then 1/β.  

 
For a non-shared node, say in V, similar reasoning gives a 

likelihood ratio λkV of  
[1-(nW+nc)/n)] /[1– α(nW+nc)/n]  
   and for a non-shared link a likelihood ratio πkV of  
[1-(NW+Nc)/n)] /[1– α(NW+Nc)/N] 
For a non-shared node or link in W substitute a W 

subscript for the V subscript in these likelihood ratios.  
 
Computational efficiency is a necessity if the similarity 

metric is to be applied to large networks. For this reason I 
do not calculate the exact probabilities for the numbers of 
shared and non-shared nodes and links that are observed 
(the combinatoric complexity of such calculations is 
enormous). Instead I make the simplifying assumption that 
each node and link contribute the likelihood ratios given 
above and that the total odds is obtained by multiplying all 
the likelihood ratios together. This simplification can 
perhaps be justified if similar distortion is produced by this 
simplifying assumption for both the cases of G and (GV,GW) 
as generators. Under this simplifying assumption the overall 
odds becomes: 

 
φ(1/2) = (λjs)nc(λkV)nV(λjW)nW(πjs)Nc(πkV)NV(πjW)NW 

 

Taking the log of this product converts the calculation to 
sums and makes calculation highly efficient.  

 
This abstract is too short to permit giving the different and 

more complex results that hold for the several cases when 
the nodes and/or links have associated strengths. I give a 
summary of some of the results here. The results for links 
and nodes are similar so consider the results for nodes. Let 
there be just one set of strength values, Si for the i-th node. 
Norm these to sum to 1.0. For either generation by G or 
(Gv,Gw) assume sampling is made without replacement and 
proportional to strength. Let Ziv and Ziw be the 
probabilities that node i will be sampled by nv+nc samples, 
or nw+nc samples respectively. The Z’s would be difficult to 
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obtain analytically but could be estimated by Monte Carlo 
sampling. Consider two possibilities for the way that Gv and 
Gw overlap. In Case A the probability a node will be shared 
is simply α,	
   independent	
   of	
   strength.	
   In	
   Case	
   B,	
   the	
  
probability	
   a	
   node	
   will	
   be	
   shared	
   is	
   an	
   increasing	
  
function	
  of	
  strength,	
  Yi.	
  	
  
	
  
For	
  Case	
  A	
   the	
   likelihood	
  ratio	
   for	
  a	
  shared	
  node	
   i	
   is:	
  

1/α.	
  For	
  a	
  node	
  k	
  only	
   in	
  V	
   the	
   likelihood	
  ratio	
   is:	
  λkV	
  =	
  
(1-­‐Zkw)/{1	
  –	
  α	
  (1-­‐Zkw)}.	
  For	
  a	
  node	
  only	
  in	
  W	
  exchange	
  
the	
  subscripts	
  v	
  and	
  w.	
  Then	
  we	
  have	
  for	
  the	
  odds	
  due	
  to	
  
nodes:	
  φD	
  =	
  (1/α)ncΠk(λkV)Πj	
  (λjW).	
  
	
  
For	
   Case	
  B	
   the	
   likelihood	
   ratio	
   for	
   a	
   shared	
  node	
   i	
   is	
  

1/Yi.	
  For	
  a	
  node	
  k	
  only	
  in	
  V	
  the	
  likelihood	
  ratio	
  is:	
  λkV	
  =	
  
(1-­‐Zkw)/{1–Yk(1-­‐Zkw)}.	
  Again	
  switch	
  v	
  and	
  w	
  subscripts	
  
for	
  a	
  node	
  only	
  in	
  W.	
  Then	
  we	
  have	
  for	
  the	
  	
  odds	
  due	
  to	
  
nodes:	
  φD	
  =	
  Πi(1/Yi)Πk(λkV)Πj	
  (λjW).	
  	
  
	
  
These	
   expressions	
   would	
   have	
   analogous	
   forms	
   for	
  

links,	
  with	
  different	
  Ns,	
  Z’s	
  and	
  Y’s,	
  and	
  the	
  overall	
  odds	
  
would,	
  as	
  before,	
  be	
  a	
  product	
  of	
  the	
  odds	
  for	
  nodes	
  and	
  
the	
  odds	
  for	
  links.	
  	
  
	
  
The	
   critical	
   difference	
   between	
   Cases	
   A	
   and	
   B	
   is	
   the	
  

degree	
   to	
  which	
  evidence	
  based	
  on	
  an	
  observed	
  shared	
  
node	
   or	
   link	
   is	
   strength	
   dependent:	
   For	
   Case	
   B	
   this	
  
evidence	
   rises	
  as	
   strength	
  decreases.	
   	
  This	
   should	
   raise	
  
concerns:	
  However	
  strengths	
  are	
  obtained	
  there	
  is	
  likely	
  
to	
  be	
  measurement	
  noise	
   that	
   reduces	
   the	
   reliability	
   of	
  
low	
   strength	
   values.	
   This	
  might	
   argue	
   in	
   favor	
   of	
   using	
  
Case	
  A,	
  or	
  if	
  one	
  preferred	
  Case	
  B	
  to	
  restrict	
  the	
  Yi	
  values	
  
to	
   lie	
   above	
   a	
   lower	
   bound.	
   The	
   idea	
   would	
   be	
   to	
   let	
  
evidence	
  depend	
  most	
  on	
   the	
  nodes	
   (or	
   links	
  with	
  high	
  
strength	
  values.	
  	
  
	
  
It should be observed that the existence of a 

computationally efficient and generally applicable metric 
for network similarity would allow alignment of non-
labeled networks. One would search for the alignment of 
nodes that would maximize the metric.  

 
I have many relevant publications demonstrating some 

degree of expertise in Bayesian modeling (e.g.: Shiffrin & 
Chandramouli, in press; Shiffrin, Chandramouli, & 
Grünwald, 2015; Chandramouli & Shiffrin, 2015; Nelson & 
Shiffrin, 2013; Cox & Shiffrin, 2012; Shiffrin, Lee, Kim, & 
Wagenmakers, 2008; Cohen, Shiffrin, Gold, Ross, & Ross, 
2007; Denton & Shiffrin; Huber, Shiffrin, Lyle, & Ruys, 
2001; Shiffrin & Steyvers, 1997). I note that the present 
results are in a vague sense an extension of the metric 
proposed for matching memory probes to memory traces 
that are given in Cox and Shiffrin (2012) and in the 
appendix of Nelsonb and Shiffrin (2013). 
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1. α	
   and	
   β	
   would	
   have	
   to	
   be	
   quite	
   large	
   to	
   produce	
  
reasonable	
  similarity	
  values.	
  Research	
  will	
  be	
  needed	
  
to	
   determine	
   whether	
   the	
   values	
   can	
   be	
   fixed	
   for	
   all	
  
types	
   of	
   networks	
   being	
   compared,	
   or	
   adjusted	
   for	
  
different	
  network	
  types. 
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