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Effects of sleep on brain perivascular space in a cognitively 
healthy population 
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A B S T R A C T   

The magnetic resonance imaging (MRI) visible perivascular space (PVS) reportedly clears amyloid-β and 
metabolic waste during sleep. Previous studies reported an association between sleep and the PVS in small vessel 
disease, traumatic brain injury, and Alzheimer’s disease. However, this relationship in a healthy cohort is still 
unclear. Here, we used the Human Connectome Project Aging dataset to analyze the relationship between sleep 
and the PVS in cognitively healthy adults across the aging continuum. We measured sleep parameters using the 
self-reported Pittsburgh Sleep Quality Index questionnaire. We found that older adults who had better sleep 
quality and sleep efficiency presented with a larger PVS volume fraction in the basal ganglia (BG). However, 
sleep measures were not associated with PVS volume fraction in the centrum semiovale (CSO). In addition, we 
found that body mass index (BMI) influenced the BG-PVS across middle-aged and older participants. In the entire 
cognitively healthy cohort, the effect of sleep quality on PVS volume fraction was mediated by BMI. However, 
BMI did not influence this effect in the older cohort. Furthermore, there are significant differences in PVS volume 
fraction across racial/ethnic cohorts. In summary, the effect of sleep on the PVS volume alteration was different 
in the middle-aged adults and older adults.   

1. Introduction 

The perivascular space (PVS), also called the Virchow-Robin space, is 
a fluid-filled space around blood vessels in the brain [1]. The PVS is 
thought to clear cerebral metabolic waste through the aquaporin-4 
(AQP4) channel expressed on the endfeet of astrocytes [2–4]. AQP4, 
an astrocytic water channel in the glymphatic system, is one of the key 
factors regulating parenchymal cerebrospinal fluid (CSF) influx and 
interstitial amyloid-β (Aβ) deposition. The deletion of AQP4 or low 
AQP4 expression reportedly led to chronic sleep disruption in mice, 
resulting in severe neurodegeneration in the hippocampus and 
decreased working memory [5,6]. 

Magnetic resonance imaging (MRI)-visible PVSs are associated with 
aging, body mass index (BMI), hypertension, and neuroimaging findings 
of small vessel disease [1,7]. The majority of previous MRI in
vestigations suggest that higher PVS number and larger PVS volume in 

the brain white matter is either a sign of pathology, or the normal 
physiological process in healthy aging. Previous research has shown that 
PVS visibility increases with age [8]. Enlarged PVS volumes have also 
been reported to have a positive association with sleep disturbance in 
populations with small vessel disease, traumatic brain injury, and Alz
heimer’s disease (AD) [9,10]. 

As PVS is better visible in the basal ganglia (BG) and centrum sem
iovale (CSO) when PVS is enlarged [11], most MRI studies on the PVS 
focus on the PVSs in these two regions. Moreover, findings from previous 
studies indicated that morphology of PVSs in specific anatomical areas 
of the brain have been positively associated with several neurological 
disorders, such as small vessel disease and AD and cognitive decline [1, 
12,13]. Some studies have demonstrated that higher MRI-visible 
BG-PVSs count are associated with arteriosclerosis, vascular cognitive 
impairment, and cognitive decline in Parkinson’s disease [14–16]. In 
addition, enlarged CSO-PVS volumes are associated with AD and 
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cerebral amyloid angiopathy [15,17–20]. These findings highlight the 
clinical significance of the anatomical distribution and morphology of 
the PVS, and their importance in neurological health. 

