
UC Santa Barbara
UC Santa Barbara Previously Published Works

Title
Computational screening of magnetocaloric alloys

Permalink
https://escholarship.org/uc/item/2r16636f

Journal
Physical Review Materials, 4(2)

ISSN
2475-9953

Authors
Garcia, Christina A. C
Bocarsly, Joshua D
Seshadri, Ram

Publication Date
2020-02-04

DOI
10.1103/PhysRevMaterials.4.024402
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2r16636f
https://escholarship.org
http://www.cdlib.org/


Computational screening of magnetocaloric alloys
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An exciting development over the past few decades has been the use of high-throughput computa-
tional screening as a means of identifying promising candidate materials for a variety of structural or
functional properties. Experimentally, it is often found that the highest-performing materials contain
substantial atomic site disorder. These are frequently overlooked in high-throughput computational
searches however, due to difficulties in dealing with materials that do not possess simple, well-defined
crystallographic unit cells. Here we demonstrate that the screening of magnetocaloric materials with
the help of the density functional theory-based magnetic deformation proxy can be extended to sys-
tems with atomic site disorder. This is accomplished by thermodynamic averaging of the magnetic
deformation for ordered supercells across a solid solution. We show that the highly nonmonotonic
magnetocaloric properties of the disordered solid solutions Mn(Co1−xFex)Ge and (Mn1−xNix)CoGe
are successfully captured using this method.

I. INTRODUCTION

Recent advances in computing and automated ma-
terials science frameworks [1–6] have enabled high-
throughput in silico screening of crystalline solids aimed
at identifying candidate materials for a variety of ap-
plications including structural materials [7–9], battery
electrodes [4, 10], thermoelectrics [11], photovoltaics
[12, 13], and magnetocalorics [14], among many oth-
ers. In these projects, automated density functional the-
ory (DFT) calculations are performed on a large number
of candidate structures and compositions that have ei-
ther been pulled from the literature or generated using a
set of rules. Properties of interest are predicted from the
results of these first principles calculations, often mak-
ing use of a proxy: a simple quantifiable parameter that
serves as an indicator of the more complex physical phe-
nomenon [14–16]. While this strategy has met with suc-
cess and has expanded the breadth of materials systems
under consideration for various applications, a major
limitation is that these efforts have generally been lim-
ited to evaluating compounds with simple unit cells, and
without atomic site disorder (alloying). Consequently,
alloyed and solid-solution materials are excluded from
these searches, despite experiments suggesting that the
highest-performing materials for a variety of applications
often come from these families.

The importance of screening compositionally disor-
dered materials is especially apparent in the field of mag-
netocalorics, where many of the highest-performing ma-
terials rely on substantial unit cell disorder and non-
stoichiometry for their remarkable properties, includ-
ing (Mn,Fe)2−δ(P,Si) [17–20], La(Fe,Si)13Hx [21, 22],
Gd5(Si,Ge)4 [23, 24], and a variety of substituted
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MnCoGe-based compounds [25–27]. In these materials,
application of a magnetic field causes randomly oriented
spins to align, reducing the entropy of the spin system.
Alternating cycles of adiabatic and isothermal magneti-
zation and demagnetization of a magnetocaloric can be
used to drive a thermodynamic cycle and build an effi-
cient magnetic heat pump [28]. Such devices promise to
provide an energy-efficient and environmentally-friendly
alternative to conventional vapor-compression refrigera-
tion and air conditioning [29, 30], which typically rely
on hydrofluorochlorocarbons, which are now known to
be associated with high global warming potential [31].
The primary metric used to quantify the performance of
a magnetocaloric is the entropy change experienced by
the material upon isothermal application of a magnetic
H field at a temperature T , ∆SM (T,H). This parameter
reaches its peak value near a magnetic transition tem-
perature Tc, where the spins are most susceptible to an
external field. An effective magnetocaloric should there-
fore show a large peak |∆SM (T,H)| at a useful temper-
ature range.

