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Abstract

Using a process model of skill acquisition allo-
wed us to examine the microstructure of subjects’
performance of a scheduling task. The model, 1n-
plemented in the Soar-architecture, fits many qua-
litative (e.g., learning rate) and quantitative (e.g.,
solution time) effects found in previously collec-
ted data. The model’s predictions were tested
with data from a new study where the identical
task was given to the model and to 14 subjects.
Again a general fit of the model was found with
the restrictions that the task is easier for the mo-
del than for subjects and its performance impro-
ves more quickly. The episodic memory chunks it
learns while scheduling tasks show how acquisition
of general rules can be performed without resort
to explicit declarative rule generation. The model
also provides an explanation of the noise typically
found when fitting a set of data to a power law —
1t is the result of chunking over actual knowledge
rather than “average” knowledge. Only when the
data are averaged (over subjects here) does the
smooth power law appear.

Introduction

From a psychological point of view planning can be
considered a problem-solving activity in which, in

*The third author was partially supported by a grant
from the Joint Council Initiative in HCI and Cognitive
Science, grant number SPG 9018736.
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a prospeclive manner, an ordered sequence of exe-
cutable actions has to be constructed. In a more
formal sense, this means specifying a sequence of
operators with well-defined conditions and conse-
quences that transform a given state into a goal
state. For interesting problems, the entire problem
space cannot be searched, and heuristics must be
used to guide the search.

In scheduling problems, a specific, important
subset of problem solving, the task of the problem
solver is to find an optimal schedule based on the
given constraints (e.g., minimal processing time).
Factory scheduling (so-called job-shop scheduling)
1s a further subset of scheduling tasks, namely, to
find the optimal ordering of activities on machines
in a factory.

Job-shop scheduling has direct, practical im-
portance. Over the last two decades algorithms
have been derived that produce optimal (or near
optimal) solutions for scheduling tasks using ope-
rations research techniques (e.g., Graves, 1981) as
well as Al techniques (e.g., Fox, Sadeh & Bay-
kan, 1989). One of the most popular systems,
based on constraint-propagation, is ISIS (Smith,
Ow, Potvin, Muscettola & Matthys, 1990). Other
Al-based approaches have used the general lear-
ning mechanisms in PRODIGY (Minton, 1990) or
Soar (Prietula, Hsu, Steier & Newell, 1992). These
systems rely on the assumption that general me-
thods for efficient problem solving can be disco-
vered by applying a domain-independent learning
mechanism.

In psychology, on the other hand, little is
known about how scheduling is performed as a


mailto:nerb@rpss3.psychologie.uni-regensburg.de
mailto:krems@rpss3.psychologie.uni-regensburg.cle
mailto:ritter@psyc.nott.ac.uk

problem solving activity and about the acquisition
of scheduling skills (for a counterexample and ear-
lier call to arms, see Sanderson, 1989). One way
to investigate how people acquire skills and know-
ledge in planning tasks is to use a general archi-
tecture for cognition like Soar (Newell, 1990) to
construct and evaluate computational models of
scheduling and the learning processes it incorpo-
rates. This approach provides methods for con-
ceptualizing the problem solving situation and for
implementing considerations on the knowledge le-
vel such as learning.

Thus the main goal of a cognitive approach
(and this paper) is not to find efficient methods
for scheduling, but to find models of skill acqui-
sition that can claim cognitive plausibility. Here,
we first find and describe several empirical cons-
traints on scheduling, and then describe a compu-
tational model that was developed based on these
constraints. Use of this model to interpret further
data allows us to examine performance, including
learning in this domain in a principled, detailed
way. The result we include here is a knowledge-
based explanation of noise in the power law of lear-
ning.

Skill acquisition in scheduling tasks

The Task

The task — for the subjects as well as for the com-
putational model — was to schedule five actions
optimally. The subjects had to act as a scheduler
or dispatcher of a small factory, who's task it was
to schedule jobs on two machines (A and B). Each
job had to be run in a fixed order on both machi-
nes (first A then B) requiring different resources
(processing time). The essential constraint for the
subjects was to find that order of jobs that produ-
ced the minimal total processing time. Sets of five
jobs with randomly created processing times were
given to the subjects on a computer display. The
subjects had to determine which out of five jobs
should be run first, which second, and so on. For
this kind of task an algorithm to find the optimal
solution is available (Johnson, 1954). The general
principle requires comparing the processing tiines
of the jobs and finding the job using the shortest
time on one of the two machines. If this is on na-
chine A than the job has to be run first, if it is on
B, then last. In order to get an optimal solution
this principle has to be applied until all of the jobs
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are scheduled. Suboptimal sequences result if only
parts of the general principle are used, e.g., only
the demands of resources on machine A are used
for ordering the jobs. This special task of modest
complexity was selected because (a) it is simple
enough to assess the value of each trial’s solution
by comparing it to the actual optimal solution, (b)
the task is hard enough to be a genuine problem
for subjects, who have to solve it deliberately, and
(c) solving the task without errors requires disco-
vering and applying a general principle.

