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Using a functional renormalization group approach we study the zero temperature phase diagram of
two-dimensional Bose-Fermi mixtures of ultracold atoms in optical lattices, in the limit when the velocity
of bosonic condensate fluctuations is much larger than the Fermi velocity. For spin-1=2 fermions we
obtain a phase diagram, which shows a competition of pairing phases of various orbital symmetry (s, p,
and d) and antiferromagnetic order. We determine the value of the gaps of various phases close to half
filling, and identify subdominant orders as well as short-range fluctuations from the renormalization group
flow. For spinless fermions we find that p-wave pairing dominates the phase diagram.
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Since the realization of the Mott insulator (MI) transi-
tion [1] in ultracold atom systems, there has been remark-
able progress in ‘‘engineering’’ many-body states in a well-
defined and tunable environment, due to the advances in
trapping and manipulating ultracold atoms in optical latti-
ces [2–4]. Important achievements include the creation of
fermionic superfluids [5], the realization of the Tonks-
Girardeau gas [6] and of Luttinger liquids [7], and the
observation of noise correlations [8]. One of the subjects
of intense study recently has been mixtures of ultracold
bosonic and fermionic atoms. Experiments include the
condensation of molecules in mixtures of fermionic atoms
[5], and the observation of instabilities in Bose-Fermi
mixtures (BFM) [9]. Many other intriguing many-body
phenomena have been proposed, such as the appearance
of charge density wave order (CDW) [10], demixing tran-
sition [11], the formation of composite particles [12], and
polaronic effects [13]. Mixtures of ultracold bosonic and
fermionic atoms that are subjected to optical lattices,
which confine the atoms to move on a 2D lattice, exhibit
one of the most intriguing phenomena of condensed matter
physics, the competition of orders in many-body systems,
which is also observed in a variety of materials, such as
high-Tc compounds [14] and Bechgaard salts [15]. To
capture the properties of the many-body state of these
systems presents a significant theoretical challenge.

In this Letter we study these systems using a functional
renormalization group (RG) approach introduced in the
context of the stability of the Fermi liquid fixed point
[16], and that has been extensively applied to interacting
electrons on lattices in the last few years [17–19], and
has recently been extended to include retardation effects
associated with the electron-phonon interaction [20,21].
Contrary to mean-field and variational approaches [22],
the RG approach includes corrections to the full four-point
vertices in the flow equations, and therefore treats all types
of order in an unbiased way. In this way we obtain the
phase diagram and the values of the gaps of the different
types of order. Furthermore, we can read off the subdomi-

nant orders and the short distance fluctuations from the RG
analysis.

The fermionic atoms in the BFM considered here are
prepared either as a mixture of two hyperfine states (which
we treat in an isospin language), to create spin-1=2 fermi-
ons, or in a single hyperfine state to create spinless fermi-
ons. Fermionic atoms in different hyperfine states interact
via short-range, i.e., on-site interaction, whereas spinless
fermions are essentially noninteracting. Besides two-body
contact interactions, density fluctuations in a condensate of
bosonic atoms induce attractive finite-range interactions
between fermions, with a length scale given by the coher-
ence length of the condensate. The competition between
these two types of interaction leads to many types of
different instabilities and, hence, to a rich phase diagram,
as we discuss here. In the laboratory, this system can be
realized as a 40K-87Rb mixture in an optical lattice created
by Nd:YAG lasers. The interaction between the different
atomic species can be manipulated by either tuning the
system close to a Feshbach resonance, or by using more
than one optical lattice to trap the different types of atoms
and to spatially shift these lattices with respect to each
other.

Ultracold atoms in optical lattices are very accurately
described by a Hubbard model. In the following we write
the model for the case of spin-1=2 fermions. The case of
spinless fermions can be immediately obtained from this
by ignoring one of the spin states. For a mixture of one type
of bosonic atom and two fermionic types that are SU(2)
symmetric, the Hamiltonian is given by:
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where fyi;s (fi;s) creates (annihilates) a fermion at site iwith
pseudospin s (s �" , #), byi (bi) creates (annihilates) a
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mion (boson) number operator, tf and tb are the fermionic
and bosonic tunneling energies between neighboring sites,
�f (�b) is the chemical potential for fermions (bosons),
Ubb is the repulsion energy between bosons on the same
site, Uff is the interaction energy between the two species
of fermions, and Ubf is the interaction energy between
bosons and fermions. In momentum space, this
Hamiltonian is written as:
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where �f;k �
P

q;sf
y
k�q;sfq;s (�b;k �

P
qb
y
k�qbq) is the

fermion (boson) density operator; �b=f;k �
�2tb=f�coskx � cosky� is the bosonic/fermionic dispersion
relation for free particles on a square lattice.