For the high-performing magnetocaloric materials
mentioned above, magnetic moments are strongly cou-
pled to crystal structure, causing their magnetic transi-
tions to couple to discontinuous changes in the crystal
symmetry or lattice parameters. Such systems can show
greatly enhanced (giant) magnetocaloric effects [23]
around their first-order magnetostructural phase transi-
tions. In fact, magnetostructural coupling can lead to an
enhanced magnetocaloric effect even without this type
of first-order transition present [32–35]. We previously
introduced a simple DFT-based proxy for magnetostruc-
tural coupling known as the magnetic deformation [14]
ΣM — a stand-in for magnetostructural coupling — ob-
tained through comparing the degree of lattice deforma-
tion between magnetic and nonmagnetic DFT structural
optimizations. In systems where the inclusion of mag-
netism in the DFT calculation causes a large change in
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FIG. 1. (a) Hexagonal and (b) orthorhombic structure types
of MnCoGe, depicted in the orthorhombic setting. The or-
thorhombic structure can be accessed from the hexagonal struc-
ture by a displacive phase transition involving corrugation of
the honeycomb Co-Ge network.

the optimized structure, we surmise that magnetostruc-
tural coupling must be strong. In a survey of reported
magnetocalorics without substantial unit cell disorder,
we found that ΣM correlates well with the experimen-
tal peak ∆SM for transition metal-based compounds,
both for materials with known first-order magnetostruc-
tural transitions and for those with no such transitions
[14]. Consequently, ΣM can be used to computationally
screen magnetic compounds to identify promising mag-
netocalorics.

While the application of the magnetic deformation
proxy was previously limited to DFT-friendly compounds
with no consideration of atomic site disorder, here we
introduce a method to allow for the calculation of ΣM
in disordered solid solutions. In order to accomplish
this, we consider the test case of MnCoGe-based al-
loys. MnCoGe, an orthorhombic Pnma compound with a
TiNiSi-type structure, shows an intermediate peak ∆SM
of −6 J kg−1 K−1 for an applied field H = 5 T [36].
This effect is in agreement with the calculated value of
ΣM = 1.93% [14]. However, it was reported in 2010
that inclusion of just two or three percent boron (e.g.
MnCoGeB0.02) in the material leads to a giant magne-
tocaloric effect with peak ∆SM of up to−47.3 J kg−1 K−1

[25]. This doped MnCoGe shows a coupled first-order
magnetostructural transition, with a higher-symmetry
hexagonal Ni2In paramagnetic phase [Fig. 1(a)] trans-
forming to a magnetic phase with a mixture of TiNiSi
[Fig. 1(b)] and Ni2In structures. The TiNiSi structure
is described by a subgroup (Pnma) of the spacegroup
of the Ni2In structure (P63/mmc), and is formed by a
displacive phase transition involving corrugation of the
honeycomb Co-Ge lattice [37], as illustrated in Fig. 1.
Similar effects to those of boron-doping can also be re-

alized with a number of other atomic substitutions, with
giant magnetocaloric effects seen at disordered composi-
tions including MnCoGeC0.03 [25], Mn0.9Ni0.1CoGe [26],
MnCoGe0.95Ga0.05 [27], and Mn0.98CoGe [25].

Here, we propose a method by which the magnetic de-
formation proxy ΣM can be used to screen composition-
ally disordered magnetic materials to identify promis-
ing magnetocaloric compositions. ΣM for a composi-
tionally disordered material is calculated by taking a
Boltzmann-weighted average of the individual ΣM val-
ues for enumerated ordered supercells of the disordered
material. Using this technique, the qualitative mag-
netocaloric behavior of two solid solutions of MnCoGe
are successfully reproduced: Mn(Co1−xFex)Ge [36] and
(Mn1−xNix)CoGe [26]. In the first system, substitution
of Fe for Co has has been shown to cause a modest in-
crease in peak −∆SM at the intermediate composition
x= 0.2 [36]. In the second, substitution of Ni for Mn
has been shown to lead to a much larger increase in
−∆SM , with a giant magnetocaloric effect observed at
x= 0.1 [26]. In both cases, we show that the highly
nonmonotonic behavior of the solid solution is remark-
ably captured by the ensembled magnetic deformation
calculations, with only minor deviations. We investigate
the potential energy surfaces relevant to the DFT struc-
tural optimizations of individual supercell calculations
for Mn(Co1−xFex)Ge and find that key cells experience
double-well potentials with local minima at the hexag-
onal and orthorhombic structures of MnCoGe. This in-
dicates that the ability of the structural optimization al-
gorithm to traverse from one local minima to the other
is an important consideration with regard to the results
obtained from the magnetic deformation proxy calcula-
tions.

