
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Predicting performance across compilations

Permalink
https://escholarship.org/uc/item/2r14z249

Author
Lau, Jeremy

Publication Date
2007

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2r14z249
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Predicting Performance Across Compilations

A dissertation submitted in partial satisfaction of the requirements for the

degree

Doctor of Philosophy

in

Computer Science

by

Jeremy Lau

Committee in charge:

Brad Calder, Chair
Matthew Arnold
Pamela Cosman
Ranjit Jhala
Chandra Krintz
Geoff Voelker

2007

c©

Jeremy Lau, 2007

All rights reserved.

The dissertation of Jeremy Lau is approved, and it is ac-

ceptable in quality and form for publication on microfilm:

Chair

University of California, San Diego

2007

iii

DEDICATION

For Mom

iv

EPIGRAPH

The protean nature of the computer is
such that it can act like a machine or
like a language to be shaped and ex-
ploited. It is a medium that can dy-
namically simulate the details of any
other medium, including media that
cannot exist physically. It is not a tool,
although it can act like many tools. It
is the first metamedium, and as such
it has degrees of freedom for repre-
sentation and expression never before
encountered and as yet barely investi-
gated. Even more important, it is fun,
and therefore intrinsically worth doing.

Alan Kay

v

TABLE OF CONTENTS

Signature Page . iii

Dedication Page . iv

Epigraph . v

Table of Contents . vi

List of Figures . viii

List of Tables . xi

Acknowledgments . xii

Vita and Publications . xvi

Abstract . xviii

I Introduction . 1
A. Predicting Performance Across Compilations 2
B. Problem Areas . 3

1. Cross Binary Architectural Simulation 4
2. Dynamic Optimization with Performance Auditing 7

II Cross Binary Architectural Simulation 10
A. Background . 13

1. Time Varying Behavior and Phases 13
2. Phase Analysis . 17
3. Accelerating Architectural Simulations with SimPoint 21
4. Evaluating Phase Classifications 23

B. Capturing Program Behavior with Fixed and Variable Length In-
tervals . 24
1. Issues with Fixed Length Intervals 25
2. Hierarchical Program Behavior 28

C. Software Phase Markers . 34
1. Capturing Hierarchical Behavior with Call-Loop Graphs 34
2. Selecting Software Phase Markers 38
3. Support For Variable Length Intervals in SimPoint 45
4. Methodology . 47
5. Phase Marker Evaluation . 47

vi

6. Applications: Data Cache Reconfiguration and SimPoint 56
D. Cross Binary Simulation Points . 65

1. Selecting Cross Binary Simulation Points 65
2. Methodology . 73
3. Cross Binary SimPoint Evaluation 74

E. Related Work . 83
F. Summary . 85

III Performance Audited Dynamic Optimization 87
A. Background . 91

1. Adaptive Optimization in Virtual Machines 91
2. Predicting Performance in Optimization Systems 92
3. Empirical Search . 94
4. Building a Mapping Between Binaries 99

B. Performance Auditing . 102
1. Motivating Empirical Search 103
2. Performance Auditor Design 106
3. Methodology . 110
4. Offline Convergence Study . 112
5. Online Performance Auditing 119

C. Lightweight Code Markers . 130
1. Inserting Lightweight Code Markers 132
2. Application to Performance Auditing 136
3. Methodology . 143
4. Evaluation: Perf. Auditing with Lightweight Code Markers . . 145
5. Other Potential Uses for Lightweight Code Markers 153

D. Discussion . 155
E. Summary . 158

IV Conclusion and Future Challenges . 160
A. Predicting Performance Across Compilations 160

1. Cross Binary Simulation Points 161
2. Performance Audited Dynamic Optimization 161

B. Building a Mapping Across Binaries 162
1. Cross Binary Simulation Points 163
2. Performance Audited Dynamic Optimization 165

C. Future Challenges . 166
1. Cross Binary Architectural Simulation 167
2. Performance Audited Dynamic Optimization 168

Bibliography . 171

vii

LIST OF FIGURES

Figure II.1 Time varying graph for bzip2-graphic (first 64 billion
instructions). 14

Figure II.2 Time varying graph for gcc-integrate. 15
Figure II.3 An example of what happens to a signal (top figure)

when it is sampled with different interval lengths. . . . 26
Figure II.4 Three dimensional non-accumulated representation of

gzip-graphic and bzip2-source. 29
Figure II.5 Two dimensional accumulated representation of bzip2-

source. 30
Figure II.6 Code example and Call-Loop graph for code example . 37
Figure II.7 Time varying graphs with phase markers for gzip-graphic

for an OSF Alpha executable 48
Figure II.8 Cross-binary time varying graphs with phase markers

for gzip-graphic for Linux x86 48
Figure II.9 Bzip2 fixed length execution intervals representation . . 50
Figure II.10 Bzip2 variable length execution intervals representation

with phase markers . 51
Figure II.11 Average instructions per interval 54
Figure II.12 Number of phases detected 54
Figure II.13 Coefficient of variation of CPI. The “Whole Program”

results show each program’s variability if every interval
is classified into a unique phase 55

Figure II.14 Average cache size with no allowed increase in cache
miss rate. 58

Figure II.15 Number of instructions simulated with SimPoint and
phase markers. 62

Figure II.16 Error in CPI estimates with fixed length intervals and
variable length intervals from phase markers. 62

Figure II.17 Number of SimPoints for per-binary SimPoint (FLI)
and cross binary SimPoint (VLI). Each bar shows the
average across all four binaries. 75

Figure II.18 Interval Size for cross binary SimPoint (VLI). Each bar
shows the average across all four binaries. The size of
each interval in per-binary SimPoint, which uses fixed
length intervals, is constant at 100 million instructions. 75

Figure II.19 CPI Error for per-binary SimPoint (FLI) and cross bi-
nary SimPoint (VLI). Each bar shows the average across
all four binaries. 77

viii

Figure II.20 Speedup error for per-binary SimPoint (fli) and cross
binary SimPoint (vli). 78

Figure II.21 Speedup error for per-binary SimPoint (fli) and cross bi-
nary SimPoint (vli). Speedup is computed across pairs
of binaries on the different platforms (32-bit vs. 64-bit). 79

Figure III.1 Per-method performance impact of moving from opti-
mization level 4 to level 5. 104

Figure III.2 Per-method performance impact of expanded inlining
heuristic. 105

Figure III.3 Performance Auditor Overview 107
Figure III.4 Misprediction rate for a simple sampling approach in

which a fixed number of method invocation (entry+exit)
timings are collected, for various amounts of introduced
speedup. 114

Figure III.5 Convergence rate for the proposed statistical approach.
This plot shows the percentage of hot methods for which
confident predictions are generated, with a sampling
limit of 2 minutes of CPU time for each method. 116

Figure III.6 Incorrect predictions. This plot shows the percentage
of hot methods in which the analysis incorrectly pre-
dicts that A is faster than B. Results are averaged over
converged methods. 117

Figure III.7 Time to converge . 117
Figure III.8 Architecture for the dispatcher, to select method invo-

cations for timing. 120
Figure III.9 Dispatch logic . 121
Figure III.10 Per-method overhead of the dispatcher fast-path. No

timing samples are being taken. 124
Figure III.11 Per-method overhead of the Performance Auditor when

sampling 1 of 20 executions. Overhead includes record-
ing and processing the timing samples. 125

Figure III.12 Performance of the online system using the proposed
statistical technique to guide inlining heuristic selection. 126

Figure III.13 Accuracy of the online system using the proposed sta-
tistical technique to guide inlining heuristic selection. . 127

Figure III.14 Speedup/slowdown observed when a marker is inserted
and removed in every loop or every block in every method.135

Figure III.15 Loop Selection Algorithm 137

ix

Figure III.16 Three CFGs selected for loop instrumentation, where
the loop selection algorithm was unable to find a satis-
factory timing point. 142

Figure III.17 Converge scores for hot methods, higher is better. . . . 147
Figure III.18 Perturb scores for hot methods, lower is better. 148
Figure III.19 Accuracy of our approach, where markers are inserted

before optimization, and markers are replaced with full
timing instrumentation after optimization. 150

Figure III.20 Accuracy of the näıve approach, where full timing in-
strumentation is inserted before optimization. 151

Figure III.21 Convergence time, comparing method+loop timings to
method timings. Top figure: convergence time for hot
methods selected for loop instrumentation. Bottom fig-
ure: convergence time for all hot methods. 152

x

LIST OF TABLES

Table II.1 Baseline Simulation Model. 46
Table II.2 Memory System Configuration 72
Table II.3 Phase comparison across 32-bit unoptimized and 64-bit

unoptimized gcc binary versions. 81
Table II.4 Phase comparison across 32-bit optimized and 64-bit

optimized apsi binary versions. 81

Table III.1 Benchmark suite . 111
Table III.2 Benchmark suite . 144

xi

ACKNOWLEDGMENTS

This dissertation would not have been possible without my advisor,

Professor Brad Calder. Over the last six years, he has not only taught me how

to do research, but also taught me much about life. Thank you.

I must thank all my labmates in the Architecture Lab over the years.

Thanks to Tim for being a second advisor, John for reminding me what it’s all

about, Jamison for keeping it brutal, Rakesh for the always insightful conver-

sations, Jeff for being my partner in system administration, Satish for making

everything look easy, Erez for the adventures, Stef for the moo-can, and Ganesh

for all the rides to Black Mountain Road.

I must also thank my friends for putting up with too many of my work

related disappearances over the last six years. Thanks to Louis for always finding

time to hang out, Ethan for being down for whatever, James for dreaming, Lance,

Ron, and Alex for a whole lot of bowling, and Lynne for listening.

My brother must be thanked for reminding me that there is much more

to life than research.

Finally, and most importantly, my mother must be thanked for always

believing in me, for always watching out for my best interests, for periodically

verifying that I’m still alive, for reminding me that I am Chinese, for not letting

me leave home without entirely too much food, for knowing how to grow, cook,

fix, and/or clean anything imaginable... This list goes on for quite a while. For

all these reasons and more, this dissertation is for you.

Cross binary simulation points, presented in section II.D, were devel-

oped in collaboration with Erez Perelman and Brad Calder at the University

of California San Diego, Greg Hamerly at Baylor University, Tim Sherwood at

the University of California Santa Barbara, and Harish Patil and Aamer Jaleel

at Intel. I thank my co-authors for allowing me to present the results of our

xii

collaboration in my dissertation.

The performance auditor presented in section III.B was the result of

collaboration with Matthew Arnold and Michael Hind at IBM T.J. Watson, and

Brad Calder at the University of California San Diego. I thank my co-authors

for allowing me to present the results of our collaboration in my dissertation.

Section II.B contains material that appears in “Motivation for Variable

Length Intervals and Hierarchical Phase Behavior”, in International Symposium

on Performance Analysis of Systems and Software (ISPASS), Jeremy Lau, Erez

Perelman, Greg Hamerly, Timothy Sherwood, Brad Calder. The dissertation

author was the primary investigator and author of this paper. Portions of Sec-

tion II.B are c©2005 IEEE. Personal use of this material is permitted. However,

permission to reprint/republish this material for advertising or promotional pur-

poses or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must

be obtained from the IEEE.

Section II.C contains material that appears in “Selecting Software Phase

Markers with Code Structure Analysis”, in International Symposium on Code

Generation and Optimization (CGO), Jeremy Lau, Erez Perelman, Brad Calder.

The dissertation author was the primary investigator and author of this paper.

Portions of Section II.C are Copyright c©2006 by the Association for Computing

Machinery, Inc. Permission to make digital or hard copies of part or all of this

work for personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components of

this work owned by others than ACM must be honored. Abstracting with credit is

permitted. To copy otherwise, to republish, to post on servers, or to redistribute

to lists, requires prior specific permission and/or a fee. Request permissions from

xiii

Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Section II.D contains material that appears in “Cross Binary Simulation

Points”, in International Symposium on Performance Analysis of Systems and

Software (ISPASS), Erez Perelman, Jeremy Lau, Harish Patil, Aamer Jaleel, Greg

Hamerly, Brad Calder. The dissertation author was the secondary investigator

and author of this paper. Portions of Section II.D are c©2007 IEEE. Personal

use of this material is permitted. However, permission to reprint/republish this

material for advertising or promotional purposes or for creating new collective

works for resale or redistribution to servers or lists, or to reuse any copyrighted

component of this work in other works must be obtained from the IEEE.

Section III.B contains material that appears in “Online Performance

Auditing: Using Hot Optimizations Without Getting Burned”, in Conference

on Programming Language Design and Implementation (PLDI), Jeremy Lau,

Matthew Arnold, Michael Hind, Brad Calder. The dissertation author was the

primary investigator and author of this paper. Portions of Section III.B are Copy-

right c©2006 by the Association for Computing Machinery, Inc. Permission to

make digital or hard copies of part or all of this work for personal or classroom use

is granted without fee provided that copies are not made or distributed for profit

or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

to republish, to post on servers, or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Publications Dept., ACM,

Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Section III.C contains material in “A Loop Correlation Technique to Im-

prove Performance Auditing”, submitted to Conference on Parallel Architectures

and Compilation Techniques (PACT), Jeremy Lau, Matthew Arnold, Michael

xiv

Hind, Brad Calder. The dissertation author was the primary investigator and

author of this paper.

xv

VITA

2001 Bachelor of Arts in Computer Science
University of California, Berkeley

2003 Internship
Microsoft Research, Redmond

2005 Internship
IBM T.J. Watson Research Center, Hawthorne

2007 Doctor of Philosophy in Computer Science
University of California, San Diego

PUBLICATIONS

“Cross Binary Simulation Points” Erez Perelman, Jeremy Lau, Harish Patil,
Aamer Jaleel, Greg Hamerly, Brad Calder. International Symposium on Per-
formance Analysis of Systems and Software (ISPASS), April 2007, San Jose, CA,
USA

“Online Performance Auditing: Using Hot Optimizations Without Getting Burned”
Jeremy Lau, Matthew Arnold, Michael Hind, Brad Calder. Conference on Pro-
gramming Language Design and Implementation (PLDI), June 2006, Ottawa,
Canada

“Using Machine Learning to Guide Architecture Simulation” Greg Hamerly, Erez
Perelman, Jeremy Lau, Timothy Sherwood, Brad Calder. Journal of Machine
Learning Research (JMLR), Volume 7, Pages 343-378, 2006

“Selecting Software Phase Markers with Code Structure Analysis” Jeremy Lau,
Erez Perelman, Brad Calder. International Symposium on Code Generation and
Optimization (CGO), March 2006, New York, NY, USA

“Dynamic Phase Analysis for Cycle-Close Trace Generation” Cristiano Pereira,
Jeremy Lau, Brad Calder, Rajesh Gupta. International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES), September 2005, New
York, NY, USA

“SimPoint 3.0: Faster and More Flexible Program Analysis” Greg Hamerly, Erez
Perelman, Jeremy Lau, Brad Calder. Workshop on Modeling, Benchmarking and
Simulation (MOBS), June 2005, Madison, WI, USA

xvi

“The Strong Correlation between Code Signatures and Performance” Jeremy
Lau, Jack Sampson, Erez Perelman, Greg Hamerly, Brad Calder. International
Symposium on Performance Analysis of Systems and Software (ISPASS), March
2005, Austin, TX, USA

“Motivation for Variable Length Intervals and Hierarchical Phase Behavior” Jeremy
Lau, Erez Perelman, Greg Hamerly, Timothy Sherwood, Brad Calder. Interna-
tional Symposium on Performance Analysis of Systems and Software (ISPASS),
March 2005, Austin, TX, USA

“Transition Phase Classification and Prediction” Jeremy Lau, Stefan Schoen-
mackers, Brad Calder. International Symposium on High-Performance Computer
Architecture (HPCA), February 2005, San Francisco, CA, USA

“Structures for Phase Classification” Jeremy Lau, Stefan Schoenmackers, Brad
Calder. International Symposium on Performance Analysis of Systems and Soft-
ware (ISPASS), March 2004, Austin, TX, USA

“Reducing Code Size With Echo Instructions” Jeremy Lau, Stefan Schoenmack-
ers, Timothy Sherwood, Brad Calder. International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems (CASES), October 2003, San
Jose, CA, USA

“Ninja: A Framework for Network Services” Eric Brewer, Nikita Borisov, Mike
Chen, Rob von Behren, Matt Welsh, David Culler, Josh MacDonald, Jeremy
Lau, Steven D. Gribble. Usenix Technical Conference (USENIX), June 2002,
Monterey, CA, USA

xvii

ABSTRACT OF THE DISSERTATION

Predicting Performance Across Compilations

by

Jeremy Lau

Doctor of Philosophy in Computer Science

University of California, San Diego, 2007

Professor Brad Calder, Chair

Performance comparisons are ubiquitous in computer science. The pro-

ceedings of most conferences are filled with bar charts comparing the performance

of some computer system to another. For example, computer architects compare

the performance of processors, and compiler writers compare the performance

of generated code. It is difficult to prove that one computer system is always

faster than another for all possible workloads, so these performance comparisons

are used as predictors: performance is compared on several representative work-

loads, and the results are used to argue that one computer system is generally

faster than another. Unfortunately, there are many scenarios where it is difficult

to make a fair performance comparison. This dissertation focuses on two such

scenarios.

The first scenario involves simulations in computer architecture. Com-

puter architects typically evaluate new processor designs through slow cycle-level

simulation. Because of the poor performance of cycle-level simulators, accelerated

simulation methodologies are very popular, where small samples of a program’s

behavior are simulated, and the results are extrapolated to predict the results of

a whole-program simulation. But with these accelerated simulation techniques,

xviii

it is difficult to meaningfully compare performance estimates when multiple com-

pilations of a program are involved. This dissertation will show that simulation

samples must be selected consistently across compilations to produce comparable

results, and a technique will be presented to apply accelerated simulation across

compilations to produce comparable results.

The second scenario involves dynamic optimization systems. Dynamic

optimizers must predict if their optimizations will actually improve performance

before applying them — if an optimization is unlikely to improve performance, or

if an optimization will degrade performance, the optimization should not be ap-

plied. This dissertation presents a new approach to guide dynamic optimization

decisions by performing empirical performance evaluations as programs execute.

The performance of differently-compiled versions of the same code are measured,

and the results of the measurements directly guide optimization decisions. The

challenge is that these performance measurements are collected as programs ex-

ecute, so individual measurements are not directly comparable, because the pro-

gram may run the code under analysis with different inputs over time. If a single

pair of performance measurements indicates that one version of the code is faster

than another, it may actually be faster, or it may be that the program chose to

run one version on a smaller input than the other. To overcome this challenge,

this dissertation presents a statistical technique to analyze pools of timing data

to determine which version is the fastest.

xix

I

Introduction

Historically, the complexity of the average desktop computer has in-

creased drastically, and the trend continues toward more complex systems. Hard-

ware complexity continues to grow as more transistors become available for each

chip, and software complexity continues to grow as more layers of software are

introduced with the increasing popularity of application frameworks, dynamic

compilation, and virtualization. These trends make it more and more difficult

for computer scientists to predict the performance of their systems.

Performance prediction is a simple idea that is used extensively through-

out computer science: performance measurements are collected on a small rep-

resentative workload to predict the overall performance of a computer system in

the general case. As a simple example, if it is known that a particular loop runs

for 10,000 iterations, the overall running time of the loop can be predicted by

measuring the loop’s running time for 1,000 iterations, and multiplying the re-

sult by 10. As another example, computer architects measure the performance of

processors as they run the SPEC2000 benchmark suite to predict how processors

will perform in everyday use.

This dissertation focuses on one specific type of performance prediction

problem: predicting performance across compilations.

1

2

I.A Predicting Performance Across Compilations

It is more difficult to make performance predictions when multiple bi-

nary representations of the same program are being compared. Suppose a pro-

gram is run through two different compilers, producing two binaries B1 and B2.

It is then reasonable to ask: which binary, B1 or B2, will run faster, on average?

It is also reasonable to answer this question by evaluating small samples of B1’s

and B2’s performance. This is a scenario where performance must be predicted

across compilations.

When predicting performance across compilations, the primary chal-

lenge is to collect measurements of B1’s and B2’s performance that can be mean-

ingfully compared. To make the example more concrete, suppose B1 and B2 are

compiled versions of a scientific program that first reads a large dataset into mem-

ory, then analyzes the dataset. The first half of execution is spent reading the

dataset from disk, and the second half of execution is spent running the analysis.

The goal is to evaluate the performance of B1 and B2 by collecting small samples

of B1’s and B2’s performance. But the samples must be selected consistently —

a sample taken from B1’s analysis phase should be compared to a sample taken

from B2’s analysis phase. It does not make sense to compare a sample taken from

B1’s loading phase to a sample taken from B2’s analysis phase.

The problem of selecting samples consistently across binaries is surpris-

ingly difficult. It seemed simple in the preceding example, but that is because

the example provided a high level description of the program’s behavior. Binaries

do not contain such descriptions. Without this type of high level information, a

technique is needed to select samples in each binary so that high level program

behaviors are comparably represented. This dissertation will present several tech-

niques to collect samples consistently across binaries in order to draw meaningful

conclusions about the overall performance of the binaries.

3

I.B Problem Areas

This dissertation focuses on two instances of the problem of predicting

performance across compilations: one in the area of accelerated architectural

simulation and another in the area of dynamic optimization.

Computer architects evaluate new processor designs through cycle-level

simulation, where a simulator program models all the low-level effects of every

instruction on a new processor design. But cycle-level simulation is extremely

slow, due to the complexity of modern processors — simulator programs can

easily execute thousands of instructions on a host processor just to simulate a

single instruction on the simulated processor. Because of the poor performance

of cycle-level simulators, accelerated simulation methodologies are very popular,

where small samples of a program’s behavior are simulated, and the results are

extrapolated to predict the results of a whole-program simulation. These accel-

erated simulation techniques make cycle-level simulation feasible for real-world

programs, but it is difficult to compare the results of these accelerated simulation

techniques when multiple binaries of a program are involved. For example, if ex-

tensions to the instruction set are considered as part of the architectural design

space exploration, multiple binary representations of the same benchmark pro-

gram must be considered — one binary that uses the proposed instructions, and

another binary that does not use the proposed instructions. This dissertation will

show that the samples of program behavior selected for detailed simulation must

be selected consistently across binaries to produce comparable results, and this

dissertation will present a technique to apply an accelerated simulation technique

across compilations so results are comparable.

Dynamic optimization systems improve the performance of programs

as they execute by recompiling portions of programs with additional optimiza-

tions. A dynamic optimizer must predict if its optimizations will actually improve

4

performance before applying them — if an optimization is unlikely to improve

performance, or if an optimization is likely to degrade performance, the optimiza-

tion should not be applied. These optimization decisions are typically guided by

heuristics. For example, an optimizer may decide to inline a procedure if the

procedure contains less than N instructions. But as the complexity of computer

systems increases, these types of heuristics become less reliable. This disserta-

tion presents an alternative approach to guide dynamic optimization decisions

by performing empirical performance evaluations as programs execute. The per-

formance of differently-compiled versions of the same code is measured, and the

results of the performance measurements are used to directly guide optimization

decisions. The challenge is that the performance measurements are collected as

programs execute, so individual measurements are not directly comparable, be-

cause the program may run the code under analysis with different inputs over

time. If a single pair of measurements indicates that version X of the code is

faster than version Y , it may be because version X is indeed faster than version

Y , or it may be because the program happened to invoke version X on a smaller

input than version Y . To overcome this challenge, this dissertation presents a

statistical technique to analyze pools of timing data to determine which version

is the fastest.

I.B.1 Cross Binary Architectural Simulation

To design the best processor for an application, processor designers must

find the best design point in a huge design space. Intuition and common sense

are used to pare down the design space, but at some point it becomes too difficult

to think about all the performance implications of minor design changes. At this

point, cycle-level simulators are typically used to measure the performance of

benchmark programs on a set of potential processor designs.

5

Unfortunately, cycle-level simulators are extremely slow due to the in-

credible complexity of modern processors. The primary goal of a cycle-level sim-

ulator is to determine how many cycles will be needed to execute a program on a

candidate processor design. This means that a cycle-level simulator must model

the low-level effects of every instruction on all aspects of the architecture, includ-

ing branch predictors, caches, bus traffic, speculative execution, and out-of-order

execution.

Modeling at this level of detail carries a significant performance cost —

slowdowns on the order of 1,000 to 10,000 times are common. Simulation speed is

a major concern in architecture research, because more design space explorations

can be performed with faster simulators. To improve the speed of architectural

simulations, a number of accelerated architectural simulation methodologies have

been proposed. Several popular approaches rely on sampled simulation, where the

performance of the processor on several small samples of the program is measured

through cycle-level simulation, and the results are extrapolated to estimate the

program’s overall performance.

Accelerated simulation techniques such as SimPoint [78] work well when

the goal is to estimate a single program’s overall performance from small sam-

ples of the program’s behavior, because the existing techniques are specifically

designed for this purpose. But such techniques do not always work well when

multiple binary representations of the same program are involved.

There are three main scenarios where multiple binaries must be used

in architecture simulation. The first scenario involves instruction set extensions,

where a new binary is created that uses new instructions, such as the 64-bit

x86 extensions (x86-64). In this case, the performance of the original binary,

which does not use the extensions, must be compared to the performance of

the new binary, which does use the extensions. The second scenario deals with

6

examining completely different architectures, such as Itanium and x86-64. In

this case, completely different compilers will be used. Finally, the third scenario

involves developing compilers for new architectures. In this scenario, the compiler

writers must evaluate the performance effects of their compiler optimizations

through simulation, because working prototypes of a new processor are typically

not available until very late in the development cycle. In this scenario, the new

compiler may use the same instruction set as an existing compiler, but different

binaries will be produced as optimizations are enabled, disabled, reordered, and

adjusted.

When multiple binary versions of a program are used with an accelerated

architectural simulation methodology, this dissertation will show that existing

techniques do not work well, and this dissertation will show that samples of

program behavior selected for cycle-level simulation must be selected consistently

across the different binaries to produce comparable results. This dissertation

will also present a technique to apply an accelerated simulation technique across

compilations so that samples of program behavior are selected consistently across

binaries, to produce comparable accelerated simulation results.

In the area of accelerated architectural simulation, the primary contri-

butions of this dissertation are:

• A technique to identify software phase markers, which are code locations

that indicate the beginning of a major change in program behavior when

executed. Phase markers are associated with source code, and are thus

portable across compilations.

• A technique to identify cross-binary simulation points, which allow the re-

sults of accelerated architectural simulation to be meaningfully compared

across binaries. Cross-binary simulation points use phase markers to indi-

cate where cycle-level simulation is required, so cycle-level simulation can

7

be run on semantically equivalent regions in all binaries, which allows for

meaningful comparisons of sampled simulation results across binaries.

I.B.2 Dynamic Optimization with Performance Auditing

Dynamic optimization systems attempt to improve the performance of

programs as they execute through recompilation. A dynamic optimizer must

predict if its optimizations will actually improve performance before applying

them — if an optimization is unlikely to improve performance, or if an optimiza-

tion will degrade performance, the optimization should not be applied. But it

becomes increasingly difficult to accurately predict if an optimization will actu-

ally improve performance as the complexity of software systems increases. As a

simple example, when should an optimizer inline a procedure? Inlining should

be done when it will improve performance, but it becomes increasingly difficult

to predict if a particular inlining decision will actually improve performance as

additional software layers such as application frameworks, Java virtual machines

and hypervisors are introduced between a program and its processor. Optimiz-

ers typically rely on heuristics to predict if an optimization will improve per-

formance. For example, an optimizer may inline a procedure if the procedure

contains less than N instructions. But as software complexity increases, these

types of heuristics become less reliable. This dissertation suggests an alternative

approach called performance auditing where dynamic optimizations are guided

by empirical performance measurements. With performance auditing, the per-

formance of differently-compiled versions of the same code is measured, and the

results of the performance measurements are used to directly guide optimization

decisions.

In the proposed performance auditing system, when a piece of code

is selected for performance auditing, several differently-compiled versions of the

8

code are generated. The program is allowed to run normally, but whenever the

audited code region is entered, one of the compiled versions will be randomly

selected and invoked. The system records the amount of time the program spent

executing code in that compiled version of the code.

The main challenge in the proposed system is to meaningfully compare

performance measurements that have been collected in this manner to make an

accurate performance prediction. The goal is to answer the question: Which

compiled version of the audited code runs the fastest in general? Answering this

question is difficult because it is typically impossible to obtain single pieces of

timing data for each of the differently-compiled versions of the code that are di-

rectly comparable, because timing data is collected continuously as the program

executes. To overcome this challenge, this dissertation presents a statistical tech-

nique to analyze pools of timing data to determine which version is the fastest, or

if there is not enough statistical evidence to make a confident decision. If statis-

tical confidence is low, more timing data is collected, and the statistical analysis

will run again later.

This challenge is very similar to the main challenge in building an accel-

erated architectural simulation system that produces comparable results across

multiple compilations, which was discussed in the previous section. In both cases,

the key challenge is to collect comparable performance samples from a set of bina-

ries, such that the performance samples can be meaningfully compared, in order

to accurately predict which binary runs the fastest.

In the area of performance auditing, the primary contributions of this

dissertation are:

• A technique to empirically compare the effectiveness of optimizations online,

despite changing program state.

• A description and evaluation of a prototype performance auditing system

9

built in IBM’s J9 Java virtual machine.

• Lightweight code markers, which map between a program’s source and its

optimized binary without using heuristic matching, and without modifying

the optimizer.

• A technique to improve statistical confidence in the proposed performance

auditing system by using lightweight code markers to consistently split large

timing samples into many small timing samples across compilations.

II

Cross Binary Architectural

Simulation

Modern computer architecture research requires understanding the cycle

level behavior of a processor as it executes a program. To gain this understanding,

researchers typically employ detailed simulators that model the processor’s cycle-

level behavior. Unfortunately, this level of detail comes at the cost of speed. Even

with the fastest simulators, modeling the full execution of a single benchmark at

the level required for computer architecture research can take weeks or months,

and nearly all industry standard benchmarks require simulating the execution

of a suite of programs. Therefore, instead of simulating entire programs, a few

small samples of each program’s execution are typically sampled instead. In this

chapter, these samples are on the scale of 10 to 500 million instructions.

With sampled simulation, the primary challenge is to determine which

simulation samples most accurately represent the program’s full execution. To

address this problem we created a tool called SimPoint [70, 78] that uses clustering

algorithms from machine learning to automatically find repetitive patterns in a

program’s execution. By simulating one representative of each repetitive behavior

10

11

pattern, simulation time can be reduced to minutes instead of weeks for standard

benchmark programs, with very little loss in accuracy. Several researchers have

shown the SimPoint approach works well when exploring architecture designs

with a single compiled binary version of a program [55, 70, 78, 95], but this

dissertation focuses on the problem of using SimPoint with multiple compiled

binary versions of a program.

There are three main scenarios where multiple binaries must be used

in architecture simulation. The first scenario involves instruction set extensions,

where a new binary is created that uses new instructions, such as the 64-bit

x86 extensions (x86-64). In this case, the performance of the original binary,

which does not use the extensions, must be compared to the performance of

the new binary, which does use the extensions. The second scenario deals with

examining completely different architectures, such as Itanium and x86-64. In

this case, completely different compilers will be used. Finally, the third scenario

involves developing compilers for new architectures. In this scenario, the compiler

writers must evaluate the performance effects of their compiler optimizations

through simulation, because working prototypes of a new processor are typically

not available until very late in the development cycle. In this scenario, the new

compiler may use the same instruction set as an existing compiler, but different

binaries will be produced as optimizations are enabled, disabled, reordered, and

adjusted.

In all three of these scenarios, semantically equivalent simulation sam-

ples must be identified in all binaries, or the simulation results can not be mean-

ingfully compared.

This chapter presents two solutions to the problem of accelerated sim-

ulation with multiple binaries. The first approach applies the baseline SimPoint

approach separately for each binary. SimPoint examines an execution trace and

12

groups similar portions of execution into phases (clusters). The most representa-

tive interval from each phase is chosen as the simulation point to represent that

cluster. SimPoint produces very accurate results when a single binary is used

across different architectures, because the same code regions are simulated on

each architecture, so the simulated code regions are semantically equivalent by

definition.

But when SimPoint is applied to multiple binary representations of the

same program, SimPoint can produce different clusterings for each binary. This

means that the simulation points selected by SimPoint in each binary may actu-

ally represent different behaviors. And even if the simulation points do represent

the same behaviors, the results still may not be comparable, because semantically

equivalent portions of execution in one binary may be assigned to different phases

in different binaries. So even if semantically equivalent simulation points are se-

lected across binaries, those simulation points may represent different behaviors

in different binaries. Results in Section II.D.3 show that these concerns are real.