What is learned in this task?

Learning to solve scheduling tasks, like learning
in general, requires the acquisition as well as the
storage of rules in memory. In this task, acquisi-
tion is discovering the general rule or inferring at
least useful scheduling heuristic rules while per-
forming the task. If no rule on how to schedule
jobs is available and the problem solver progresses
through blind search, on average no great impro-
vement should occur. Only if the subject genera-
tes internal hypotheses about the schedule orde-
ring rules, and if feedback about the correctness
of these assumptions is available, will the subject
be able to discover efficient scheduling rules. And
then, only if a discovered rule is stored in memory
will the improvement be applied in later trials.
As in impasse-driven learning-theories (VanLehn,
1988), it is assumed that rule acquisition particu-
larly takes place when subjects face a situation in
which their background knowledge is not sufficient
to solve the problem immediately.

Of course, as in other domains, learning in
scheduling tasks depends on the amount of prac-
tice and it is highly situated. An essential ’situa-
tional’ factor, which facilitates or inhibits the ac-
quisition of rules and thus the progress in learning,
is the interaction of the problem solver with the
enviromment. This gives feedback about the qua-
lity of the subject’s problem solving solution and
therefore about the efficiency of the applied rule.

In a recent study (Krems & Nerb, 1992) the
influence of different types of feedback about the
quality of solutions on the learning process was in-
vestigated. Subjects were given either (a) Quanti-
tative information: how good a single solution is
compared with the optimum or previous solutions
of the problem solver. No information about the
underlying rule or how the optimal solution can
he found was given. Or (b) Qualitative informa-
tion: an assessment of a solution in relation to the
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optimal scheduling rule, which out of the n jobs
were correctly scheduled.

Subjects who received quantitative information
about the distance of their own solution to an op-
timum more often discovered a good scheduling al-
gorithm than those who received qualitative hints
about which jobs were correctly scheduled. The
qualitative hint subjects were much more oriented
towards optimizing a single solution rather than
getting insight on a more abstract level. Their be-
havior can be well described within repair-theory
(VanLehn, 1988). The results point to distinct
types of learning based on different kinds of feed-
back.

Sched-Soar

Sched-Soar is a computational model of skill-
acquisition in scheduling tasks. The architec-
tural component is strictly separated from the
task-specific knowledge. Soar, a candidate unified
theory of cognition (Newell, 1990), was used as the
general cognitive architecture because learning,
particularly impasse-driven learning, is an essen-
tial part of this architecture (Rosenbloom, Newell,
Laird & McCarl, 1991). Sched-Soar uses 401 pro-

ductions implementing eight problem-spaces.

Empirical constraints

The empirical constraints are taken from expe-
riments (Krems & Nerb, 1992) where 38 subjects
each created 100 schedules. Although the main
focus of this study was to investigate the effect of
different kinds of feedback on learning, the data
also describe how long it takes to solve the task,
what kind of learning occurs, and so on. The main
empirical results used to constraint the design of
our process model of scheduling skill acquisition
are:

(1) Total processing time: The task takes 22.3 s,
on average, for a novice (min-value: 16 s, max-
value: 26 s.).

(2) General speed-up effect: On average, the pro-
cessing time for scheduling a set of jobs decreased
22% from the first ten trials to the last ten.

(3) Improvement of solutions: The difference bet-
ween the subject’s solutions and the optimum de-
creased more than 50% over the 100 trials.

(4) Suboptimal behavior: It should be emphasi-
zed that even after 100 trials the solutions are not
perfect.
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(5) Algorithm not learned: None of the subjects,
liowever, detected the optimal scheduling rules
(i.e., nobody could give a verbal description of the
underlying principle when asked after the trials).

Model assumptions

In addition to the empirical constraints we include
the following general constraints:

(1) The task is described and represented in terms
of problem spaces, goals and operators, as a Pro-
blem Space Computational Model (Newell, 1990).
All knowledge is implemented as a set of produc-
tions and chunking is used as a universal lear-
ning mechanism. Soar’s bottom-up chunking me-
chanism was used for learning, which means that
chunks were built only over terminal subgoals.
This is proposed as characteristic of human lear-
ning (Newell, 1990, p.317).

(2) A minimum amount of knowledge about
scheduling-tasks is initially provided as part of
long-term knowledge (e.g., to optimize a sequence
of actions it 1s first necessary to analyze the re-
source demands of every action). Also basic alge-
braic knowledge is included, such as ordinal rela-
tions between numbers.