II. METHODS

A. Supercell enumeration

For the solid solution systems studied, all possible
orderings of the supercells up to a specified multiple
of the volume of the 12 atom MnCoGe primitive cell
(Pnma, TiNiSi structure) were enumerated. For the
Mn(Co1−xFex)Ge system, we chose two times the prim-
itive cell volume, allowing for x increments of 1/8
across the full composition range x= 0 to x= 1. For
(Mn1−xNix)CoGe, supercells up to 3 times the primitive
cell volume were considered from x= 0 to 0.25, allow-
ing for x= 1/12 and x= 1/6 compositions to be probed
in addition to x= 0, 1/8 and 1/4. The Clusters Ap-
proach to Statistical Mechanics (CASM) code [38–40]
was used to enumerate these symmetrically distinct con-
figurations and determine the multiplicity of each config-
uration. These ordered supercells may vary in cell shape
and are not, in general, simple 2×1×1 or 3×1×1 stack-
ings of the primitive cell. However, all cells do start with
unit cell parameters and atomic positions consistent with
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the MnCoGe Pnma symmetry, if the atom identity on
the mixed site is ignored. Table I lists the compositions
for which we apply this method along with the number
of supercell configurations generated and the maximum
supercell size for each composition.

For the Mn(Co1−xFex)Ge system, a parallel set of su-
percells was also enumerated with the same unit cell or-
derings but with the atom positions and unit cell parame-
ters adjusted to correspond to the symmetry of the Ni2In-
type hexagonal (P63/mmc) structure. The necessary
transformation is possible for every supercell of the TiN-
iSi structure because Pnma is a subgroup of P63/mmc
and therefore the Ni2In structure type can always be ex-
pressed within a Pnma-compatible unit cell.

MnCo1−xFexGe Mn1−xNixCoGe
x count Vmax x count Vmax

0 1 1 0 1 1
0.125 7 2 0.0833 9 3
0.25 29 2 0.125 7 2
0.375 41 2 0.1667 71 3
0.5 58 2 0.25 184 3
0.625 41 2
0.75 29 2
0.875 7 2
1 1 1

TABLE I. Compositions considered (labeled by x) and the num-
ber (count) of symmetrically distinct, ordered supercells with
composition x for the Mn(Co1−xFex)Ge and (Mn1−xNix)CoGe
systems. For each composition, Vmax is the volume of the
largest supercells enumerated, in multiples of the primitive cell
volume.

B. Magnetic deformation

For each enumerated cell, the magnetic deformation
ΣM was calculated following the procedure given in
Ref. 14. The optimized structure for each configuration
was acquired using density functional theory (DFT) with
and without spin polarization. Calculations were per-
formed using the Vienna ab initio simulation package
(VASP) [41] using the generalized gradient approxima-
tion (GGA) exchange-correlation functional as parame-
terized by Perdew, Burke and Ernzerhof [42, 43]. Spin-
orbit coupling was not included. For each configuration,
the spin-polarized relaxations were initialized with mag-
netic moments of 3.0µB on each transition metal ion.

Meshes for DFT calculations were automatically gen-
erated with the number of k-points set to 2500 divided
by the number of atoms in the cell. Structural optimiza-
tions were performed using the conjugate gradient algo-
rithm with an energy convergence criterion of 10−3 eV.

The structural relaxations were run iteratively until the
volume change between subsequent relaxations was less
than 2%. Once this convergence parameter was met, a fi-
nal electronic optimization was performed for each enu-
meration while keeping the structure fixed. The Python
packages pymatgen and custodian [44] were used to
automate, monitor, and analyze the VASP calculations.

Based on the obtained optimized structures, the mag-
netic deformation ΣM is calculated as the degree of lat-
tice deformation (%) [45, 46] between the DFT opti-
mized nonmagnetic and magnetic structures. This is ob-
tained by finding the transformation matrix between the
two relaxed structures: P = A−1

NMAM, where ANM and
AM are the lattice vectors of the nonmagnetic and mag-
netic relaxed unit cell, respectively. The Lagrangian finite
strain tensor (which removes any rotational component
of P) is then calculated as η = 1

2 (PTP− I), and the mag-
netic deformation is obtained as the root-mean-squared
eigenvalues of η:

ΣM =
1

3
(η21 + η22 + η23)1/2 × 100 %. (1)

For the Mn(Co1−xFex)Ge system, in addition to the mag-
netic deformation calculated using only orthorhombic
starting cells, a global ΣM was calculated for each cell
based on the lowest energy nonmagnetic and the low-
est energy magnetic structure obtained in either the run
that started with the hexagonal structure or the run that
started with the orthorhombic structure.