As researchers delve deeper into understanding the mechanisms that 
underlie brain health, recent animal model studies show that the 
glymphatic system plays a major role in clearing metabolic waste during 
sleep [21,22]. In animal models, it has been shown that enlargement of 
the PVS is linked to impaired waste clearance [23] This, in turn, ob
structs the removal of harmful metabolic byproducts such as Aβ, leading 
to neurological damage to the brain [24]. In human studies, one night of 
sleep deprivation or deep sleep interruption resulted in an increase in Aβ 
deposition observed under positron emission tomography imaging and 
an increase in Aβ in the CSF of the lumbar spine, respectively [25,26]. 
There is also evidence from both human and animal studies that sleep 
position is associated with brain clearance alternation. For example, 
head position during sleep was also found to impact the glymphatic 
clearance function in humans [27,28]. In addition, supine sleep position 
occurred more frequently in patients with neurodegenerative diseases 
compared to healthy controls [27]. In one animal study, the glymphatic 
clearance was shown to be more efficient in the lateral sleep position 
[28]. These observations have prompted researchers to investigate the 
relationship between the PVS and sleep in humans. The development of 
neurodegenerative diseases has been linked to sleep deprivation. Spe
cifically, studies have reported associations between ‘Rapid eye move
ment and Behavioral sleep Disorder’ (RBD) to disorders such as 
Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, 
and AD [29,30]. A small body of research documents a positive rela
tionship between PVS volume and sleep interruptions [31,32]. Del 
Brutto and colleagues found enlarged BG-PVSs in populations who had 
poor sleep efficiency [33]. Polysomnography (PSG)-based studies 
demonstrated an association between a greater number of PVSs and a 
lower total sleep time [32,34,35]. It has also been found that patients 
with severe sleep apnea have larger PVSs [34]. On the other hand, one 
study found that longer time in bed was associated with larger total PVS 
volume in patients with cerebrovascular disease, supporting a hypoth
esis of compensatory regulation between the time in bed, sleep time, and 
sleep quality [36]. 

These observations reflect an association between poor sleep and the 
structure and possibly the function of PVSs in different diseases. How
ever, the association between sleep and PVS and the impact of this 
relationship on the cognitive status of a healthy adults remain unclear. 
Therefore, in this study we used MRI data from the Human Connectome 
Project Aging (HCP-Aging) [37] dataset to investigate the relationship 
between sleep, PVS volume, and cognitive status in a healthy cohort of 
adults. Sleep parameters used in this study were assessed using the 
subjective self-reported Pittsburgh Sleep Quality Index (PSQI) ques
tionnaire [38]. Most prior research has focused on diseased populations; 
while this study investigates the association of sleep with PVS 
morphology in a cognitive healthy population. Identifying and under
standing the association of sleep behavior with the brain-wide distri
bution of brain clearance alterations in cognitively normal subjects will 
stimulate new avenues of research and therapeutic development and 
identify possible new measures to assess interventional efficacy. 

Our study aimed to describe the relationship between sleep and PVS 
in BG and CSO regions in a cognitively normal aging population. Using 
the Enhanced PVS Contrast (EPC) imaging approach [39], we identified 
and quantified PVS morphological features. Analysis of sleep quality, 
sleep efficiency, and PVS changes in BG and CSO was conducted using 
multivariable regression models. Furthermore, we examined whether 
the effect of sleep on PVS affected cognitive performance. We also 
examined the morphology of PVS in relation to body mass index (BMI), 
race, and ethnicity. For further research on PVS and sleep, this study will 
provide a normative reference. 

2. Material and methods 

2.1. Participants 

We used MRI data from 725 cognitively healthy participants (36–100 
years old) from the HCP-Aging Lifespan Release 2.0[37]. At the time of 
recruitment, participants in the sample were in good health, with no 
diagnosed history of neurologic or major psychiatric disorder. The 
HCP-Aging dataset focuses on recruiting participants who exhibit 
normal health status relevant to their respective age groups and 
excluded individuals with neurological diseases, including diagnosed 
AD and symptomatic stroke, that could complicate data analysis. 
Exclusion criteria for the HCP-Aging dataset did not include sleep 
behavior, so participants with the PSQI score greater than 5 (which in
dicates sleep disorder) were still considered cognitively healthy. For 
cognitive testing, participants with Montreal Cognitive Assessment 
(MoCA) scores below 19 were excluded from the HCP-Aging dataset. 
Participants who scored between 20 and 30 were still considered 
healthy aging, even though a MoCA score below 25 is considered to 
reflect mild cognitive impairment (MCI) [40] in conventional scoring. 