Throughout this Letter we consider the limit of weakly
interacting bosons that form a BEC. We assume further that
the velocity of the condensate fluctuations is much larger
than the Fermi velocity. These assumptions allow us to
integrate out the bosonic modes and use an instantaneous
approximation, i.e., neglect retardation effects. For weakly
interacting bosons, the following approach is well estab-
lished: we assume that the zero momentum mode is macro-
scopically occupied, and formally replace the operator b0

by a number, b0 !
������
N0

p
, where N0 is the number of con-

densed atoms. Next we keep all terms that are quadratic in
bk (with k � 0), and perform a Bogoliubov transforma-
tion, given by: bk � uk�k � vk�

y
�k, to diagonalize the

bosonic Hamiltonian. The eigenmodes �k have a disper-

sion relation given by !k �
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the low-k limit !k � vbjkj, with vb �
��������������������
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. From
this expression for vb, we can read off that large tb (cor-
responding to a weak optical lattice for the bosons) and a
large bosonic density is required. The parameters uk and
uk are given by: u2

k � �!k � �b;k �Ubbnb�=�2!k� and
v2

k � ��!k � �b;k �Ubbnb�=�2!k�. The density fluctua-
tions of the bosons are approximated by: �b;k �������
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�k�, with k � 0. The interaction

between bosons and fermions is given by
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y
�k��f;�k. Next we in-

tegrate out the bosonic modes and use an instantaneous
approximation, leading to the effective Hamiltonian:
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where the induced potential Vind:;k is given by: Vind:;k �

� ~V=�1� �2�4� 2 coskx � 2 cosky�	, with ~V given by
~V � U2

bf=Ubb, and � is the healing length of the BEC
and is given by � �

����������������������
tb=2nbUbb

p
. Note that this approach

is only valid when vb 
 vf, so that the boson-mediated
interaction can be considered instantaneous. In the pres-
ence of retardation one cannot formally define a Hamil-
tonian formulation since the frequency dependence of the
interaction appears explicitly. If that is the case, one has to
consider the frequency dependence of the interaction ex-
plicitly as is done, for instance, in Ref. [20]. Here, however,
the system can be tuned to the nonretarded limit, that is not
the limit in most solid state systems.

Notice that (3) describes the scattering of two fermions
from momenta k1 and k2, that are scattered into momenta
k3 and k4. Because of momentum conservation, k4 �
k1 � k2 � k3, and the interaction vertex, U�k1;k2;k3�,
depends on three momenta [23]. Its bare value is

 U�k1;k2;k3� � Uff � Vind:;k1�k3
: (4)

The RG is implemented by tracing out high energy degrees
of freedom in a region between � and �� d�, where � is
the energy cutoff of the problem. In this process, the vertex
U is renormalized. At the initial value of the cutoff � �
�0 � 8tf, the value ofU is given by (4), which is the initial
condition for the RG. The RG flow is obtained from a
series of coupled integral-differential equations [17] for all
the different interaction verticesU�k1;k2;k3�. From these,
the specific interaction channels, such as CDW, antiferro-
magnetic (AF), and superconducting (BCS), can be iden-
tified:

 VCDW � 4Uc�k1;k2;k1 �Q�; (5)

 VAF � 4U��k1;k2;k1 �Q�; (6)

 VBCS � U�k1;�k1;k2�; (7)

where we have use used: Uc � �2� X̂�U=4, U� �

�X̂U=4 with X̂U�k1;k2;k3� � U�k2;k1;k3�, and Q is
the nesting vector, Q � ��;��. The RG equations read:
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where ‘ � ln��0=��, k � k1 � k2 � p, q1 � p� k1 � k4, q2 � p� k1 � k3, ~‘pp � minf‘p; ‘kg, ~‘0ph � minf‘p; ‘q1
g,
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~‘ph � minf‘p; ‘q2
g, ‘p � ln��0=j�pj�, and G‘�k� �

��j�kj ���=�i!� �k� with �k � �f;k ��f.
In our implementation we discretize the Fermi surface

into M � 24 patches, and hence each of the interaction
channels (5)–(7), is represented by an M�M matrix. At
each RG step, we diagonalize each of these matrices. The
channel with the largest eigenvalue (with the caveat that a
BCS channel needs to be attractive to drive a transition)
corresponds to the dominant order. The elements of the
eigenvector are labeled by the discrete patch indices
around the Fermi surface and the symmetry of the order
parameter is given by this angular dependence. In some
parts of the phase diagram we encounter a divergence in
the RG flow, indicating the onset of ordering with a gap
that is in the detectable regime, i.e., larger than 10�3tf. In
other regimes, where such a divergence is not reached, one
can read off the dominant tendency of the RG flow. In
Fig. 2 we show examples of RG flows as a function of ‘. In
Fig. 2(a), we show the competition between d-wave and
s-wave pairing, with d wave being dominant and s wave
being subdominant. In Fig. 2(b) we show an example with
dominant d-wave channel and subdominant AF channel. In
both cases we find that for short distances (or high ener-
gies) CDW fluctuations are dominant, giving rise to a state
that resembles the findings for high-Tc superconductors.
Note that in some situations the many-body states are
almost degenerate and small changes in the initial inter-
actions can be used to select one particular ground state.