Although it is well-established that DFT often fails to
localize 3d transition metal electrons enough to accu-
rately model the moments in magnetic intermetallics, we
chose not to include any Hubbard U correction terms in
order to keep the calculations as simple (and general-
izable) as possible, and to maintain compatibility with
our previous work [14] where it was found that ΣM per-
forms well as a proxy for magnetocaloric effect across
a diverse range of compounds without the use of U .
While we believe a GGA+U approach could allow for
the more faithful reproduction of magnetic and struc-
tural ground states observed in experiment, this method
increases computational cost and requires careful selec-
tion of U terms for each individual transition metal ele-
ment in the compound, making it difficult to generalize
to a high-throughput search.

C. Modeling disorder

We consider the aggregate ΣM for a given composi-
tion labeled by x to be determined by an ensemble of the
ordered supercells. The aggregation may be done by a
weighted average of the calculated ΣM for each order-
ing i using the multiplicity Ωi as the weight:
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ΣM,avg. =

∑
i

ΩiΣM,i∑
i

Ωi
. (2)

A more complete picture, however, considers the calcu-
lated energy of each enumeration, considering that low
energy states are more likely to be present in a true sam-
ple of a disordered alloy. To approximate this, we define
the Boltzmann weight of a configuration i with composi-
tion x as

wi = Ωi exp

(
Ei − E0

kBT

)
(3)

such that the Boltzmann-weighted average ΣM is

ΣM,Boltzmann =

∑
i

wiΣM,i∑
i

wi
. (4)

Here, Ei is the spin-polarized energy of supercell i, ex-
pressed per the maximum supercell size (i.e. in units of
eV per 24 or 36 atoms). E0 is the energy of the lowest-
energy enumeration for the composition x, and kB is
the Boltzmann constant. The temperature T was set to
300 K. In addition, we also tested setting the temperature
to the preparation temperatures of the alloys (around
1000 K), and this did not dramatically change the pre-
sented results.

In addition to enumerating small supercells, we also
tried calculations of ΣM on special quasirandom struc-
tures, a different method commonly used for DFT mod-
eling of alloys [47, 48]. In this method, an alloy com-
position is modeled by a single large supercell (here, 48
atoms) with occupation of the atomic sites chosen so as
to match the near-neighbor correlations of the true infi-
nite disordered compound as well as possible. Unfortu-
nately, this method was not as successful as the supercell
enumeration method for the tasks investigated presently.
For a discussion of these calculations, the reader is di-
rected to the Supplemental Material.

D. Transition paths

In order to investigate the potential energy surfaces
which control the DFT structural relaxations used to cal-
culate ΣM , we performed transition path calculations on
a few selected atomic supercells of Mn(Co0.75Fe0.25)Ge
between their hexagonal and orthorhombic structures.
Lattice parameters and atom positions of structures
along the path are interpolated between the end mem-
bers, which are the relaxed hexagonal (d = 0) and or-
thorhombic (d = 1) structures. The energies of struc-
tures along this path were calculated without structural
relaxation.

FIG. 2. Comparison of (a) peak ∆SM values as measured by
Lin et al. for applied fields of 2 T and 5 T [36] and (b) calcu-
lated ΣM vs. x for Mn(Co1−xFex)Ge. In (b), each gray circle
represents a single enumerated cell, with the area of each cir-
cle proportional to its Boltzmann weight as calculated in equa-
tion 3. Both Boltzmann (equation 4) and naive (equation 2)
averages of ΣM for composition x are overlaid. (c) Energy of
formation vs. x for each cell. The asterisk indicates the cell in-
dicated as cell B in Fig. 5. The gray shaded areas (violin plot)
visualize the distribution of the supercell energies.