In our analysis, we included age, sex, race, body mass index (BMI), 
sleep measured by the PSQI [38], and cognitive status measured by the 
MoCA [40] (more details are provided in Supplement Method), and NIH 
toolbox working memory tests. The exclusion criteria for the current 
analysis were: (a) missed T1-weighted MPRAGE (T1w) and T2-weighted 
SPACE (T2w) MR images (n=170), (b) inferior MRI and PVS quality 
(n=25), and (c) missed PSQI data (n=17). Consequently, a total number 
of 513 participants were included in the analysis. We categorized the 
participants by age as middle-aged adults (36–65 years old, N=363), or 
older adults (above 65 years old, N=150). The demographic information 
of the participants is shown in Table 1. 

2.2. MRI acquisition 

All participants were scanned using a customized Siemens 3T Prisma 
scanner housed at Washington University in St. Louis, using a standard 
32-channel Siemens receive head coil. The T1w image was acquired 
with repetition time (TR)/inversion time (TI) = 2500/1000 ms, time to 
echo (TE) = 1.8/3.6/5.4/7.2 ms, field of view (FOV) = 256 × 240 × 166 
mm and the T2w image with TR= 3200 ms, TE= 564 ms, FOV= 256 ×
240 × 166 mm. 

2.3. MRI pre-processing 

Structural T1w MPRAGE and T2w SPACE images were preprocessed 
in parallel with a LONI pipeline [41] using the HCP minimal processing 
pipeline version 4.0.1[42] and Freesurfer version 6. The preprocessing 
steps started by gradient nonlinearity corrections. Structural images 
were registered together, then brought into native space anterior 
commissure-posterior commissure alignment, and then registered to 
MNI space using FSL’s FNIRT [42]. The native space images were used to 
generate individual regional subcortical PVS features for white and pial 
surfaces using FreeSurfer [43]. Extensive description of the minimal 
preprocessing applied can be found in a prior publication [44]. 

2.4. PVS segmentation and quality control 

PVS segmentation was performed as explained in Sepehrband et al. 
[39] In brief, T1w and T2w images were adaptatively filtered to remove 
the high-frequency noise and then co-registered and combined to obtain 
enhanced PVS contrast (EPC). EPC is shown to provide superior visibility 
of PVS compared with T1w or T2w alone [39]. PVSs were segmented 
from EPC images (Fig. 1a) by applying Frangi filter [45] using Quanti
tative Imaging Toolkit [46] and a vesselness threshold, which was 
optimized for the HCP data [37]. To verify the accuracy of PVS seg
mentation, PVS segmentation quality control was performed by four 
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trained analysts. Evaluation criteria included motion, image quality, and 
white matter hyperintensity (WMH) severity. The rating scale was from 
1 to 3. 1 indicates good quality without motion and ringing, and 3 shows 
poor image contrast or severe motion and ringing. Images with a score of 
3 were excluded from this study. 

2.5. Regions of interest (ROIs) 

We used the BG and CSO as our regions of interest (ROIs), which are 
the most common regions where enlarged PVS are visible on MRI, as 
segmented by FreeSurfer. Based on the guideline of FreeSurfer ‘Desikan- 
Killiany’ cortical atlas [47], areas “5001-Left-UnsegmentedWhiteMatter” 
and “5002-Right-UnsegmentedWhiteMatter” are the regions correspond
ing to the CSO. Although these two regions contain most of the CSO, they 
do not include most of the white matter areas underlying the cortex 
(Fig. 1b). On MRI, the CSO-PVSs become visible immediately inferior to 
the cortical layer, where they run centripetally from the external part of 
the white matter towards the lateral ventricles [1]; we therefore added to 
the FreeSurfer CSO mask the white matter areas underlying the following 
cortical regions: the caudal middle frontal, inferior parietal, pars oper
cularis, pars orbitalis, pars triangularis, postcentral, precentral, rostral 
middle frontal, superior frontal, superior parietal, and supramarginal re
gions in both the right and left hemispheres (F ig. 1b). We have previously 
demonstrated that these regions also contain a significant amount of 
MRI-visible PVSs in healthy young adults [7]. BG were segmented using an 
atlas-based approach [48,49]. Brain volume and white matter masks were 
derived from the Desikan-Killiany atlas [47]. 