To address these concerns, this chapter presents a technique called cross

binary SimPoint. This approach identifies simulation points that are semantically

equivalent across multiple binaries. The approach works by first profiling each

binary and identifying a set of software phase markers in each binary that can

be identified in all other binaries. These mappable simulation points are instruc-

tions in each binary corresponding to procedure calls or loop branches that can

be consistently identified in all binaries. These mappable markers are potential

boundaries for simulation regions. Program execution is split into intervals on

these mappable markers for one of the binaries, and basic block vectors are col-

lected. The basic block vectors are run through SimPoint, which selects a set

of simulation points which are now mappable across all binaries. Then, detailed

simulation can be performed on these mapped simulation points to compare per-

13

formance across binaries.

The outline of this chapter is as follows. First section II.A presents

background and related work in the area of accelerated architectural simulation

techniques. Section II.B demonstrates some issues with standard techniques for

identifying repetitive program behaviors for the purposes of accelerated archi-

tectural simulation. These issues motivate the need for software phase markers,

presented in section II.C. Software phase markers identify repetitive program

behaviors based on high-level code structure, such as procedure calls and loop

backedges, that mark the start of each repetitive behavior. A program’s soft-

ware phase markers are tightly coupled with the program’s code structure, which

makes them effective for applications such as dynamic hardware reconfiguration,

but also makes them less effective when directly applied to accelerated architec-

tural simulation. Cross binary simulation points, presented in section II.D, loosen

this coupling between a program’s phase markers and the program’s simulation

points by selecting specific dynamic instances of phase markers to identify the

start and end of each simulation point. With cross binary simulation points,

sampled simulation results can be meaningfully compared across multiple bina-

ries. Section II.E presents work that is closely related to cross binary simulation

points.

II.A Background

This section presents background and related work in the area of accel-

erated architectural simulation techniques.

II.A.1 Time Varying Behavior and Phases

Before discussing accelerated architectural simulation techniques, a brief

aside is necessary to discuss the time varying behavior of programs and phase

14

 0
 1
 2
 3
 4
 5
 6
 7

ip
c

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06

dl
1

hi
ts

 0
 200000
 400000
 600000
 800000
 1e+06

 1.2e+06
 1.4e+06
 1.6e+06
 1.8e+06

 2e+06

bp
re

d
hi

ts

 0
 1e+09
 2e+09
 3e+09
 4e+09
 5e+09
 6e+09
 7e+09

0 1000 2000 3000 4000 5000 6000

po
w

er

Figure II.1: Time varying graph for bzip2-graphic (first 64 billion instructions).
Time is plotted on each X-axis, in tens of millions of instructions. Each data point
on the Y-axes shows the average IPC, level 1 data cache hits, correct branch
predictions, and power for each ten-million instruction interval.

behavior, which make accelerated simulation possible.

A program’s behavior at any instant in time can differ drastically from

the program’s average overall behavior. Furthermore, programs exhibit phase

behavior — their behavior will be stable for long periods of time, before moving

on to another behavior pattern.

These statements about the time-varying behavior of programs may

seen counterintuitive at first, but consider a block-based compression program as

an example. The compression program will perform the same steps to compress

each block of data. For example, the deflate compression algorithm used in gzip

15

 0
 1
 2
 3
 4
 5
 6

ip
c

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06

dl
1

hi
ts

 0
 500000
 1e+06

 1.5e+06
 2e+06

 2.5e+06

bp
re

d
hi

ts

 0
 1e+09
 2e+09
 3e+09
 4e+09
 5e+09
 6e+09
 7e+09
 8e+09

0 200 400 600 800 1000 1200

po
w

er

Figure II.2: Time varying graph for gcc-integrate.

16

first slides a window over the data to replace redundancies with backpointers,

then applies Huffman coding to further compress the data. Different code will

be executed in each of these steps, and the processor should behave differently

in each of these steps. These two steps are performed for each block of data,

and most inputs are split into many blocks of data, so these two steps should be

performed over and over again to compress an input. These expectations lead to

cyclic behavior patterns, which are common in compression programs.

Another example of phase behavior in programs are the stages of com-

pilation. The different stages will exercise the machine in very different ways,

because the algorithms change from stage to stage. For example, the algorithms

used in lexing are usually very different from the algorithms used in register allo-

cation. The compiler will do different work in each of its major stages, and it will

spend a significant amount of time in each major stage, and similar work should

be done within each stage. These expectations lead to phase behavior.

In general, the execution of most integer programs can be broken down

into a series of major processing stages, like the stages of a compiler as discussed

above. Most floating point benchmarks consist of one major “computation stage,”

like the compression example discussed above, but floating point benchmarks also

exhibit strong phase behavior because they often spend most of their time in

nested loops, which leads to cyclic behavior patterns.

Figure II.1 shows a graph of the time-varying behavior of bzip2. To

produce this graph, bzip2’s execution was partitioned into intervals of 10 million

instructions, and the value of each metric listed on the Y-axes (IPC, data cache

hits, correct branch predictions, power) was collected for each 10 million instruc-

tion interval. Time is plotted on the X-axes, in tens of millions of instructions.

This means that each data point on the graph shows the instantaneous behavior

of bzip2, where an “instant” is 10 million instructions long.

17

Only the first half of bzip2’s execution is shown to make the graph

more legible. The second half of bzip2’s execution is very similar to the first half.

Inspection of this figure reveals that this benchmark exhibits phase behavior on

two levels: there is one high-level behavior pattern from 0-5000 on the X-axis, and

another from 5000-6400. Within each of these high level phase patterns, there

are lower-level phase patterns, which are most easily seen on the power graph.

Each high-level phase exhibits a highly repetitive low-level phase pattern, yet the

low-level phase patterns are completely different across the high-level phases.

Figure II.2 shows a time-varying graph of gcc’s behavior. This figure

poses more of a challenge to phase analysis. In this figure, two levels of phase

behavior can also be seen. For example, gcc’s behavior is mostly homogeneous

between 150 and 300 on the X-axis. But upon closer examination, there are small

periodic variations in behavior within each high-level phase. This time-varying

graph shows that gcc is a difficult benchmark for phase analysis, because the

small behavior variations within each high-level phase are not as regular as the

low-level patterns exhibited by bzip2, and each high level phase is seen only once.

This section showed that even complex integer benchmarks from SPEC2000

such as bzip2 and gcc exhibit phase behavior: as they execute, they spend large

amounts of time (millions to billions of instructions) exhibiting homogeneous

behavior before quickly switching to another type of behavior.

II.A.2 Phase Analysis

Before phase behavior can be exploited for accelerated architectural sim-

ulations, phases must first be detected. The easiest way to detect phase behav-

ior is to employ knowledge about the program to be run. For example, in an

MPEG decoder, program behavior should be fairly homogeneous while decoding

each MPEG frame type. Program behavior while decoding any I-frame should

18

be fairly similar, but behavior while decoding a P-frame should be very differ-

ent. This subsection explores general techniques that do not rely on this type of

program-specific knowledge.

First, some terminology:

• Interval — An interval is a continuous slice of program execution. A pro-

gram’s execution is partitioned into intervals, so intervals may not overlap.

The length of intervals is commonly referred to as the “granularity” of the

intervals.

• Similarity — A similarity metric is used to measure the similarity of program

behaviors in two intervals of program execution. Similarity metrics depend

on how program behavior for each behavior is represented, which will be

discussed in the following subsection.

• Phase — A phase is a collection of intervals with similar behavior. Typically,

programs are partitioned into a large number of intervals, and those intervals

are grouped into a small number of phases.

• Phase Analysis — To detect phases in program behavior, a program’s inter-

vals must be classified into phases, typically using machine learning cluster-

ing techniques. This is called phase analysis.

Phases are identified by first partitioning a program’s execution into

intervals, then clustering the intervals into phases. A program’s execution is

partitioned into intervals, so intervals never overlap. Intervals can be fixed-length

or variable-length. When a program’s execution is partitioned into intervals, the

main issue is setting an interval length. Fixed-length intervals are usually defined

in terms of the number of instructions executed by the program in each interval

— for example, a program may be partitioned into fixed-length intervals of 100

million instructions. This means that each fixed-length interval represents the

19

execution of 100 million instructions. The length of intervals is also referred to

as the “granularity” — large intervals are “coarse” and small intervals are “fine.”

Hind et al. [37] provide a framework for defining and reasoning about program

phase classifications, focusing on how to best define granularity and similarity for

phase analysis.

After a program’s execution has been partitioned into intervals, the

intervals are clustered into phases. This process will be described in detail in the

following subsections.

Phase behavior has been exploited to accelerate architectural simula-

tions [77, 78], to save energy by dynamically reconfiguring caches and processor

width [9, 79, 26, 25], to guide compiler optimizations [63, 10], to guide remote

profiling [66], and to choose which core to run a process on in a multi-core archi-

tecture [54].

Basic Block Vectors

Phase analysis requires a signature of the program’s behavior for each

interval. This dissertation presents several techniques that rely on code-based

signatures [55, 56], specifically, basic block vectors.

Basic Block Vectors (BBVs) [77] capture information about changes

in a program’s behavior over time. A basic block is a single-entry, single-exit

section of code with no internal control flow. A Basic Block Vector (BBV) is a

one dimensional array where each element in the array corresponds to each basic

block in the program. Basic block vectors are essentially another way of looking

at block profiles.

To collect a basic block vector, the profiler starts with an empty BBV

(zero vector) at the beginning of each interval of execution. Throughout each

interval, the profiler counts the number of times each basic block in the program

20

has been executed, and records the count in the BBV. For example, if the 50th

basic block is executed 15 times in the current interval, then the profiler will set

bbv[50] = 15. The profiler multiplies each count by the number of instructions

in the basic block, so basic blocks containing more instructions will have more

weight in the BBV.

Basic block vectors are used to evaluate the similarity of the intervals

they were collected from [77, 78]. The intuition is that the behavior of a program

in an interval is directly related to the code executed in that interval. Basic

block vectors are fingerprints for each interval of execution, because each vector

indicates what portions of code are executed, and how frequently those portions

of code are executed: if the distance between the BBVs is small, then the two

intervals spend about the same amount of time in roughly the same code, and

therefore the overall behavior of the program in those two intervals should be

similar.

There are many ways to collect a signature of program behavior from an

interval of execution other than basic block vectors. Denning and Schwartz [23]

were one of the first to analyze time-varying program behavior, by showing that

patterns in program behavior can be detected by monitoring a program’s data

working set over time. Similarly, Dhodapkar and Smith [25, 26, 24] found relation-

ships between patterns in program behavior and code working sets. Balasubra-

monian et al. [9] used hardware counters to collect miss rates, CPI and branch fre-

quency information for every 100,000 instructions executed, and used the statis-

tics to identify stable portions of program execution. Isci and Martonosi [45, 46]

found that patterns in program behavior can be detected by monitoring the power

consumption of architectural components. In [56], we examined several alterna-

tives to basic block vectors, including several forms of code signature vectors

where each dimension corresponds to procedure calls, procedure returns, or loop

21

branches instead of basic blocks. We found that many types of code signatures

can be used effectively for phase analysis.

II.A.3 Accelerating Architectural Simulations with SimPoint

Architectural simulation is incredibly slow. Modern simulators can sim-

ulate around 400,000 instructions per hour, but typical benchmarks contain bil-

lions or even trillions of instructions [78]. The poor performance of architectural

simulators makes it infeasible to perform detailed simulation for a full benchmark

run. Additionally, processor designers are most interested in a processor’s per-

formance on a suite of benchmarks, rather than single benchmarks. This makes

accelerated simulation methodologies even more important.

SimPoint [78] is a popular tool that uses phase analysis to accelerate

architectural simulations. SimPoint is used by several of the techniques presented

in this dissertation, so a summary of the SimPoint approach is provided in this

section. [78] contains a more detailed description.

The underlying principle of the SimPoint approach by Sherwood et al.

is that program behavior is a function of the code executed by the program.

SimPoint detects phase behavior by examining basic block vectors (described in

the previous subsection) collected from each interval of execution.

Basic block vectors can be quite large (gcc contains around 100 thou-

sand static basic blocks), so the vectors are randomly projected to a lower dimen-

sionality before analysis. Random projection first generates a M by N random

projection matrix, where M is the number of static basic blocks in the program,

and N is the desired lower-dimensional projection. The random projection matrix

is filled with random numbers limited to a fixed range. Each vector is multiplied

by this random projection matrix, resulting in smaller projected vectors. Random

projection is best explained by example: to randomly project a 3-dimensional ob-

22

ject to 2 dimensions, you randomly position a camera at a fixed distance from

the object (facing the object of course), and take a picture.

After randomly projecting the basic block vectors for each interval of

execution, phases are detected by grouping the projected basic block vectors

based on their similarity. Each vector is a point in N -dimensional space, where N

is the number of dimensions projected to (typically 15). The Euclidean distance of

a pair of vectors in this N -dimensional space is used to evaluate vector similarity.

SimPoint uses the k-means clustering algorithm [61] to partition the

set of vectors into clusters of similar vectors. Each cluster produced by the

clustering algorithm directly corresponds to a phase of program behavior, because

intervals with similar vectors execute roughly the same code in roughly the same

proportions, so they should exhibit similar behavior.

After clustering a program’s intervals, SimPoint selects a single repre-

sentative interval from each cluster by identifying the interval that is closest to

the centroid (center) of each cluster. Only these representatives will be simulated

in detail with a cycle-level simulator, and the simulation results will be weighted

by the number of intervals in the phase that the representative represents. In

this manner, the detailed simulation results for all the representative intervals

from a program can be extrapolated to estimate the overall performance of the

simulated processor when executing the program.

A summary of the SimPoint approach is provided below.

1. Profile the program by partitioning the program’s execution into contiguous

intervals, and collect a basic block vector for each interval. Normalize each

basic block vector so that the sum of all the elements equals 1.

2. Reduce the dimensionality of the basic block vectors to a smaller number of

dimensions using random linear projection.

3. Run the k-means clustering algorithm on the reduced-dimension BBVs for

23

a set of k values.

4. Choose from among these different clusterings a well-formed clustering that

also has a small number of clusters. To compare and evaluate the differ-

ent clusters formed for different values of k, SimPoint uses the Bayesian

Information Criterion (BIC) [71] as a measure of the “goodness of fit” of a

clustering to a dataset. SimPoint chooses the clustering with the smallest

k, such that its BIC score is close to the best score that has been seen. The

chosen clustering represents the final grouping of intervals into phases.

5. Select simulation points for the chosen clustering. For each cluster, SimPoint

chooses one representative interval that will be simulated in detail to repre-

sent the behavior of the whole cluster. By simulating only one representative

interval per phase SimPoint can extrapolate and capture the behavior of the

entire program. To choose a representative, SimPoint picks the interval in

each cluster that is closest to the centroid (center) of each cluster. Each

simulation point also has an associated weight, which reflects the fraction of

executed instructions that are in the cluster.

6. With the weights and the detailed simulation results of each simulation

point, SimPoint computes a weighted average for the architecture metric

of interest (CPI, miss rate, etc.). This weighted average of the simulation

points gives an accurate representation of the complete execution of the

program/input pair.

II.A.4 Evaluating Phase Classifications

Several metrics are commonly used to evaluate the effectiveness of phase

analysis techniques such as SimPoint.

Phases are intervals with similar program behavior, so the effectiveness

24

of a phase classification can be measured by examining the similarity of program

metrics within each phase. After classifying a program’s intervals into phases,

the average of some metric (CPI, for example) over all intervals in the phase is

calculated. Next, the standard deviation of the metric for each phase is calculated,

and the standard deviation is divided by the average to produce the Coefficient of

Variation (CoV). CoV measures standard deviation as a fraction of the average.

The average and standard deviation for each interval are weighted by

the number of instructions in the interval, so intervals that represent a larger per-

centage of the program’s execution receive more weight in the CoV calculations.

Per-phase CoVs can be averaged across all phases to produce an overall CoV that

measures the homogeneity of a phase classification. Better phase classifications

will exhibit lower overall CoV. For example, if all of the intervals in the same

phase have exactly the same CPI, then the overall CPI CoV will be zero.

Unfortunately, CoV is not a perfect metric — if a program with N

intervals is classified into N phases, the CoV will be zero. For this reason, the

number of intervals and phases for each classification must also be considered.

Techniques to accelerate architectural simulations are evaluated by mea-

suring the accuracy of the technique. Accelerated architectural simulation pro-

duces an estimate of the processor’s performance for a program by simulating

small representative portions of the program, instead of simulating the whole

program. The difference between the estimated performance from accelerated

simulation and the actual performance from full simulation should be small.

II.B Capturing Program Behavior with Fixed and Vari-

able Length Intervals

Prior phase analysis work relies on fixed length intervals. Fixed length

intervals are usually defined in terms of some fixed number of dynamic instruc-

25

tions per interval - for example, a program’s execution may be partitioned into

fixed-length intervals of one million instructions per interval. This means that

the first interval of execution contains the first dynamic instruction to the mil-

lionth dynamic instruction, the second interval contains the 1,000,001th dynamic

instruction to the two-millionth instruction, and so on.

Fixed length intervals are prone to synchronization problems, because

the frequency of interval boundaries will very likely be out of sync with the fre-

quency of behavior changes in the program under analysis. These synchronization

problems make it more difficult to automatically find large scale phase behavior.

Additionally, programs exhibit phase behavior at many different granu-

larities, and focusing on a single fixed interval length limits phase discovery to a

single granularity. Some programs exhibit a hierarchy of phase behaviors, where

different behavior patterns can be seen at different granularities.

This section provides motivation for variable length intervals. Contribu-

tions include new methods to graphically view program behavior, and algorithms

to capture a program’s hierarchy of variable length intervals.

II.B.1 Issues with Fixed Length Intervals

Prior work in phase classification has concentrated on using fixed length

intervals. This subsection shows how fixed length intervals can result in sub-

optimal phase classifications due to synchronization issues. Fixed length intervals

profile program behavior at a fixed frequency determined by the interval length.

But this profiling frequency is highly likely to be out of sync with the actual fre-

quency of behavior changes in the underlying program. This subsection presents

examples of how and why these synchronization problems occur.

26

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

Figure II.3: An example of what happens to a signal (top figure) when it is
sampled with different interval lengths. The signal in this example is a sinusoid,
shown in the top figure, and the intervals it is broken into are drawn vertically
in the lower two figures. The average signal for each interval is shown as the
straight line within an interval. When the interval is dissonant with the period
of the signal, it results in a jagged and unstable characterization as can be seen
in the central figure. The optimal interval duration, shown in the bottom figure,
captures exactly one cycle of the repetitive behavior, which results in a concise
and stable characterization of the signal.

27

Interval Dissonance and Harmony

Figure II.3 shows how fixed length intervals can distort the view of

time-varying program behavior. The figure shows a simple sinusoid sampled at

different frequencies. The top figure shows the signal, a sine wave with a constant

period of 25. The middle figure shows what happens when the signal is sampled

at a constant period of 11. The original signal is shown in the background, with

vertical dashed lines depicting where the intervals are split. The signal average

for each interval is plotted as a point at the end of that interval, and the solid line

connects these averages to show the interval-based representation of the signal.

In this figure the solid line is very jagged, because the period of the intervals is

out of sync with the period of the sinusoid.

Fixed length intervals may require a high profiling frequency to capture

a signal. The number of intervals required to accurately represent a signal is the

ratio of Least Common Multiple between the interval length and the period of

the signal, and the length of the interval:

LCM(|interval|, |SignalPeriod|)
|interval|

In this example, 25 intervals are needed to accurately represent the

signal using intervals of fixed length 11.

The bottom figure shows an interval length of 25, equal to the period

of the signal. In the bottom figure, each interval captures an entire period of the

signal. In this scenario, only one interval is needed to accurately represent the

signal.

In this simple example, fixed intervals with length 25 can accurately rep-

resent the signal. But most programs do not exhibit simple fixed-frequency phase

behavior. For example, the gzip benchmark from the SPEC2000 benchmark suite

exhibits low-frequency phase behavior in its low-IPC phases, and high-frequency

28

phase behavior in its high-IPC phases. It is unlikely that a single fixed interval

length can accurately capture phase behavior at both these frequencies. Addi-

tionally, there are some benchmarks where the period changes over time - vpr

for example. As vpr’s simulated annealing algorithm converges on a solution, it

spends less and less time evaluating each solution.

II.B.2 Hierarchical Program Behavior

The previous subsection presented a simple example where fixed length

intervals can distort a signal. This subsection examines the effects of fixed length

intervals on actual program execution, demonstrating issues with fixed length

intervals, and also demonstrating hierarchical phase behavior.

This subsection presents two representations of a program’s execution

by examining the code executed with basic block vectors collected from fixed

length intervals: a three-dimensional non-accumulative representation, and a two-

dimensional accumulative representation.

3D Non-Accumulated Representation

In the non-accumulated representation, a basic block vector is captured

from each interval of execution. The basic block vector for an interval indicates

the number of times each basic block was executed in that interval, as described

in subsection II.A.2.

One basic block vector captures program behavior for a single interval,

so a set of basic block vectors captures a program’s overall behavior. To create

the 3D non-accumulated representation, each vector in the set is projected to

three dimensions with random linear projection [78]. The projected vectors are

then plotted as points in 3-dimensional space, and lines are drawn to connect

temporally adjacent points, to show the order in which the intervals are executed.

29

gzip-graphic

deflate_fast

inflate
inflate

deflate

inflate

uncompressStream

compressStream
compressStream

A

B

bzip2-source

Figure II.4: Three dimensional non-accumulated representation of gzip-graphic
and bzip2-source. Each point represents an interval during execution, and the
line connecting the points shows the order in which the intervals are executed in
time. The right figure of bzip2-source has two points labeled A and B, which
indicate two temporally adjacent intervals of program execution (A is executed
first). The figures on the left plot the entire execution, while the figures on the
right zoom in on a looping region in the execution.

30

compressStream

uncompressStream

compressStream

uncompressStream

uncompressStream

compressStream

Figure II.5: Two dimensional accumulated representation of bzip2-source. The
figure on the left was produced by calculating the running sum of the vector
data in Figure II.4. Each point in this figure is a projected basic block vector
representing the program’s execution from start of execution to the interval rep-
resented by the point. The figure on the right shows detail of the bottom left
corner of the figure on the left.

The resulting figure provides a graphical representation of how the pro-

gram’s usage of its code changes over time. If a program spends many consecutive

intervals executing the same code in the same proportions, those intervals will

appear very close together in the figure. If interval boundaries were always syn-

chronized with phase transitions, then the figure would show a small number of

interconnected tight clusters.

If interval boundaries are poorly synchronized with the program’s phase

transitions, then oscillating patterns will appear, as discussed in the prior sub-

section. The oscillations should appear as circular patterns when their vectors

are plotted. Figure II.4 shows a 3-dimensional representation of the execution of

two benchmarks: gzip-graphic and bzip2-source. A fixed length interval size

of 100 million instructions was used.

The gzip benchmark from the SPEC2000 benchmark suite repeatedly

compresses and decompresses its data 5 times, at compression levels 1, 3, 5, 7,

and 9. At compression levels 1 and 3, a faster version of the deflate algorithm is

31

used. This time-varying program behavior is clearly visible from the gzip graphs

shown in Figure II.4. For example we see that execution transitions back and

forth between deflate fast and inflate 3 times (deflate fast → inflate

→ deflate fast → inflate), corresponding to compression and decompres-

sion at levels 1 and 3. There are 5 transitions between deflate and inflate,

corresponding to compression and decompression at levels 5, 7, and 9.

The vectors collected from each deflation and inflation phase form a

torus. Each cycle around the torus corresponds to the compression or decom-

pression of a block of data. If the interval length was properly synchronized with

program behavior, each operation on a block of data could be represented with a

single interval. But Figure II.4 shows that these fixed length intervals are out of

sync with the behavior of the program, resulting in a large number of irregular

intervals capturing the behavior pattern.

Similarly, SPEC2000’s bzip compresses and decompresses the data twice,

at compression levels 7 and 9. Thus, execution transitions between compression

and decompression three times, as seen in Figure II.4. Each iteration around

the circular structures corresponds to compression of a block of data, as seen in

the gzip plots. There are two looping structures within the compression phase

- these correspond to compressing blocks with different entropy properties. bzip

performs run-length encoding on its front end, and more time is spent in the

run-length encoder on blocks with more contiguous sequences of repetitive bytes.

As seen from these two examples, the majority of a program’s execu-

tion is spent in loops. The average number of instructions per loop iteration

can change over time. For example, fewer instructions are typically needed to

decompress a block of data than to compress a block of data. This means that

the period changes over time. An ideal fixed interval length for one section of

execution (compression) may not be ideal for another portion of the program’s

32

execution (decompression). It is unlikely to find a single fixed interval that can ac-

curately represent a whole program, which motivates the need for variable length

intervals that adjust to the period of the program’s current behavior pattern.

Figure II.4 shows that it is possible to see periodic behavior in programs

by looking at a non-accumulative representation of the program’s code space

usage over time: the periodic behavior of programs results in cyclic patterns in

these graphs. Both these programs also exhibit hierarchical behavior: there is a

high-level behavior pattern between compression and decompression, and within

each compression and decompression phase, there is a low-level behavior pattern

corresponding to each block of data compressed or decompressed.

2D Accumulated Representation

Another way to examine a program’s execution is with an accumula-

tive representation. With this approach, each interval of execution is represented

with a basic block vector that tracks the total number of times each basic block

is executed from the beginning of execution to the current interval. A fixed

length interval size of 1 million instructions was used. Figure II.5 shows a two-

dimensional projection of accumulated basic block vector data for bzip2-source.

Each point represents the accumulated basic block vector from the start of exe-

cution up to a fixed length interval boundary, and the lines connecting the points

indicate the order in which the intervals were executed.

This graph shows that it is easy to find stable program behavior by

looking at an accumulated representation, because stable behavior results in a

straight line. If the program is executing the same distribution of basic blocks, the

accumulated representation will show a straight line, because the same dimensions

of the accumulated vector will be increased by the same quantities. Whenever

the line bends, the program is executing a different distribution of basic blocks,

33

and is therefore exhibiting a different behavior pattern.

SPEC2000’s bzip2-source benchmark fills a 58MB buffer with back-

to-back copies of a tarfile containing source for some SPEC benchmarks. The

58MB buffer is large enough to hold 6.4 copies of the source tarfile. The tarfile

contains a large number of null bytes at the end. This buffer is first compressed

with a block size of 700KB, then decompressed, then compressed again with a

block size of 900KB, and finally decompressed.

All these properties are visible in Figure II.5. The 6.4 copies of the

input file can be seen most easily in the decompression phases. The line shifts

upwards every time the end of the original input file is reached, because of the

large number of null bytes present at the end of the input file. This changes the

entropy of the block, which causes bzip2 to execute code in different proportions

- more time is spent doing RLE decompression, and less time spent inverting

the Burrows-Wheeler transform. Each circle during compression corresponds to

compressing a block of data, and each spike during the decompression phase

occurs when writing a decompressed block of data. Thus, the block size is not

directly visible, but the number of blocks is.

When a block size of 700KB is used, there are 14 blocks per copy of the

original input file, and if you look closely, there are 14 little spikes within each

“plateau” during the first decompression phase. When a block size of 900KB is

used during the second decompression phase, there are 11 blocks per copy of the

original input file, and there are 11 little spikes per plateau visible in the second

decompression phase. The same patterns can be seen by counting loops in the

compression phases.

34

II.C Software Phase Markers

The last section motivated the need for variable length intervals. This

section proposes software phase markers, which are used to align interval bound-

aries with a program’s phase transitions, instead of relying on fixed length inter-

vals. The key idea presented in this section is to use the code at each procedure

or loop boundary as a software phase marker that, when executed, signals a

phase change, without any hardware support. These software phase markers are

selected by directly analyzing each program’s procedure call and loop iteration

patterns.

The analysis is driven by a hierarchical call-loop graph. A call-loop

graph is much like a traditional call graph, except that it has additional nodes

for loops, and additional annotations noting the variance on all paths to each

call or loop. Call-loop graphs can be quickly collected from a running program

through the use of a profiling tool. A simple and fast algorithm is used to select

code structures to serve as software phase markers from the Call-Loop graph.

Software phase markers accurately identify phase changes at the binary level,

with no hardware support, across different inputs to a program.

II.C.1 Capturing Hierarchical Behavior with Call-Loop Graphs

This subsection describes the hierarchical call-loop graph which guides

the selection of software phase markers. The call-loop graph is a call graph

extended with nodes for loops, where each node and edge is annotated with hier-

archical instruction counts and standard deviation of the hierarchical instruction

count.

35

Procedures, Loops, and Phase Behavior

Huang et al. [41] found that program behavior tends to be fairly homo-

geneous across different invocations of the same procedure. This section shows

that this result extends to loops as well: program behavior across loop iterations

and across different executions of the same loop nest are fairly homogeneous.

This will be shown in the next section by measuring the variance in program

metrics across a program’s procedures and loops. By placing phase markers on

loops in addition to procedures, smaller interval sizes can be achieved compared

to procedures alone.

While procedures are sufficient for detecting phase behavior in many

programs, such as Java applications with small object oriented routines [33],

in general it is important to also examine a program’s loop structure to identify

repetitive program behaviors, because using procedures alone places a dependence

on the application programmer to divide their code into meaningful subroutines.

Prior work has shown that tracking loops and procedures together can effectively

detect phase behavior, while tracking procedures alone was not as effective [56].

The call-loop graph has nodes for both procedures and loops. Each node

and edge in the call-loop graph carries the call count, total local and hierarchical

dynamic instruction count, as well as the average and standard deviation of the

hierarchical dynamic instruction count.

Creating a Call-Loop Graph for Finding Phase Behavior

The call-loop graph is constructed by analyzing binaries with ATOM [81],

a binary instrumentation tool. Procedures are detected by ATOM, and loop back

edges are detected by identifying non-interprocedural backwards branches. A

loop is the static code region from the backwards branch to its target. There are

nodes for both procedures and loops in the call-loop graph.

36

The call-loop graph tracks the hierarchical instruction counts on each

edge. For a call, for example, this is the total number of instructions executed

between call and return. For each edge the graph tracks the following four pieces

of data:

1. for procedures, the number of times the procedure is called, and for loops,

the number of times the loop iterates

2. the average number of instructions executed on each edge

3. the maximum number of instructions executed on a single traversal of the

edge

4. the standard deviation of the number of instructions executed on each edge

In the call-loop graph, each procedure and loop is represented with two

nodes to handle recursion and iteration. Each procedure and loop is represented

with a head node and a body node. Every head node always has exactly one

child, which is its corresponding body node.

Loop head nodes track how many instructions execute between loop en-

try and exit, while loop body nodes track how many instructions execute between

loop iterations. If a loop head node is selected as a phase marker, then loop entry

points are marked, and if a loop body node is selected as a phase marker, then

loop backedges are marked.

Similarly, procedure head nodes track the number of overall instructions

executed for recursive procedures between entry to the recursive procedure and

exit from the recursive procedure, similar to loop head nodes. Procedure body

nodes track instructions executed for each recursive iteration, similar to the loop

body nodes. For non-recursive procedures, procedure head and body nodes carry

identical information.

37

Proc foo()

...

loop

...

if (cond) call X;

else call Y;

...

end loop

...

call X;

...

end proc

Proc X()

...

call Z;

...

end proc

foo

loop_head

C=5

A=10000

CoV=20%

x

C=5

A=1100

CoV=10%

loop_body

C=500

A=100

CoV=100%

z

C=305

A=65

CoV=200%

C=300

A=70

CoV=15%

y

C=200

A=10

CoV=5%

Figure II.6: Code example and Call-Loop graph for code example. C is the
number of times each edge is traversed, A is the average number of hierarchical
instructions executed each time the edge is traversed, and CoV is the hierarchical
instruction count coefficient of variation. For procedures, only the procedure-
head nodes are shown, since the example does not have recursion. Maximum
instruction counts are also not shown to save space.

By representing each procedure and loop with head and body nodes,

the call-loop graph allows for the detection of more stable program behaviors.

For example, a loop body node will indicate if a loop does similar work on each

iteration, and the loop head node will indicate if a loop does similar amounts of

work between each loop entry and loop exit.

Figure II.6 shows a piece of code and its corresponding call-loop graph.

The call-loop graph has been simplified to improve its legibility. Because there

is no recursion in this example, only procedure head nodes are shown in this

38

call-loop graph. To improve legibility, the maximum instruction counts are not

shown. Procedure foo contains a loop and the foo → loop head edge notes the

hierarchical instruction count from loop entry to loop exit. In comparison, the

loop head → loop body edge notes the hierarchical instruction count for each

loop iteration. Two nodes are used to represent the loop, and the weight of the

foo→ loop head edge indicates the number of times the loop is entered, and the

loop head → loop body edge indicates the number of times the loop iterates.