III. RESULTS AND DISCUSSIONS

Experimental peak −∆SM values and computed ΣM
data for the Mn(Co1−xFex)Ge system are shown in Fig. 2.
MnCoGe and MnFeGe are both ferromagnets, and the
full solid solution between them can be prepared exper-
imentally [36]. This solid solution features a transition
from the orthorhombic Pnma structure of MnCoGe at
x <0.2 to the hexagonal P63/mmc structure of MnFeGe
at x >0.2 [36]. Across this series, peak −∆SM de-
creases as x increases, except for at the phase boundary
(x= 0.2), where a peak in −∆SM reaching 9 J kg−1K−1

for an applied field of 5 T is observed. Figure 2(c) shows
the energies of the individually enumerated supercells
relative to the energies of the corresponding mixture of
MnCoGe and MnFeGe. Many orderings across the full
compositional range show negative formation energies,
consistent with the experimental observation that the
solid solution forms and does not phase segregate. As
seen in Fig. 2(b), the calculated ΣM values for individ-
ual ordered cells span a range of values, from about
0.75% to 2.25%. The simple average of these ΣM val-
ues somewhat follows the experimental trend of a gen-
eral decrease in ∆SM with increasing x interrupted by a
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FIG. 3. Comparison of (a) experimental peak ∆SM values as
measured by Zhang et al. [26] and (b) calculated ΣM for
(Mn1−xNix)CoGe (x ≤ 0.25). (c) Energies of formation vs.
x for the enumerated cells. Refer to the Fig. 2 caption for addi-
tional definitions.

peak near the middle of the compositional range. How-
ever, the position and magnitude of the peak in ΣM are
far off from the experimental results, and therefore the
correspondence between computation and experiment is
poor. On the other hand, the Boltzmann-weighted av-
erage gives an excellent qualitative match, with a maxi-
mum ΣM at x= 0.25, the closest computed composition
to the peak in the experimental data (x= 0.2). The peak
in ΣM is broader than that seen in the ∆SM data; how-
ever, the qualitative match is remarkable given the sim-
plicity of the computational model and the many vari-
ables involved in the experimental preparation and mea-
surement of a magnetocaloric material.

Figure 3 shows the same analysis for a different solid
solution of MnCoGe, the (Mn1−xNix)CoGe system. In
this case, introduction of a small amount of Ni (≈ 11%)
has been found to result in a giant magnetocaloric ef-
fect with peak −∆SM reaching 24 J kg−1K−1 for an ap-
plied field of 5 T [26]. As in the Mn(Co1−xFex)Ge sys-
tem, this is due to the coincidence of magnetic and struc-
tural transitions, i.e. due to a first-order magnetostruc-
tural transition, observed for samples with x between
0.08 and 0.12 (for x<0.08 and x slightly greater than
0.12, the structural and magnetic transitions occur at
different temperatures). As alloying across the whole
composition space 0≤x≤1 has not yet been reported,
in order to set a reasonable limit to the computational
cost, ΣM was calculated only for x ≤ 0.25 for this sys-
tem (Fig. 3). For this compositional range, the calcula-

FIG. 4. Total (top) and local (bottom) evolution of the
DFT magnetic moments for (a) Mn(Co1−xFex)Ge and (b)
(Mn1−xNix)CoGe. All of the individual transition metal lo-
cal moments from individual enumerated cells are shown as
small dots, while the Boltzmann-averaged local and total mo-
ments are shown as larger symbols connected by lines. For
Mn(Co1−xFex)Ge, experimentally measured 5 K saturated total
magnetic moments from Lin et al. [36] are plotted for compar-
ison.

tions presented here reproduce the experimental ∆SM
reports with a similar level of success as the study of
the Mn(Co1−xFex)Ge system discussed above. While the
maximum ΣM is slightly misaligned from the experimen-
tal largest −∆SM (x = 0.167 vs. x = 0.11, respectively),
the qualitative shape and the magnitude of the ΣM curve
matches nicely to the experiment.

A direct comparison of the two systems under study
reveals that the maximum ΣM is 2.1 times larger in the
(Mn1−xNix)CoGe system than in the Mn(Co1−xFex)Ge
system. Similarly, the ratio of the maximum Boltzmann
averaged ΣM values is 2.7. Even without experimental
references, a computational screen comparing these two
systems would correctly conclude that (Mn1−xNix)CoGe
is a more promising candidate system of experimental
study. Furthermore, such a conclusion would be reached
even if we had only considered supercells of up to size
Vmax = 2 (24 atoms) for both systems. While the peak
in ΣM at x = 0.167 (1/6) in (Mn1−xNix)CoGe would
not have been captured, the ΣM at x = 0.25 is still large
enough relative to any values in the Mn(Co1−xFex)Ge
system to suggest that Ni is a more interesting dopant.
A comparison of ΣM and ∆SM values for the two sys-
tems on the same scale may be found in Supplemental
Material Fig. S3.