2.6. Sleep parameters 

All sleep parameters were assessed using the PSQI [38], which is a 
19-item self-rated questionnaire for evaluating subjective sleep quality 
based on the participant’s sleep pattern during the previous month. PSQI 
items are scored from 0 to 3, with higher scores representing poor sleep 
behavior. We computed the sleep efficiency score based on component 4 
of the PSQI, which evaluates the participant’s habitual sleep efficiency. 
Sleep efficiency is calculated as the proportion of total sleep time 
divided by the duration spent in bed. The 4-level sleep efficiency score 

was derived from this as: 0 (proportion> 85%), 1 (proportion 75–84%), 
2 (proportion 65–74%), and 3 (proportion<65%). The sleep quality 
score is computed by component 1 of the PSQI, which evaluates the 
subjective sleep quality, scored as 0 (sleep quality very good), 1 (sleep 
quality fairly good), 2 (sleep quality fairly poor), and 3 (very poor sleep 
quality). The duration of sleep is derived by question 4 of the PSQI, 
scored as 0 (sleep time>7 h), 1 (6–7 h), 2 (5–6 h), and 3 (<5 h). The 
sleep latency score is computed by component 2 of the PSQI, which 
evaluates the time required to initiate sleep, alongside its frequency. The 
4-level derived score is 0 (less than 15 min to fall asleep, or no problem 
falling asleep during the past month), 1 (16–30 min to fall asleep, or if 
have problem falling asleep less than once per week), 2 (31–60 min to 
fall asleep, or if have problem falling asleep occurs once or twice a 
week), and 3 (>60 min to initiate sleep or experiences delayed sleep 3 or 
more times per week). Sleep medication is computed by component 6 of 
the PSQI, which evaluates use of sleep medication, scored as 0 (did not 
use sleep medication in the past month), 1 (used sleep medication less 
than once a week), 2 (sleep medication taken once or twice weekly), and 
3 (used sleep medication 3 or more times per week). The time in bed is 
computed by question 1 and 3 of the PSQI. Daytime dysfunction is 
computed by component 7 of the PSQI, which evaluates the ability to 
stay awake and maintain enthusiasm, scored as 0 (no problem to keep 
awake and enthusiasm), 1 (have very slight problem), 2 (somewhat of a 
problem), and 3 (have a very big problem). The PSQI total score is 
computed by adding each sleep components. The score ranges from 0 to 
21; a higher overall scores indicates worse sleep quality. 

2.7. Statistics 

We used the fraction of the ROI volume that is occupied by the PVS as 
our measure to calculate the PVS burden in the BG and the CSO. Owing 
to the non-normal distribution of the PVS in the BG, the log-transformed 
value of the volume fraction of the PVS was used. 

We used SPSS software version 26.0 (IBM SPSS Inc., Armonk, NY, 
USA) to perform the correlation, multivariable linear regression, and 
used R software (version 4.1.3) to conduct the mediation analysis. First, 
the Mann-Whitney U, and t-tests were used to compare PVS volume 
fraction and sleep measurements between individuals of different ages. 

Table 1 
Demographic information of the study cohort.   

Middle-aged Adult 36–65 years old (N=363) Older Adult Above 65 years old (N=150) p-value 