Each edge in Figure II.6 is annotated with three values: the number of

times the edge was traversed (C), the average number of instructions executed

each time the edge is traversed (A), and the standard deviation of the number of

instructions across invocations, which is represented by the Coefficient of Varia-

tion (CoV). CoV is just standard deviation divided by average. CoV is used to

identify edges with low variance, which are candidates for phase marker selection,

as described in the next subsection.

II.C.2 Selecting Software Phase Markers

Software phase markers are points in the binary that can be instru-

mented (branches, procedure calls, returns, loop entries, the start of a procedure,

etc) to reliably indicate the beginning of an interval of repeating program be-

havior when executed. These software phase markers can be used to easily and

accurately predict program phase changes at run-time with no hardware support.

In addition, software phase markers can be used to predict phase changes across

different inputs to a program, and across different compilations of the same source

code.

In this subsection, the software phase marker selection algorithm is pre-

sented. Given a call-loop graph as described in the prior section, the algorithm

selects phase markers that can be monitored in a program with a static or dy-

39

namic compiler or binary instrumentation.

Selecting Markers from the Call-Loop Graph

Many programs exhibit different repetitive behaviors at different time

scales. When selecting software phase markers, a time scale must be specified by

the user - the selection algorithm needs to know whether the user is interested in

large or small scale behaviors. For example, optimizations with high overheads

will be more interested in large-scale phase behavior, since they require more time

between optimizations to recoup the cost of applying each optimization. The call-

loop graph can be used to find both large and small scale phase behaviors. The

algorithm presented in this subsection identifies repetitive phase behaviors at the

desired granularity by first considering small granularities in the call-loop graph

and moving upwards toward larger granularities. The algorithm seeks to satisfy

two conflicting constraints:

1. There must not be too much or too little distance between marker points

2. Each marker must indicate the start of a repetitive program behavior with

high probability

The call-loop graph in Figure II.6 provides an example that illustrates

how the hierarchical instruction count CoV guides the selection of software phase

markers. Each edge in the Figure shows C - the number of times the edge was

traversed, A - the average hierarchical number of instructions executed each time

the edge was traversed, and CoV - the hierarchical instruction count coefficient

of variation (standard deviation divided by average). In this example, the X

→ Z edge has a CoV of 200%, and each time Z is executed on the path from

loop body, Z executes 50 instructions on average. On the other hand, each time

Z is executed on the foo→ X→ Z path, Z executes 1000 instructions on average.

40

Therefore, the X → Z edge exhibits high CoV in hierarchical instruction count

per edge traversal. But X’s incident edges allow for additional path differentiation

that allow X’s behaviors to be cleanly separated into different classes based on

the callsite. Because the loop body → X and foo → X edges both have a low

CoV, the number of hierarchical instructions executed on each edge is similar

every time the program traverses one of these edges. These two edges are good

candidates for software phase marker selection.

The example in Figure II.6 will also be used to demonstrate the phase

marker selection algorithm. The algorithm takes as input a threshold for the

minimum average interval size (hierarchical instruction count). For this exam-

ple, the instruction count threshold is set to 90, so the algorithm searches for

edges where A ≥ 90. The edges foo → loop head, foo → X and loop head →

loop body are the only edges that qualify as potential software phase markers. In

addition, the algorithm also uses a CoV threshold, which is set based on the call-

loop graph as described below. Returning to the example shown in Figure II.6, if

the CoV threshold is set to 50%, then the loop head → loop body edge would

not be considered, because its CoV is 100%. This indicates that there is too

much variation in hierarchical instruction count for each iteration of the loop. In

comparison, each time the loop was entered and exited (on the foo→ loop head

edge), the CoV was low, indicating the hierarchical instruction counts across all

loop invocations were similar. Therefore, it is better to place the phase marker

on the foo → loop head edge. The end result would be the placement of the

phase markers on edges foo → loop head and foo → X.

The phase marker selection algorithm runs in two passes. The first pass

prunes the call-loop graph based on the desired average number of instructions

per interval. When a marker is placed on an edge in the call-loop graph, the

average number of instructions per interval for that marker will equal the average

41

hierarchical instruction count on that edge (shown as A in Figure II.6). The second

pass of the algorithm searches the remaining nodes in the call-loop graph in

reverse depth order, looking for edges with a low average hierarchical instruction

count CoV. This algorithm therefore takes two inputs: a call-loop graph and

ilower. ilower specifies the minimum allowed interval size, which is the minimum

number of instructions allowed per interval. A CoV threshold is used to limit the

variability in instruction count, but it is automatically calculated by the first pass

of the algorithm.

Pass 1 - Pruning based on the average hierarchical number of

instructions: The algorithm first estimates the maximum depth of each node in

the call-loop graph, by performing a modified depth-first search. In this depth-

first search, a node can be traversed more than once when a longer path to that

node is found. The algorithm never revisits a node on the current path, to ensure

the algorithm terminates for graphs that contain cycles. All nodes in the call-

loop graph are then placed in a queue which is sorted by decreasing estimated

maximum depth. The queue ensures that the algorithm will consider children

before parents, to the best of its ability.

Ties are broken by sorting by increasing out-degree, so the algorithm

processes leaf nodes before internal nodes. As each node is taken off the queue,

its incoming edges are examined. If the average number of instructions executed

on an edge satisfies the ilower requirement, the edge is noted as a potential

software phase marker. After all the incoming edges on a node are examined, the

algorithm continues to the next node in the queue.

When there are no nodes remaining in the queue, the algorithm has

generated a list of potential software marker edges, where all of the edges are

above the average number of instructions allowed per interval. The second pass

will use these edges to calculate a CoV threshold, and select a subset of these

42

edges to use as phase markers.

Pass 2 - Setting and applying the hierarchical instruction count

CoV threshold: The first pass of the algorithm pruned the lower parts of

the call-loop graph. The pruned nodes and edges represent low-level behavior

patterns that are too small to be of interest, according to the ilower threshold.

The results of the first pass are used to set a CoV threshold for phase marker

selection.

The candidate software phase markers identified in the first pass of the

algorithm are used to calculate a CoV threshold. The CoV threshold is calculated

independently for each program, because different programs have different levels

of variability. For example, floating point programs tend to have more stable

instruction counts within each loop and procedure, while integer programs tend

to be more variable. By tuning our CoV thresholds to the variability detected in

each program, the algorithm can find relatively stable behavior patterns even in

highly variable programs.

The base CoV threshold is set to the average CoV (avg(CoV)) across all

edges in the list of potential phase markers. The standard deviation of the CoVs

in the list of potential phase markers is also calculated, and the CoV threshold

applied to an edge is in the range [avg(CoV) . . . avg(CoV)+stddev(CoV)], scaled

linearly with the current edge’s average hierarchical instruction count, to encour-

age the algorithm to select phase markers with instruction counts close to ilower,

by allowing more variability as the average instruction counts become larger.

After a cov threshold is determined for an edge, edges are examined as

in the first pass, except that now an edge must satisfy both the ilower minimum

instruction count threshold, and the cov threshold variability limit to qualify as

a phase marker.

43

Complexity of the Algorithm: The algorithm’s running time is

O(E + N ∗ log(N)), where N and E are the numbers of nodes and edges in

the graph. The N ∗ log(N) is due to the sort of all of the nodes to create a

total call-loop depth ordering of the nodes during the first pass of the algorithm.

The algorithm runs in seconds on every call-loop graph we have collected. The

approach should be significantly faster and less complex than the approach of

Shen et al. [76], where wavelet analysis [17] is applied to reuse distance traces,

and Sequitur [68] is applied to the results of the wavelet analysis.

Limiting Maximum Interval Size for SimPoint

The algorithm described in the preceding subsection is effective for find-

ing homogeneous behavior to guide reconfiguration optimizations. But the al-

gorithm does not limit the maximum size of intervals. For this reason, when

evaluating this algorithm later, it will be referred to as no-limit. Because there is

no limit on the maximum interval size, the algorithm may create large intervals.

Phase markers are attractive for accelerated architectural simulation

because they clearly identify transition points between regions of stable program

behavior. Interval boundaries can be set at phase markers, resulting in variable

length intervals. Unfortunately, the phase marker selection algorithm described

in the preceding subsection does not limit maximum interval length, which is

not acceptable for accelerating simulation - the goal of accelerated simulation is

to simulate a small representative portion of program behavior. If a program

contains large intervals, it will be difficult to simulate a small portion of the

program if any of the large intervals are selected for detailed simulation.

This subsection describes modifications to the phase marker selection

algorithm that limit the maximum interval size. Maximum interval size is limited

by adding two additional steps to the second pass of the algorithm. This modified

44

algorithm will be referred to as max-limit when evaluating the algorithm later.

Maximum Interval Limit: While collecting the call-loop graph, the

profiler also records the maximum hierarchical instruction count on each edge.

While searching for phase markers in the call-loop graph, if the maximum hierar-

chical instruction count on a node’s incoming edge exceeds max limit, all of the

edge’s successor’s outgoing edges are marked, because those edges must be below

the maximum interval size limit, and there is no other way to remain under the

maximum interval size limit - if the algorithm were to continue searching upwards

in the call-loop graph, the interval sizes would only become larger.

Merging Loop Iterations: The second pass of the algorithm also at-

tempts to group consecutive loop iterations if each iteration has a similar average

hierarchical instruction count. If the edge from a loop-head to a loop-body is

below the CoV threshold, consecutive loop iterations are grouped together until

they are greater than ilower and less than max limit. Typically there are many

ways to group loop iterations within these limits. For example, the algorithm

might be able to group pairs of consecutive loop iterations together, or possibly

arrange iterations in groups of three or four. The call-loop graph indicates the

number of times each loop iterates on average, so the modified algorithm at-

tempts to group N iterations, where avg iterations mod N ≈ 0. In other words,

the modified algorithm searches for a value of N that evenly divides the number

of loop iterations per entry to the loop nest that satisfies the above interval size

constraints.

The modified phase marker selection algorithm presented in this sub-

section is designed specifically for use with SimPoint to reduce simulation time.

Markers found with these additional constraints can be fairly input specific, so

this approach is only suggested for use in scenarios where the inputs to the pro-

grams will remain the same. This approach is not designed to capture behavior

45

across inputs.

For the limit phase marker results presented in this section, a minimum

interval length (ilower) is set to 1 million instructions and the maximum interval

length (max limit) is set to 200 million instructions. After phase markers have

been selected with the modified marker selection algorithm, one variable length

interval basic block vectors is collected for each phase marker, and these basic

block vectors are run through SimPoint to select simulation points.

II.C.3 Support For Variable Length Intervals in SimPoint

With variable length intervals, different intervals may represent different

amounts of program execution, as opposed to fixed length intervals, where every

interval represent the same amount of execution. Each variable length interval

has an associated weight wi, which is the fraction of total program execution

represented by that interval. SimPoint 3.0 contains modifications to support

these weights [36].

The k-means clustering algorithm has two steps that it repeats: deter-

mining which cluster each interval belongs to (called the expectation step), and

repositioning each cluster center to the mean of the intervals that it owns (called

the maximization step). The expectation step is not changed by variable length

intervals. The maximization step handles weights wi by using the weights during

the recomputation of cluster centers - the center of a cluster is computed by using

the weights wi to compute a weighted mean over the vectors corresponding to

the variable length intervals in the cluster.

When SimPoint 3.0 is run with variable length intervals, larger intervals

have more influence than smaller intervals when determining cluster centers.

46

Table II.1: Baseline Simulation Model.

I Cache 16k 4-way set-associative, 32 byte blocks, 1 cycle latency
D Cache 16k 4-way set-associative, 32 byte blocks, 1 cycle latency
L2 Cache 128K 8-way set-associative, 64 byte blocks, 12 cycle la-

tency
Main Mem-
ory

120 cycle latency

Branch Pre-
dictor

Hybrid - 8-bit gshare with 2K 2-bit predictors and an 8K
bimodal predictor

Out of Order
Issue

Up to 8 operations per cycle, 64 entry re-order buffer

Memory
Disambigua-
tion

Load/store queue, loads may execute when all prior store
addresses are known

Registers 32 integer, 32 floating point
Functional
Units

2-integer ALU, 2-load/store units, 1-FP adder, 1-integer
MULT/DIV, 1-FP MULT/DIV

Virtual
Memory

8KB pages, 30 cycle fixed TLB miss latency after earlier-
issued instructions complete

47

II.C.4 Methodology

The results presented in sections II.C.5 and II.C.6 evaluate software

phase markers for several benchmarks from SPECINT2000 benchmark suite.

The baseline architecture modeled is described in Table II.1. Each of

the SPEC programs were simulated to completion to collect baseline results. Sec-

tion II.C.6 also presents results for a data cache reconfiguration experiment, which

uses a lightly modified version of the ATOM [81] cache simulator used in [76]. For

the data cache reconfiguration experiment, phase markers are compared to the

reuse distance-based software phase marking approach of Shen et al. described

in [76]. Shen was very gracious to provide the authors with his binaries, his reuse

distance phase markers, and his ATOM-based Cheetah simulator, which allow for

a fair comparison with his approach. For this comparison, the same binaries are

presented as in [76], which are tomcatv, swim, compress95, mesh, and applu.

II.C.5 Phase Marker Evaluation

This section presents an evaluation of the proposed software phase

marker selection algorithm.

Using Software Phase Markers

Software phase markers are selected so that they reliably predict the

beginning of a repetitive interval of program execution. The most straightforward

application of software phase markers is to use them as triggers for dynamic

reconfiguration or optimization. This can be done by inserting code into the

binary at each phase marker to trigger reconfiguration or optimization. This can

be done with a binary modification tool such as OM [82] or ALTO [64].

Figure II.7 shows how phase markers predict the beginning of repetitive

program behaviors. In this figure, time is on the X-axis, measured by instructions

48

 0

 0.2

 0.4

 0.6

 0.8

 1

CP
I

 0
 0.02
 0.04
 0.06
 0.08

 0.1

0 2e+10 4e+10 6e+10 8e+10 1e+11

DL
1

M
iss

 R
at

e

Figure II.7: Time varying graphs with phase markers for gzip-graphic for an OSF
Alpha executable. Time is on the X-axis, measured in instructions executed.
Phase marker locations are indicated with symbols. Each marker is assigned a
unique symbol. If a marker occurs many times in a row, we only plot the first
instance from each repeating run to make the graph more readable.

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

 0.1

0 1e+10 2e+10 3e+10 4e+10 5e+10 6e+10 7e+10

DL
1

M
iss

 R
at

e

Figure II.8: Cross-binary time varying graphs with phase markers for gzip-graphic
for Linux x86. The phase markers were selected from the call-loop graph profile
from the Alpha binary, were mapped back to source code level, and then used
to mark the x86 binary. No call-loop graph was created for the x86 binary. The
markers detect the same high-level patterns in the x86 binary.

49

executed, and CPI and level 1 data cache miss rates are on the Y -axes. Phase

marker locations are indicated with symbols (circles, squares, etc) plotted on top

of the CPI or data miss rate. Each phase marker is assigned a unique symbol. In

Figure II.7, the 2 large sized phases found are between the circles and triangles.

In Figure II.7, the beginning of each long high miss rate phase is marked with a

circle, and the beginning each short low miss rate phase is marked with a triangle.

There are many more phase markers than shown in Figures II.7 and II.8,

but to improve the legibility of the graphs, only the first marker is shown at the

start of each consecutive run of marker invocations. There are actually phase

markers at each ridge shown during the long stable regions of high miss rate

(circle) and low miss rate (triangle).

Figure II.8 shows how phase markers selected for gzip-graphic from

an OSF Alpha binary can be used with a Linux x86 binary. For this result, the

markers are selected on an Alpha and mapped back to source code level, using

debug line number information. Then the symbol information from the x86

binary is used to map the source-level markers to the corresponding assembly

instructions in the x86 binary. This matching technique was used with other

benchmarks and similar results were found. This figure shows how phase markers

can potentially be used across different compilations of the same source program.

Figures II.9 and II.10 are visual representations of the complete execu-

tion of bzip2-graphic, as previously described in Section II.B.2. To recap, these

figures are a three-dimensional projection of the basic block vectors collected from

each execution interval, where each interval is represented with a single point in

the figures. Each interval is projected to three dimensions with random linear

projection and plotted as a point in the graph. Figure II.9 shows fixed length

100 million instruction intervals and Figure II.10 shows variable length intervals

generated by software phase markers. In both of these figures a similar number

50

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-0.5

0

0.5

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure II.9: Bzip2 fixed length execution intervals representation. The scattered
representation with points spread across the space is a direct consequence of using
fixed length intervals across the execution.

51

-0.6

-0.4

-0.2

0

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.2

-0.1

0

0.1

0.2

0.3

Figure II.10: Bzip2 variable length execution intervals representation with phase
markers. The tight clustering of intervals is from marking regions of the hierar-
chical call-loop graph that have fairly homogeneous behavior each time that edge
is traversed during execution.

52

of intervals are required to represent the entire execution of the program. The

same random projection matrix was used for Figures II.9 and II.10, but they are

shown at different angles. The angle was chosen for each graph to best show how

each set of intervals captures the program’s use of its code space.

Bzip2 spends the majority of execution in several code regions, and

transitions between these regions just a few times. The dominant code regions

can be seen in both figures as dense clouds of points. These code regions are

substantially more clear in Figure II.10 compared to Figure II.9. The transitions

between these code regions can be seen in Figure II.9 as a string of points con-

necting the denser regions. These transitions are not visible in Figure II.10 since

the entire phase representation is synchronized with the program behavior where

transitions between dominant regions are encapsulated by unique intervals.

These figures provide visual evidence that software phase markers are

partitioning the execution into naturally occurring intervals that are synchronized

with the program’s behavior changes. On the other hand, the fixed length inter-

vals are not synchronized with program behavior. This is why program execution

appears more chaotic with fixed length intervals in this figure.

Behavior Characteristics of Software Phase Markers

This subsection presents results from the marker selection algorithm.

ilower is set to one million instructions. Two scenarios are presented:

1. Phase markers are selected from training inputs and applied to reference

inputs (cross-train),

2. Phase markers are selected and applied to the reference input (self-train).

All results presented were produced by running the reference input. In

this section, the results of the proposed phase marking algorithm are compared

53

to SimPoint [78], an offline phase analysis tool based on the k-means clustering

algorithm from machine learning described in section II.A.3. For experiments

with SimPoint, basic block vectors were collected from fixed length intervals of

ten million instructions, and SimPoint was run with a 15 dimension random

projection and kmax = 100. SimPoint classifies the intervals of execution into

phases. This comparison favors SimPoint because SimPoint analysis cannot be

used across inputs. This section also presents results where our phase marking

algorithm is only allowed to mark procedures. The result is similar to the ap-

proaches of Huang et al. [41] and Georges et al. [33], except that our approach

uses a call-loop graph, rather than the dynamic call stack approach used in the

work of Huang et al. and Georges et al.

In this section, the no-limit results correspond to phase markers se-

lected with the algorithm described in Section II.C.2, where no upper bound is

placed on the maximum interval length. In comparison, the limit 1-200m results

correspond to phase markers selected with the modified algorithm described in

Section II.C.2 which limits the maximum interval length. For the limit 1-200m

results, the minimum interval length is 1 million instructions and the maximum

interval length is 200 million instructions.

Figure II.11 shows the average length of intervals produced by each

approach. The leftmost bar, BBV, uses fixed-length intervals of 10M instruction.

The next two bars show the results for the proposed phase marking approach

when the selection algorithm is only allowed to select edges entering procedure-

head and procedure-body nodes in the call-loop graph. This limits the marker

selection algorithm to selecting procedure callsites. The last three bars show

results for the suggested phase marking algorithm when any edge may be selected

in the call-loop graph.

54

1

10

100

1000

10000

100000

art
/11

0

bz
ip2

/gr
ap

hic

ga
lge

l/re
f

gc
c/1

66

gz
ip/

gra
ph

ic

luc
as

/re
f

mcf/
ref

mgri
d/r

ef

pe
rlb

mk/d
iffm

ail

vo
rte

x/o
ne

vp
r/ro

ute av
g

Av
er

ag
e

In
te

rv
al

 L
en

gt
h

In
 M

illi
on

s BBV no limit cross procs no limit self procs no limit cross no limit self limit 1-200m

Figure II.11: Average instructions per interval. BBV uses fixed 10M instruction
intervals. The remaining results use software phase markers with no limit on the
maximum interval length, except for the last bar which limits maximum interval
length to 200 million instructions. The second and third bar show results when
only procedures can be marked, while the last three bars show results when both
procedures and loops can be marked

0
20
40
60
80

100
120

art
/11

0

bz
ip2

/gr
ap

hic

ga
lge

l/re
f

gc
c/1

66

gz
ip/

gra
ph

ic

luc
as

/re
f

mcf/
ref

mgri
d/r

ef

pe
rlb

mk/d
iffm

ail

vo
rte

x/o
ne

vp
r/ro

ute av
gNu

m
be

r o
f U

ni
qu

e
Ph

as
e

ID
s BBV no limit cross procs no limit self procs no limit cross no limit self limit 1-200m

Figure II.12: Number of phases detected

55

0%
20%
40%
60%
80%

100%
120%
140%

art
/11

0

bz
ip2

/gr
ap

hic

ga
lge

l/re
f

gc
c/1

66

gz
ip/

gra
ph

ic

luc
as

/re
f

mcf/
ref

mgri
d/r

ef

pe
rlb

mk/d
iffm

ail

vo
rte

x/o
ne

vp
r/ro

ute av
g

Co
V

CP
I

BBV no limit cross procs no limit self procs no limit cross
no limit self limit 1-200m 100k whole program 10m whole program

Figure II.13: Coefficient of variation of CPI. The “Whole Program” results show
each program’s variability if every interval is classified into a unique phase

The last bar in figure II.11 limits the maximum interval length to 200

million instructions. Bars that may appear to be missing actually have an average

interval size of 1 million instructions. For the self-train results, the selection

algorithm examines a call-loop graph collected by profiling the reference input,

and for the cross-train results, the selection algorithm examines a call-loop graph

collected by profiling the training input, and the selected markers are used with

the reference input.

When the selection algorithm is only allowed to select procedure call-

sites, the average interval sizes increase dramatically - they range from 1 billion

for self-train to 10 billion for cross-train. Allowing the marker selection algorithm

to select loops reduces the average interval size to 10-100 million. The last bar

shows that limiting the maximum interval length in the phase marker selection

algorithm further reduces the average interval length to 3 million instructions.

Figure II.12 shows the number of phases detected by each approach.

The BBV approach detects the most phases, and it also has the lowest variation

56

in phases as Figure II.13 will show. In most cases, the suggested phase mark-

ing approach detects half as many phases as the BBV approach. Limiting the

maximum interval length results in more phase markers as expected, because the

modified algorithm limits maximum interval length by selecting many markers

when necessary.

Figure II.13 shows the average coefficient of variation of CPI per phase.

The last two bars in these graphs show the overall CoV for each program with

fixed length intervals of 100,000 instructions and 10 million instructions. These

graphs show that both the BBV and the software phase marking approach suc-

cessfully partition execution into phases of homogeneous behavior. The procedures-

only results have a lower CoV CPI for some programs compared to the results

that use both loops and procedures. This occurs because only marking procedures

results in fewer phases but significantly larger intervals compared to marking pro-

cedures and loops. Recall from the discussion in section II.A.4 that CoV does

not tell the whole story - both CoV and interval length must be considered when

evaluating a phase classification. In general, more behavior variability must be

tolerated with smaller interval sizes. For example, it is easy to achieve zero CoV

by treating a whole program as one large interval. This is essentially what is

happening for programs like vpr in the procedure-only results - the programs

are being partitioned into a small number of large intervals. In general, program

behavior variability decreases as interval size increases. In all cases, the average

behavior variation within each phase is much lower than the program’s overall

behavior variability.

II.C.6 Applications: Data Cache Reconfiguration and SimPoint

This section evaluates two applications of software phase markers: a

data cache reconfiguration experiment as described in [76], and accelerating ar-

57

chitectural simulations with SimPoint.

Data Cache Reconfiguration and Comparison to Data Reuse Markers

Data cache reconfiguration dynamically adjusts a processor’s cache size

to reduce energy consumption without increasing the miss rate. This section

presents the same data cache reconfiguration experiment performed by Shen et

al. [76] except that reconfigurations are triggered by software phase markers in-

stead of data reuse markers. Shen provided the authors with the benchmarks,

data reuse markers, and simulation infrastructure used in [76] as discussed in

Section II.C.4. This subsection presents results that simulate the same adaptive

cache hardware: 64-byte blocks, 512 sets, 32KB to 256KB cache size. The cache

reconfigures by changing associativity from 1 to 8 ways.

The dynamic cache reconfiguration approach of Shen et al. [76] is briefly

described here. When a phase marker is encountered for the first time, the first

two intervals of its execution are spent experimenting with different cache con-

figurations. At the end of the first two intervals of each phase, the best cache

configuration is determined, and subsequent intervals in that phase will automat-

ically switch to the best cache configuration. This dynamic cache reconfiguration

approach is also used in this section with software phase markers.

This section also presents results for dynamic cache reconfiguration

driven by an ideal SimPoint [78] based approach. SimPoint classifies the intervals

of execution into phases, assigning each 10M instruction interval a phaseid. For

the ideal SimPoint-based cache reconfiguration experiments, the phaseids pro-

duced by SimPoint are used to trigger cache reconfiguration at each 10M interval

boundary. This ideal SimPoint-based approach has oracular knowledge of the

phaseid for each upcoming interval, as determined by the offline k-means algo-

rithm. This approach is similar to an idealized version of the hardware BBV phase

58

0

64

128

192

256

applu compress mesh swim tomcatv avg

Av
er

ag
e

Ca
ch

e
Si

ze
 (K

B)

BBV Reuse Distance
SPM-Self SPM-Cross
Procs-Cross Best Fixed Size

Figure II.14: Average cache size with no allowed increase in cache miss rate.
BBV is the idealized SimPoint-based approach, Reuse Distance is the approach
of Shen et al. (trained with train input), and Software Phase Marker (SPM) is
our approach (trained with ref input (self) and train input (cross)). “Procs only”
only allows procedures to be selected as phase markers. Best Fixed Size is the
smallest fixed cache size with the maximum hit rate out of all cache configurations
considered.

classification approach presented in [79, 57] with perfect next-phase prediction.

Figure II.14 shows the average cache size used by each cache reconfigu-

ration approach on the benchmarks used by Shen et al. [76]. This figure shows

the average cache size used over the execution of each program. The Self results

use the reference input for phase marker selection and for the cache reconfigura-

tion experiment, while the Cross results use the training input for phase marker

selection and apply those phase markers to the reference input for cache recon-

figuration.

The benchmarks presented in Figure II.14 have very stable repetitive

59

behavior patterns: the average coefficient of variation of hierarchical instruction

count in marked procedures and loops is less than 1% for all of these programs.

This means that it is very easy to predict the number of instructions executed

within the program’s main procedures and loops with very high accuracy. On

these benchmarks, our phase marking approach outperforms the idealized BBV

approach, indicating that the fixed-length intervals used by this approach are out

of sync with the phase behavior exhibited by these programs, resulting in inferior

phase classifications. For example, our phase marking approach selects intervals

with an average of 4M instructions for applu, yet the idealized BBV approach

uses fixed length intervals of 10M instructions. 10M instruction intervals will not

work well in this case, and the results show that the average cache size with the

idealized BBV approach is near the best fixed cache size for applu.

The results also show that the proposed simple software phase marking

approach is as effective as the more complicated reuse distance-based approach

of Shen et al. [76] for cache reconfiguration on these programs. The results

also show that selecting phase markers from the training input is as effective

as selecting markers from the reference input for these benchmarks, which is

to be expected due to the highly regular behavior patterns exhibited by these

programs. Examining only procedures does not work well for some of these

programs because these programs tend to spend most of their time in loops,

resulting in a small number of marked procedure call edges, as discussed in the

previous subsection. Shen et al. [76] did not provide the authors with their reuse-

distance analysis tools, so the authors were unable to experiment with their

reuse-distance approach for benchmarks with more irregular behavior such as

gcc and vortex. For gcc, the best fixed cache was 256KB and with dynamic

cache reconfiguration based on software phase markers, the average cache size

was 240KB. For vortex, the best fixed cache was 245KB and the average cache

60

size with dynamic cache reconfiguration with software phase markers was 200KB.

Using Phase Markers with SimPoint

The baseline SimPoint approach is highly accurate even with fixed-

length intervals. SimPoint works very well even with imprecise phase classifi-

cations because its goal is to select a single representative interval from each

phase. It is not a major concern if the intervals in a phase exhibit somewhat

irregular behaviors, as long as a representative can be selected that captures the

average behavior of the intervals in the phase. Simulation benchmarks typically

run for billions or even trillions of instructions, which results in plenty of intervals

for SimPoint analysis, and SimPoint only needs to select a tiny fraction of these

intervals as representatives. As more intervals are available, it becomes increas-

ingly likely that a good representative for each phase will be present, regardless

of how well the interval boundaries are synchronized with program behavior.

Therefore, phase markers should not be expected to significantly im-

prove SimPoint’s accuracy. Rather, the major advantage of using phase markers

with SimPoint is that simulation points based on phase markers become portable

across inputs, and across recompilations. Because phase markers correspond to

source-level code structures, simulation points based on phase markers can even

be used across different architectures.

This section examines how phase markers can be used to partition a pro-

gram’s execution into intervals by setting interval boundaries at phase markers.

The modified phase marker selection algorithm with a limit on maximum inter-

val length described in Section II.C.2 is used in this subsection, with a maximum

interval size threshold of 200 million instructions. The average interval length,

number of phase IDs and CoV of CPI results for these limit phase markers are

shown in Figures II.11, II.12, and II.13.

61

To produce the variable length interval SimPoint results, phase markers

are used to partition each program’s execution into variable length intervals.

Whenever a marker is encountered during execution, a new interval is created.

As the program’s execution is partitioned into intervals in this manner, a basic

block vector for each variable-length interval is also collected.

These variable-length basic block vectors are run through SimPoint

3.0 [35] to select simulation points. Older versions of SimPoint will not work

for this purpose, because they assume that each interval represents an equal frac-

tion of program execution, which is not the case with the variable-length intervals

produced by phase markers.

Figure II.15 shows the number of instructions simulated, and Figure II.16

shows error in estimated CPI. In these graphs, the first three bars show the num-

ber of instructions simulated with the baseline SimPoint [78] approach with fixed

length intervals of 1, 10 and 100 million instructions. For the fixed length interval

results, kmax was set to 300 for the 1 million interval, 30 for 10 million interval,

and 10 for 100 million interval as described in [72]. To produce the estimated

CPIs used in Figure II.16, each representative interval was simulated with perfect

warm up, and the CPI results for each representative interval were weighted by

the size of the clusters they represent to produce an overall CPI estimate.

The last three bars in these graphs shows results for variable length

intervals (VLIs) created by phase markers. The last bar (VLI 100%) shows the

results when a simulation point is selected from each cluster. These graphs also

present results for a common optimization where clusters are sorted by their

weight, then simulation points are selected from the heaviest N clusters which

account for 95% or 99% of execution. This is a common technique to trade

simulation time for accuracy [35].

For the VLI results in Figures II.15 and II.16, the numbers of clusters

62

0
100
200
300
400
500
600
700
800
900

1000

art
.11

0

bz
ip2

.gr
ph

ga
lge

l.re
f

gc
c.1

66

gz
ip.

grp
h

luc
as

.re
f

mcf.
ref

mgri
d.r

ef

pe
rl.d

iff

vo
rte

x.o
ne

vp
r.ro

ute av
g

Si
m

ul
at

io
n

Ti
m

e
(M

illi
on

 In
st

)

SP_1M SP_10M SP_100M VLI_95% VLI_99% VLI_100%

Figure II.15: The number of simulated instructions when fixed length intervals
of 1, 10 and 100 million instructions are used with baseline SimPoint, and when
phase markers are used to partition program execution into variable length in-
tervals.

0

2

4

6

8

10

12

art
.11

0

bz
ip2

.gr
ph

ga
lge

l.re
f

gc
c.1

66

gz
ip.

grp
h

luc
as

.re
f

mcf.
ref

mgri
d.r

ef

pe
rl.d

iff

vo
rte

x.o
ne

vp
r.ro

ute av
g

%
 C

PI
 R

el
at

ive
 E

rro
r

SP_1M SP_10M SP_100M VLI_95% VLI_99% VLI_100%

Figure II.16: Error in CPI estimates with fixed length intervals and variable
length intervals from phase markers.

63

and instructions simulated are highly correlated with the number of phase mark-

ers shown in Figure II.12. This is because the phase markers mark boundaries

between different code behaviors, so the basic block vectors created for different

phase markers are expected to be quite different from each other. In Figure II.12,

galgel and gcc have a large number of phase markers for the limit approach,

because the modified phase marker selection algorithm is forced to select a large

number of edges from the call-loop graph to limit the maximum interval length.