In addition to ΣM and cell energy, we obtain informa-
tion from our calculations about the evolution of mag-
netic moments in these solid solutions. Figure 4 shows
the DFT total moment (top) and projected local moments
(bottom) for Mn(Co1−xFex)Ge and (Mn1−xNix)CoGe. As
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with the ensembled ΣM calculations, the total and local
moments shown are a Boltzmann-weighted average of
all of the moments in all of the enumerated supercell cal-
culations. However, in this case, there are not substan-
tial differences between Boltzmann-weighted and sim-
ple averages. In the case of Mn(Co1−xFex)Ge, a com-
parison to the reported experimental saturated moments
at 5 K is included [36], while we were unable to find
such data for (Mn1−xNix)CoGe. From this comparison,
we see that the calculated moment is underestimated for
MnCoGe and overestimated for MnFeGe. As discussed in
the methods section, it is likely that a more faithful re-
production of the experimental moments would require
a GGA+U approach. However, the general trend of de-
creasing moment with increasing Fe content is captured
by our calculations, and we can therefore use these re-
sults to draw insight into the local magnetic moment evo-
lution. As Fe atoms are substituted in, they are found to
hold a larger local moment than the Co atoms they re-
place (about 1µB vs. 0.5µB). However, at the same
time, the large Mn moments decrease in magnitude with
increasing x. The net effect is a decrease in total moment
with x. In (Mn1−xNix)CoGe, a decrease in total moment
with x is also predicted; however, in this case, the de-
crease is driven by the replacement of high-moment Mn
atoms (3µB) with Ni atoms which have very small mo-
ments (about 0.25µB).

Returning to the ΣM results, we noticed that for the
compositions showing maximal Boltzmann-averaged ΣM
(x = 0.25 for Mn(Co1−xFex)Ge and x = 0.175 for
(Mn1−xNix)CoGe), the Boltzmann averages are domi-
nated by a single enumerated cell which has significantly
lower energy than the rest of the cells. For example,
in Fig. 2(c), the energy of formation for all of the enu-
merated cells is plotted versus x. At x= 0.25, the cell
marked with an asterisk is about 20 meV f.u.−1 lower in
energy than all the other cells, and therefore contributes
dominantly to the Boltzmann-averaged ΣM . This special
unit cell also exhibits a larger ΣM than any of the other
enumerations, and as a result this single cell is entirely
responsible for the peak at x= 0.25 in the Boltzmann-
averaged ΣM . Inspection of the calculations for this spe-
cial cell revealed that the magnetic structural optimiza-
tion resulted in a cell with atom positions consistent with
the hexagonal structure [Fig. 1(a)], while the nonmag-
netic structural optimization stayed in the orthorhombic
structure [Fig. 1(b)] with which the calculation was ini-
tialized. For the other enumerations at x= 0.25, both the
magnetic and nonmagnetic unit cells remained in the or-
thorhombic structure.

To understand this, we turned to calculations of the
transition path energies between the hexagonal and or-
thorhombic structures of two representative enumerated
cells with x= 0.25: cell A is a cell that stayed in the
orthorhombic structure for both magnetic and nonmag-
netic optimizations, and cell B is the special cell that
changed structures during the magnetic optimization.
For each cell, Fig. 5 shows the energies of the transition

FIG. 5. Transition path energies between the hexagonal
(MnFeGe-like, d= 0) and orthorhombic (MnCoGe-like, d= 1)
structures of two different enumerated configurations of
MnCo0.75Fe0.25Ge, (c) without and (d) with spin polarization.
(a) Cell A shows a transition path landscape which is char-
acteristic of that experienced by the majority of the enumer-
ated cells, which remain orthorhombic after both nonmagnetic
and magnetic structural relaxations. (b) Cell B is the special
cell marked by an asterisk in Fig. 2, which transformed to the
hexagonal structure during the spin-polarized relaxation.

paths with and without spin-polarization as functions of
the fractional hexagonal distortion d, with d = 0 corre-
sponding to the hexagonal structure, and d = 1 to the
orthorhombic structure. Interestingly, for both cells, the
nonmagnetic calculation shows a global minimum at the
orthorhombic structure while the magnetic calculation
shows a global minimum at the hexagonal structure. As
the enhanced magnetocaloric effect around x= 0.2 in
Mn(Co1−xFex)Ge is believed to arise from coupling of
the magnetic transition to a structural transition, it is in-
teresting to note that the inclusion of magnetism in the
DFT calculation changes the predicted structural ground
state. However, it is also important to note that the non-
magnetic DFT calculation should not be considered a re-
alistic model for the true high-temperature paramagnetic
state.