Age 49.5±8.3 73.9±6.2 <0.0001*** 
Sex (M/F) 147(40%)/216(60%) 68(45%)/82(55%) 0.031* 
BMI (kg/ m2) 27.12±4.95 26.68+4.47 0.33 
Race (Asian/Black/White/Other groups) 33(9%)/69(19%)/207(57%)/53(14%) 9(6%)/6(4%)/132(88%)/3(2%)  
Ethnicity (Hispanic or Latino/ Non-) 46(13%)/317(87%) 1(0.6%)/149(99.4%)  
Intracranial Volume 1463660.96±201010.38 1554716.80±169200.00 <0.0001*** 
Region of Interest 
BG Volume (mm3) 39257.30±3539.08 36282.97±3541.92 <0.0001*** 
CSO Volume (mm3) 251966.27±31961.19 233757.27±31058.74 <0.0001*** 
PVS 
BG-PVS Volume (mm3) 758.78±331.18 1085.95±445.37 <0.0001*** 
CSO-PVS Volume (mm3) 6022.79±2792.79 7090.70±2613.59 <0.0001*** 
PSQI 
PSQI Total Score 4.56±2.69 4.81±2.72 0.34 
Sleep Efficiency Score 0.43±0.75 0.47±0.81 0.57 
Sleep Quality Score 0.82±0.69 0.70±0.61 0.046* 
Sleep Latency Score 0.80±0.85 0.86±0.83 0.49 
Duration of Sleep (h) 6.78±1.04 7.03±1.08 0.017* 
Time in bed (h) 8.45±3.17 8.43±2.45 0.95 
Daytime dysfunction 0.47±0.50 0.53±0.50 0.25 
Sleep medication 0.42±0.91 0.71±1.15 0.003* 
Cognitive performance 
MoCA score 26.77±2.35 26.19±2.38 0.012* 
NIH toolbox Working Memory score 102.93±14.45 106.81±13.11 0.005* 

Data are presented as mean value ± standard deviation (SD). Mann-Whitney U, and t-tests were used to compare PVS volume fraction and sleep measurements between 
individuals of different ages. The ANOVA test was applied to compare PVS volume fraction between different races. BMI: body mass index; BG: basal ganglia; CSO: 
centrum semiovale; MoCA: Montreal Cognitive Assessment; PSQI: Pittsburgh Sleep Quality Index; PVS: perivascular space. Significant *p<0.05; ***p<0.0001. 
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The ANOVA test was applied to compare PVS volume fraction by race 
(African American, Asian, White, and more than one race) and ethnicity 
(participants who self-identified as Hispanic/Latino or not). All multiple 
comparison p-values were corrected via Tukey’s HSD multiple com
parisons adjustment. Two-sided p-values <0.05 were considered statis
tically significant (Table 1). 

Next, we used multivariable linear regression analysis to investigate 
the association between PVS volume fraction (dependent variable) and 
sleep measurements (independent variables), including sleep efficiency 
score, sleep quality score, and sleep duration. Age, sex, race/ethnicity, 
and BMI were used as covariates in the regression models. Aging plays 
an important role in the PVS volume [50], and aging is also associated 
with a decreased ability to maintain sleep [51]. On the other hand, the 
amount of sleep required by people of different age groups also varies 
[52]. In our initial analysis, we used age as a continuous variable to 
investigate the relationship between sleep measurements (from PSQI) 
and PVS in a regression. We found a significant interaction between 
sleep measurements and age (data not shown). Therefore, we hypothe
sized that the magnitude of association between sleep and PVS might 
differ according to age. To better illustrate the differential sleep-PVS 
associations by age in the subsequent analysis, we categorized the par
ticipants by age into the following two groups: middle-aged adults 

(36–65 years old, N=363), and older adults (above 65 years old, 
N=150). We followed the cutoff age range used in papers [53–55] in our 
analysis. We used dummy variables to analyze the influence of other 
explanatory variables, including age group, sex, and race/ethnicity 
categories on the PVS volume fraction; we used age group as a binary 
variable (middle-aged represented with 1 vs. older aged represented 
with 0). To test if the association between sleep and PVS differed in 
middle-aged adults versus older adults, we added interaction terms be
tween age group and sleep measurements into the regression model. 

Furthermore, we used the R causal mediation analysis package to 
investigate the mediation pathways between sleep, PVS volume fraction, 
MoCA score (cognitive status) and BMI. We used model 4 in the medi
ation model of Preacher and Hayes [56] to evaluate whether the sleep 
measured by the PSQI and cognitive performance measured by the 
MoCA test were mediated by the PVS variable. We calculated the 
percent mediation, which assesses the change in the direct 
sleep-cognitive performance effect with the inclusion of a mediator, PVS 
volume fraction (Fig. 2a). In addition, we noted that BMI was also 
significantly associated with PVS volume fraction in the regression 
model. A previous study found that poor sleep was associated with a 
higher BMI over time, and high BMI was associated with shorter sleep 
duration [57]. Therefore, we also explored the mediation pathways 

Fig. 1. Examples of perivascular space (PVS) and centrum semiovale (CSO) mask. (a) Enhanced PVS contrast (EPC) image overlaps with the PVS mask (red 
area). (b) Mask of the centrum semiovale (CSO). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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between sleep, PVS volume fraction, and BMI. We calculated the percent 
mediation, which assesses the change in the direct Sleep-PVS effect with 
the inclusion of a mediator, BMI (Fig. 2b). 