The call-loop graphs for these programs have several points where the selection

algorithm is forced to choose between creating a very large interval, or creating

many small intervals. In these cases, to enforce the maximum interval size, the

selection algorithm chooses to mark many small intervals.

Overall, these results show that the variable length intervals created

by phase markers result in about the same simulation time as 10m fixed length

SimPoint, with similar level of error in estimated CPI. The results show that the

proposed variable length interval approach does not improve on baseline Sim-

Point with 1m or 100m fixed length intervals, but the results are comparable, as

expected, because variable length intervals improve the homogeneity of intervals

in each phase, but SimPoint only requires a single representative from each phase

that captures the phase’s average behavior.

Cross Binary Simulation Points with Phase Markers

When phase markers are used to define interval boundaries, simulation

points can be mapped to source code, and simulation points can be identified

across different compilations of the same source. This is useful for using Sim-

Point to guide architectural studies with new instructions, and to study compiler

optimizations.

To evaluate the potential of our approach, a simple experiment was per-

64

formed where the same software phase markers are used across two compilations

of each program. Two Alpha binaries were produced for gzip: one without opti-

mization and another with full optimization. Phase markers were selected from

the unoptimized binary and used with the optimized binary.

To verify that these phase markers are portable across compilations,

traces were collected of each executed phase marker in each binary, similar to

the traces shown in Figure II.7. The phase marker traces for the optimized and

unoptimized binaries were then compared to verify that they were identical - that

the same phase markers were encountered in the same order in both binaries. For

gzip, the traces were exactly the same.

These results suggest that phase markers can indeed be used to iden-

tify portable simulation points, because each simulation point is associated with

source-level code structures. Phase markers identify the start of semantically

equivalent code regions across compilations of the same source code, so simula-

tion points based on phase markers can be identified across compilations.

Phase markers work well for applications that tolerate long intervals,

such as dynamic cache reconfiguration. Unfortunately, accelerated simulation

is very sensitive to interval length. A modified algorithm was proposed which

limits the maximum length of intervals, but the modifications reduce interval

length by introducing a large number of small intervals, which are also not useful

for accelerated simulation.

It is difficult to control interval length in a pure software phase marker

approach, because call-loop graphs often present situations where the marker

selection algorithm must choose between creating a single large interval, or a large

number of small intervals. An approach is needed that decouples the portability

of software phase markers and the issues with interval length. The next section

presents such an approach.

65

II.D Cross Binary Simulation Points

This section describes cross binary SimPoint, which adapts the phase

markers described in the previous section for use with accelerated simulation,

so the results of accelerated simulation can be meaningfully compared across

multiple binaries compiled from the same source code.

II.D.1 Selecting Cross Binary Simulation Points

This subsection describes the cross binary SimPoint approach to iden-

tify semantically equivalent simulation points across a set of binaries for a pro-

gram/input pair.

Why Variable Length Intervals Are Necessary

To select a single set of simulation points that represent major program

behaviors across multiple binaries, the baseline SimPoint approach with fixed

length intervals is inadequate. With fixed length intervals, the start and end of

each simulation point are identified by instruction counts.

For example, if SimPoint is used with fixed-length intervals of one mil-

lion instructions, and the first interval is selected as a simulation point, then the

simulation point spans dynamic instructions 0 . . . 999, 999. Because simulation

points are tied to dynamic instruction counts, simulation points are not portable

across binaries - a different binary will very likely execute a different number of

dynamic instructions to perform the same task, which makes it difficult to de-

termine where a semantically equivalent simulation point starts and ends in the

different binary.

The main problem is that a simulation point in binary A may start at

dynamic instruction count X, but the semantically equivalent part of execution

in binary B might start at dynamic instruction count Y (where X 6= Y). A

66

secondary problem is that the semantically-equivalent sample for binary B may

execute a different number of instructions than the sample in binary A. Therefore,

dynamic instruction counts can not be used as-is to identify the beginning and

end of samples with multiple binaries — the beginning and end of each sample

must be consistently located across binaries.

Because the binaries are compiled from the same source, this section

proposes identifying sample regions where the start and end of each sample region

corresponds to a high-level source code construct, such as a procedure call or

loop branch, so semantically equivalent sample regions can be identified across

all binaries.

Steps for Mappable Simulation Points

The algorithm to identify cross binary simulation points operates as

follows:

1. Collect a Call-Loop Graph from Each Binary: Collect a call-loop

graph as described in Section II.C.1 from each binary. The annotations

in the call-loop graph, along with symbol information, are used to identify

mappable markers.

2. Find Mappable Markers that Exist in All Binaries: Using symbol

information and call-loop graph annotations, identify high-level program

structures that are present in all binaries. Each node and edge in the call-

loop graph corresponds to some high-level program structure, such as a

procedure call site, loop backedge, loop entry point, etc.

3. Select a Binary for Phase Analysis: With the cross binary SimPoint

approach, phase analysis is performed on one binary, and the results are

applied to all binaries. The binary selected for phase analysis is called the

67

“primary binary.”

4. Create Variable Length Intervals Using Mappable Markers: The

primary binary is profiled again to partition its execution into appropriately-

sized variable length intervals. Every variable length interval starts and ends

on a mappable marker. Basic block vectors are collected for each variable

length interval.

5. Pick Simulation Points for the Primary Binary: SimPoint is run on

the basic block vectors collected from the primary binary’s variable length

intervals to produce a set of portable simulation points.

6. Map the Simulation Points to All Binaries: The simulation points

from the primary binary are mapped to the other binaries. This mapping is

possible because every interval in the primary binary is mappable (because

they all start and end on mappable markers). Because the simulation points

selected for the primary binary are just a subset of the primary binary’s

intervals, the selected simulation points are also mappable.

7. Recalculate Weights for Mapped Simulation Points: Different bina-

ries may spend different amounts of their execution in each phase, so the

simulation results need to be weighted by the actual amount of execution

represented by each simulation point in each binary - not by the amount of

execution the simulation point represents in the primary binary.

Each of these steps is discussed in more detail below.

Collect a Call-Loop Graph from Each Binary

Call-loop graphs are collected from each binary for the input being ex-

amined using Pin [60], a dynamic instrumentation tool. The call-loop graphs

68

collected are the same as described in the previous section, with two minor dif-

ferences: the profiler was ported to profile x86 binaries with Pin (instead of Alpha

binaries with ATOM [81]), and loops are detected by identifying natural loops

instead of simply looking for backwards branches. Natural loops make it much

easier to identify the same loop backedge across multiple binaries compared to

the simple loop detection approach described in the previous section.

Find Mappable Markers that Exist in All Binaries

The call-loop graphs collected from each binary are intersected to iden-

tify code structures that can be found in all binaries. Code structures that exist

in all call-loop graphs and that are executed the same number of times in all

binaries are mappable markers.

To intersect the call-loop graphs, the first step is to identify identical

procedure head and body nodes across binaries, by identifying procedure nodes

with matching procedure names and invocation counts. Procedure names are

extracted from the debug symbol information in each binary. If the procedure

names and invocation counts for a pair of procedure nodes match across all bina-

ries, then the procedure nodes represent the same part of execution in all binaries.

The next step is to identify identical loop head and body nodes across

binaries. Two pieces of information are used to find the same loop across all

binaries: invocation counts from the call-loop graph annotations, and debug line

number information associated with each branch. If the invocation counts and

line numbers for a loop node match across all binaries, then that loop node

represents the same part of execution across all binaries.

For both procedure entry points and loop branches, the execution count

across all binary versions must match. This guarantees that the mappable mark-

ers will execute the same number of times across all binaries. Because every

69

mappable marker executes the same number of times, semantically equivalent

regions of execution can be specified in a portable way by defining start and end

of the region in terms of mappable markers - for example, a region can start

at mappable marker A after it has executed X times and end when mappable

marker B has executed Y times. By defining regions of execution in this manner,

semantically equivalent portions of program execution can be identified across

binaries.

Select a Binary for Phase Analysis

With the cross binary SimPoint approach, phase analysis is performed

on one binary, and the results of phase analysis are applied to all binaries. The

binary selected for phase analysis is called the “primary binary.”

The primary binary can be selected arbitrarily from the set of binaries

available. However, interval sizes can expand or contract across binaries depend-

ing on which binary is chosen as the primary. If the other binaries execute more or

fewer instructions between interval boundaries compared to the primary binary,

then intervals in the other binaries will become bigger or smaller when mapped

from the primary.

Create Variable Length Intervals Using Mappable Markers

In this step, the goal is to partition the execution of the primary binary

into intervals that are close to the desired size specified by the user (e.g. 100

million instructions).

Each variable length interval must start and end on one of the mappable

markers identified in the second step. So to partition the execution of the primary

binary into intervals, the primary binary is run, and as it executes, the profiler

identifies a set of mappable markers that will result in variable length intervals

70

that are approximately the size requested by the user.

The profiler must track the number of times every mappable marker

is encountered, because any mappable marker may be used to start a new in-

terval. For example, if the desired interval size is 100 million instructions, and

the program has just executed 100 million instructions, the profiler must create

an interval boundary on the next mappable marker encountered. When the next

mappable marker is reached, the current interval is ended by recording the marker

ID and the number of times the marker has executed since the start of execution.

This is done throughout the execution of the primary binary: whenever

the current interval grows beyond the desired interval size, the current interval

is ended when the next mappable marker is reached. Recording the execution

count is critical, because markers are typically executed many times as programs

execute. Each (marker ID, execution count) pair uniquely identifies a specific

point in execution that can be mapped to other binaries.

As the profiler partitions the execution of the primary binary into vari-

able length intervals on mappable markers, the profiler also collects a basic block

vector for each interval, which will be run through SimPoint in the next step.

Only the primary binary is profiled in this step.

Pick Simulation Points for the Primary Binary

Next, SimPoint is run on the basic block vectors collected in the pre-

vious step to pick simulation points. SimPoint 3.0 or later is needed, because

earlier versions do not support variable length intervals. SimPoint 3.0 supports

variable length intervals by considering the number of instructions in each interval

throughout the clustering process and the search for simulation points.

SimPoint generates a set of simulation points, weights for each simula-

tion point, and phase labels for every interval. Each simulation point represents

71

a unique phase, and the weight associated with the simulation point reflects the

fraction of executed instructions in that phase in the primary binary.

Map the Simulation Points to All Binaries

Next, the simulation points selected for the primary binary are mapped

to the other binaries, resulting in simulation points that represent semantically

equivalent portions of execution in all the binaries.

The start and end of each simulation point are defined by a (marker

ID, execution count) pair. These pairs represent the simulation point across all

binaries, and can be used during simulation to represent the start and end of that

simulation point when executing any of the binaries.

Recalculate Weights for Mapped Simulation Points

Finally, the simulation points must be appropriately weighted relative

to the size of the clusters they represent in each binary. The weights need to

be readjusted because the amount of execution in each phase can change across

binaries.

A simulation point’s weight is the fraction of the total dynamic instruc-

tions that the program executes in the phase it represents. For example, if a

program executes 60% of its dynamic instructions in phase P , the simulation

point for phase P will have a weight of 60%. So, to calculate the correct weight

for each simulation point in each binary, the number of dynamic instructions ex-

ecuted in each phase is counted with Pin. Weights do not need to be recalculated

for the primary binary.

72

Table II.2: Memory System Configuration

Cache Level Capacity Associativity Line Size Hit Latency Type
FLC(L1D) 32KB 2-way 64 bytes 3 cycles WriteBack
MLC(L2D) 512KB 8-way 64 bytes 14 cycles WriteBack
LLC(L3D) 1024KB 16-way 64 bytes 35 cycles WriteBack
DRAM 250 cycles

Dealing With Optimized Code Regions

Call-loop graphs are collected through binary instrumentation, so com-

piler optimizations can change call-loop graphs. For example, if a procedure is

inlined in the optimized version of a binary, the name of the inlined procedure and

the entry point to the inlined procedure may not exist in the optimized binary.

The suggested approach is tolerant of these types of optimizations - if a procedure

disappears from one binary due to optimizations, then the nodes associated with

that procedure are not mappable, and will never be used as interval boundaries.

Additionally, the call-loop graph matching algorithm described in step

2 has been extended to handle some optimization cases. Inlined procedures are

detected by their parent nodes and loop structure. Consider a procedure that

has a loop that executes N times, which is called from another procedure that

has a loop that executes M times. If this procedure has been inlined and its loop

structure is maintained, then the caller should now have two loops, executing N

and M times respectively. The loop in the inlined procedure can still be mapped

because it can be uniquely identified based on iteration counts. Of course, if

N = M , the matching algorithm can not determine which loop belongs to which

procedure based on iteration counts alone.

73

II.D.2 Methodology

The proposed cross binary simulation point approach is evaluated with

CMP$im [48], a Pin [60] based multi-core simulator. CMP$im models an in-order

processor and can simulate the performance of applications run to completion.

CMP$im is configured to model a single-core processor with a three-level non-

inclusive cache hierarchy with parameters as shown in Table II.2. All caches use

a 64B line-size and LRU replacement policy.

To evaluate the cross binary simulation points, SPEC2000 was compiled

with debug information (-g compiler flag) on 32-bit (x86) and 64-bit (x86 64)

Linux. The programs were compiled using version 9.0 of Intel’s C/C++ and

Fortran compilers. For each program, unoptimized and optimized versions were

also compiled, for a total of four binaries per SPEC program: 32-bit Optimized,

32-bit Unoptimized, 64-bit Optimized, and 64-bit Unoptimized. Cross binary

simulation points are used to compare the performance of these binaries and ex-

amine how well the proposed technique estimates the speedup across the different

binaries. All programs are evaluated while running reference inputs.

Simulation regions are represented with PinPoints [70] files. PinPoints

is a Pin tool chain that generates basic block vectors for each interval and then

runs them through SimPoint 3.0 to generate simulation points and weights. Each

binary was run through CMP$im configured as described in Table II.2 with a

PinPoints file describing the simulation regions for the binary for the given input.

Whole-program statistics are estimated using statistics reported by CMP$im and

weights reported by SimPoint for each simulation region, and these estimates are

compared to the actual whole-program statistics reported by CMP$im.

74

II.D.3 Cross Binary SimPoint Evaluation

This subsection evaluates SimPoint performance estimates across differ-

ent binaries compiled from the same program source. This subsection will show

that the proposed cross binary SimPoint technique improves on the per-binary

SimPoint approach because semantically equivalent simulation points will be used

across all binaries.

SimPoint Performance Estimation

SimPoint has many options that can affect phase classification and sim-

ulation point selection. To fairly compare per-binary SimPoint and cross binary

SimPoint, the same SimPoint options are used for both approaches. The settings

for these options are described below.

The maximum number of clusters, maxk, is limited to 10. maxk is an

upper bound on the number of clusters SimPoint may use to characterize the

phase behavior of a program. One simulation point is generated for each cluster

(phase) identified, so the number of simulation points selected will always be less

than or equal to maxk. SimPoint rarely uses the maximum allowed number of

clusters because it usually finds a good phase characterization with fewer clusters,

so SimPoint typically selects less than maxk simulation points.

Figures II.17 and II.18 show the number of simulation points selected

and the average interval size for each benchmark. Figure II.17 shows results for

per-binary SimPoint (FLI) and cross binary SimPoint (VLI), while Figure II.18

only shows results for cross binary SimPoint, because per-binary SimPoint uses

fixed length intervals of 100 million instructions, so the interval size for per-

binary SimPoint is constant at 100 million instructions. Four different binaries

were compiled for each benchmark as described in Section II.D.2, and the results

in these figures are averaged over the four binaries.

75

0
2
4
6
8

10
12

am
mp

ap
plu ap

si art
bz

ip2
cra

fty eo
n

eq
ua

ke
fm

a3
d gc

c
gz

ip
luc

as mcf
mes

a

pe
rlb

mk

six
tra

ck
sw

im twolf
vo

rte
x vp

r

wup
wise Avg

Nu
m

be
r o

f S
im

Po
in

ts FLI VLI

Figure II.17: Number of SimPoints for per-binary SimPoint (FLI) and cross
binary SimPoint (VLI). Each bar shows the average across all four binaries.

0

100

200

300

400

500

600

am
mp
ap

pluap
si art

bz
ip2
cra

ftyeo
n

eq
ua

ke
fm

a3
dgc

c
gz

ip
luc

asmcf
mes

a

pe
rlb

mk

six
tra

ck
sw

imtwolf
vo

rte
x vp

r

wup
wiseAvgAv

er
ag

e
In

te
rv

al
 S

ize
 (M

illi
on

s)

Figure II.18: Interval Size for cross binary SimPoint (VLI). Each bar shows the
average across all four binaries. The size of each interval in per-binary SimPoint,
which uses fixed length intervals, is constant at 100 million instructions.

76

Figure II.17 shows that both techniques select a similar number of sim-

ulation points on average. This is expected, because the four binaries for each

program are compiled from the same source, so similar numbers of high-level

behaviors are identified in all four binaries.

The differences in interval size between per-binary SimPoint and cross

binary SimPoint shown in figure II.18 occur because per-binary SimPoint and

cross binary SimPoint use different algorithms to partition execution into inter-

vals. Per-binary SimPoint partitions program execution into fixed length intervals

of 100 million instructions, while cross binary SimPoint produces intervals of at

least 100 million instructions. Cross binary SimPoint creates intervals for the pri-

mary binary only at mappable markers, so intervals in the primary binary may

be larger than 100 million instructions.

Cross binary SimPoint maps the primary binary’s intervals to the re-

maining binaries. This means that a single interval may have many different

lengths across binaries. Suppose, for example, that an unoptimized binary exe-

cutes 10 times more instructions than an optimized binary. If the unoptimized

binary is used as the primary binary, mappable intervals of 100 million instruc-

tions will be constructed, but when the intervals are mapped to the optimized

binary, the intervals will shrink to 10 million instructions on average.

This effect is visible in Figure II.18, where most benchmarks have inter-

vals that are smaller than 100 million instructions on average, because interval

lengths tend to shrink when mapped from unoptimized to optimized binaries.

applu has a much larger interval size because our technique was unable

to find mappable markers across all four binaries for some large portions of ex-

ecution. In these parts of execution, a loop calls five procedures that each solve

a partial differential equation. Each of the five procedures has a similar looping

structure because they perform similar operations. In the optimized version of

77

0%
1%
2%
3%
4%
5%
6%
7%
8%

am
mp

ap
plu ap

si art
bz

ip2
cra

fty eo
n

eq
ua

ke
fm

a3
d gc

c
gz

ip
luc

as mcf
mes

a

pe
rlb

mk

six
tra

ck
sw

im twolf
vo

rte
x vp

r

wup
wise Avg

CP
I E

rro
r

FLI VLI
10.8%

Figure II.19: CPI Error for per-binary SimPoint (FLI) and cross binary SimPoint
(VLI). Each bar shows the average across all four binaries.

this binary, all five procedures are inlined into the loop. Furthermore, the loops

were split by the optimizer, and code was moved within this loop. While our

technique can deal with simple cases of inlining, in this case there was no loop

structure remaining after optimization to build a mapping between the unopti-

mized and optimized code. It may be possible to extend the cross binary SimPoint

approach to handle more of these difficult optimization cases with more powerful

mapping techniques, such as those presented in Section III.C.

As in the previous figure, each bar averages across all four binary ver-

sions of each program. For each binary, a full simulation is conducted to deter-

mine the actual overall CPI, and the simulation points are used to generate an

estimated overall CPI. The error in each CPI estimate is then calculated relative

to the actual CPI, and the CPI errors are averaged across the four binary versions

to produce Figure II.19.

Figure II.19 shows that both per-binary SimPoint and cross binary Sim-

Point accurately estimate the CPI of each program. This is not surprising, be-

cause no cross binary comparisons are done in this experiment - per-binary Sim-

Point is being used to estimate the CPI of each binary, which is the usual way in

78

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%

am
mp

ap
plu ap

si art
bz

ip2
cra

fty eo
n

eq
ua

ke
fm

a3
d gc

c
gz

ip
luc

as mcf
mes

a

pe
rlb

mk

six
tra

ck
sw

im twolf
vo

rte
x vp

r

wup
wise Avg

Sp
ee

du
p

Er
ro

r
fli_32u32o vli_32u32o
fli_64u64o vli_64u64o

21.7%

Figure II.20: Speedup error for per-binary SimPoint (fli) and cross binary Sim-
Point (vli). Speedup is computed across pairs of binaries on the same platform
(optimized vs. unoptimized). Speedup error is the error in estimated speedup rel-
ative to the actual speedup. 32U is 32-bit Unoptimized, 32O is 32-bit Optimized,
etc.

which SimPoint is used. Figure II.19 shows that the errors in CPI estimates are

low, but it does not show that these errors are consistent across binaries. This is

the focus of the following subsection.

Speedup Comparison

When accelerated architectural simulation techniques are used with mul-

tiple binaries, the samples of program behavior selected for simulation must be

chosen consistently across binaries in order to make a meaningful performance

comparison. This subsection presents an experiment where the actual speedup

is calculated between binaries, and the actual speedup is compared to the esti-

mated speedup between binaries with the per-binary and cross binary SimPoint

techniques.

Figures II.20 and II.21 show the error in speedup estimates across several

pairs of binaries. Figure II.20 considers pairs of binaries on the same platform

with different optimization levels, while Figure II.21 considers pairs of binaries

79

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

10%

am
mp

ap
plu ap

si art
bz

ip2
cra

fty eo
n

eq
ua

ke
fm

a3
d gc

c
gz

ip
luc

as mcf
mes

a

pe
rlb

mk

six
tra

ck
sw

im twolf
vo

rte
x vp

r

wup
wise Avg

Sp
ee

du
p

Er
ro

r

fli_32u64u vli_32u64u
fli_32o64o vli_32o64o

38%12.5%

Figure II.21: Speedup error for per-binary SimPoint (fli) and cross binary Sim-
Point (vli). Speedup is computed across pairs of binaries on the different plat-
forms (32-bit vs. 64-bit).

on different platforms at the same optimization level. Each figure shows how well

the per-binary and cross binary SimPoint approaches estimate speedup across

pairs of binaries.

Speedup error is computed as

SpeedupError =
|(TrueSpeedup− EstimatedSpeedup)|

TrueSpeedup

TrueSpeedup is the ratio of the total number of cycles needed to execute

the two binaries. For example, the TrueSpeedup for the 32u32o configuration is

the number of cycles needed to execute the 32-bit unoptimized version divided by

the number of cycles needed to execute the 32-bit optimized version. Similarly,

EstimatedSpeedup is the ratio of the estimated total number of cycles needed to

execute the two binaries. EstimatedSpeedup is computed in the same manner

as TrueSpeedup, except that estimated cycle counts from accelerated simulation

are used instead of actual cycle counts. SpeedupError measures the difference

between the estimated speedup and the actual speedup, relative to the actual

speedup, for a pair of binaries.

80

Figure II.20 shows speedup errors for (32-bit unoptimized, 32-bit op-

timized) and (64-bit unoptimized, 64-bit optimized), and Figure II.21 shows

speedup errors for (32-bit unoptimized, 64-bit unoptimized) and (32-bit opti-

mized, 64-bit optimized). For each pair of binaries, speedup error is calculated

for both the per-binary and cross binary SimPoint methods.

These figures show that cross binary SimPoint results in less speedup

error on average than per-binary SimPoint. This can be explained by the lack of

consistency in samples that are chosen as simulation points across the different

binaries with the per-binary approach. When small samples of program behavior

are used to approximate a program’s overall behavior, errors in the approxima-

tions are to be expected, because the samples can not accurately represent all

program behaviors - the only way to guarantee zero error is to examine the entire

program, instead of small samples of the program.

This approximation error due to sampling is called bias, and it occurs

simply because it is impossible for a set of samples to fully represent all behaviors.

SimPoint selects samples with a cost-benefit analysis: samples are selected for

frequently occurring program behaviors. This implies that infrequent behaviors

are not likely to be represented in the samples selected by SimPoint.

Cross binary SimPoint selects semantically equivalent execution regions

across different binaries, so errors in performance estimates due to lack of rep-

resentation will occur consistently across all the binary executions. Thus, errors

due to bias will be consistent across all binaries. This allows cross binary Sim-

Point to obtain performance estimates that are more accurate when compared

across binaries.

81

Table II.3: Phase comparison across 32-bit unoptimized and 64-bit unoptimized
gcc binary versions.

32-bit Unoptimized 64-bit Unoptimized
True SP CPI True SP CPI

Phase Weight CPI CPI Error Phase Weight CPI CPI Error

1 35% 3.16 3.15 0.2% 1 28% 2.97 2.97 -0.1%
VLI 2 26% 3.99 2.93 27% 2 21% 4.11 2.93 29%

3 14% 4.47 5.17 -16% 3 17% 5.49 6.34 -16%

1 36% 3.16 3.16 0% 1 22% 2.98 2.97 0.5%
FLI 2 31% 6.54 2.90 56% 2 18% 6.04 7.04 -17%

3 9% 5.00 4.04 19% 3 16% 6.66 7.19 -8.0%

Table II.4: Phase comparison across 32-bit optimized and 64-bit optimized apsi

binary versions.

32-bit Optimized 64-bit Optimized
True SP CPI True SP CPI

Phase Weight CPI CPI Error Phase Weight CPI CPI Error

1 52% 3.04 2.91 4.5% 1 52% 2.59 2.44 5.9%
VLI 2 19% 3.57 3.10 13% 2 18% 3.16 2.66 16%

3 5% 4.66 4.70 -0.9% 3 5% 3.64 3.63 0.3%

1 71% 3.50 3.00 14% 1 65% 2.77 2.50 0.9%
FLI 2 5% 4.58 4.61 -0.7% 2 8% 5.34 3.39 37%

3 5% 4.60 4.63 -0.7% 3 6% 7.61 7.55 0.8%

Bias Analysis

Per-binary SimPoint selects a different set of simulation points for each

binary version, and these sets of simulation points are not guaranteed to represent

semantically equivalent portions of program behavior in each binary. Each set

of simulation points can be used to accurately represent the overall execution of

its corresponding binary, but SimPoint may represent specific program behaviors

more accurately in one binary than another. Bias, the unavoidable error due

to sampling, will not be consistent across all the binary versions with the per-

binary SimPoint approach. Per-binary SimPoint may select semantically similar

simulation points that represent common program behaviors across binaries, but

there are no guarantees.

82

To demonstrate the benefits of the consistent bias achieved by cross bi-

nary SimPoint, this subsection considers two benchmarks in detail: gcc and apsi.

Both of these benchmarks have higher speedup error with per-binary SimPoint

than cross binary SimPoint. Tables II.3 and II.4 show phase statistics across

two binary versions of gcc and apsi. Table II.3 compares the top three phases

found with per-binary SimPoint and cross binary SimPoint across 32-bit unopti-

mized and 64-bit unoptimized gcc binary versions. Similarly, Table II.4 compares

the top three phases found with per-binary SimPoint and cross binary SimPoint

across 32-bit optimized and 64-bit optimized apsi binary versions. Both tables

show for each phase the phase ID, the weight of the phase (the percentage of

executed instructions in that phase), the true CPI of the phase (the average CPI

across all intervals in that phase), the estimated CPI using per-binary and cross

binary SimPoint, and the relative error between the true CPI and the estimated

CPI.

Table II.3 shows the problem with per-binary SimPoint by showing how

independent SimPoint runs on different binaries can produce different phase clas-

sifications. The table shows that the weights for the top three phases differ by

11% on average with per-binary SimPoint (FLI), while the difference in weight is

5% on average with cross binary SimPoint (VLI). This shows that larger portions

of execution are being grouped into different phases in the two binaries. The

effects of different biases are even more apparent in the changes in CPI error for

the top three phases: with per-binary SimPoint the average difference in CPI

error is 20%, but with cross binary SimPoint the average difference in CPI error

is only 0.8%.

With the cross binary SimPoint approach, the weight of each phase is

adjusted for each binary as described in section II.D.1, which is why the weights

vary across binaries even with the cross binary approach. Small changes in weight-

83

ing are necessary due to differences in compilation - different binaries typically

require different amounts of time to accomplish the same subtasks.

Table II.4 shows similar results for apsi as Table II.3 shows for gcc:

in this table, the weights for the top three phases differ by 3% on average for

the per-binary SimPoint approach (FLI), and 0.3% on average for cross binary

SimPoint. Examining the CPI errors, the average difference in CPI error is 17.4%

for per-binary SimPoint and 1.9% for cross binary SimPoint.

When a single binary is used to explore a design space, the bias does

not change, but when different binaries are used to explore a design space, the

biases can change, and the simulation methodology must ensure that the biases

are consistent across binaries. Table II.3 shows that per-phase biases can change

significantly across binaries with the per-binary SimPoint approach. For example,

the per-binary SimPoint approach estimates the CPI of the second phase in gcc

with an error of 56% for the 32-bit binary and -17% for the 64-bit binary, and

similarly for the third phase, the 32-bit binary has 19% error and the 64-bit

binary has -8% error. These changes in bias are responsible for the 38% speedup

error for gcc shown in Figure II.21.

On the other hand, the cross binary SimPoint approach proposed in this

chapter has a much more consistent bias across phases, because the simulation

points are selected consistently across binaries, ensuring that each simulation

point represents semantically equivalent portions of execution in each binary.

II.E Related Work

This subsection presents work closely related to cross binary simulation

points.

Huang et al. [41] proposed a hardware approach to track procedure calls

with a call stack, which is used with a set of thresholds to divide a program’s

84

execution into phases at the procedure level. Georges et al. [33] implemented

the approach of Huang et al. to perform offline phase analysis of Java programs.

Huang et al.’s algorithms are used off-line to provide a workload case study on

phase behavior in Java programs.

Liu and Huang [59] used procedures and loops to divide a program’s

execution into phases. The partitioning determined where and when statistical

samples should be taken during architecture simulation. Their analysis divided a

program’s execution at static call sites, and if a procedure executes for too long,

then the procedure’s execution was further divided into its major loops. The

sample rate for sampled architectural simulation was determined by examining

the variability of several architecture metrics for each program region.

Shen et al. [76] used wavelets [17] and Sequitur [68] to build a hierarchy

of phases to represent the program’s behavior patterns at many levels. The goals

of the work of Shen et al. are similar to the goals of cross binary simulation points,

but the approaches are very different. Shen et al. perform their phase analysis

on data reuse distance traces, while the approaches presented in this chapter are

based on a program’s code use. Another key difference is that the phase marker

approach presented in this chapter analyzes a program’s code structure to directly

build a hierarchy of phases, instead of rediscovering the hierarchy by analyzing

traces.

This chapter focused on simulation scenarios involving multiple binary

representations of the same program. This scenario was not addressed in any of

the above research: all of the work described in this section only considers sim-

ulation scenarios involving single binaries, while the work in this chapter focuses

on handling multiple binaries.

85

II.F Summary

This chapter presented cross binary simulation points, which represent

simulation points in a binary-independent manner. With cross binary simulation

points, semantically equivalent code regions are selected across binaries in sam-

pled architectural simulations, which allows for meaningful comparisons of the

sampled simulation results across binaries.

This chapter discussed synchronization issues with fixed length intervals,

where fixed length intervals may be out of sync with patterns in program behavior.

These issues motivated the need for variable length intervals.

This led to software phase markers, which are code locations that mark

the beginning of a major change in program behavior when executed. Phase

markers are associated with source code, and are thus portable across compila-

tions. Direct use of phase markers works well for applications that are tolerant

of long intervals such as dynamic cache reconfiguration, but not so well for accel-

erated architectural simulation. With a pure software phase marker approach, it

is difficult to control maximum interval length, which directly affects the number

of instructions that must be simulated.

To address this issue, cross binary simulation points were presented,

which use specific dynamic instances of phase markers to bound simulation points

to control maximum interval length. Cross binary simulation points identify se-

mantically equivalent behaviors across binaries, which results in consistent sam-

pling bias, which allows for meaningful comparisons of sampled simulation re-

sults.

Acknowledgements

Cross binary simulation points were developed in collaboration with Erez Perelman and

Brad Calder at UC San Diego, Greg Hamerly at Baylor University, Tim Sherwood at UC Santa

86

Barbara, and Harish Patil and Aamer Jaleel at Intel. I thank my co-authors for allowing me to present

the results of our collaboration in my dissertation.

Section II.B contains material that appears in “Motivation for Variable Length Intervals

and Hierarchical Phase Behavior”, in International Symposium on Performance Analysis of Systems

and Software (ISPASS), Jeremy Lau, Erez Perelman, Greg Hamerly, Timothy Sherwood, Brad Calder.

The dissertation author was the primary investigator and author of this paper. Portions of Section II.B

are c©2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish

this material for advertising or promotional purposes or for creating new collective works for resale or

redistribution to servers or lists, or to reuse any copyrighted component of this work in other works

must be obtained from the IEEE.