(3) Feedback-driven: If the available internal
knowledge is not sufficient to choose the next ac-
tion to schedule, the supervisor is asked for advice.
These are situations in which a human problem-
solver would have to do the same, or to guess.

Processing steps

Sched-Soar begins with an initial state containing
the five jobs to be scheduled and a goal-state
to have them scheduled well, but without know-
ledge of the actual minimum total processing time.
The minimal scheduling knowledge that Sched-
Soar starts with leads to these main processing
steps, which are applied for every single schedu-
ling step:

(1) Sched-Soar analyses the situation and tries to
find a job to attempt to schedule.

(2a) If no decision can be made, despite exami-
nation of all available internal knowledge, Sched-
Soar requests advice from the environment. The
advice specifies the job that is the optimal choice
to schedule next in the current set.

(2b) After getting advice about which job to sche-
dule next, Sched-Soar reflects on why 1t applies to
the current situation. In doing so, Sched-Soar uses
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Figure 1: Individual data: Processing time in
Soar decision-cycles (DCs) for four sets of simula-
ted data for trials 1 to 16 and a power law fit.

its scheduling and basic arithmetic knowledge to
figure out what makes the proposed job different
from all the others, using features like the relations
between jobs, the resources required by single ac-
tions, and the position of an action in a sequence.
(2c) Based upon this analysis, Sched-Soar memo-
rizes ezplicitly those aspects of the situation that
seem to be responsible for the supervisor’s advice.
We call this kind of chunk an episodic chunk. Epi-
sodic chunks implement search-control knowledge,
specifying what has to be done and when. An ex-
ample is: If two jobs are already scheduled and
three operators suggesting three jobs to be sche-
duled next are proposed and job | has the shor-
test processing time compared to the other jobs
on machine A, then give a high preference value
to the operator to schedule job 1. This kind of
memorizing is goal-driven, done by an operator,
and would not arise from the ordinary chunking
procedure without this deliberation.

If in subsequent trials a similar situation is en-
countered, then Sched-Soar will bring its memo-
rized knowledge to bear. Because the memorized
information is heuristic, positive as well as nega-
tive transfer can result. And because only explicit,
specific rules are created, general declarative rule
based behavior appears to arise slowly and errati-
cally.

(3) The job is assigned to the machines and book-
keeping is performed.

Results

Figure 1 shows the solution time of 4 series of 16
randomly created tasks that were solved by Sched-
Soar. Neither the power function (r? = 0.55) nor a
simple linear function (r? = 0.53) proves a good fit
to these data. Figure 2 shows that when averaged
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Figure 2:  Averaged data: Processing time in DCs
for four sets of simulated data for trials 1 to 16 and
a power law fit.

over series the data fit a simple power function
well (T' = 274.0 x N=°3 with r? = 0.95).

A closer look at the processing times shows
that the variance in the individual trials comes
from two main sources: the negative transfer of
chunked knowledge and the number of requests
for advice. Negative transfer results, when an epi-
sodic chunk, built during solving a previous task,
suggests an action in a situation that appears simi-
lar to the prior one, but which requires a different
action. If this occurs, the situation has to be eva-
luated again to find the proper schedule-element,
and, finally, if there is no suitable knowledge, the
model still has to ask for advice. This explains
why we found in the model’s performance that ad-
ditional requests for advice are often preceded by
one or more instances of negative transfer. Both
negative transfer and asking for advice directly
lead to more deliberation efforts as measured in
decision-cycles.

Evaluation of the model

The model was evaluated (1) by investigating how
many of the empirical constraints were met, and
(2) by comparing the model results to empirical
data in a further study.

(1) The results of the model show that the em-
pirical constraints shown in Table 1 are met in
general. (a) Solving the task requires 151 DCs,
averaged over all trials and runs. The Soar archi-
tecture specifies the rate of decision cycles within
half an order of magnitude with a center point
at ten per second. This only constrains the time
per cycle to be between 30 ms to 300 ms (Newell,
1990). The model performs slightly faster than
the mean expected rate of 100 ms/DC, but at 147
ms/cycle it is well within the theoretical bounds.



Table 1: Constraints met and not met
Total processing time met
General speed up effect not met
Improvement of solutions undecidable
Suboptimal behavior persists | met
Algorithm not learned met

(b) The speed-up of the model is much greater
than the subjects’ — 57 % (from 270 DCs in the
first trial to 118 in trial 16) compared to 22%. (c)
The improvement in correctness cannot be decided
yet, since Sched-Soar was initially programmed to
always use advice to produce correct solutions. (d)
The model did not discover the general algorithm.
(e) Sched-Soar’s behavior is suboptimal after 16
trials (and negative transfer might still occur in
later trials).