The transition path energies without spin polarization
look qualitatively similar for cell A and cell B, with a
very shallow local minimum at the hexagonal structure
and a global minimum at the orthorhombic structure. In
contrast, with spin polarization, greater differences be-
tween the two cells are evident. Cell A exhibits a double
well potential with a barrier between the wells, while cell
B has no barrier to relaxation into the global minimum
hexagonal structure. As the optimizations used to cal-
culate ΣM were initialized with an orthorhombic start-
ing configuration, cell A relaxed into the orthorhombic
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FIG. 6. Comparison of peak ∆SM values as measured by Lin et
al. [36] (a) and calculated ΣM vs. x (b) for Mn(Co1−xFex)Ge
using global ΣM values computed from calculations starting
from both the orthorhombic and hexagonal structures, as dis-
cussed in the text. Please refer to the Fig. 2 caption for defini-
tions.

local minimum, while cell B was able to relax into the
global minimum structure. As a result of this feature of
its potential energy surface, the DFT calculations on cell
B result in a lower energy and larger magnetic deforma-
tion than all other cells enumerated at this composition.
We can therefore conclude that the effectiveness of the
magnetic deformation proxy in identifying the extremal
magnetocaloric composition in this system is driven by
the ability to conveniently identify a potential energy sur-
face with competing structural ground states whose en-
ergies are coupled to the system magnetism, and which
has low barriers to relaxation from one state to the other.
These features are consistent with the thermodynamic
conditions necessary for a first-order magnetostructural
transition leading to an enhanced magnetocaloric effect.

Based on this analysis, we proceed to consider what
role the incomplete structural relaxations in cells like
cell A played in the evaluation of the overall ΣM . To
address this, a parallel set of DFT calculations was run
with the enumerated supercells initialized in the hexago-
nal structure, instead of the orthorhombic structure. The
nonmagnetic and magnetic structures used in calculat-
ing ΣM were then each taken from the calculation that
reached a lower energy state. The results are shown in
Fig. 6, which can be compared to Fig. 2 in which only the
orthorhombic initialization was considered. Providing an
alternate path to relaxation for each cell increases the
likelihood that the global energetic minimum is reached

for each of the nonmagnetic and magnetic optimizations.
As a result, more cells change structure type between the
nonmagnetic and magnetic unit cells and the ΣM,i val-
ues increase. Both the Boltzmann and simple weighted
averages of ΣM are seen to increase for all x<0.8 in
the Mn(Co1−xFex)Ge system such that the strong peak
seen before at x= 0.2 for the Boltzmann-averaged ΣM is
smeared out and the qualitative match with the experi-
mental data is weakened. Nevertheless, the composition
and magnitude of the peak in ΣM remains very similar to
the original calculations. Furthermore, this approach re-
sults in the Boltzmann and naive averages converging to
nearly the same values for each composition. Therefore,
if using this strategy to screen magnetocaloric systems,
one does not necessarily need to exhaustively perform
DFT calculations on all possible enumerations; rather,
reasonably accurate results could be obtained by aver-
aging together a small number of ΣM,i values (i.e, 5 – 10
cells) for each composition x.

SUMMARY AND CONCLUSIONS

In this work, we introduce a method for screen-
ing experimental magnetocaloric behavior in disordered
compounds (alloys) which employs the magnetic de-
formation proxy ΣM in conjunction with the enumer-
ation of relatively small supercells of various composi-
tions. We validate its screening utility by direct com-
parison to reported experimental ∆SM measurements
in Mn(Co1−xFex)Ge and (Mn1−xNix)CoGe, two systems
where the magnetocaloric performance depends on x
in a highly nonmonotonic manner. In both cases, the
method successfully predicts the presence and magni-
tude of enhanced magnetocaloric effects in the solid so-
lutions compared to MnCoGe, reproducing the qualita-
tive shape of the ∆SM vs. x curves and identifying the
compositions of the largest magnetocaloric effect with er-
rors of δx ≈ 0.05.