Section II.C contains material that appears in “Selecting Software Phase Markers with

Code Structure Analysis”, in International Symposium on Code Generation and Optimization (CGO),

Jeremy Lau, Erez Perelman, Brad Calder. The dissertation author was the primary investigator and

author of this paper. Portions of Section II.C are Copyright c©2006 by the Association for Computing

Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal

or classroom use is granted without fee provided that copies are not made or distributed for profit or

commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be honored. Abstracting with credit

is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax

+1 (212) 869-0481, or permissions@acm.org.

Section II.D contains material that appears in “Cross Binary Simulation Points”, in In-

ternational Symposium on Performance Analysis of Systems and Software (ISPASS), Erez Perelman,

Jeremy Lau, Harish Patil, Aamer Jaleel, Greg Hamerly, Brad Calder. The dissertation author was the

secondary investigator and author of this paper. Portions of Section II.D are c©2007 IEEE. Personal

use of this material is permitted. However, permission to reprint/republish this material for advertising

or promotional purposes or for creating new collective works for resale or redistribution to servers or

lists, or to reuse any copyrighted component of this work in other works must be obtained from the

IEEE.

III

Performance Audited Dynamic

Optimization

The goal of a compiler optimization is to improve program performance.

Ideally, an optimization would improve performance for all programs, but some

optimizations can also degrade performance for some programs. Thus, it is some-

times acceptable for an optimization to improve performance on average over a

set of programs, even if a small performance degradation is seen for some of these

programs. This often leaves aggressive optimizations, which can produce substan-

tial performance gains and losses, turned off by default in production compilers

because it is difficult to know when to choose these optimizations, and the penalty

for a wrong decision is high. Therefore, developing a compiler involves tuning

a number of heuristics to find values that achieve good performance on average,

without significant performance degradations.

Today’s virtual machines (VMs) perform sophisticated online feedback-

directed optimizations, where profile information is gathered during the execu-

tion of the program and immediately used during the same run to bias opti-

mization decisions toward frequently executing sections of the program. For

87

88

example, many VMs capture basic block counts during the initial executions of

a method and use this information later to guide optimizations such as code lay-

out, register allocation, inlining, method splitting, and alignment of branch tar-

gets [6]. Although these techniques are widely used in today’s high-performance

VMs [69, 86, 1, 47, 34], their speculative nature further increases the possibility

that an optimization may degrade performance if the profile data was incorrect

or if the profile data does not accurately represent future behavior.

The empirical search community [11, 30, 92, 73, 43, 58, 88, 20, 53, 89]

takes a different approach toward optimization. Rather than tuning the com-

piler to find the best “compromise setting” to be used for all programs, they

acknowledge that it is unlikely any such setting exists. Instead, the performance

of various optimization settings, such as loop unroll factor, are measured on a

particular program, input, and environment, with the goal of finding the best op-

timization strategy for that program and environment. This approach has been

very successful, especially for numerical applications. Computer architectures,

memory hierarchies, and runtime environments vary greatly from computer to

computer, resulting in tremendous potential for improved performance if a pro-

gram’s compilation is tuned for the machine on which it will actually run.

The majority of empirical searches have been performed offline. But

with the rich runtime environment provided by a VM, it becomes possible to

perform fully automatic empirical search online as a program executes. Such a

system would compile multiple versions of each method, compare their perfor-

mance, and keep the fastest version for future use. Examples of such an online

system are the Dynamic Feedback [27] and ADAPT [90] systems, and the work

by Fursin et al. [32].

The most significant challenge to such an approach is that an online

system does not have the ability to run the program (or method, etc.) multiple

89

times with the exact same program state. Traditional empirical search, and

optimization evaluation in general, is performed by holding as many variables

constant as possible, including: 1) the program, 2) the program’s inputs, and 3)

the underlying environment (operating system, architecture, etc.). In an online

system, the program state is continuously changing; each invocation of a method

may have different parameter values and different global program state. Without

the ability to re-execute differently-optimized versions of the code with the exact

same parameters and program state, meaningful performance comparisons seem

impossible. Previous online systems [27, 90, 32] do not provide a general solution

to address the issue of changing inputs or workloads during the comparison.

Because of this challenge, today’s VMs make no attempt to apply any form of

empirical search at runtime.

This chapter presents performance auditing, which overcomes the chal-

lenge of evaluating the performance of multiple versions of an optimized method

online in a production VM. The proposed technique allows for online empiri-

cal optimization, greatly improving the ability of runtime systems to increase

performance and prevent degradations.

Performance auditing works by compiling several versions of a method,

and, as the program executes, invocations of these different method versions are

timed and a statistical analysis is performed to determine the fastest version.

However, methods that are infrequently invoked will have a small number of

timing samples, resulting in a larger number of inconclusive statistical analyses.

These situations occur when a method spends significant time in loops, rather

than being frequently invoked, because the baseline performance auditing system

only collects method invocation timings. Thus, for infrequently invoked methods,

a solution is needed to time loop iterations rather than method invocations.

It is easy to collect loop timings, but it is surprisingly difficult to collect

90

comparable loop timings from differently compiled versions of the same loop. Loop

optimizations are particularly troublesome: for example, if the optimizer unrolls

the loop in one compiled version of the method, the loop’s timing data must be

adjusted accordingly for that compiled version of the method if the timing data

is to be meaningfully compared across the differently compiled versions.

This problem is an instance of the general problem of mapping between

program source and its optimized binary instructions. Prior work in this more

general area falls into two categories: heuristic matching algorithms to correlate

the source and binary [49, 91, 97], and modifications to the optimizer to maintain

a mapping between the program’s source and the optimizer’s output [4, 28]. Both

of these approaches have significant shortcomings that make them inappropriate

for the problem addressed in this chapter. The cross binary simulation point

methodology proposed in chapter II under the category of heuristic matching

algorithms, and a comparison of the cross binary simulation approach and the

approach proposed in this chapter will be discussed further in section III.C.

This chapter presents a new solution to the problem of mapping be-

tween a program’s source and its optimized binary: lightweight code markers are

injected into a method before optimization. Lightweight code markers have the

semantics of an arithmetic operation on a specially allocated global variable. The

optimizer is allowed to freely manipulate these markers, and the markers are re-

moved after optimization, so no code is generated for lightweight code markers.

The optimizer’s semantics-preserving property automatically maintains the map-

ping between source and binary. Because lightweight code markers are operations

on global variables, the optimizer may not remove the markers, although it may

move, copy, or combine markers.

This chapter shows how lightweight code markers are used in a per-

formance auditing system to collect comparable loop timings for infrequently

91

invoked methods, which results in fewer inconclusive statistical analyses.

The outline of this chapter is as follows. First section III.A presents

background and related work in the area of performance audited dynamic op-

timization. Section III.B motivates the performance auditor approach, presents

the baseline performance auditor system, and evaluates the system. Section III.C

discusses issues with infrequently invoked methods in performance auditing sys-

tems, describes the need for a technique to map between a program’s source

and its optimized binary, presents a technique that maps between source and bi-

nary without using heuristic matching, and without modifying the optimizer, and

applies the technique to improve performance auditing for infrequently invoked

methods.

III.A Background

This section presents background and related work in optimization sys-

tems and mapping between a program’s source and binary.

III.A.1 Adaptive Optimization in Virtual Machines

All high-performance VMs use a selective optimization strategy, where

methods are initially executed using an interpreter or a non-optimizing compiler.

A coarse-grained profiling mechanism, such as method counters or timer-based

call-stack sampling, is used to find “hot” methods. Most programs spend most

of their time executing code from a small number of “hot” methods. These hot

methods are dynamically compiled with a JIT compiler.

VMs use the JIT compiler’s multiple optimization levels to tradeoff the

cost of high-level optimizations with their benefit; when a method continues

to consume cycles, higher levels of optimization are employed. Some VMs, like

J9 [62], will compile the hottest methods twice: once to insert instrumentation [7]

92

to gather detailed profile information about the method, and then a second time

to take advantage of the profile information after the method has run for some du-

ration. Thus, in modern VMs a particular method may be compiled many times

(with different optimization strategies) during a program’s execution. Overhead

is kept low by performing such compilations on only a small subset of the execut-

ing methods, and often by compiling concurrently using a background compilation

thread.

III.A.2 Predicting Performance in Optimization Systems

In a traditional optimizing compiler, every transformation (or optimiza-

tion) is fundamentally a performance prediction. For example, redundant load

elimination makes the seemingly obvious prediction that removing load instruc-

tions will reduce execution time. Often, performance predictions are based on an

abstract metric, with the assumption that there is a correlation between the met-

ric and bottom-line performance. As another example, compilers often attempt

to minimize the number of instructions executed along the critical path, relying

on the assumption that fewer instructions results in faster execution.

Some of the compiler’s performance predictions are made explicit through

the use of a performance model. Examples of compiler optimization that have

used explicit models are inlining, instruction selection, instruction scheduling,

and register allocation. Inlining models the cost of an inlining decision (code

growth, resulting in instruction cache pressure) weighed against its benefits (re-

duced call overhead and increased analysis scope); instruction selection models

the cost of choosing various instructions; instruction scheduling models the in-

struction pipeline, the latency of instructions, and architectural hazards; and

register allocation models the cost of spilling a register.

Implicit models are more prevalent than explicit models. The dozens

93

of transformations and heuristics used throughout a compiler make performance

predictions based on an implicit model. The compiler writer may not have ex-

plicitly formulated, or even fully understood the model, but it is still inherently

hard-coded into the optimization. For example, many compilers contain an in-

lining heuristic that ensure methods larger than a certain size are never inlined;

this simple rule can be considered an implicit performance model that predicts a

lack of benefit (or potential performance decline) from inlining large methods.

Most optimizations that use profiling information (often referred to as

feedback-directed optimization, or FDO) still employ a model, whether explicit or

implicit. Although feedback-directed optimizations observe dynamic information,

they generally do not measure program performance directly (wall clock time,

etc.), but instead measure a dynamic metric, such as basic block frequencies or

method invocation frequencies.1 These dynamic metrics are then used as input to

the optimization’s model (usually an implicit model) to predict performance. For

example, it is widely assumed that placing frequently-executed basic blocks close

to each other will improve instruction cache performance, which will improve

bottom-line performance. Optimizations are designed to assume that branch

predictors will predict forward and backward branches in a certain way.

Although performance models are often effective, they do not always cor-

relate with bottom-line performance. This results in performance degradations,

which are common in a compiler’s highest optimization levels. Section III.B.1

provides empirical examples. Heuristics are often tuned extensively to avoid per-

formance degradations, resulting in compromise settings that are not the best in

any one configuration.

One way to address the shortcomings of performance models is to re-

fine the models to more accurately predict performance, but we believe this is a

1Notable exceptions include the work of Adl-Tabatabai et al. [2], where information from hardware perfor-
mance monitors is used to trigger dynamic optimizations.

94

never-ending task. All aspects of the execution stack must be correctly modeled,

including the operating system, the hardware architecture and implementation,

and even the compiler itself, as one optimization may interfere with another

downstream optimization. With the current trend of adding more levels of com-

plexity and virtualization to all levels of the execution stack, the problem will

only become more difficult as true performance continues to diverge from the pre-

dictions of any model. Ten years ago it was not such a daunting task to model the

performance impact of instruction scheduling; on today’s hardware it is nearly

impossible.

III.A.3 Empirical Search

Optimization systems based on empirical search use performance mea-

surements to guide optimization decisions, rather than relying on predictive mod-

els. Empirical search has been applied to many optimization scenarios, including

optimizing libraries, adjusting compiler phase orderings, and choosing optimiza-

tion levels.

Adaptive Compilation with Empirical Search

Diniz and Rinard [27] proposed a Dynamic Feedback approach that gen-

erates code for several different optimization strategies for important sections of

a program. They examine different synchronization strategies for a program’s

parallel code sections. During execution of these parallel sections, execution al-

ternates between training and production periods for fixed time intervals set in

the compiler. The system measures the amount of overhead relative to the per-

formance of the alternative implementations during this training period. It then

chooses the implementation with the lowest overhead for the corresponding pro-

duction period. To choose between implementations, they measure the overhead

95

from one execution of the parallel section of the code. By overhead they measure

all of the stalls that occur during execution (e.g., stalls due to locking). This

approach is only feasible if (a) all of the overhead can be measured, and (b) the

number of stalls seen relative to the overall execution time is independent of the

input being run.

Similarly, Voss and Eigenmann [90] perform dynamic optimization on

hot spots through empirical search. They use a domain-specific language to

specify how to search the optimization space for a specific optimization. As

an example, for loop unrolling, a hot spot will be optimized for each level of

unrolling. Each of these compiled versions of the hot spot will be run and timed,

and the fastest overall time will be kept and used for the hot spot. They time each

compiled version only once to decide if it should be used. They deal with varying

inputs by partitioning the timings into different bins based on the loop bounds,

which relies on loop bound values characterizing varying inputs/workloads.

Both of the above techniques examine the performance of the alterna-

tives only once to choose the better performing one. They argue that performing

the timing once for an alternative is sufficient, since the granularity of a single

sample can account for a significant amount of execution for the programs they

examined. In comparison, for general purpose applications that are run on a

JVM it is much harder to create a single large sample that represents the same

code being executed. Section III.B.4 will show that, for JVM workloads, it is dif-

ficult to correctly choose which alternative has the best performance with a small

number of samples for hot methods in a production Java Virtual Machine. The

performance auditor approach, based on statistical analysis and randomization,

determines how many samples are needed to make a confident evaluation.

Fursin et al. [32] explore online empirical search for scientific programs.

Prior to the program’s execution, a set of optimization strategies are created to be

96

explored during execution. Their system uses phase detection to identify periods

of stable, repetitive behavior. During a stable phase of program execution, each

optimized version is run once and timed, and the best performing version is

chosen. This approach exploits the repetitive behavior of scientific applications.

General purpose Java applications have a much higher variance in invocation

timings, which motivates the performance auditor approach of taking a large

number of samples.

Dynamic Optimization Using Heuristics and Feedback Directed Pro-

filing

There is also a large collection of online optimizations that have built-in

mechanisms to adapt their strategy based on past program behavior. Such tech-

niques include inlining [22], garbage collection [5], virtual method dispatch [39],

object models [8], object layout [50, 74, 42], and prefetching [14, 75, 16]. The

techniques used are specific to each optimization and adapt their strategies based

on program behavior rather than execution time. More general purpose systems

for continuous optimization [51, 15] have also been proposed.

None of these techniques time and compare multiple optimizations at

once to find the best. They instead use profiling information to heuristically guide

what to try next, for the specific optimization being examined. In comparison,

the goal of the performance auditor is to provide an accurate and general method

to dynamically measure the actual performance results for different optimizations

applied to a hot method.

Offline Empirical Search

The performance impacts of optimizations can be used to guide perfor-

mance tuning in libraries and kernels. For example, ATLAS [92], PHiPAC [11],

97

and SPARSITY [44] provide highly-tuned libraries for matrix multiplication and

linear algebra kernels, and SPIRAL [73] and FFTW [31] provide digital signal

processing solutions. There are even proposals for finding the best-performing

sorting routine [58]. STAPL [88] presents a general framework for representing

and searching the algorithm space for these types of optimizations.

These techniques work by exploring the algorithm and optimization

spaces to tailor the library to the machine it will run on, and even to the appli-

cation and the inputs the library will be used with. This can result in 50% to an

order of magnitude speedup. The best-performing algorithm is found by timing

differently compiled versions on test inputs, and this search can take hours to

tens of hours. To reduce the time overheads, recent techniques [96, 13] consider

using a model-based approach for searching the optimization space.

Another form of empirical optimization search is offline search of opti-

mization phase orderings and optimization levels. Cooper et al. [20, 19] examined

reordering phases with adaptive random sampling and genetic algorithms. These

techniques compile a version of the program under different phase orderings and

optimization levels, and then time the execution of the resulting program with a

representative input to determine which is better.

Kulkarni et al. [53] used genetic algorithms combined with memoization

to reduce their search space. They were able to achieve 4% speedups on average

by searching the compilation space for 3 hours for embedded applications on an

ARM processor. Recently they examined probabilistic pruning of the search space

to reduce this search time to 1/3 of their previous approach [52]. Triantafyllis et

al. [89] built a decision tree to decide which optimizations to apply, and in what

order. The tree guides the search, starting with the most important optimiza-

tions. They achieved 5% speedups on average compared to -O2 compilation for

the Itanium, while doubling the baseline compilation time.

98

The above studies have shown that offline search of the optimization

space, guided by performance data, can lead to speedups. Recent results [89]

show that this search can be done quickly with intelligent decision trees to guide

the search. The proposed performance auditing technique parallels this work:

with performance auditing, the goal is to achieve similar results with an online

search, by exploring different optimizations as the program executes.

Other Techniques for Improving Optimization Decisions

The previous subsection described approaches to improve code qual-

ity by performing offline experiments based on measuring execution time. An-

other approach is to use machine learning to create a model that correlates

method properties with effective optimization decisions as measured by execu-

tion time [12, 85, 3]. The result is a predictive model that can be used to deter-

mine optimization decisions at runtime for any program. This approach has less

overhead than performance auditing because performance predictions are gener-

ated by simply consulting the predictive model instead of performing multiple

compilations and executing the resulting methods; however, its effectiveness is

susceptible to the deficiencies of a model as described in Section III.A.2.

Another approach is to determine the effectiveness of an optimization

based on an evaluation of the quality of the generated code. For example, Dean

and Chambers [22] monitor the effectiveness of inlining decisions in the Self sys-

tem based on how many optimization opportunities are created by subsequent

optimization phases. This information is used when considering future decisions

to inline a method during the same or subsequent executions. Nethercote et

al. [67] also evaluate code quality and use it to possibly reconsider optimization

decisions for a method by re-executing earlier optimization phases with different

settings to produce better generated code. Compared to performance auditing,

99

this approach also has less runtime overhead; all decisions are made during com-

pilation, no runtime bakeoff occurs. However, because this approach examines

the quality of the generated code, it does use an implicit model, and thus, may

also be less robust in the presence of varying machine environments.

Performance auditing does not use an explicit or implicit model, but

instead measures execution time during an online bakeoff to guide optimization

decisions.

These four approaches, offline empirical search, offline machine learn-

ing, compile-time evaluation, and performance auditing, are complementary tech-

niques on a continuum. As one moves along the continuum from offline empiri-

cal search to performance auditing, the cost of the technique increases (such as

number of compilations or runtime experiments) as well as the robustness (like-

lihood for being correct despite changing inputs and environments). Combining

these techniques is both possible and attractive. For example, one could use ma-

chine learning or compile-time evaluation to create a small subset of optimization

strategies, which could then be explored online by performance auditing.

III.A.4 Building a Mapping Between Binaries

Many situations call for a mapping between binaries. For example, the

cross binary simulation points presented in II.D required a mapping between

binaries in order to identify semantically equivalent simulation points across bi-

naries.

Compiler optimizations introduce major obstacles to building a mapping

between binaries. Different optimizations may be applied to different binaries,

making it difficult to identify which portions of the binaries correspond to the

same source code.

There are two general classes of solutions to the problem of building a

100

mapping between binaries: matching , which uses heuristics to match the source

and binary, and bookkeeping , which requires the optimizer to maintain this map-

ping.

The primary advantage of the matching approach is that it works if

there are source-level changes. Both the bookkeeping approach and lightweight

code markers are intolerant of source-level changes. The primary disadvantage

of the matching approach is that it is very difficult to achieve high accuracy,

especially if different optimizations are used, and that it is fragile — matching is

driven by heuristics, and the heuristics will likely need to be updated as compilers

change.

The primary advantage of the bookkeeping approach is accuracy. The

optimizer has full knowledge of all the transformations that it will perform to

convert the source to binary, so it can maintain a fully accurate mapping between

the two. The primary disadvantage, of course, is that this requires modifying the

optimizer to track changes, which requires significant effort.

Matching with Heuristics

Heuristics can be used to correlate source and binary. Wang et al. [91]

propose BMAT, a technique to match binaries. BMAT is used to recycle profile

data: if quality profile data has been collected from an old binary of a program,

but programmers have made relatively small source-level changes to the code and

produced a new binary, BMAT can effectively use the old binary’s profile data

with the new binary.

BMAT’s matching algorithm is complex, yet it works well for the appli-

cation presented. This is most likely because BMAT is designed to handle source-

level changes, and not optimization-level changes. Minor source-level changes do

not change binaries nearly as much as minor changes in optimization settings. In

101

addition, BMAT’s use case is fairly tolerant of errors — if the algorithm produces

an incorrect match, there will be errors in the new profile data.

In performance auditing, on the other hand, an incorrect match is very

dangerous, because it can lead the system to make wrong decisions. Performance

auditing relies on accurate timing data to evaluate the effectiveness of optimiza-

tions. The system will not work if the timing data does not reflect reality.

Before developing lightweight code markers, we experimented with a

matching algorithm driven by bytecode index data, which is similar to line num-

ber information, and loop structure to match loops in binaries produced by the

J9 JIT system. A program was compiled twice with different optimizations, pro-

ducing two binaries, and the matching algorithm was used to match the loops

in the optimized binaries. It was very difficult to achieve over 70% match accu-

racy, and much higher accuracy is required to collect comparable loop timings

for performance auditing.

Kim et al. [49] present a survey of many code matching techniques.

Bookkeeping: Modifying the Optimizer

Albert [4] collects profile data from optimized binaries. For the compiler

to use the profile data, a mapping from basic blocks in the optimized binary

to source-level basic blocks is required. Basic block split, merge, and delete

operations are tracked so they maintain a mapping from blocks in the optimized

binary to source-level blocks.

In Albert’s work, only basic block operations are modified, which greatly

reduces the amount of effort required to implement this solution. However, this

approach also decreases its accuracy. Heuristics are needed to prevent information

loss, because it is impossible to accurately track block mappings across block

operations without higher-level knowledge of what the optimizer is doing.

102

Engblom et al. [28] present a variant on the modify-the-optimizer ap-

proach: they define their optimizer in a domain-specific language (Optimization

Description Language, ODL), and generate code for their optimizer from ODL.

Because they are generating code for their optimizer, they can easily generate ad-

ditional code to accurately maintain mappings between source and binary. The

downside of this approach is that the optimizer must be written in ODL, and

ODL is not general enough to describe all possible optimizations.

We considered modifying the optimizer to maintain an accurate map-

ping between source and optimized binary for performance auditing, but it would

require too much effort to achieve high match accuracy in the J9 optimizer.

Heavyweight Code Markers

A variant of lightweight code markers has been used to implement on-

stack replacement (OSR) [40, 29]. In a system that supports OSR, certain points

in a method are designated as OSR points, i.e., points where a mapping back

to unoptimized code is available. Like lightweight markers, OSR points are in-

serted into the IR before optimization and the semantics of inserted instructions

dictate what optimizations are possible. Unlike lightweight markers, OSR points

will likely preclude many optimizations because they are modeled similar to a

call instruction that uses all live variables needed to recover unoptimized state.

Because they will impact the applicability of optimizations, they are not a viable

solution to the problem addressed by lightweight markers.

III.B Performance Auditing

This section introduces the Performance Auditor , a framework that en-

ables online performance evaluation. The performance auditor tracks the bottom-

line performance of multiple implementations of a region of code to determine

103

which one is fastest. The analysis is performed online: as the application exe-

cutes, performance evaluations are done and the results are immediately used to

guide optimization decisions. No offline training runs or hardware support are

required.

III.B.1 Motivating Empirical Search

This subsection motivates the need for empirical search for dynamic

optimizations by presenting two examples: an analysis of the effectiveness of

optimization levels in a JIT compiler, and an analysis of the effects of changing

inlining heuristics.

For these examples, IBM’s J9 JIT compiler was modified to read the

hardware cycle counter on entry and exit of selected program methods to measure

the total number of cycles spent in a given method. Further details on the

methodology will be described in Section III.B.3.

This infrastructure allows the VM to directly evaluate the performance

of generated code by measuring the amount of time needed to execute the gener-

ated code. In this subsection, the timing infrastructure will be used to evaluate

the impact of optimizations on individual methods. To evaluate the quality of

the code produced by the compiler, these experiments measure steady-state per-

formance, which excludes benchmark start-up. By ignoring benchmark start-up

behaviors, steady-state performance measurements exclude the effects of dynamic

compilation on timing measurements.

This chapter focuses on hot methods, which are a subset of the methods

where the program spends most of its time. Further details about the benchmark

suite and the identification of hot methods will be presented in Section III.B.3.

In our 20 benchmarks, there are 101 hot methods.

Most compilers group optimizations into levels, where higher levels pro-

104

-30%
-20%
-10%

0%
10%
20%
30%
40%
50%
60%

Sp
ee

du
p

Methods

Level 5

Figure III.1: Per-method performance impact of moving from optimization level
4 to level 5.

vide better performance at the cost of longer compilation times. In a JIT setting,

an optimization level must be selected whenever a method is compiled.2 The J9

JIT has five such levels, which we will refer to as O1–O5.

The timing infrastructure is used to compare the performance of the two

highest levels, O4 and O5. On average, across the entire benchmark suite, level

O5 improves performance by 1.5% over level O4 with a maximum improvement

of 12.5%, and does not significantly degrade performance for any benchmark.

However, when measuring performance of O4 versus O5 for individual methods,

the results vary substantially.

Figure III.1 compares the performance of optimization levels O4 and O5

for each of the 101 hot methods. Each bar represents a method, and the y-axis

reports the percentage speedup of O5 over O4 (higher means that O5 is faster).

As is typical in compiler optimizations, the highest level (O5) offers substantial

speedups for a small number of methods (more than 10% speedups for the 5

rightmost methods), with modest effects on most of the methods.

However, level O5 actually degrades performances relative to O4 for
2Because of Java’s dynamic nature, traditional static interprocedural analysis is not performed because the

complete call graph for the program’s execution is not known until the program terminates [38].

105

-40%
-30%
-20%
-10%

0%
10%
20%
30%
40%
50%

Sp
ee

du
p

Methods

Expanded Inlining

Figure III.2: Per-method performance impact of expanded inlining heuristic.

about a third of the methods. The leftmost method is degraded by 21%. This

result is not a byproduct of a poor performing JIT compiler; J9 performs com-

petitively with industry leading JVMs and substantial time and effort has gone

into tuning its optimization levels to maximize performance. These results are

an inevitable byproduct of tuning compiler heuristics for the average case, and

evaluating performance at the program level. Similar results are expected from

any optimizing compiler.

This subsection presents a second study that examines a specific op-

timization, method inlining. Conceptually, method inlining has a fairly clear

cost-benefit model. The potential benefit of inlining is the performance gained

by removing call overhead, and optimizing the callee in the context of the caller.

The potential cost of inlining is a decrease in instruction cache locality, and in-

creasing the pressure on downstream optimizations such as register allocation.

These performance effects are nearly impossible to predict accurately, so the in-

lining component in optimizing compilers typically contains dozens of heuristics

and ad-hoc tuning knobs. These heuristics are often tuned on large benchmarks

suites to find values that work well, on average for these benchmarks.

106

To demonstrate the difficult task of predicting the performance effects

of method inlining, the thresholds used by the inlining heuristic were increased

substantially, and the timing infrastructure was used to evaluate the performance

effects. Specifically, the threshold that limits the size of callees considered for

inlining was quadrupled; thus the modified heuristic allows for substantially larger

callees to be inlined. Figure III.2 shows the performance of the new modified

inlining heuristic compared to the original inlining heuristic for the hot methods

in our benchmarks. As in Figure III.1, each bar represents a method, and the

y-axis reports the percentage speedup with expanded inlining thresholds. As in

Figure III.1, the impact of expanded inlining varies greatly among methods. On

the right side of Figure III.2, there are 7 methods that improve by over 10%, 4

of which are over 20%. On the left side of the figure, there are 5 methods that

degrade by over 10%, with 2 larger than 20%. Reducing the inlining thresholds

produced similar, inconsistent performance across the set of hot methods.

These large variations are a compiler writer’s nightmare, because the

higher threshold offers great promise, but also introduces a significant risk of

performance degradation. These examples motivate the need for a technique

that can automatically tune optimizations to produce performance improvements,

while avoiding optimization settings that degrade performance.

III.B.2 Performance Auditor Design

As further described in Section III.B.5, this work uses method bound-

aries to delimit code regions (as is common in virtual machines) and focuses

on comparing only two versions of each method at a time; however, the ideas

presented are not limited to these design choices.

The performance auditor conducts bakeoffs to identify the faster method

variant. A client generates method variants and uses the performance auditor to

107

Code Region Exit

Stop timer
Record timing

. . .
Code Region

Version A

Code Region
Version A

Randomly choose
a version

Entrance of
Code Region

Start timer

Code Region
Version B

Code Region
Version B

Code Region
Version N

Code Region
Version N

Figure III.3: Performance Auditor Overview

evaluate their performance. The client of performance auditor is responsible for

1) providing the alternative optimized implementations of the code region to be

compared and 2) deciding what action to take with the outcome of the bakeoff.

For example, a client could evaluate aggressive optimizations that significantly

improve performance for some code regions, but degrade performance for others.

With the performance auditor, the client could identify situations where perfor-

mance degrades, and revert to the original implementation. As another example,

a client could empirically search the tuning space for important optimization pa-

rameters, such as the inlining thresholds described in Section III.B.1, and choose

the parameter that results in the best performance.

The performance auditor has two main components: 1) a technique to

collect sets of execution times for an implementation of a code region, and 2) a

statistical mechanism to determine which set of timings is fastest.

Figure III.3 presents a high-level view of our approach. The client pro-

vides N optimized versions of the code region to evaluate. The key idea is to

randomly select one of these implementations whenever the code region is en-

108

tered, and record the amount of time spent. As the program executes, timings

for each implementation are collected for later analysis.

The second component of our framework analyzes the collected timings

to determine which is fastest. The biggest challenge is that the program is very

likely to invoke the audited code region with different program state (parameters

and/or memory values) over time. This implies that the different implementations

of this code region may take different paths or operate on different data during

their executions, which will makes it difficult to meaningfully compare timing

data collected from these executions.

For example, a particular execution of version A of the code region

may run for less time than version B of the code region, not because A has

a better implementation, but because an argument to the method had a value

that resulted in A doing less work. For example, if the code region is a sorting

algorithm, version A may have been invoked with a list of 10 elements, while

version B was invoked with a list of 1,000 elements.

The law of large numbers is used to overcome this challenge. Specif-

ically, as the framework accumulates more timing samples for versions A and

B, variations in timings will be evenly distributed across the two versions if the

versions are selected randomly to avoid correlations with patterns in program be-

havior. The performance auditor performs statistical analysis on the timing data

and concludes which version is faster, with some degree of statistical confidence.

The performance auditor decides which version (A or B) is faster by

averaging the timing data collected from each version of the code. By comparing

the averages, the system can determine which version is faster on average, but the

comparison is meaningful only if there are enough timing samples. To determine if

there are enough samples, a statistical confidence metric calculates the probability

that the actual performance difference between versions A and B is consistent

109

with the observed performance difference in the timing samples from versions A

and B.

To calculate the statistical confidence metric, the mean and variance are

first computed for each set of timing data. Then the absolute difference between

the means MeanDiff is computed:

MeanDiff = |mean(A)−mean(B)|

And the variance of the difference between the means MeanDiffV ariance

is computed:

MeanDiffV ariance =
variance(A)

sizeof(A)
+

variance(B)

sizeof(B)

This computed mean and variance define a normal probability distri-

bution for the absolute difference between the means of A and B. A confidence

value is computed by integrating this distribution from 0 to ∞. The distribution

is for the absolute difference between the means, which is always positive, so this

confidence value is the probability that the difference between the means for the

entire dataset is consistent with the difference between the means for our samples.

The number of samples needed to make a confident conclusion is directly

correlated with the variance in the amount of time spent in the code region. If a

constant amount of time is spent in the code region across all invocations, a small

number of samples will be needed to conclude that the performance difference

is statistically significant. And of course, if very different amounts of time are

spent in the code region across invocations — for example, if the code region is

sorting lists of very different lengths as the program executes — then a larger

number of samples will be needed to detect a statistically significant performance

difference. As the variance in the code region’s runtime increases, so does the

number of samples needed before a confident conclusion can be drawn.

110

For the proposed approach to succeed, there must not be any corre-

lations between the timing data and program behavior. Any such correlations

could bias the timings for one version of the code region. If there are no correla-

tions, this technique can identify arbitrarily small performance differences with

arbitrarily high confidence. Of course, if very high confidence is desired, a very

large amount of timing data may be necessary.

Sections III.B.4 and III.B.5 explore this concept in more detail. Sec-

tion III.B.4 investigates the feasibility of the proposed statistical approach through

an offline study, and Section III.B.5 describes an online system based on this ap-

proach.