3. Results 

The demographic characteristics of the study cohort are shown in 
Table 1. There are more female participants than male (p=0.031). We 
found that older participants had significantly larger intracranial vol
ume (p<0.0001), BG-PVS volume (p<0.0001) and CSO-PVS volume 
(p<0.0001) than middle-aged participants. In contrast, middle-aged 
participants had significantly larger BG volume (p<0.0001) and CSO 
volume (p<0.0001) than older participants. For sleep measurements, 
middle-aged participants had higher sleep quality score (p=0.046), 
longer sleep duration (p=0.017), and lower score for sleep medication 
(p<0.003). PSQI total score, sleep efficiency score, sleep latency score, 
time in bed, and daytime dysfunction were not significantly different 
between middle-aged and older participants. With respect to cognitive 
performance, older participants had significantly lower MoCA score 
(p=0.012) and higher working memory score (p=0.005) than middle- 
aged participants. 

3.1. Association between sleep and PVS in different age groups 

We investigated the relationship between sleep measures and the 
PVS volume fraction among each age group using multivariable linear 
regression. We found that the sleep quality score was significantly 
negatively associated with the BG-PVS volume fraction among the older 
(beta= − 0.048, p=0.001), and in middle-aged adults (beta=− 0.001, 
p=0.86) (Fig. 3a), indicating that poorer sleep quality (higher sleep 
quality score) is associated with smaller PVS volume fraction. The sta
tistically significant interaction by age group (p=0.005) showed that the 
sleep quality-BG-PVS association is stronger for older persons than for 
middle-aged persons (Fig. 3b). 

We also found that the sleep efficiency score was significantly 
negatively associated with the BG-PVS volume fraction in the older age 
group (beta=− 0.023, p=0.037), indicating that poorer sleep efficiency 
(higher sleep efficiency score) was associated with lower PVS volume. In 
contrast, sleep efficiency score was positively associated with BG-PVS in 
the middle-aged group (beta=0.002, p=0.64) (Fig. 3c). However, the 
interaction coefficient was not statistically significant (interaction beta 
= 0.025, p=0.060) (Fig. 3d). 

Our analysis showed no significant association between the BG-PVS 
volume fraction and sleep duration, sleep latency score, sleep 

Fig. 2. The simple mediation model was conducted in this study. In (a), cognitive performance is regarded as a dependent variable, sleep measurement is 
regarded as an independent variable, and PVS volume fraction is regarded as a mediator; In (b), PVS volume fraction is considered the dependent variable, sleep 
measurement is considered an independent variable, and BMI is considered the mediator. Mediation (%) = (c-c’)/c. 

Fig. 3. Forest plots illustrating the association between the PVS volume fraction and sleep measures in healthy participants. (a) Multiple linear regression 
analysis was conducted to investigate the relationship between the PVS volume fraction in basal ganglia (BG) and sleep quality score. (b) The interaction between age 
groups and sleep quality. (c) The relationship between the PVS volume fraction in BG and sleep efficiency score. (d) The interaction between age groups and sleep 
efficiency. The red line represents the middle-aged group (mean of age= 49.50 years old); the blue line represents the older age group (mean of age= 70.19 years 
old). Significant *p<0.05; **p<0.001; ***p<0.0001. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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medication, daytime dysfunction, or total PSQI score (Supplement 
Table 1). There were also no significant associations between the CSO- 
PVS volume fraction and sleep measurements (Supplement Table 1). 