Fig. 7 provides a summary of these results, show-
ing the correspondence between predicted ΣM and ex-
perimental peak ∆SM as compared to previous results
applying ΣM to 33 ferromagnets without substantial
atomic site disorder [14]. On this plot, all of the calcu-
lated x points from the Mn(Co1−xFex)Ge system (Fig. 2)
are plotted against the −∆SM of the nearest compo-
sition experimentally reported by Lin et al. [36]. In
(Mn1−xNix)CoGe, where the experimental data are more
sparse and the composition with maximal ΣM somewhat
deviates from the reported largest −∆SM [26], the max-
imum ΣM (at x = 0.167) is plotted against the maxi-
mum −∆SM (at x = 0.11). This plot demonstrates that
the magnetocaloric effects of these complex disordered
systems are being screened with comparable accuracy to
prior predictions of ordered magnets.

The success of ΣM in predicting behavior of these
complex MnCoGe-based magnetocalorics demonstrates
that screening disordered magnetocalorics is a promis-
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FIG. 7. Correspondence between peak values of experimental
−∆SM for an applied field of 5 T and magnetic deformation
ΣM . Gray circles show the results from Ref. 14, which consid-
ered only ordered magnets.

ing route towards the discovery of exceptional magne-
tocaloric effects at unstudied compositions. This screen-
ing technique requires no information about the system

other than the known crystal structure of the parent com-
pound (here, MnCoGe), and therefore we believe this
approach will be quite generally applicable. Due to the
many supercells sampled (on the order of 200 for each
system), the computational cost of obtaining ΣM on solid
solutions is much larger than the cost of screening com-
pounds without compositional disorder. Nevertheless,
it would be feasible to apply this screening method to
searches on the order of tens, or perhaps hundreds, of
systems. For example, this method could be used to ex-
haustively screen elements for promise as dopants for
MnCoGe or another magnetocaloric material of interest.
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I. SPECIAL QUASI-RANDOM STRUCTURE CALCULATIONS

Special quasirandom structures (SQSs) with different values of x in Mn(Co1−xFex)Ge (0≤x≤1) and
(Mn1−xNix)CoGe (x≤0.25) were generated using the mcsqs utility [1]. An SQS is a single disordered supercell
of finite size, constructed such that the local atomic correlation distributions match well those of an infinite randomly
distributed alloy. In this case, SQS unit cells containing 48 atoms (four times the primitive orthorhombic TiNiSi-
structured cell) were generated to have pair, triplet, and quadruplet correlations of radius ≤6 Å that best match the
random state. The 48-atom cells allow for compositions with x-spacing of 0.0625.

As shown in Fig. S1 and Fig. S3, this approach results in ΣM that closely matches the naive (non-energy-weighted)
average of the enumerated supercells, but deviates from the Boltzmann average. This makes sense, as the SQS
attempts to reproduce a fully random alloy, with no preference for energetically favorable local configurations. Un-
fortunately, this means that the SQS does not do a good job of predicting experimental ∆SM in this system.

FIG. S1: (b) ΣM for Mn(Co1−xFex)Ge calculated using special quasirandom structures (SQSs) with 48 atoms each is shown
compared to ΣM calculating using the supercell approach (main text Fig. 2) with either naive averaging (main text Eqn. 2) or
Boltzmann averaging (main text Eqn. 4). (a) shows the experimental peak ∆SM for applied fields of 2 T and 5 T, as reported by
Lin et al. [2]. The SQS approach gives results similar to the naive average of the supercells, with some deviations.
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FIG. S2: (b) ΣM for (Mn1−xNix)CoGe (x ≤ 0.25) calculated using special quasirandom structures (SQSs) with 48 atoms each is
shown compared to ΣM calculating using the supercell approach (main text Fig. 2) with either naive averaging (main text Eqn. 2)
or Boltzmann averaging (main text Eqn. 4). (a) shows the experimental peak ∆SM for applied fields of 2 T and 5 T, as reported by
Zhang et al.[3]. The SQS structure gives results similar to the naive average of the supercells.

II. COMPARISON OF ΣM AND PEAK ∆SM FOR Mn(Co1−xFex)Ge AND (Mn1−xNix)CoGe

FIG. S3: Direct comparison of computed Boltzmann-averaged magnetic deformation (ΣM ) and reported peak ∆SM [2, 3] for
Mn(Co1−xFex)Ge and (Mn1−xNix)CoGe (x ≤ 0.25). This data is reproduced from the main text Fig. 2 and Fig. 3, but presented
with the same y-axis scaling to show the magnitude differences between the two systems.
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