III.B.3 Methodology

The experiments in this section were performed using a development

version of IBM’s J9 VM and its high-performance optimizing JIT compiler [34].

The VM was run on a Pentium 4 3.0 GHz machine with 2 processors and 1

GB RAM running Linux. A suite of 20 benchmarks composed of the complete

SPECjvm98 benchmark suite [84], the SPECjbb2000 benchmark [83], and several

other Java applications, including seven of the DaCapo benchmark suite [87]3

were used to evaluate the proposed system. Table III.1 reports the number of

methods executed,4 as well as the total size (in KB) of all bytecodes executed for

each benchmark. These numbers report dynamic metrics, i.e., they are based on

what is executed, not what could be executed.

The last column shows the number of hot methods for each benchmark.

Hot methods are a small subset of a program’s methods where most of execution

occurs, and hot methods can be selected in many different ways. For this work,

3The development version of the VM that we used did not run the remaining three benchmarks from the
DaCapo suite.

4Number of methods executed includes all Java methods (including library methods) executed by the JVM
while loading and executing the application.

111

Table III.1: Benchmark suite

Methods Bytecodes Hot
Program Executed Exe (KB) Methods

antlr [87] 1702 228 2
bloat [87] 1063 105 7
compress [84] 770 66 2
daikon [21] 2108 171 6
db [84] 782 67 3
hsqldb [87] 1416 147 8
ipsixql [18] 828 61 6
jack [84] 746 56 3
javac [84] 1467 133 3
jbb2000 [83] 1197 115 8
jess [84] 1140 86 4
jython [87] 1777 186 15
mpegaudio [84] 866 78 4
mtrt [84] 853 76 4
phase [65] 450 31 2
pmd [87] 2030 128 4
ps [87] 946 75 3
soot [80] 2061 235 4
xalan [87] 2108 171 5
xerces [94] 521 36 8

hot methods are defined to be methods that consume enough cycles to be selected

by J9 for aggressive feedback-directed optimizations. For these methods, J9 first

performs an additional compilation to instrument the method for profiling, then

optimizes the method at one of the two highest optimization levels (O4 or O5).

The Read Time-Stamp Counter (RDTSC) instruction was used to collect

timing samples for a compilation of a method. The RDTSC instruction reads

the processor’s 64-bit cycle counter and stores its value in a register. Method

entry is instrumented to read the cycle counter and store the cycle count in the

method’s stack frame. Method exit is instrumented to read the cycle counter

again, subtract the current cycle count from the cycle count on the stack, and

112

store the difference in a circular buffer.

This methodology measures the total time that the method was active

on the stack to ensure fair comparisons in the presence of changing inlining deci-

sions. Measuring only time spent in the instrumented method, excluding callees,

would produce incorrect results in the presence of method inlining.

III.B.4 Offline Convergence Study

This subsection presents an offline feasibility study that demonstrates

the potential of a performance auditing system. Section III.B.4 describes how

timing samples are collected and used to evaluate our approach. Section III.B.4

considers using a fixed number of samples, and shows that thousands of samples

are needed to accurately detect speedups during a bakeoff. Section III.B.4 demon-

strates that the proposed confidence analysis can correctly detect performance

differences between two different compilations of the same method.

Experimental Setup

How many timing samples are needed to accurately detect a performance

difference between two compilations of a method? To answer this question, timing

data is collected for invocations of each hot method. These timing data are used to

represent two hypothetical implementations of the hot method. For a hot method,

half of the samples are randomly assigned to set A, and the other half to set B.

Each sample in set B is artificially sped-up by X%, where X > 0. A and B then

represent two potential implementations of the method: A is the baseline, and

B is an optimized version that runs exactly X% faster. The proposed statistical

technique is applied to these two sets of timing data to determine how many

samples are needed to recognize that B is faster than A.

Method timing samples are collected for the hot methods in each bench-

113

mark. For these experiments, if a method accumulates 2 minutes of CPU time,

no additional samples will be collected for the method. After collecting a set of

method invocation timings, the timing values are sorted, and the highest 10% are

eliminated. This step filters out noise introduced by events such as garbage col-

lection and context switches. Next, the remaining timing samples are randomly

partitioned into two disjoint sets A and B, each containing half of the timings

collected, and the timings in set B are artificially decreased by X%.

Fixed Number of Samples

Prior online systems that performed a bakeoff between different com-

piler optimizations took either one [27, 90] or two [32] timing samples for each

optimized version of the code. These systems determined which version was faster

based on these one or two samples. In the more general setting explored in this

chapter, thousands of samples are needed to accurately determine which version

is faster.

This is demonstrated through an experiment that uses a fixed number

of timing samples to decide which version is faster.

The sets A and B are created as described above, and a fixed-size subset

A′ is randomly selected from A, and an equally sized random subset B′ is selected

from B. The means of the times in subsets A′ and B′ are calculated, and used

to predict if A is faster than B. Recall that in this experiment, B has been

artificially sped up by X%, and X > 0, so B is always faster than A. If the

mean for B′ is less than the mean for A′, the samples correctly predict that B is

faster than A, so a correct prediction is reported. Otherwise, a misprediction is

reported. To compensate for noise introduced by the use of randomness in this

experiment, each experiment is repeated 100 times with different random seeds,

and the results are averaged over these 100 trials.

114

0%

5%

10%

15%

20%

25%

30%

35%

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Fa
lse

 p
os

itiv
es

Speedup introduced

10 samples
100 samples

1000 samples
10000 samples

Figure III.4: Misprediction rate for a simple sampling approach in which a fixed
number of method invocation (entry+exit) timings are collected, for various
amounts of introduced speedup.

Figure III.4 shows the number of mispredictions that occur when 10,

100, 1000, and 10000 samples are used for A′ and B′. The x-axis shows the

speedup introduced in set B, and the y-axis shows the percentage of experiments

in which the fixed-size samples fail to predict that B is faster than A. Method

invocation timings are used for this graph as described in the previous section.

Figure III.4 shows that a large number of samples must be collected to

detect small speedups, and fewer samples are needed to detect larger speedups.

For example, to reliably detect a 2% speedup with less than 2% false positives,

10,000 samples are needed, but 1,000 samples are sufficient to detect a 10%

speedup with less than 2% false positives. The results show that both large and

small speedups can be detected with 10,000 samples, but 10,000 samples are re-

ally only necessary to detect small speedups — 1,000 samples can detect a 10%

speedup in an order of magnitude less time, with only 0.4% additional mispredic-

tions. This motivates the proposed approach, which can efficiently detect both

large and small speedups by collecting only as many samples as needed.

115

Statistical Approach

This subsection uses the confidence-based technique described in Sec-

tion III.B.2 to predict if B is faster than A. For this experiment, sets A and B

are used again, as described above.

To determine the number of samples necessary to confidently predict a

performance difference between A and B, a confidence threshold Z% (80% and

99.99% in this study) must first be set. In this experiment, samples are added to

A′ from A, and to B′ from B until Z% confidence is achieved in the performance

prediction, based on the formulas in Section III.B.2.

Initially, sets A′ and B′ each contain 100 samples. Confidence evaluation

is performed. If the confidence is not above the confidence threshold Z%, 100

more samples are added to both A′ and B′ from A and B respectively, and the

confidence evaluation is performed again. More samples are added (100 at a time)

to sets A′ and B′ until the confidence is above the confidence threshold Z%. In

this experiment, it is possible to exhaust the supply of timing samples before

the confidence threshold is reached. When this happens, the experiment did not

converge on a confident performance prediction. A performance prediction can

not be made, and this event is noted. The convergence experiment is repeated

100 times with different random seeds, and the results over the 100 trials are

averaged.

When the statistical analysis converges on a performance prediction,

the time to converge is reported, which is the sum of the cycle counts in subsets

A′ and B′. For these confident predictions, if the analysis incorrectly predicts

that A is faster than B, a misprediction is reported. If the supply of samples

is exhausted before reaching the confidence threshold, a failure to converge is

reported.

Figure III.5 shows the percentage of experiments that converged for

116

97%

97.5%

98%

98.5%

99%

99.5%

100%

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Co
nv

er
ge

nc
es

Speedup introduced

entry+exit, 99.99% conf
entry+exit, 80.00% conf

entry+exit+yieldpoints, 99.99% conf
entry+exit+yieldpoints, 80.00% conf

Figure III.5: Convergence rate for the proposed statistical approach. This plot
shows the percentage of hot methods for which confident predictions are gener-
ated, with a sampling limit of 2 minutes of CPU time for each method.

various amounts of artificial speedup introduced in set B. The y-axis shows the

percentage of hot methods for which performance predictions are generated for

the two confidence levels examined. The entry+exit results use the per method

timing, and the yieldpoints results will be discussed shortly. These results show

that it is more difficult to detect small speedups in 2 minutes of CPU time for

our hot methods, if high confidence is desired, as expected.

Figure III.6 shows the percentage of experiments in which the analysis

incorrectly predicts that A is faster than B. The results in this figure and fig-

ure III.5 show the tradeoff between the number of accurate predictions and the

number of confident predictions. As expected, incorrect predictions occur more

frequently when the performance difference between A and B is small.

Figure III.7 shows the number of cycles needed to detect a performance

difference. The y-axis shows the total amount of time needed to make a confident

performance prediction. For experiments that did not converge, the total time

spent before giving up is shown. In other words, this graph includes experiments

that did not converge, and for those experiments, it shows a lower bound on the

117

0%

0.1%

0.2%

0.3%

0.4%

0.5%

0.6%

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Fa
lse

 p
os

itiv
es

Speedup introduced

entry+exit 99.99% conf
entry+exit 80.00% conf

entry+exit+yieldpoints, 99.99% conf
entry+exit+yieldpoints, 80.00% conf

Figure III.6: Incorrect predictions. This plot shows the percentage of hot methods
in which the analysis incorrectly predicts that A is faster than B. Results are
averaged over converged methods.

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 1e+13

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Ti
m

e
to

 c
on

ve
rg

e
(c

yc
le

s)

Speedup introduced

entry+exit, 99.99% conf
entry+exit, 80.00% conf

entry+exit+yieldpoints, 99.99% conf
entry+exit+yieldpoints, 80.00% conf

Figure III.7: Time to converge. This plot shows the number of cycles needed
to make a prediction. This graph includes experiments that did not converge,
and for those experiments, it shows the amount of time spent in the experiment
before giving up, which is a lower bound on the convergence time.

118

convergence time. The results show that it takes significantly longer to detect

small speedups than large speedups. The results also show that by adjusting

the confidence threshold, convergence time can be further reduced by sacrificing

accuracy.

Using Yield Points for Timing

The proposed system collects method invocation timings, but it is also

possible to collect timing samples at every loop branch. Collecting one timing

sample from each method invocation works well for methods that are invoked

frequently, but infrequently invoked methods may pose a problem because they

generate timing samples more slowly, which means it will take longer to detect a

performance difference.

To address infrequently invoked methods, many timings can be collected

from a single method invocation by collecting timing samples between temporally

adjacent pairs of yield points. A yield point is a compiler-inserted statement that

checks if the application needs to be temporarily suspended to perform a virtual

machine service, such as garbage collection. The compiler inserts yield points on

loop back-edges, so this approach approximates collecting timing samples for each

loop iteration. If a hot method is infrequently invoked, that method is spending a

lot of time in loops, and timing samples can be collected for those loop iterations

by collecting timing samples between yield points.

Figures III.5, III.6, and III.7 show results with yield-point timings.

These results suggest that collecting many timings per method invocation by

instrumenting yield points reduces false positives as well as the time to converge,

making it an attractive option. However, this offline study was conducted with

simulated speedups applied to method timings. Collecting yieldpoint timings

when comparing differently optimized versions of code is more challenging, as it

119

requires keeping the yieldpoint placement consistent in both optimized versions.

For example, if inlining occurs in the method being timed, it may inline addi-

tional yieldpoints into the method, resulting in more frequent sampling. If any

instructions can be identified uniformly in both optimized versions of the code,

they would be candidates for timing instrumentation. A second problem is that

instrumenting frequently executed instructions, such as loop branches, can in-

troduce more overhead in an online system. Careful engineering can be used to

reduce this effect, such as timing groups of N yieldpoints, instead of timing each

temporally adjacent pair of yieldpoints. These issues will be discussed in detail

in section III.C.

For the remainder of this section, method invocation timings are used.

III.B.5 Online Performance Auditing

This subsection describes the implementation of an online system that

utilizes the proposed statistical technique to determine which compilation of a

method performs best. The implementation consists of two parts: 1) a dispatch

mechanism to select which version of code to run, and 2) a background thread to

process and analyze the timing data collected. This is followed by an empirical

evaluation of our online technique with a sample client.

Method Dispatch Mechanism

As described in Section III.B.2, methods are the code regions used for

each performance bakeoff. Thus, method dispatch for the method being timed

(M) must be intercepted so that execution jumps to one of the implementations of

the method M at random. There are a number of ways this could be implemented

in a VM. We implemented the dispatch as shown in Figure III.8, where a full

method body is compiled to act as the dispatcher. The dispatcher method is not

120

Dispatcher
Version Version

A

Invocation of
Method M

Version
B

Start
timer

Stop
timer

Figure III.8: Architecture for the dispatcher, to select method invocations for
timing.

timed, but contains a conditional test to decide whether a timed method should

be executed, and if so, to invoke the correct one.

Compiling a full method body for the dispatcher is not necessary, but

doing so makes it easy to reduce the overhead of the timing instrumentation,

because the dispatcher can choose to invoke a “clean” version of the method

without any timing instrumentation to arbitrarily reduce overhead, at the cost of

convergence time. In situations where compiling a third version of the method is

not feasible, alternative implementations can exclude the method body from the

dispatcher, so it always invokes one of the timed methods. The dispatch logic

could also be placed at the beginning of one of the timed methods, or inlined at

the method’s call sites.

Figure III.9 shows the dispatch method logic. The prologue checks a

sampling condition to determine if any timed version should be executed. We

use a count-down sampling mechanism, similar to the approach of Arnold and

Ryder [7]. This makes the fast-path of the dispatcher method reasonably efficient,

containing only a decrement and check. Once the sample counter reaches zero,

121

METHOD ENTRY:

sampleCountdown --;

if (sampleCountdown < 0) goto BOTTOM;

... body of method M ...

BOTTOM:

if (sampleCountdown < (BURST_LENGTH * -1)) {

// Burst completed. Toggle and reset count

toggle = !toggle;

sampleCountdown = SAMPLE_COUNT_RESET;

}

if (toggle)

return invokeVersionA();

else

return invokeVersionB();

Figure III.9: Dispatch logic

it jumps to the bottom of the code to determine which timed version should be

executed. This code is on the slow path and can afford to execute slightly more

complicated logic.

To minimize timing errors caused by caching effects due to jumping to

a cold method, the dispatcher invokes the timed methods in consecutive bursts.

The burst threshold (BURST LENGTH) specifies a number of invocations that are to

be performed in a row. When a burst is complete, tracked by allowing the sample

counter to go negative, the sample counter is reset. A toggle flag is maintained

to switch between optimization versions A and B. If more than two versions are

being compared, this toggle can easily be replaced by a switch statement. All of

the counters are thread-specific to avoid race conditions and to ensure scalable

access for multi-threaded applications.

If a pure counter-based sampling mechanism is used, it could correlate

122

with patterns in program behavior, and even a slight correlation can skew the

timing results. One solution would be to randomly set the toggle flag on each invo-

cation, but this is difficult to implement with low overhead. Instead, the number

of samples profiled (SAMPLE COUNT RESET) and the burst length (BURST LENGTH)

are varied by periodically adding a random epsilon. In the prototype performance

auditing system implemented in J9, the VM sampling thread is used to update

the number of samples profiled and the burst length every 10ms, the shortest

timing interval available in a default Linux kernel. This is sufficient to avoid

deterministic correlations.

Data processing

As method timings are collected, they are written into a circular buffer,

one buffer per thread. The timing data is processed by a background processing

thread that wakes up periodically and scans through each thread’s buffer every

10ms. The processing thread starts from the position in the buffer where it left

off last time, and scans the buffer until it catches up with the producer. No

synchronization is used, so race conditions are possible, but dropping a sample

occasionally is not a concern. The system is designed so that races cannot corrupt

the data structures; slots in the buffer are zeroed after being read to avoid reading

a buffer twice if the consumer advances past the producer.

Two operations must be performed on the timing data: 1) discard out-

liers, and 2) maintain a running average and standard deviation. Outliers cannot

be identified by collecting and sorting the entire dataset because this would re-

quire too much space and time for an online system. Instead, the system discards

outliers by examining windows of N samples. The outliers are identified as the

slowest M times in the window. Maintaining the running average and standard

deviation is accomplished by keeping a running total of the times, as well as the

123

sum of the squares.

The system requires a minimum number of samples (10,000) before con-

fidence analysis is performed, to ensure that a small initial sampling bias does

not lead to incorrect conclusions. Once a sufficient number of data points are

collected, the confidence function described in Section III.B.2 is invoked periodi-

cally to determine if the difference between the means is statistically meaningful.

If a confident conclusion is reached, the bakeoff ends and the winner is declared;

otherwise, the bakeoff continues. To ensure that a bakeoff does not run indefi-

nitely, the system may end a bakeoff after a fixed amount of wall clock time, or

execution time, has expired.

Overhead

There are three primary sources of overhead: 1) executing the sampling

condition on the fast path of the dispatcher, 2) reading and storing the processor’s

cycle counter at method entry and exit, and 3) processing the timing samples

with the background thread. This overhead is for the infrastructure itself, and is

independent of the optimizations being compared.

To quantify the overhead, the online system was configured so that it

constantly performs a bakeoff. The online system will perform one bakeoff at a

time, so the overhead is evaluated independently for each of the hot methods in

the data set (as described in Section III.B.3).

Figure III.10 presents the overhead incurred when a large sample interval

is used so that effectively no samples are taken. This data primarily represents

the overhead of the fast-path sampling check in the dispatcher. This overhead is

quite low, averaging 0.4%, with all but three methods less than 2%. This result

is important because it shows that the overall overhead of the auditor can be

reduced to this value by lowering the sample rate. Negative overhead is most

124

-2%
-1%
0%
1%
2%
3%
4%
5%
6%
7%
8%

O
ve

rh
ea

d

Figure III.10: Per-method overhead of the dispatcher fast-path. No timing sam-
ples are being taken.

likely noise, which is expected when measuring overheads in the range of 1%.

Figure III.11 presents the overhead when the dispatcher samples 1 out of

20 invocations of the instrumented method. This sample rate is fairly aggressive

to allow quick convergence. It is the sample rate used in our full online system.

The overhead increases when samples are taken, with an average of 1.5%, with

some methods up to 5%. This amount of overhead is likely to be acceptable as

it is incurred only during the bakeoff period. If lower overhead is desired, the

sample rate can be reduced and the bakeoff can be performed over a longer period

of time.

Online Performance Auditing with an Inlining Client

This section describes a fully automatic online performance auditing

system that uses the proposed timing and analysis framework to improve perfor-

mance. As described in Section III.A.1, the J9 VM already performs an additional

compilation of the hottest methods to insert profiling instrumentation. This re-

compilation logic was modified to perform a bakeoff for these hot methods after

they have been instrumented. When the bakeoff has completed, if a winner is

125

-2%
-1%
0%
1%
2%
3%
4%
5%
6%
7%
8%

O
ve

rh
ea

d

Figure III.11: Per-method overhead of the Performance Auditor when sampling 1
of 20 executions. Overhead includes recording and processing the timing samples.

confidently identified, the winner’s optimization parameters are used for the fi-

nal compilation of the method; otherwise, the VM’s default behavior is used.

The inlining example presented in Section III.B.1 is used as the optimization

client, which compares 1) the original inlining heuristics, and 2) an inliner with

quadrupled size thresholds.

The current system performs only one bakeoff at a time, in the order

that methods are selected for instrumentation by J9. If a method is selected for

a bakeoff while another bakeoff is already in process, it is added to a queue of

pending bakeoffs. Multiple bakeoffs could potentially be performed simultane-

ously, but we did not experiment with this strategy.

Figure III.12 presents the steady-state performance achieved by our sys-

tem. The x-axis presents the benchmarks, and the y-axis represents performance

improvement relative to the default J9 VM. The black bar shows the perfor-

mance when using the expanded inlining heuristic for all hot methods; the white

bar shows the performance of the performance auditing system that runs bakeoffs

to choose the default or expanded inlining heuristics.

Using the expanded heuristics without auditing resulted in performance

126

-20%
-15%
-10%

-5%
0%
5%

10%
15%
20%

xerces
xalan
soot
pspm

d
phase
jython
ipsixql
hsqldb
daikon
bloat
antlr

jbb2000
m

trt
m

pegaudio
jess
javac
jack
dbcom

press

Sp
ee

du
p

Unaudited Expanded Inlining
Audited Expanded Inlining

Figure III.12: Performance of the online system using the proposed statistical
technique to guide inlining heuristic selection.

improvements between 5–10% for three of the benchmarks in our suite (ipsixql,

phase, and xalan), but large degradations for two benchmarks (compress and

mtrt). The online performance auditing system is able to achieve most of the

performance gains of the expanded inlining heuristics, while avoiding the signifi-

cant degradations.

The primary contribution of this work is not the speedup produced by

this particular optimization client, but the success of the performance auditing

infrastructure in identifying the better-performing version. The most important

aspect of this performance result is that the system did not degrade performance

measurably for any of the benchmarks in our suite, which demonstrates the via-

bility of this technique to exploit high-risk/high-reward optimizations.

The left group of 8 benchmarks in Figure III.12 are from the Standard

Performance Evaluation Corporation (SPEC). These benchmarks are used widely

within the industry for performance benchmarking, and most commercial JVMs

have been heavily tuned for these benchmarks. It is therefore not surprising that

our simple inlining heuristic adjustment did not improve their performance. How-

ever, when executing new benchmarks, such as the 12 benchmarks on the right,

127

-50%
-40%
-30%
-20%
-10%

0%
10%
20%
30%
40%
50%
60%

Sp
ee

du
p

. . .

Methods

Timeout
Incorrect

Correct

Figure III.13: Accuracy of the online system using the proposed statistical tech-
nique to guide inlining heuristic selection.

some substantial performance opportunities were discovered. We do not believe

this to be an anomaly, but another example of the fundamental issue addressed

by this work: predicting performance for unseen programs is difficult, and there

is tremendous opportunity available if systems can automatically identify and

correct performance anomalies.

Our auditing system has little impact on initial program startup be-

havior, because the performance auditing system only operates on methods that

reach the highest levels of optimization. When a bakeoff is performed, the method

is compiled 3 times, then once again after the bakeoff completes. Our current

prototype makes no effort to distribute these compilations over time to avoid

overhead, and thus, may introduce overhead relative to the original system be-

fore reaching steady state. This source of overhead can be avoided fairly easily

by using known techniques, such as distributing the compilations over time us-

ing a low priority background compilation thread, or moving compilation to free

processors. These techniques are not investigated in this work, because the pri-

mary goal of this work is to evaluate the potential of performance auditing by

evaluating the accuracy of the bakeoff mechanism, and its potential impact on

steady state performance.

To evaluate the accuracy of our technique, the bakeoff decisions from

the online auditing system were compared to the performance results from offline

128

measurements. When an online bakeoff is performed, there are three possible

outcomes:

1. Timeout: The bakeoff was terminated because it executed for too long with-

out reaching a conclusion.

2. Incorrect: The system made a performance prediction that was inconsistent

with offline measurements.

3. Correct: The system made a performance prediction that was consistent

with offline measurements.

There are many sources of potential nondeterminism in the proposed

performance auditing mechanism, as well as in the underlying VM itself, so the

online auditing system was run 10 times for each benchmark, and the results for

all bakeoffs were recorded.

Figure III.13 presents the accuracy of the decisions made by the online

system. The graph is in the same format as Figure III.2, where each bar represents

a hot method from the benchmark suite, and the total height of the bar represents

the performance improvement (or degradation) caused by the expanded inlining

heuristics for that method, as reported by offline measurements.

Each bar is broken down by shades of gray to show the results of the 10

online bakeoffs for that method. A solid black bar indicates that the correct con-

clusion was reached every time a bakeoff was performed. A bar that is 50% white

means that 50% of the time the bakeoff ran too long and timed out. Methods

where expanded inlining impacted performance by less than 1% were excluded

from the graph to improve legibility. Bakeoffs were conducted for 152 methods;

73 methods impacted performance by less than 1%, and the remaining 79 are

presented in Figure III.13.

The performance of the excluded methods is small enough that a) the

129

accuracy of the decision is irrelevant to overall performance, and b) the accuracy

breakdown was not visibly discernible from the figure.

The most important aspect of the proposed system is its accuracy on

the methods for which the expanded heuristics have a large positive or nega-

tive impact. Of the methods that show greater than 10% speedup from the

expanded heuristics (rightmost bars), the online system makes the correct deci-

sion for around half of these methods (5/11) almost every time; the remaining

6 methods result in a timeout on every bakeoff. The system makes no wrong

decisions for these methods.

Similarly, for the methods where expanded heuristics result in degrada-

tion of 10% or more (the leftmost bars), the system often makes correct decisions

for 5 of the 11 methods, and consistently times out on the remaining methods.

For one method, wrong decisions were made in 2 of the 10 bakeoffs.

The most important point from this data is that incorrect decisions are

avoided in almost all cases for the methods with the largest potential gains or

loses from the optimization. As shown by the performance results earlier in this

section, making correct conclusions on a subset of the hot methods can result in

substantial performance improvements at the program level.

The large number of timeouts shown in Figure III.13 are due to the time-

to-convergence problems described in more detail in Sections III.D and III.C.

The online system collects only one timing sample each time the profiled method

is invoked, so many methods do not generate timing samples fast enough to

make a confident performance prediction before the bakeoff times out. These

methods (approximately 50% of the bakeoffs) are lost optimization opportunities.

However, because the online system uses the default optimization strategy in

these cases, the resulting steady state performance will be the same as if no

bakeoff was performed.

130

The results show that the biggest challenge to the performance auditing

approach is time to convergence, i.e., the number of data points that must be

collected before an accurate performance comparison can be made. Regions of

code with high timing variance will eventually converge if the variance is finite,

but the number of samples required may be impractical. Terminating the bakeoff

early due to a timeout is not a serious problem in the online system because

the default optimization can be used; however, this means the resources used

to perform the bakeoff were wasted, and an optimization opportunity may have

been lost. The following section will discuss the issue of convergence time in

more detail, and a solution will be presented that collects timing data at a finer

granularity to reduce convergence time.

III.C Lightweight Code Markers

Insufficient timing data results in poor convergence for infrequently in-

voked methods in performance auditing systems. To address this issue, more

timing data must be collected. The baseline performance auditing system col-

lects method invocation timings, which means that infrequently invoked methods

will not produce very many method invocation timings. Performance auditing

is applied to a program’s hottest methods, so if an infrequently invoked method

is selected for performance auditing, the program must be spending a significant

amount of time executing instructions in the method.

A method that is both hot and infrequently invoked must contain loops,

because a method that does not contain loops is either cold or frequently invoked.

So the obvious approach to collect more timing data from these infrequently

invoked methods selected for performance auditing is to collect loop iteration

timings instead of method invocation timings.

It is easy to collect loop iteration timings instead of method invocation

131

timings — it is a simple matter of moving the instructions that read the cycle

counter. The challenge is to collect loop iteration timings that are comparable

across compilations. This is difficult because compilers can generate very different

optimized code from the same source.

Consider the following example: an infrequently invoked method con-

tains a loop. Loop iteration timings are required. Two compiled versions of the

method are generated by the performance auditor, versions V1 and V2. In V1 the

optimizer produces two specialized versions of the loop: one version of the loop

is unrolled four times, and the other version of the loop is not unrolled. In V2,

the loop is unrolled twice and no specialization is performed.

The compiler returns these two versions of the code V1 and V2 to the

performance auditor, and the performance auditor must determine how to in-

strument these optimized binaries to collect loop timings. The first problem is

determining which loops in the optimized binaries correspond to the original loop

in the method. Identifying the original loop in V1 is especially challenging be-

cause the optimizer has produced two specialized versions of the loop, so the

original loop in V1 has actually become two loops in the optimized binary. As

another example, inlining can introduce new loops into an optimized binary if

callee methods that contains loops are inlined.

Even if this first problem of matching loops across binaries is solved, a

second problem remains: loop timings collected in the obvious way may not be

comparable due to optimizations such as loop unrolling. Different unroll factors

are used in V1 and V2, which means that meaningful conclusions can not be

drawn from binary-level loop timing data without first compensating for the

unroll factors.

To solve these problems, a mapping between the binaries is required.

This is the same problem addressed by cross binary simulation points in Chap-

132

ter II, but the circumstances are different in this chapter. The work in Chapter II

presented an approach to build a mapping between binaries by profiling and an-

alyzing binaries. A different approach is used in this chapter because this work

is done in a Java VM, which offers unique opportunities for better solutions.

In particular, the cross binary simulation point approach requires full

profiling runs for all binaries involved in the comparison, while the approach

proposed in this section requires recompilation of all binaries involved in the

comparison. Java VMs already contain infrastructure for recompilation, making

it easy to implement the proposed recompilation-based solution in this context.

This section presents lightweight code markers, which are a new solu-

tion to the problem of mapping between a program’s source and its optimized

binary. Lightweight code markers are injected into a method before optimiza-

tion. Lightweight code markers have the semantics of an arithmetic operation on

a specially allocated global variable. The optimizer is allowed to freely manipu-

late these markers, and the markers are removed after optimization, so no code

is generated for lightweight code markers. The optimizer’s semantics-preserving

property automatically maintains the mapping between source and binary. Be-

cause lightweight code markers are operations on global variables, the optimizer

may not remove the markers, although it may move, copy, or combine markers.

This section shows how lightweight code markers are used in a per-

formance auditing system to collect comparable loop timings for infrequently

invoked methods, which results in fewer inconclusive statistical analyses.

III.C.1 Inserting Lightweight Code Markers

Lightweight code markers are simple arithmetic instructions that mod-

ify a specially allocated global variable. Lightweight code markers are added to

the intermediate representation (IR) at the beginning of optimization, and re-

133

main in the code during optimization. The optimizer is free to copy, move, and

merge lightweight code markers. After, or during, optimization, lightweight code

markers can be used to map their current code locations back to unoptimized

code by examining the marker’s current location and the optimizer’s changes to

the arithmetic performed by the marker instruction. Lightweight code markers

are removed before register allocation and final code generation, so they do not

result in code that actually executes at runtime.

Lightweight code markers must satisfy three conflicting goals to be ef-

fective:

1. Markers should be lightweight; they should have little or no impact on opti-

mization. Inserting instructions that block optimization would allow map-

ping from source to binary, but it would do so by disabling optimizations.

Markers that disable optimization are not effective because the goal is to

map from source to binary without changing optimization decisions.

2. Markers must maintain the desired mapping information from source to

optimized code, thus they must be respected by the optimizer sufficiently to

maintain the desired information. If the optimizer deletes markers, or moves

a marker far from the code it tracks, mapping information is lost.

3. Marker insertion and removal should be easy to implement. No changes to

the optimizer should be required.

To achieve these goals, we use markers that are simple arithmetic in-

structions that increment a global counter by one. This gives the optimizer

significant freedom to optimize the markers. For example, if a marker is placed

in a loop (X++) and the optimizer unrolls the loop four times, the optimizer will

produce four copies of the original marker (X++;X++;X++;X++). The optimizer

should then combine the four copies of the marker into a single merged marker,

134

which increments by four (X += 4). Because each marker increments a different

global variable, optimized markers can be mapped back to source locations based

on the variable that they increment.

Although the optimizer is free to optimize the markers, the semantics-

preserving nature of the compiler guarantees that certain properties are main-

tained. Markers are never deleted because they modify a global variable. The

markers may be duplicated, moved, or combined, but at all times markers that

reference a global variable X map to source-level marker X. Merged markers can

be identified by their increment value being greater than 1.

The optimizer also guarantees that each marker’s total dynamic count

can not change. If code generation is allowed for markers, and the program is

run deterministically, the value of each marker’s global variable will always be the

same at the end of the run, regardless of the optimization settings used. Markers

are normally removed after optimization, so they are not normally present at

runtime.

This means that every marker’s count always reflects the ratio of its

current block’s execution frequency and its original block’s execution frequency.

For example, if a marker that increments by 1 is placed in block A, and the

optimizer moves the marker to block B and modifies the marker so it increments

by 5, the marker indicates that every execution of block B corresponds to 5

executions of block A.

So even though the optimizer may move code markers from their original

location, markers still provide information on how their new location relates to

their original location. This information is very useful for some applications, such

as collecting a source-level block profile from an optimized binary as in [4].

Figure III.14 shows the overall impact on performance of inserting and

removing a marker in every loop in every method, or every block in every method.