With this procedure we determine the phase diagram of
the system (Fig. 1). In the absence of any coupling to the
bosons, i.e., for ~V � 0, the system shows s-wave pairing
for attractive interaction, Uff < 0, and no ordering for
Uff > 0, i.e., Fermi liquid behavior [24], except for the
special case of half filling where Fermi surface nesting
drives the system to AF order for repulsive interactions,
and to s-wave pairing (degenerate with CDW) for attrac-
tive interaction. If we now turn on the interaction to the
bosons, this picture is modified in the following way: the
boundary of the s-wave regime is moved into the regime of
positive Uff, approximately to a value of Uff where the
effective interaction at the nesting vector Q between the

fermions,Uff � Vind:;Q, is positive, i.e., forUff � ~V=�1�
8�2�. On the repulsive side, and away from half filling, we
find the tendency to form a paired state, either d wave or p
wave [25]. This tendency becomes weaker the further the
system is away from half filling. We typically find a gap in
the vicinity of half filling and further away from � � 0 we
find only an increasing strength of the corresponding in-
teraction channel. For the half-filled system, we find that
for attractive interactions the degeneracy between s-wave
pairing and CDW ordering is lifted, with s-wave pairing
being the remaining type of order. For repulsive interac-
tions, we find an intermediate regime of d-wave pairing,
and for larger values of Uff we obtain AF order.

The RG approach also allows the extraction of the many-
body gaps in the system through a ‘‘poor man’s scaling’’
analysis of the divergent flow: at the point where the
coupling becomes of order of tf the scaling parameter ‘
reaches the value ‘
 � ln�tf=��, where � is the value of
the gap. Hence, �=tf � expf�‘
g can be obtained from
the RG flows such as in Fig. 2. In Fig. 3 we show the gaps
of the problem as a function of Uff=tf in the half-filled
case. As Uff increases, from negative to positive values,
the s-wave gap is replaced by a d-wave gap, and finally for
an antiferromagnetic gap. As is apparent from this figure,
the gap in the d-wave phase is much smaller than the gaps
of the AF order and the s-wave pairing, and almost inde-
pendent of the value of Uff. The latter is the case because
the Uff term is a pure s-wave contribution to the interac-
tion and does not contribute to the d-wave channel. The
d-wave channel has an initial contribution which is entirely
due to the anisotropy of the induced interaction, which
gives only a small value, and as a consequence only a small
value for the gap. The value of the gap (in units of tf) can
be numerically fitted with a BCS expression of the form
a exp��b= ~V�, with a and b given by a � 0:31 and b �
14:2. In units of the Fermi energy EF � 2tf, the gap is
approximately 1%.

We have also performed RG calculations for a system of
spinless fermions. This can be obtained by suppressing one
of the spin indices in (1) or (2). In this case there is a major
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FIG. 2. RG flow for the different effective interactions (in units
of tf) as a function of the RG parameter l ( ~V=tf � 3 and � � 1).
(a) Uff=tF � 0:5; (b) Uff=tf � 1:2.
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FIG. 1. Phase diagram, interaction strength, Uff=tf, vs num-
ber of fermions per site, n, for a Fermi-Bose mixture in a square
lattice in 2D ( ~V=tf � 2, � � 1).
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simplification in the problem since Uff is absent: in a
spinless problem there can be only one fermion per site,
as per Pauli’s principle. Hence, in the absence of bosons,
the spinless gas is noninteracting. The bosons, however,
mediate the interaction between the fermions. Since the
fermions are in different lattice sites the pair wave function
has necessarily a node and hence, no s-wave pairing is
allowed. In other words, in the spinless case the antisym-
metry of the wave function requires pairing in an odd
angular momentum channel. In fact, we find that through-
out the entire phase diagram the fermions develop p-wave
pairing. At half filling we find a similar behavior of CDW
fluctuations on short scales, analogous to the flow shown in
Fig. 2. In solids the conditions for ‘‘spinlessness’’ are hard
to achieve since it usually requires complete polarization
of the electron gas, that is, magnetic energies of the order
of the Fermi energy (a situation experimentally difficult to
achieve in good metals). In cold atom lattices, however,
this is easily achieved.

The many-body states discussed in this Letter can be ob-
served through various methods: AF order could be re-
vealed in time-of-flight images and Bragg scattering [26],
noise correlations [8] can be used to detect the various pair-
ing phases, laser stirring experiments [27] can be used to
detect the phase boundary between AF order and pairing.
The short-scale CDW fluctuations should give a signature
in a photo-association measurement. rf spectroscopy [28]
can be used to quantify the gaps of the various phases.

In summary, we have used a functional RG approach to
study BFM of ultracold atoms in a 2D optical lattice. We
found a number of competing phases, in particular, in the
vicinity of half filling, including AF ordering, s-, p-, and
d-wave pairing. Our approach enables us to quantify the
gaps of these phases, to identify subdominant orders, and
to study short-range fluctuations. Optical lattices of cold
atoms allow for a unique opportunity of the study of
complex many-body states under well-controlled circum-
stances, a situation hardly found in real solids.

We thank E. Altman, E. Demler, A. Polkovnikov,
and C. Morais Smith for illuminating conversations.
A. H. C. N. was supported by the NSF Grant No. DMR-

0343790.

[1] M. Greiner et al., Nature (London) 415, 39 (2002).
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