(2) The model results can be considered theore-
tical predictions about subjects behavior in lear-
ning to solve the task. Some of these predicti-
ons were further evaluated in an additional empi-
rical study because the task in the study forming
the initial empirical constraints (Krems & Nerb,
1992) was not exactly the same as that solved by
the model (in the first study feedback was given
after a complete solution, whereas Sched-Soar is
advised immediately after every single scheduling
level decision). Therefore, a second experiment
was conducted where the exact same task given
to the model was given to 14 subjects. Subjects
were instructed to separate their decisions based
on knowledge from those based on guesses: They
were requested to ask for advice when they did not
know what to do. Each subject solved a total of
18 different scheduling problems.

These subjects’ learning rate is shown in Fi-
gure 3. We found that a power function (7" =
109.6s x N=°38) accounts best for the averaged
data (r? = 0.82, compared to 0.71 and 0.73 for
linear or exponential fits). The average proces-
sing times for trial 1 to 18 vary between 99.4 and
36.3 s. Like many cognitive models (e.g., Peck &
John, 1992), Sched-Soar performs the task more
efficiently than subjects do, predicting values bet-
ween 270 and 116 decision cycles. That means one
has to assume 369 or 313 ms/DC, which is slightly
above the region defined by Newell (1990). The
learning rate (power law coefficient) of the sub-
jects is approximately 26% higher than the lear-
ning rate of the model (-0.3 versus -0.38). In ge-
neral that means that the task is easier for the
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Figure 3: Processing time from trial 1 to 18 for 2
individuals (thin solid lines), the average solution
time of all subjects (dashed line), and a power law
fit to the average.

model and its performance improves more quickly
(but will also stop improving more quickly). If
this tirme constraint is taken seriously, future ex-
tensions to Sched-Soar should include more of the
tasks that subjects must perform that Sched-Soar
has performed for it, such as waiting for advice to
be generated, reading the jobs off the screen, and
typing in the schedule. Another explanation for
the differences between the model‘s and the sub-
jects behavior might be based on the assumption
that the learning mechanisms of Soar and human
subjects are qualitatively similar but that there
are quantitative differences. The model’s beha-
vior might be more efficient because it learns on
every opportunity, whereas human subjects lear-
ning may be more specific than we propose here, or
even probabilistic. We also found a correlation of
r = 0.46 between subjects’ requests for advise, due
to lack of knowledge or wrong decisions, and pro-
cessing time. This corresponds with the finding
about negative transfer of chunked knowledge of
the model, suggesting that the striking similari-
ties in Figure 1 and 3 are both produced by the
same mechanism. But this must be examined on
a finer level before we note them as equivalent.

Conclusions

A major claim of this analysis is that the power
law of practice (Newell, 1990) will appear when
performing the kind of scheduling task used in
these studies, but only when the data are avera-
ged over subjects or trials. In this task, the cause
of the variance is shown clearly not to be noise in
the measurement process or variance in the pro-
cessing rate of the underlying cognitive architec-
ture (which might have been proposed for simp-
ler, more perceptual tasks), or through improved



interactions with the environment (Agre & Shra-
ger, 1990) (although it is related to this), but it
is caused by variance in how learned knowledge is
applied to different situations. It cannot, however,
predict how long a search for an alternative strat-
egy will take because this is an open-loop search in
which, in principle, all explicit as well as nnplicit
knowledge could brought to bear. This regularity
may be further overshadowed by more deliberation
effort. For example, a subject can make simple de-
cisions to ask for advice, or start more elaborate
lookahead search to an arbitrary depth constrai-
ned only by their working memory and, of course,
their motivation. Stripping away this time or re-
placing it with a constant factor should also yield
a power law function on the empirical side, but
only when averaged. A more fine-grained analysis
(Agre & Shrager, 1990; Ritter, 1993) is required
(and is already planned) to look at the firing of
each episodic chunk that lead to negative trans-
fer, comparing this with each subject’s behavior.

On the other hand, further empirical work will
be necessary to answer some of the questions posed
by the model. For example, when will a strategy
change take place, and will the results be of a local
or global nature?

This 1s one of the first problem solving models
to use episodic memory based on learning through
reflection to learn a task in a cognitively plausi-
ble manner. It also shows how both the acquisi-
tion and storage of general rules in memory can
be modelled by the Soar-architecture through ac-
quisition of specific, context dependent rules (in
contrast to VanLehn’s (1991, p. 38) account). As
this model is further developed, it should prove
useful for explaining other aspects of scheduling
behavior (e.g., the effect of further kinds of feed-
back on rule acquisition) and provide a possible
new approach to constraint-based planning.
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