135

-5%
-4%
-3%
-2%
-1%
0%
1%
2%
3%
4%
5%

|m
ax|

|avg|

xerces
xalan
specjbb
soot
pm

d
psphase
m

trt
m

pegaudio
jython
jess
javac
jack
ipsixql
hsqldb
dbdaikon
com

press
antlr

Sp
ee

du
p

Mark All Loops
Mark All Blocks

Figure III.14: Speedup/slowdown observed when a marker is inserted and re-
moved in every loop or every block in every method.

Markers are inserted before the optimizer is run and are detected and removed

when the optimizer completes, just before register allocation and code generation.

When a marker is inserted and removed in every loop in every method, the average

performance difference is 0.4%, and the worst-case performance difference is 1.7%.

This demonstrates that the insertion of markers does not significantly change

optimization decisions, and are indeed lightweight. Inserting and removing a

marker in every basic block is significantly more invasive than marking every loop.

This would be necessary if a full block mapping from source to binary was needed.

Figure III.14 shows that even when markers are inserted and removed in every

block in every method, the behavior of the optimizer still remains largely the same

— the average performance difference is 0.6%, and the worst-case performance

difference is 1.8%.

136

Marker Identification and Removal

Markers must be identified and removed just before register allocation

and final code generation. Identifying markers, even after they have been trans-

formed by the optimizer, is easy because each marker refers to a global variable

that was specially allocated just for the marker. Any instructions that reference

these special global variables are markers. To remove a marker, instructions that

reference the special global variables are removed, dead code is eliminated, and

the corresponding global variable is deallocated.

III.C.2 Application to Performance Auditing

The previous subsection described a technique for correlating code be-

tween a program’s source and its binary. This subsection describes how this

technique is applied in the context of a performance auditing system.

The goal is to improve convergence time for a performance auditing

system by collecting loop timings. To do this, methods with poor convergence

are identified, and timing data is collected for a subset of the method’s loops.

This subsection presents a technique to predict if loop timings are needed, and an

algorithm to select loops for timing instrumentation. Lightweight code markers,

described in the previous subsection, are used to collect comparable loop timings

across compilations.

The goals of the loop selection algorithm are:

1. Collect loop timings only when necessary. If method timings provide enough

timing data, loop timings should not be collected.

2. Collect only as much loop timing data as necessary. Unnecessary timing

instrumentation should not be performed.

3. Ensure that a sufficient amount of execution occurs between timings. The

137

void selectLoops(method) {

if method.invocationsPerSec > invocationThreshhold

return

targetFrequency = initialTargetFrequency

while targetFrequency > 0

blockFrequency = findLoop(method, targetFrequency)

if blockFrequency == -1

return

else

targetFrequency -= blockFrequency

}

Frequency findLoop(method, targetFrequency) {

foreach loop in method in depth first order

if (loop.frequency > targetFrequency &&

block = selectBlock(loop, targetFrequency))

return block.frequency

return -1

}

Block selectBlock(loop, targetFrequency) {

sort loop.blocks by ascending |block - targetFrequency|

foreach block in loop.blocks

minDistance =

min(distanceToNearestTimingPoint, distanceToSelf)

if minDistance > minDistanceThreshold

return block

return nil

}

Figure III.15: Loop Selection Algorithm

138

timer has a minimum resolution, and tight loops may not contain enough

dynamic instructions per iteration to be measurable.

This subsection first describes a technique to predict if loop timings,

and thus, the correlation technique, are required. Then an algorithm is presented

that selects a subset of a method’s loops for timing instrumentation, and finally

an algorithm is presented that selects specific basic blocks in loops for timing

instrumentation.

The proposed algorithm makes decisions based on profile data. We

are working in a Java virtual machine that interprets bytecodes before compiling

them, and while a method is being interpreted, the virtual machine collects profile

data for the method.

The raw block profile data collected by the interpreter indicates ap-

proximately how many times each block was executed. Because methods can be

interpreted for variable amounts of time before being compiled, the basic block

execution frequencies are normalized for each block B:

normalizedFrequencyB =
frequencyB∑

block frequencyblock

In other words, the normalized frequency for a block is calculated by

summing the frequencies of all blocks in the method, and dividing the block’s

frequency by the sum. This calculates the fraction of the method’s execution

that is spent in each block.

Figure III.15 gives a high-level overview of the loop selection algorithm.

The loop selection algorithm is run before optimization. The selection algorithm

places lightweight code markers into loops selected for timing instrumentation,

then the optimizer runs, and finally the lightweight code markers are identified

and replaced with full timing instrumentation code.

139

Predicting if Loop Timings are Needed

The first step is to determine if loop timings are necessary. When compi-

lation occurs for hot methods, the method’s profile data is examined to estimate

how frequently the method was invoked. This estimate is used to predict if loop

timings are necessary.

If the method was frequently invoked, the profile data will indicate that

the method entry block was executed frequently compared to other blocks in

the method. If the method was frequently invoked, loop timings should not be

necessary.

On the other hand, if the method was rarely invoked, the profile data

will indicate that the method entry block was rarely executed relative to other

blocks in the method. If the method was rarely invoked, but the method is still

considered hot, method timings will not generate enough timing data, and loop

timings are needed for the method.

Choosing Loops to Instrument

If loop timings are needed for a method, timing data must be collected

for some subset of the method’s loops — it is usually not a good idea to time

all of a method’s loops. Additionally, a specific basic block must be selected for

timing instrumentation in each loop — it is not always a good idea to instrument

the loop head block.

The algorithm works as follows. First a target frequency threshold is

defined to ensure that the algorithm does not perform too much instrumentation

or too little instrumentation. Ideally, the total frequency of instrumented blocks

should just exceed the target frequency threshold.

The method’s loops are examined in depth-first order, starting from

outermost loops. If the current loop’s normalized loop head block frequency

140

exceeds the instrumentation target threshold, the current loop is selected for

instrumentation, and a subroutine is called to select a specific basic block in the

loop for timing instrumentation. The implementation of this subroutine will be

described in the following subsection. The subroutine may or may not find a

satisfactory block for the instrumentation code. If the loop is very tight, for

example, the subroutine will not be able to find a good block in the loop for

the instrumentation code, because timing instrumentation can not be inserted

without high overhead. If no satisfactory block can be found, the depth-first

search continues. If a satisfactory block was found, the target frequency threshold

is decreased by the satisfactory block’s weight. If the target frequency threshold

is less than or equal to zero, or if no satisfactory blocks are found, the algorithm

terminates. Otherwise, the algorithm runs again.

Choosing a Block to Instrument

This subsection describes a subroutine which, given a loop, determines

where to best place the timing instrumentation. Timing instrumentation should

be placed such that 1) many timings will be collected and 2) the timing data will

be meaningful — the timer has a minimum resolution, so very small code regions

can not be timed effectively.

To collect useful timing data, the timing instrumentation must be ex-

ecuted often, and there must be enough dynamic instructions between any two

timing points. There may not be a good place to put the timing instrumentation

— in this case, the subroutine returns an error code and no timing instrumenta-

tion is attempted for the loop.

To find the best block to place timing instrumentation in a loop, the

subroutine first collects a list of the blocks in the loop, and sorts them by

|frequency − targetFrequency|. In other words, the subroutine sorts the blocks

141

by the distance between each block’s frequency and the target frequency. Blocks

that closely match the target frequency will be considered first.

Next, the algorithm iterates over the sorted list of blocks, and Dijkstra’s

algorithm is called to compute single source shortest paths from each block in

the list to all other blocks. The results of Dijkstra’s algorithm are examined to

determine the minimum distance between each block and itself, and the minimum

distance between each block and all timing points. A single-source shortest paths

algorithm is used here, instead of an all-pairs shortest paths algorithm, because

the distance between a block and its nearest timing point can change as additional

timing points are selected.

If the minimum distance between a block and its nearest timing point

exceeds the minimum distance threshold, the block can be instrumented safely,

because there will always be enough dynamic instructions between instrumenta-

tion points.

The distance between a pair of blocks is measured in terms of instruc-

tion cost rather than instruction count. For example, a load instruction puts

more distance between timing points than an add instruction. Instruction costs

are static estimates based on instruction opcode. Instruction costs are commonly

used in instruction scheduling. Additionally, edge weights are not considered.

The minimum distance between two points is calculated without considering the

frequency or even the feasibility of paths. This is done for safety, because inter-

preter profile data may not completely represent a method’s future behavior.

Figure III.16 shows control flow graphs for three infrequently invoked

methods that can not be safely instrumented to collect loop timing data. In these

control flow graphs, circles represent basic blocks, rectangles indicate loops, and

the number in each circle indicates the cost of each block, which is just the sum

of the cost of the block’s instructions.

142

12

exit

186

308

317

entry

1

exit

75

321

31

66

75

248

101

entry

11

exit

75

88

195

11

259

entry

Figure III.16: Three CFGs selected for loop instrumentation, where the loop
selection algorithm was unable to find a satisfactory timing point.

143

These three methods are infrequently invoked, yet loop timings cannot

be collected from these methods, because all of their loops are tight. Inserting

instrumentation code into these loops would not provide useful timing data —

if timing instrumentation was inserted into these tight loops, the timing code

would not actually measure anything, because these loops do not contain enough

dynamic instructions per iteration to compensate for timing and instrumentation

overheads.

The algorithms described in this section automatically identified the

three methods shown in Figure III.16 as infrequently invoked methods where

loop instrumentation could not be safely applied.

III.C.3 Methodology

The experiments in this section were performed with nearly the same

methodology described in the section III.B.3, except that a newer version of

IBM’s J9 VM was used. Otherwise, the machine and benchmarks were identical.

Table III.2 shows the benchmarks used. The first column reports the

number of methods executed by the JVM to load and run the benchmark. This

counts all Java methods, including library methods. The second column lists

the total size (in KB) of all bytecodes executed for each benchmark. These

numbers report dynamic metrics, i.e., they are based on what is executed, not

what could be executed. The third column lists the number of hot methods for

each benchmark. Methods are hot if they consume enough cycles to be selected

by J9 for aggressive feedback-directed optimizations. For these methods, J9 first

performs an additional compilation to instrument the method for profiling, then

optimizes the method at one of the two highest optimization levels (O4 or O5).

The last column in Table III.2 lists the number of hot methods that are

infrequently invoked. These are hot methods, so the processor spends a significant

144

Table III.2: Benchmark suite

Methods Bytecodes Hot Methods
Program Executed Exe (KB) Total Loopy

antlr [87] 1702 228 2 0
compress [84] 770 66 3 2
daikon [21] 2108 171 1 0
db [84] 782 67 3 2
hsqldb [87] 1416 147 2 1
ipsixql [18] 828 61 7 1
jack [84] 746 56 3 0
javac [84] 1467 133 2 0
jbb2000 [83] 1197 115 3 2
jess [84] 1140 86 4 1
jython [87] 1777 186 2 1
mpegaudio [84] 866 78 2 1
mtrt [84] 853 76 3 0
phase [65] 450 31 2 0
pmd [87] 2030 128 1 0
ps [87] 946 75 1 0
soot [80] 2061 235 4 2
xalan [87] 2108 171 1 0
xerces [94] 521 36 1 0

amount of time executing instructions in these methods, yet they are not invoked

frequently. This implies that these methods spend most of their time in loops.

These methods are discussed in detail in Section III.C.2.

The Read Time-Stamp Counter (RDTSC) instruction is used to collect

timing data. The RDTSC instruction reads the processor’s 64-bit cycle counter

and stores its value in a register. To collect timings, a procedure startTimer()

is defined, which reads the cycle counter and stores the count in the method’s

stack frame. Similarly, a procedure stopTimer() is defined which subtracts the

current cycle count from the cycle count on the stack, and stores the difference

in a circular buffer.

To collect method timings, the method’s entry points are instrumented

145

with calls to startTimer(), and the method’s exit points are instrumented with

calls to stopTimer(). To collect loop timings, the method’s entry and exit points

are instrumented to collect method timings, but additional back-to-back calls to

stopTimer() and startTimer() are inserted at each loop timing point. So, when

a method that has been instrumented to collect loop timings is run, the dynamic

sequence of calls to startTimer() and stopTimer() will be as follows:

startTimer() // method entry

stopTimer() // loop timing point 1

startTimer() // loop timing point 1

stopTimer() // loop timing point 2

startTimer() // loop timing point 2

stopTimer() // method exit

All calls to startTimer() and stopTimer() are inlined.

This timing methodology measures the total time that the method was

active on the stack to ensure fair comparisons in the presence of changing inlining

decisions. Measuring only time spent in the instrumented method (excluding

callees) would produce incorrect results in the presence of method inlining.

III.C.4 Evaluation: Performance Auditing with Lightweight Code

Markers

This subsection evaluates the effectiveness of the proposed technique to

collect comparable loop timings. Three sets of results are presented. First, a

metric analysis, where the quality of loop timings are evaluated by examining

their statistical properties. Next, an accuracy analysis, which examines the effec-

tiveness of loop timings when used to predict speedups and slowdowns. Finally,

a convergence study, which determines if loop timings will improve convergence

time.

146

Metric Analysis

This section evaluates the proposed loop timing approach with met-

rics that measure their achievement of the primary objectives discussed in Sec-

tion III.C.2: collecting enough, but not too many, data points. A sufficient

number of timings are needed so the statistical analysis will converge quickly, yet

the timer can not be started and stopped too frequently, because the timer has

a minimum resolution.

Two metrics are defined to evaluate the effectiveness of the loop selection

algorithm: converge score and perturb score. Converge score models how quickly

the set of timing data is likely to converge when run through the statistical

analysis. Higher is better. It is computed by dividing the number of timings

collected by the variance in timings:

convergeScore =
numTimings

variance(timings)

Converge score is defined in this way because the amount of time re-

quired for the statistical analysis to determine if one set of timings is faster than

another is determined by the number of timing points available, and the variance

in the timing data. When more timing points are available, or the variance in

timing data decreases, the statistical analysis converges faster. Thus, the con-

verge score metric is defined so that timing data with higher converge scores will

converge more quickly.

Figure III.17 shows converge scores for hot methods. Results are shown

for method timings, and method+loop timings (Section III.C.3 described how

loop timings are always collected in addition to method timings). This figure

shows that loop timings are only collected when necessary — methods with poor

method timing convergence (the left 1/3 of the graph) are identified by the loop

selection algorithm, and loop timings are collected for those methods, resulting

147

 1e-16
 1e-14
 1e-12
 1e-10
 1e-08
 1e-06
 1e-04

 0.01
 1

 100
 10000
 1e+06

Co
nv

er
ge

 S
co

re

Methods

Method Timings
Method+Loop Timings

Figure III.17: Converge scores for hot methods, higher is better.

in improved converge scores. Most of the remaining methods (the right 2/3 of

the graph) are generally left alone. There are two mispredictions on the right

side of the graph, where loop timings are collected when they are not actually

needed.

There are three methods on the left that could benefit from loop tim-

ings, yet loop timings are not collected for these methods. These three methods

were discussed in Section III.C.2, and their control flow graphs were shown in

Figure III.16. The proposed prediction scheme correctly predicts that loop tim-

ings are needed for these three methods, but the timing point selection algorithm

is unable to find code locations where timing instrumentation can be safely in-

serted into these methods, because these three methods spend all their time in

tight loops.

Figure III.17 shows that loop timings improve convergence time. Loop

timings drastically increase the number of timings available without significantly

increasing the variance in timings. This results in a large boost to the converge

score for methods selected for loop instrumentation.

The second metric is perturb score. It models the perturbation intro-

148

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

Pe
rtu

rb
 S

co
re

Methods

Method Timings
Method+Loop Timings

Figure III.18: Perturb scores for hot methods, lower is better.

duced by the increased frequency of timing collection. The minimum observable

timing with the proposed cycle counting infrastructure (MIN TIMING) is 88

cycles on our test machine, which is the number of elapsed cycles measured be-

tween two consecutive reads of the cycle counter. If the collected timing data

contains many timings that are close to the minimum observable timing, then

they are timing very little program execution and are most likely inaccurate.

Perturb score is defined as follows:

perturbScore =

∑ 100
timing−(MIN TIMING−0.1)

numTimings

The perturb score metric is defined so that timing data that contains

many timings close to the minimum possible timing will have a high perturb

score. The maximum possible perturb score is 1000, which occurs when every

timing collected is the minimum of 88 cycles. The constant 100 is used in the

definition of perturb score to normalize the scores so that a perturb score of 1

or lower is likely to be acceptable — if the perturb score is 1, then the average

timing collected is 187.9 cycles.

Figure III.18 shows perturb scores for hot methods. Increases in perturb

score are inevitable when loop timings are used, because collection of loop tim-

149

ings necessitates starting and stopping the timer much more often. This figure

shows that the loop selection algorithm increases the number of timings for the

key methods without having a significant negative impact on perturbance. The

perturb score for the leftmost loop timing data point is 1.34, which corresponds

to an average cycle count of 168.5, which is still nearly double the minimum

observable timing.

Accuracy Analysis

To evaluate the accuracy of the proposed approach, timing data was col-

lected for various optimization settings (O1 and O2, for example) and the timing

data was compared to determine which optimization setting produces faster code.

For each hot method, its performance is first evaluated across different optimiza-

tion settings with timings collected via method-only timing instrumentation. This

result is considered the correct answer because the method-only instrumentation

perturbs the execution the least, and is the most accurate timing mechanism.

The performance of hot methods across different optimization settings is

also evaluated with method-and-loop timings collected via method+loop instru-

mentation, and the results of the two evaluations (method-only, method+loop)

are checked to see if they agree on the performance difference between the differ-

ently compiled versions of each hot method.

If both techniques indicate a speedup, or both techniques indicate a

slowdown, the method+loop timings are correct. But if one technique indicates

a speedup and the other indicates a slowdown, or vice versa, the method+loop

timings are incorrect. If method+loop timings indicate that the magnitude of the

speedup or slowdown is less than 1%, the method+loop timings are not confident.

Figure III.19 presents the results of this experiment. This figure shows

the overall accuracy of the proposed loop timing approach compared to the

150

-10%
-8%
-6%
-4%
-2%
0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%
22%
24%

Sp
ee

du
p

Methods

Incorrect
Correct
Not Confident

Figure III.19: Accuracy of our approach, where markers are inserted before op-
timization, and markers are replaced with full timing instrumentation after opti-
mization.

method-only instrumentation used in Section III.B. This figure shows the overall

accuracy of the loop timing approach, including the effects of loop timing point

selection, code marker insertion, and replacing code markers with loop timing in-

strumentation. Hot methods are on the x-axis, and the y-axis shows the speedup

detected by the method timings (i.e., the true speedup). The bars are solid black

if the method+loop timings are correct, gray if they are incorrect, and white if

they are not confident. This figure shows that, overall, the loop timing approach

is highly accurate. The worst-case error is a failure to detect a 1% speedup.

To demonstrate the importance of using lightweight markers, Figure III.20

shows the accuracy of the näıve approach — inserting full timing instrumentation

before optimization, then running the optimizer.

The näıve approach results in significant changes to optimization deci-

sions, resulting in incorrect performance evaluations. With the näıve approach,

the worst case error is failure to detect an 8% slowdown. Lightweight markers

do not significantly change optimization decisions, resulting in significantly more

accurate speedup detection.

151

-10%
-8%
-6%
-4%
-2%
0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%
22%
24%

Sp
ee

du
p

Methods

Incorrect
Correct
Not Confident

Figure III.20: Accuracy of the näıve approach, where full timing instrumentation
is inserted before optimization.

Convergence Study

To demonstrate the importance of increasing the number of timings, the

amount of time needed for the statistical analysis to detect a range of speedups

is calculated. This is very similar to the offline convergence study presented in

Section III.B.4.

For each hot method, method and method+loop timing data is collected.

Each set of timing data is randomly partitioned into two sets, A and B. Because

A and B came from the same data set, the average timing value in each set should

be very close. Next an artificial speedup of X% is applied to the timings in set B.

At this point, the timings in set B represent an optimized version of the method

that runs exactly X% faster than the original.

A confidence threshold Z% is set (80% and 99.99% in this study). The

experiment adds 100 samples at a time to A′ from A, and to B′ from B until Z%

confidence is reached. Initially A′ and B′ each contain 100 samples. Confidence

evaluation is performed, and if the confidence is not above the confidence thresh-

old Z%, 100 more samples are added to both A′ and B′, and the experiment

152

 1e+06
 1e+07
 1e+08
 1e+09
 1e+10
 1e+11
 1e+12
 1e+13
 1e+14
 1e+15
 1e+16

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%Av
er

ag
e

Ti
m

e
to

 C
on

ve
rg

e
(C

yc
le

s)

Speedup Introduced

Method Timings, 99.99% conf
Method Timings, 80.00% conf

Method+Loop Timings, 99.99% conf
Method+Loop Timings, 80.00% conf

 1e+06
 1e+07
 1e+08
 1e+09
 1e+10
 1e+11
 1e+12
 1e+13
 1e+14
 1e+15
 1e+16

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%Av
er

ag
e

Ti
m

e
to

 C
on

ve
rg

e
(C

yc
le

s)

Speedup Introduced

Method Timings, 99.99% conf
Method Timings, 80.00% conf

Method+Loop Timings, 99.99% conf
Method+Loop Timings, 80.00% conf

Figure III.21: Convergence time, comparing method+loop timings to method
timings. Top figure: convergence time for hot methods selected for loop instru-
mentation. Bottom figure: convergence time for all hot methods.

repeats. More samples are added to A′ and B′ until confidence is above Z%.

Unlike the offline convergence study presented in Section III.B.4, in this

experiment there is always enough timing data available to reach the desired

confidence threshold.

When the statistical analysis confidently detects a performance differ-

ence, the time to converge is noted, which is just the sum of the cycle counts

in A′ and B′. The convergence experiment is repeated 100 times with different

random seeds, and the results are averaged over the 100 trials.

153

The top figure in Figure III.21 shows convergence time only for meth-

ods that were selected for loop instrumentation. This graph shows that loop

timings improves convergence rate for infrequently invoked methods by about

four orders of magnitude on average, which is consistent with the results shown

in Figure III.17.

The bottom figure in Figure III.21 shows convergence time for all hot

methods, including methods that were not selected for loop instrumentation. A

relatively small number of hot methods require loop instrumentation, so when

methods that were not selected for loop instrumentation are included in the

study, the results are more modest. Still, loop timings improve the overall average

convergence rate of all hot methods by about two orders of magnitude on average.

III.C.5 Other Potential Uses for Lightweight Code Markers

Lightweight code markers should prove to be useful for much more than

just improved performance auditing.

Albert [4] modifies the optimizer to track basic block operations to col-

lect a source-level block profile from an optimized binary. This should be easy

to do with code markers: Insert a code marker into every basic block, and allow

the optimizer to freely manipulate the markers. Regardless of where the mark-

ers may be at the end of optimization, when a marker is found that increments

its global variable by N , that indicates that the marker’s new block executes

once for every N executions of the marker’s original block, as described in Sec-

tion III.C.1. So, each marker can be trivially replaced with instrumentation to

collect a source-level block profile.

BMAT [91] uses binary matching to reuse stale profile data with new

versions of a program. The matching approach is key because it works when

there are source-level changes, unlike the bookkeeping approach and our ap-

154

proach, although these two approaches are tend to be more accurate than match-

ing approaches when different compilers and optimizers are involved. But with

code markers’ ability to map between source and binary, source matching can be

done instead of binary matching. Source matching is much easier than binary

matching, because the matching algorithm only needs to worry about source-level

changes at source-level — the effects of compilers and optimizers do not have to

be considered at all.

In Chapter II, this dissertation proposed a system to meaningfully com-

pare the results of accelerated architectural simulations when differently-compiled

binaries are used for the same program. Architectural simulators are very slow,

so accelerated architectural simulation methodologies are used, which simulate

many small representative samples of program behavior to approximate whole-

program simulation. In Chapter II the challenge was to find the same sample

of program behavior in differently-compiled binaries. A matching system driven

primarily by profile data (annotations in call-loop graphs) was presented. High

accuracy was achieved, but special profiling runs of each binary were required. A

code marker-based approach to this problem should allow for high accuracy with-

out requiring special profiling runs — recompilation of the benchmarks would be

required, however.

Lightweight code markers can be used to build a mapping between bina-

ries by first mapping each binary to source. So, to use lightweight code markers

for cross binary architectural simulation as described in Chapter II, lightweight

code markers could be inserted at any point where a mapping between binaries is

desired - for example, at procedure entry points and before loop branches. Then,

when the multiple binary versions are being compiled, lightweight code markers

are inserted before optimization. The optimizer is run, and finally the mutated

lightweight code markers are examined.

155

By examining the optimizer’s effects on the lightweight code markers

across compilations, a mapping can be built across binaries. Furthermore, be-

cause lightweight code markers carry information about how the optimizer has

changed the lightweight code markers, the mapping information provided by

lightweight code markers can be used to compensate for differences in optimiza-

tion across binaries, which was an area of concern described in Section II.D.1.

For example, if the optimizer produces two specialized versions of a loop in one

binary version, lightweight code markers can be used to correctly map the two

copies of the loop in the specialized binary to single copies of the loop in other

binaries. It would be difficult to compensate for optimization scenarios like this

with the profile guided binary matching approach presented in Section II.D.1.

III.D Discussion

The approach taken by this chapter — comparing the performance of

multiple versions of a region of code without attempting to hold inputs and pro-

gram state constant — is often initially dismissed as infeasible. The statistical

timing analysis presented in Section III.B.2 addresses this main concern with its

ability to detect arbitrarily small performance differences with arbitrarily high

accuracy, as long as the client is willing to wait for the collection of enough tim-

ing data. The accuracy of the approach is not an issue, because accuracy can be

made arbitrarily high. Instead, the main issue is the feasibility of the approach:

how much timing data is needed to make reasonably accurate performance com-

parisons? The results show that the proposed approach is indeed feasible. This

section discusses some of the other challenges that were overcome in building the

performance auditor.

One technical challenge was engineering the system to ensure that the

collection and processing of data did not skew the results. Whenever possible, our

156

system randomizes the order in which data is collected and processed (e.g., which

version of the code is timed first, which buffer is processed first, etc.). Adopting

this approach whenever possible improves the accuracy of the decisions made by

the online system.

Removing outliers from the timing sets was also a key to timely conver-

gence. A VM environment has many sources of timing noise, and removing out-

liers from the timings was an effective solution. Removing outliers is not strictly

necessary, because the noise would be evenly distributed across all optimized ver-

sions; however, removing the outliers improves convergence time substantially.

Unfortunately, removing outliers also has a downside; some data points labeled

as “outliers” could have been a legitimate effect of the optimization being evalu-

ated. For example, an optimization that increases the cost of a rare path might

not be detected if too many outliers are discarded.

A key to reducing the number of discarded outliers is to reduce the noise

in the timing mechanism itself. One source of noise is when timings are polluted

by VM activity, such as JIT compilation or garbage collection. Such timings can

be identified and eliminated fairly easily. Another source of potential noise is that

the cycle counter available on our platform provides wall clock time, rather than

CPU time, so if the operating system switches out the VM process to run another

process, the other process’s time is included in our method timings. Operating

system support to provide thread-specific measurements of CPU time would help

reduce these outliers.

The overhead caused by compiling multiple versions of a method for

the bakeoff cannot be completely ignored, but can be managed, and the addi-

tional overhead is defensible if the technique results in legitimate speedups. As

described in Section III.A.1, some production VMs already perform additional

compilation of hot methods to perform instrumentation for feedback-directed op-

157

timization. The overhead introduced by these additional compilations is reduced

by performing compilation in the background, and moving compilation to free

processors. Hardware trends, such as multi-core systems, are likely to help in

this regard, especially if the additional parallel cycles provided by the hardware

are not fully exploited by the application. These cycles can easily be used by a

VM for additional optimizations and other runtime services.

Differences in code layout can introduce performance variations, which

are not exploited by our current implementation. On many architectures, the

position of code in memory can have a significant performance impact. Our

current system does not try to place the code for the bakeoff in a good location.

In addition, it recompiles each method after the bakeoff completes, which may

place the final code in a non-optimal location. However, it is possible to use the

performance auditor to help find a good code layout: after the bakeoff completes,

the optimized version can be patched to remove the timing code, instead of

recompiling. Doing so ensures that any benefits from code positioning identified

during the bakeoff are not lost.

Program phase shifts provide both an opportunity and a challenge for

any online system. Performing optimizations online allows for the detection of

phase shifts, and optimizations can be targeted to maximize performance in each

phase, which exposes potential performance gains not visible to less adaptive sys-

tems. However, a program phase shift can also reduce performance if the system

does not re-evaluate optimization decisions when program behavior changes. On-

line performance auditing, like all feedback-directed optimizations, is susceptible

to the potential benefits and degradations due to program phases. Managing the

performance risks of performing FDO in the presence of program phases remains

an open research area.

Finally, an open question regarding the future use of our work is how

158

to manage the exponential optimization search space. Not only are there dozens

of tuning knobs and heuristics that could potentially be applied at runtime, but

some of these heuristics have hundreds of potential values; testing all combina-

tions is clearly intractable. However, this exponential space is not created by our

work; it already exists, and is essentially ignored by today’s systems; a large space

does not imply that it is not worth searching, or that substantial performance

improvements cannot be attained. An existing large body of work explores the

optimization space with offline empirical search, and our framework enables a

similar line of online research. We believe that the large search space can be

best managed by using a combination of offline and online techniques. Extensive

offline tuning can be performed to identify the most problematic optimizations

and heuristics, and these can be explored by an online system.

III.E Summary

This chapter presented the performance auditor, which directly mea-

sures the performance of generated code to guide optimization decisions. The

performance auditor collects timing samples for generated code online, as the

application executes. Individual timing samples can not be directly compared,

because programs change their state over time.

A statistical timing analysis was presented that examines pools of tim-

ing data collected from different implementations of a code region as the applica-

tion executes. The statistical analysis determines how many timing samples are

needed to confidently predict which implementation is the fastest by considering

the variance in timings. This statistical technique is at the core of a performance

auditing system.

This chapter also presented lightweight code markers, which map be-

tween a program’s source and its optimized binary without using heuristic match-

159

ing, and without modifying the optimizer. Lightweight code markers were used

to improve statistical confidence in a performance auditing system by collecting

loop iteration timings in addition to method timings for infrequently invoked

methods.

Acknowledgements

The performance auditor was the result of collaboration with Matthew Arnold and Michael

Hind at IBM T.J. Watson, and Brad Calder at UC San Diego. I thank my co-authors for allowing me

to present the results of our collaboration in my dissertation.

Section III.B contains material that appears in “Online Performance Auditing: Using Hot

Optimizations Without Getting Burned”, in Conference on Programming Language Design and Imple-

mentation (PLDI), Jeremy Lau, Matthew Arnold, Michael Hind, Brad Calder. The dissertation author

was the primary investigator and author of this paper. Portions of Section III.B are Copyright c©2006

by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part

or all of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others than ACM must

be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from

Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Section III.C contains material in “A Loop Correlation Technique to Improve Performance

Auditing”, submitted to Conference on Parallel Architectures and Compilation Techniques (PACT),

Jeremy Lau, Matthew Arnold, Michael Hind, Brad Calder. The dissertation author was the primary

investigator and author of this paper.

IV

Conclusion and Future

Challenges

Performance comparisons are ubiquitous in computer science. For ex-

ample, computer architects compare the performance of processors, and compiler

writers compare the performance of generated code.

It is typically impossible to prove that one computer system is always

faster than another, for all possible workloads, so these performance comparisons

are used as predictors: performance is compared on several representative work-

loads, and the results are used to argue that one computer system is generally

faster than another. Unfortunately, there are many scenarios where it is difficult

to make a fair performance comparison. This dissertation focuses on two such

scenarios, where performance must be predicted across compilations.

IV.A Predicting Performance Across Compilations

This dissertation focused on the problem of predicting performance

across compilations, where differently-compiled binaries are examined, and the

best-performing binary is identified. These types of performance comparisons are

160

161

common, especially in the fields of computer architecture and compilers. This

dissertation discussed two specific instances of the problem of predicting per-

formance across compilations: cross binary simulation points, which are used

in accelerated architectural simulations, and performance audited dynamic op-

timization, which uses empirical performance measurements to guide dynamic

optimizations.

IV.A.1 Cross Binary Simulation Points

Computer architects typically evaluate new processor designs through

slow cycle-level simulation. But because of the poor performance of cycle-level

simulators, accelerated simulation methodologies are very popular, where small

samples of a program’s behavior are simulated, and the results are extrapolated

to predict the results of a whole-program simulation.

But these accelerated simulation techniques make it difficult to mean-

ingfully compare the results of these accelerated simulation techniques, especially

when multiple compilations of a program are involved. The main challenge is

that samples must be selected consistently across compiled binaries, so a set of

high-level program behaviors selected for simulation are equally represented in all

binaries. To overcome this challenge, this dissertation described a technique to

select simulation regions consistently across binaries with a profile guided binary

matching approach.

IV.A.2 Performance Audited Dynamic Optimization

Dynamic optimizers must predict if their optimizations will actually

improve performance before applying them — if an optimization is unlikely to

improve performance, or if an optimization will degrade performance, the opti-

mization should not be applied.

162

As computer systems become increasingly complex, it becomes increas-

ingly difficult for dynamic optimization systems to predict if their optimizations

will actually improve performance. To address this issue, this dissertation pre-

sented performance auditing, which guides dynamic optimization decisions by

performing empirical performance evaluations as programs execute. The perfor-

mance of differently-compiled versions of the same code were measured, and the

results of the measurements were used to directly guide optimization decisions.

The main challenge in building a performance auditing system was that

performance measurements were collected as programs execute. This meant that

individual performance measurements were not directly comparable, because a

difference in timings may have been due to the program doing fundamentally

different work when one of the timings was collected. To overcome this challenge,

this dissertation presented a statistical technique that analyzes pools of timing

data.

IV.B Building a Mapping Across Binaries

In order to predict performance across compilations, a mapping between

the differently-compiled binaries is often required. With cross binary simulation

points, a mapping between binaries was required so semantically equivalent simu-

lation points could be selected across binaries. It was important to select seman-

tically equivalent simulation regions in order to ensure that performance analysis

results for these simulation regions were comparable across binaries. Similarly,

in performance auditing, a mapping between binaries was required so timing

data collected from one binary could be meaningfully compared to timing data

collected from another binary.

Building a mapping across binaries is fundamentally a matching prob-

lem, where semantically equivalent code regions must be identified across binaries.

163

Binary matching techniques fall into two general categories:

1. Pre-Optimization Matching — No work is required to match binaries before

they are optimized, because the differently-compiled binaries are compiled

from the same source. Nothing needs to be done to do source-level matching

when the source is the same. The challenge then becomes building a mapping

between the source and each optimized binary. The lightweight code markers

presented in Section III.C.1 fall into this category, as well as the modify-the-

optimizer “bookkeeping” approaches described in Section III.A.4.

2. Post-Optimization Matching — Binaries compiled from the same source can

appear very different from each other after optimization: the output of gcc

-O1 is typically very different from the output of gcc -O2. These differences

make it challenging to match binaries after optimization. The profile guided

matching algorithm presented in Section II.D.1 falls into this category, as

well as the binary matching techniques described in Section III.A.4.

These two general categories of solutions each have their advantages

and disadvantages. Pre-optimization matching typically results in higher accu-

racy, but it requires recompiling binaries, and typically requires control over the

compiler and optimizer. On the other hand, post-optimization matching tends

to have more issues with accuracy, but it does not require recompiling binaries

or control over the compiler or optimizer.

In light of these advantages and disadvantages, this dissertation pre-

sented two techniques to build mappings between binaries, each tuned for its

corresponding use case.

IV.B.1 Cross Binary Simulation Points

In computer architecture research, source code is often not available.

For example, suppose a processor vendor wishes to evaluate a set of instruction

164

set extensions on real-world applications. For a program to take advantage of

instruction set extensions, recompilation is required. But application vendors

are unlikely to provide source code for their products, even if it is only for the

purposes of performance evaluation. More likely, the processor vendor will send

their compilers to the application vendor, the application vendor will produce

binaries, and then send the binaries back to the processor vendor for performance

evaluation.

In these situations, it is necessary to predict performance across com-

pilations. Because of the poor performance of architectural simulators, sam-

pled architectural simulation is usually used. But Section II.D.3 showed that

simulation samples must be selected consistently across compilations. To iden-

tify equivalent samples across binaries, a mapping between binaries is required.

A pre-optimization matching solution is infeasible in these situations, because

source code is not available, so the binaries must be compared directly. Cross

binary simulation points, described in Section II.D, compare binaries directly to

identify semantically equivalent code regions for sampled simulation1.

A post-optimization binary matching approach was used for cross binary

simulation points, but cross binary simulation points require very high accuracy.

To achieve high accuracy with a binary matching approach, each binary was

profiled to collect call-loop graphs, and the profile data in call-loop graphs was

used to guide a binary matching algorithm. The benefit was that comparable

simulation points were identified across binaries without requiring control over

the compiler. The cost, however, was that special profiling runs of each binary

were required to identify semantically equivalent code regions.

1In the specific case of the cross binary simulation point evaluation methodology, closed-source Intel compilers
were used to generate the differently-compiled binaries, making a pre-optimization matching solution infeasible
because control over the compiler was not available

165

IV.B.2 Performance Audited Dynamic Optimization

Dynamic compilation systems compile programs as they run, making

them attractive targets for pre-optimization binary matching. This dissertation

presented performance auditing in Section III.B, where empirical performance

measurements of running code are used to guide optimization decisions. In a

performance auditing system, timing samples are collected as a program runs to

evaluate the performance of its generated code.

In order to meaningfully compare these timing samples, the timing sam-

ples must be collected consistently. This was not an issue in the baseline per-

formance auditing system presented in Section III.B, because the baseline sys-

tem only collected method timings, so the runtime of one implementation of

System.out.println() would always be compared to another implementation

of System.out.println(), ensuring comparable results.

But Section III.B.5 showed that method timings are ineffective for infre-

quently invoked methods, because a large number of timing samples are needed

by the proposed statistical analysis technique to confidently determine which im-

plementation of a method runs fastest. Only a program’s hottest methods are

selected for performance auditing, so if a method is selected for performance au-

diting, and it is infrequently invoked, that method must be spending most of its

time in loops. Therefore, the obvious solution is to collect loop timings for such

methods, instead of method timings.

But to collect comparable loop timings for infrequently invoked meth-

ods across differently-compiled binaries, a mapping between binaries is required,

because the same loop may be optimized in different ways in different compila-

tions. So once again, a technique is required to build a mapping between binaries.

The same two options present themselves: pre-optimization matching, or post-

optimization matching.

166

Collecting loop timings for performance auditing, like cross binary sim-

ulation points, requires very high match accuracy. The post-optimization profile

guided matching approach used in cross binary simulation points could have been

adapted for performance auditing, but a profiling phase would be necessary, which

takes time, and time is a precious resource in dynamic optimization systems.

Performance auditing works in the context of a dynamic compilation sys-

tem, which makes a pre-optimization matching approach very attractive. With

a pre-optimization matching approach, the idea is to do the matching at source

level, then map from source level to each binary. This typically requires book-

keeping — tracking the optimizer’s changes to the code as it runs, as described

in Section III.A.4. Implementation of these bookkeeping approaches tends to be

labor intensive, because a fairly thorough understanding of the optimizer’s op-

eration is required. To address this issue, this dissertation proposed lightweight

code markers, which allow the optimizer’s changes to be tracked without modify-

ing the optimizer. The benefit was that comparable loop timings were collected

across binaries. The cost was that compilation was required — in order to track

the optimizer’s changes, the optimizer must be run. But because the performance

auditor works in the context of a dynamic optimization system, the incremen-

tal cost of this solution was low, because dynamic optimization systems already

compile programs as they execute.

IV.C Future Challenges

This dissertation presented ground breaking work in two problem areas:

cross binary architectural simulation, and performance audited dynamic opti-

mization for general purpose programs. Exploration of these problem areas has

just begun, and naturally, there are many open questions.

167

IV.C.1 Cross Binary Architectural Simulation

This subsection examines several areas of future work in the area of

cross binary architectural simulation.

Alternative Simulation Methodologies

This dissertation presented a technique to perform cross binary architec-

tural simulation with the SimPoint [78] sampled simulation methodology. There

are several other sampled simulation methodologies available, the most popu-

lar alternative being SMARTS [93]. The underlying philosophies of these two

methodologies are very different: SimPoint examines the code executed by a

program to identify representative samples of execution, while SMARTS relies

on statistical sampling. SimPoint simulates a small number of large samples,

while SMARTS simulates a large number of small samples. Both techniques are

very accurate, yet they are very different in their approach. Does a statistical

sampling approach like SMARTS require modifications to accurately compare

sampled simulation results across binaries? In other words, will SMARTS apply

consistent sampling bias across binaries?

Statistical sampling techniques like SMARTS may require modifications

for accurate cross binary sampled simulation, because very similar issues were

raised with SimPoint at the start of the work presented in this dissertation —

because SimPoint’s goal is to minimize sampling error, it was believed that cross

binary results would automatically be comparable. This was shown not to be the

case in Section II.D.3 for SimPoint, and the same may be true of SMARTS. If

so, it will be interesting to see what modifications to the approach are needed.

168

Improved Binary Matching

A profile guided binary matching technique was presented in Section II.D.1.

The proposed approach is highly accurate, meaning that the approach very rarely

produces mismatches. But accuracy is not everything — an approach that pro-

duces no matching information will produce no mismatches. Coverage is very

important, and there are some issues where the proposed approach fails to iden-

tify semantically equivalent procedures or loops across binaries, due to differences

in optimization. For example, if a loop is unrolled in one binary version, that loop

can not be matched by the proposed binary matching technique, because the loop

iteration counts will not match in the profiled call-loop graphs. It does not seem

possible to compensate for all possible optimizations with a post-optimization

binary matching approach, but it will be very interesting to see where the lim-

its are, and how many more correct matches can be produced with improved

post-optimization binary matching techniques.

IV.C.2 Performance Audited Dynamic Optimization

This subsection examines some areas of future work in the area of per-

formance audited dynamic optimization.

Performance Auditing Beyond Dynamic Optimization

The statistical analysis at the core of a performance auditing system is

not tied to dynamic optimization. It may be possible, for example, to do perfor-

mance audited garbage collection or performance audited processor scheduling.

The idea is simply to extend the philosophy of online empirical performance mea-

surements wherever possible: as computer systems become increasingly complex,

the predictive power of performance models decreases, motivating the need for

empirical measurements. The performance auditing approach provides a frame-

169

work for online empirical performance measurements, which should be useful in

a variety of scenarios beyond dynamic optimization.

Whole Program Performance Auditing

Performance auditing, as described in this dissertation, is used to target

specific code regions. It may be possible to slightly modify the approach so

that whole program performance is evaluated, instead of the performance of a

specific code region in a program. In the proposed performance auditing system,

a timer is started on method entry, stopped on method exit, and reset on loop

iterations. What if a timer is started at program startup, never stopped, and

reset periodically? With such an approach, performance auditing could be used

to monitor the overall performance of a program, rather than just a specific

method.

With this type of timing analysis, a whole program performance au-

ditor would collect periodic timing measurements to gauge a program’s overall

performance. For example, in the case of a block-based compression program,

timing measurements would be collected once for each block of data compressed,

to evaluate the program’s overall performance.

The challenge is determining when these timing measurements should

be collected so they can be meaningfully compared. The timer becomes like a

heart monitor for the program: it measures the program’s overall performance

for a well-defined unit of work. If an appropriate timing point can be found,

the performance auditing methodology can be applied to monitor whole program

performance, instead of just the performance of a single method.

This type of timing analysis will be very useful for implementing al-

ternative forms of performance auditing, such as those described above. It may

be possible to use some of the ideas of software phase markers, described in

170

Section II.C, to address this challenge. Software phase markers identify stable

patterns in program behavior, and that is exactly what is needed to determine

where timing measurements should be collected for whole program performance

auditing. Timing measurements should be collected periodically as the program

completes units of work, and it may be possible to use the software phase marker

methodology to identify the appropriate code structure to instrument, in order

to collect comparable whole program timing measurements.

Bibliography

[1] A.-R. Adl-Tabatabai, J. Bharadwaj, D.-Y. Chen, A. Ghuloum, V. Menon,
B. Murphy, M. Serrano, and T. Shpeisman. The StarJIT compiler: A dy-
namic compiler for managed runtime environments. Intel Technology Jour-
nal, 7(1):19–31, Feb. 2003.

[2] A.-R. Adl-Tabatabai, R. L. Hudson, M. J. Serrano, and S. Subramoney.
Prefetch injection based on hardware monitoring and object metadata. ACM
SIGPLAN Notices, 39(6):267–276, June 2004. In Conference on Program-
ming Language Design and Implementation (PLDI).

[3] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. O’Boyle,
J. Thomson, M. Toussaint, and C. Williams. Using machine learning to
focus iterative optimization. In The International Symposium on Code Gen-
eration and Optimization, 2006.

[4] E. Albert. A transparent method for correlating profiles with source pro-
grams. In 2nd ACM Workshop on Feedback-Directed Optimization (FDO-2),
Nov. 1999.

[5] A. W. Appel. Simple generational garbage collection and fast allocation.
Software—Practice and Experience, 19(2):171–183, Feb. 1989.

[6] M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. F. Sweeney. A sur-
vey of adaptive optimization in virtual machines. Proceedings of the IEEE,
93(2):449–466, Feb. 2005. Special issue on Program Generation, Optimiza-
tion, and Adaptation.

[7] M. Arnold and B. G. Ryder. A framework for reducing the cost of in-
strumented code. ACM SIGPLAN Notices, 36(5):168–179, May 2001. In
Conference on Programming Language Design and Implementation (PLDI).

[8] D. F. Bacon, R. Konuru, C. Murthy, and M. Serrano. Thin locks: Feath-
erweight synchronization for Java. ACM SIGPLAN Notices, 33(5):258–268,

171

172

May 1998. In Conference on Programming Language Design and Implemen-
tation (PLDI).

[9] R. Balasubramonian, D. H. Albonesi, A. Buyuktosunoglu, and S. Dwarkadas.
Memory hierarchy reconfiguration for energy and performance in general-
purpose processor architectures. In 33rd International Symposium on Mi-
croarchitecture, pages 245–257, 2000.

[10] R. D. Barnes, E. M. Nystrom, M. C. Merten, and W. W. Hwu. Vacuum
packing: Extracting hardware-detected program phases for post-link opti-
mization. In 35th International Symposium on Microarchitecture, Dec. 2002.

[11] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel. Optimizing matrix mul-
tiply using PHiPAC: A portable, high-performance, ANSI C coding method-
ology. In 1997 International Conference on Supercomputing, pages 340–347,
1997.

[12] J. Cavazos and J. E. B. Moss. Inducing heuristics to decide whether to
schedule. ACM SIGPLAN Notices, 39(6):183–194, June 2004. In Conference
on Programming Language Design and Implementation (PLDI).

[13] C. Chen, J. Chame, and M. Hall. Combining models and guided empiri-
cal search to optimize for multiple levels of the memory hierarchy. In The
International Symposium on Code Generation and Optimization, Mar. 2005.

[14] H. Chen, J. Lu, W.-C. Hsu, and P.-C. Yew. Continuous adaptive object-
code re-optimization framework. In Ninth Asia-Pacific Computer Systems
Architecture, Sept. 2004.

[15] B. Childers, J. Davidson, and M. L. Soffa. Continuous compilation: A new
approach to aggressive and adaptive code transformation. In International
Symposium on Parallel and Distributed Processing Symposium, Apr. 2003.

[16] T. M. Chilimbi and M. Hirzel. Dynamic hot data stream prefetching for
general-purpose programs. ACM SIGPLAN Notices, 37(5):199–209, May
2002. In Conference on Programming Language Design and Implementation
(PLDI).

[17] A. Cohen and R. D. Ryan. Wavelets and Multiscale Signal Processing. Chap-
man & Hall, 1995.

[18] http://www-plan.cs.colorado.edu/henkel/projects/colorado bench.

[19] K. Cooper, P. Schielke, and D. Subramanian. Optimizing for reduced code
space using genetic algorithms. In ACM Conference on Languages, Compil-
ers, and Tools for Embedded Systems, May 1999.

173

[20] K. D. Cooper, D. Subramanian, and L. Torczon. Adaptive optimizing com-
pilers for the 21st century. Journal of Supercomputing, May 2002.

[21] http://pag.csail.mit.edu/daikon.

[22] J. Dean and C. Chambers. Towards better inlining decisions using inlining
trials. In LISP and Functional Programming, pages 273–282, 1994.

[23] P. Denning and S. C. Schwartz. Properties of the working-set model. Com-
munications of the ACM, 15(3):191–198, Mar. 1972.

[24] A. Dhodapkar and J. Smith. Comparing program phase detection techniques.
In 36th International Symposium on Microarchitecture, Dec. 2003.

[25] A. Dhodapkar and J. E. Smith. Dynamic microarchitecture adaptation via
co-designed virtual machines. In International Solid State Circuits Confer-
ence, Feb. 2002.

[26] A. Dhodapkar and J. E. Smith. Managing multi-configuration hardware via
dynamic working set analysis. In 29th Annual International Symposium on
Computer Architecture, May 2002.

[27] P. C. Diniz and M. C. Rinard. Dynamic feedback: An effective technique for
adaptive computing. ACM SIGPLAN Notices, 32(5):71–84, May 1997. In
Conference on Programming Language Design and Implementation (PLDI).

[28] J. Engblom, A. Ermedahl, and P. Altenbernd. Facilitating worst-case execu-
tion time analysis for optimized code. In EuroMicro Workshop on Real-Time
Systems, June 1998.

[29] S. J. Fink and F. Qian. Design, implementation and evaluation of adaptive
recompilation with on-stack replacement. In The International Symposium
on Code Generation and Optimization with Special Emphasis on Feedback-
Directed and Runtime Optimization, pages 241–252, 2003.

[30] M. Frigo. A fast Fourier transform compiler. ACM SIGPLAN Notices,
34(5):169–180, May 1999. In Conference on Programming Language Design
and Implementation (PLDI).

[31] M. Frigo and S. G. Johnson. FFTW: An adaptive software architecture for
the FFT. In 1998 IEEE International Conference on Acoustics Speech and
Signal Processing, volume 3, pages 1381–1384. IEEE, 1998.

[32] G. Fursin, A. Cohen, M. O’Boyle, and O. Temam. A practical method for
quickly evaluating program optimizations. In Proceedings of the 1st Interna-
tional Conference on High Performance Embedded Architectures & Compil-
ers (HiPEAC 2005), number 3793 in LNCS, pages 29–46. Springer Verlag,
November 2005.

174

[33] A. Georges, D. Buytaert, L. Eeckhout, and K. D. Bosschere. Method-level
phase behavior in Java workloads. In Proceedings of the ACM Conference on
Object-Oriented Programming Systems, Languages and Applications, 2004.

[34] N. Grcevski, A. Kilstra, K. Stoodley, M. Stoodley, and V. Sundaresan. Java
just-in-time compiler and virtual machine improvements for server and mid-
dleware applications. In 3rd Virtual Machine Research and Technology Sym-
posium (VM), May 2004.

[35] G. Hamerly, E. Perelman, J. Lau, and B. Calder. Simpoint 3.0: Faster and
more flexible program phase analysis. Journal of Instruction Level Paral-
lelism, 7, Sept. 2005.

[36] G. Hamerly, E. Perelman, J. Lau, T. Sherwood, and B. Calder. Using ma-
chine learning to guide architecture simulation. Journal of Machine Learning
Research, 7:343–378, 2006.

[37] M. Hind, V. Rajan, and P. Sweeney. Phase shift detection: A problem
classification. Technical report, IBM, Aug. 2003.

[38] M. Hirzel, A. Diwan, and M. Hind. Pointer analysis in the pressence of
dynamic class loading. In 18th European Conference on Object-Oriented
Programming (ECOOP), volume 3086 of LNCS, pages 96–122, June 2004.

[39] U. Hölzle, C. Chambers, and D. Ungar. Optimizing dynamically-typed
object-oriented languages with polymorphic inline caches. In 5th Euro-
pean Conference on Object-Oriented Programming (ECOOP), volume 512
of LNCS, pages 21–38, July 1991.

[40] U. Hölzle, C. Chambers, and D. Ungar. Debugging optimized code with dy-
namic deoptimization. ACM SIGPLAN Notices, 27(7):32–43, July 1992. In
Conference on Programming Language Design and Implementation (PLDI).

[41] M. Huang, J. Renau, and J. Torrellas. Positional adaptation of processors:
Application to energy reduction. In 30th Annual International Symposium
on Computer Architecture, June 2003.

[42] X. Huang, S. M. Blackburn, K. S. McKinley, J. E. B. Moss, Z. Wang, and
P. Cheng. The garbage collection advantage: Improving program locality.
ACM SIGPLAN Notices, 39(10):69–80, Oct. 2004. In Conference on Object-
Oriented Programming, Systems, Languages and Applications (OOPSLA).

[43] E.-J. Im and K. Yelick. Optimizing sparse matrix-vector multiplication for
register reuse in SPARSITY. In International Conference on Computational
Science, May 2001.

175

[44] E.-J. Im, K. Yelick, and R. Vuduc. SPARSITY: Optimization framework for
sparse matrix kernels. International Journal of High Performance Computing
Applications, 18(1), Jan. 2004.

[45] C. Isci and M. Martonosi. Identifying program power phase behavior using
power vectors. In Workshop on Workload Characterization, Sept. 2003.

[46] C. Isci and M. Martonosi. Runtime power monitoring in high-end proces-
sors: Methodology and empirical data. In 36th International Symposium on
Microarchitecture, Dec. 2003.

[47] K. Ishizaki, M. Takeuchi, K. Kawachiya, T. Suganuma, O. Gohda, T. Ina-
gaki, A. Koseki, K. Ogata, M. Kawahito, T. Yasue, T. Ogasawara, T. On-
odera, H. Komatsu, and T. Nakatani. Effectiveness of cross-platform op-
timizations for a Java just-in-time compiler. ACM SIGPLAN Notices,
38(11):187–204, Nov. 2003.

[48] A. Jaleel, R. S. Cohn, C. Luk, and B. Jacob. Cmp$im: A binary instru-
mentation approach to modeling memory behavior of workloads on cmps.
Technical Report UMDSCA-2006-01, Intel, Jan. 2006.

[49] M. Kim and D. Notkin. Program element matching for multi-version pro-
gram analyses. In International Workshop on Mining Software Repositories
(MSR), May 2006.

[50] T. Kistler and M. Franz. Automated data-member layout of heap objects
to improve memory-hierarchy performance. Transactions on Programming
Languages and Systems (TOPLAS), 22(3):490–505, 2000.

[51] T. P. Kistler and M. Franz. Continuous program optimization: Design and
evaluation. IEEE Transactions on Computers, 50(6):549–566, June 2001.

[52] P. Kulkarni, D. Whalley, G. Tyson, and J. Davidson. Exhaustive optimiza-
tion phase order space exploration. In The International Symposium on Code
Generation and Optimization, Mar. 2006.

[53] P. A. Kulkarni, S. R. Hines, D. B. Whalley, J. D. Hiser, J. W. David-
son, and D. L. Jones. Fast and efficient searches for effective optimization
phase sequences. ACM Transactions on Architecture and Code Optimization,
2(2):165–198, June 2005.

[54] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and D. Tullsen. Proces-
sor power reduction via single-ISA heterogeneous multi-core architectures.
Computer Architecture Letters, 2, Apr. 2003.

176

[55] J. Lau, J. Sampson, E. Perelman, G. Hamerly, and B. Calder. The strong
correlation between code signatures and performance. In IEEE International
Symposium on Performance Analysis of Systems and Software, March 2005.

[56] J. Lau, S. Schoenmackers, and B. Calder. Structures for phase classification.
In IEEE International Symposium on Performance Analysis of Systems and
Software, Mar. 2004.

[57] J. Lau, S. Schoenmackers, and B. Calder. Transition phase classification
and prediction. In Proceedings of the International Symposium on High-
Performance Computer Architecture, Jan. 2005.

[58] X. Li, M. J. Garzarán, and D. Padua. Optimizing sorting with genetic
algorithms. In The International Symposium on Code Generation and Opti-
mization, pages 99–110, Mar. 2005.

[59] W. Liu and M. Huang. EXPERT: Expedited simulation exploiting program
behavior repetition. In International Conference on Supercomputing, June
2004.

[60] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood. Pin: Building customized program analysis tools
with dynamic instrumentation. In Proceedings of the ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, June 2005.

[61] J. MacQueen. Some methods for classification and analysis of multivari-
ate observations. In L. M. LeCam and J. Neyman, editors, Proceedings of
the Fifth Berkeley Symposium on Mathematical Statistics and Probability,
volume 1, pages 281–297, Berkeley, CA, 1967. University of California Press.

[62] D. Maier, P. Ramarao, M. Stoodley, and V. Sundaresan. Experiences with
multithreading and dynamic class loading in a Java just-in-time compiler. In
The International Symposium on Code Generation and Optimization, Mar.
2006.

[63] M. Merten, A. Trick, R. Barnes, E. Nystrom, C. George, J. Gyllenhaal, and
W. mei W. Hwu. An architectural framework for run-time optimization.
IEEE Transactions on Computers, 50(6):567–589, June 2001.

[64] R. Muth, S. Debray, S. Watterson, and K. D. Bosschere. alto : A link-time
optimizer for the DEC Alpha. In Software—Practice and Experience, pages
31:67–101, Jan. 2001.

[65] P. Nagpurkar, M. Hind, C. Krintz, P. F. Sweeney, and V. Rajan. Online phase
detection algorithms. In The International Symposium on Code Generation
and Optimization, Mar. 2006.

177

[66] P. Nagpurkar, C. Krintz, and T. Sherwood. Phase-aware remote profiling. In
International Symposium on Code Generation and Optimization, Mar. 2005.

[67] N. Nethercote, D. Burger, and K. S. McKinley. Self-evaluating compilation
applied to loop unrolling. Technical Report TR-06-12, The University of
Texas at Austin, Feb. 2006.

[68] C. G. Nevill-Manning and I. H. Witten. Compression and explanation using
hierarchical grammars. In The Computer Journal vol. 40, 1997.

[69] M. Paleczny, C. Vick, and C. Click. The Java Hotspot server compiler. In
Java Virtual Machine Research and Technology Symposium (JVM), pages
1–12, Apr. 2001.

[70] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi.
Pinpointing representative portions of large Intel Itanium programs with
dynamic instrumentation. In 37th International Symposium on Microarchi-
tecture, Dec. 2004.

[71] D. Pelleg and A. Moore. X-means: Extending K-means with efficient esti-
mation of the number of clusters. In Proceedings of the 17th International
Conf. on Machine Learning, pages 727–734. Morgan Kaufmann, San Fran-
cisco, CA, 2000.

[72] E. Perelman, G. Hamerly, and B. Calder. Picking statistically valid and early
simulation points. In International Conference on Parallel Architectures and
Compilation Techniques, Sept. 2003.

[73] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. W. Singer,
J. Xiong, F. Franchetti, A. Gačić, Y. Voronenko, K. Chen, R. W. Johnson,
and N. Rizzolo. SPIRAL: Code generation for DSP transforms. Proceedings
of the IEEE, 93(2), 2005. Special issue on Program Generation, Optimiza-
tion, and Adaptation.

[74] R. M. Rabbah and K. V. Palem. Data remapping for design space opti-
mization of embedded memory systems. ACM Transactions on Embedded
Computing Systems, 2(2):1–32, May 2003.

[75] R. Saavedra and D. Park. Improving the effectiveness of software prefetch-
ing with adaptive execution. In Conference on Parallel Architectures and
Compilation Techniques, 1996.

[76] X. Shen, Y. Zhong, and C. Ding. Locality phase prediction. In Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems, 2004.

178

[77] T. Sherwood, E. Perelman, and B. Calder. Basic block distribution analysis
to find periodic behavior and simulation points in applications. In Inter-
national Conference on Parallel Architectures and Compilation Techniques,
Sept. 2001.

[78] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically char-
acterizing large scale program behavior. In Proceedings of the 10th Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems, Oct. 2002.

[79] T. Sherwood, S. Sair, and B. Calder. Phase tracking and prediction. In 30th
Annual International Symposium on Computer Architecture, June 2003.

[80] http://www.sable.mcgill.ca/software/#soot.

[81] A. Srivastava and A. Eustace. ATOM: A system for building customized
program analysis tools. In Proceedings of the Conference on Programming
Language Design and Implementation, pages 196–205. ACM, 1994.

[82] A. Srivastava and D. W. Wall. A practical system for intermodule code
optimizations at link-time. Journal of Programming Languages, Mar. 1993.

[83] Standard Performance Evaluation Corporation. SPECjbb2000 Java Business
Benchmark. http://www.spec.org/jbb2000.

[84] Standard Performance Evaluation Corporation. SPECjvm98 Benchmarks.
http://www.spec.org/jvm98.

[85] M. Stephenson and S. Amarasinghe. Predicting unroll factors using super-
vised classification. In The International Symposium on Code Generation
and Optimization, pages 123–134, 2005.

[86] T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and T. Nakatani. A
dynamic optimization framework for a Java just-in-time compiler. ACM
SIGPLAN Notices, 36(11):180–195, Nov. 2001. In Conference on Object-
Oriented Programming, Systems, Languages and Applications (OOPSLA).

[87] The DaCapo Project. DaCapo Benchmark Suite, version beta051009.
http://www-ali.cs.umass.edu/DaCapo/gcbm.html.

[88] N. Thomas, G. Tanase, O. Tkachyshyn, J. Perdue, N. M. Amato, and
L. Rauchwerger. A framework for adaptive algorithm selection in STAPL. In
Symposium on Principles and Practice of Parallel Programming (PPoPP),
pages 277–288, 2005.

179

[89] S. Triantafyllis, M. Vachharajani, and D. August. Compiler optimization-
space exploration. Journal of Instruction-Level Parallelism, 7:1–25, Jan.
2005.

[90] M. J. Voss and R. Eigemann. High-level adaptive program optimization with
ADAPT. ACM SIGPLAN Notices, 36(7):93–102, July 2001.

[91] Z. Wang, K. Pierce, and S. McFarling. BMAT - a binary matching tool
for stale profile propagation. Journal of Instruction-Level Parallelism, Apr.
2000.

[92] R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated empirical optimiza-
tions of software and the ATLAS project. Parallel Computing, 27(1-2):3–35,
2001.

[93] R. Wunderlich, T. Wenisch, B. Falsafi, and J. Hoe. SMARTS: Accelerat-
ing microarchitecture simulation via rigorous statistical sampling. In 30th
Annual International Symposium on Computer Architecture, June 2003.

[94] http://xml.apache.org/xerces2-j/index.html.

[95] J. Yi, S. Kodakara, R. Sendag, D. Lilja, and D. Hawkins. Characterizing and
comparing prevailing simulation techniques. In International Symposium on
High-Performance Computer Architecture, Feb 2005.

[96] K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong, M. Garzaran, D. Padua,
K. Pingali, P. Stodghill, and P. Wu. A comparison of empirical and model-
driven optimization. In ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, June 2003.

[97] X. Zhang and R. Gupta. Matching execution histories of program versions.
In International Symposium on Foundations of Software Engineering (FSE),
Sept. 2005.

	Signature Page
	Dedication Page
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Vita and Publications
	Abstract
	Introduction
	Predicting Performance Across Compilations
	Problem Areas
	Cross Binary Architectural Simulation
	Dynamic Optimization with Performance Auditing

	Cross Binary Architectural Simulation
	Background
	Time Varying Behavior and Phases
	Phase Analysis
	Accelerating Architectural Simulations with SimPoint
	Evaluating Phase Classifications

	Capturing Program Behavior with Fixed and Variable Length Intervals
	Issues with Fixed Length Intervals
	Hierarchical Program Behavior

	Software Phase Markers
	Capturing Hierarchical Behavior with Call-Loop Graphs
	Selecting Software Phase Markers
	Support For Variable Length Intervals in SimPoint
	Methodology
	Phase Marker Evaluation
	Applications: Data Cache Reconfiguration and SimPoint

	Cross Binary Simulation Points
	Selecting Cross Binary Simulation Points
	Methodology
	Cross Binary SimPoint Evaluation

	Related Work
	Summary

	Performance Audited Dynamic Optimization
	Background
	Adaptive Optimization in Virtual Machines
	Predicting Performance in Optimization Systems
	Empirical Search
	Building a Mapping Between Binaries

	Performance Auditing
	Motivating Empirical Search
	Performance Auditor Design
	Methodology
	Offline Convergence Study
	Online Performance Auditing

	Lightweight Code Markers
	Inserting Lightweight Code Markers
	Application to Performance Auditing
	Methodology
	Evaluation: Perf. Auditing with Lightweight Code Markers
	Other Potential Uses for Lightweight Code Markers

	Discussion
	Summary

	Conclusion and Future Challenges
	Predicting Performance Across Compilations
	Cross Binary Simulation Points
	Performance Audited Dynamic Optimization

	Building a Mapping Across Binaries
	Cross Binary Simulation Points
	Performance Audited Dynamic Optimization

	Future Challenges
	Cross Binary Architectural Simulation
	Performance Audited Dynamic Optimization

	Bibliography