3.2. The association between sleep quality, sleep efficiency, and BG-PVS 
in the older age group 

Analyzed in the older age group alone (above 65 years old), the BG- 
PVS volume fraction had a significant negative association with the 
sleep quality score (beta=− 0.046, p= 0.027) and sleep efficiency score 
(beta=− 0.023, p=0.037) (Fig. 3). According to the PSQI, a higher sleep 
measure score corresponds to poorer sleep behavior. Therefore, these 
results indicate that older participants who had better sleep quality and 
sleep efficiency has higher BG-PVS volume fraction. 

Our next step was to conduct a mediation analysis to uncover the 
relationship between sleep quality, BG-PVS, and cognitive status. Re
sults of the mediation analysis indicated that there was no mediating 
effect of the BG-PVS volume fraction in the association between the 
sleep quality and MoCA scores (Fig. 4a, average causal mediation effect 
(95% CI)= − 0.0024 (− 0.03,0.03), p=0.94). In addition, no mediating 
effect of the BG-PVS volume fraction on the association between the 
sleep efficiency and MoCA scores was observed (Fig. 4b, average causal 
mediation effect (95% CI)= − 0.0010 (− 0.03,0.02), p=0.83). 

3.3. The relationship between sleep quality, BG-PVS, and BMI 

In the regression model, we found a statistically significant positive 
association between BMI and BG-PVS volume fraction (Fig. 3a and c) 
and between BMI and CSO-PVS volume fraction (data not shown). 
Therefore, we hypothesized that BMI might have a mediating effect on 
the relationship between sleep quality and PVS volume fraction. In the 
mediation analysis including all participants of the study (N=513), and 
adding age as a covariate, the sleep quality score was significantly and 
positively associated with BMI (p=0.0005). In addition, BMI was 
significantly and positively associated with BG-PVS volume fraction 
(p<0.0001). The mediation analysis showed a significant indirect effect 
of the sleep quality score on the BG-PVS volume fraction through BMI 
(Fig. 5a; average causal mediation effect (95% CI)= 0.0027 
(0.0005,0.01), p=0.012). However, the direct association between sleep 
quality score and BG-PVS was not significant (p=0.17). When we limited 
the analysis to the middle-aged cohort (N=361), there was no mediation 
effect of sleep quality on BG-PVS, mediated through BMI (Fig. 5b, 
mediation effect (95% CI)= 0.0024 (− 0.0008,0.01), p=0.14), but BMI 
was significantly positively associated with BG-PVS volume fraction 

(p=0.0005). In contrast, among the older participants (N=150), the 
sleep quality score had a significant positive association with BG-PVS 
volume fraction (p=0.016). Similarly, the BMI had a significant posi
tive effect on BG-PVS volume fraction (p=0.011). However, there was no 
significant mediation effect through BMI in the older cohort on the as
sociation between sleep quality score and BG-PVS volume fraction 
(Fig. 5c, average causal mediation effect (95% CI) = 0.0062 (− 0.0007, 
0.01), p=0.07). There was not any mediation effect of BMI observed in 
the association between sleep efficiency and BG-PVS volume fraction 
(Supplement Figure 1). 

3.4. PVS across race and ethnicity 

PVS volume fractions were also observed to significantly differ 
among racial and ethnic groups (Fig. 3a and c). As the incidence of ce
rebrovascular diseases is significantly higher in African Americans 
compared to Caucasians [58], we further investigated the effect of 
race/ethnicity on the association between the PVS volume fraction and 
sleep measurements. We did not find significant interactions between 
sleep parameters and races/ethnicity (p>0.21). In more detail, the re
sults of ANOVA showed that Asians (p=0.006), African Americans 
(p<0.0001), and other races (p=0.040) all had significantly smaller 
BG-PVS volume fraction than Whites. (Fig. 6a). CSO-PVS volume frac
tions did not differ across racial/ethnic groups (data not shown). 

4. Discussion 

Many studies have shown the different mechanisms of glymphatic 
clearance during sleep [27,33,36]. In the current study, variation in PVS 
volume alterations were observed across age and racial/ethnic groups. 
However, the actual mechanisms causing the different patterns of PVS 
morphology across age, race, and ethnicity that we observed are still 
unknown. We plan to study these mechanisms in the future using larger 
scale datasets and investigate the relationship between PVS and sleep in 
subregions of white matter CSO. 

In this study, we analyzed the relationship between sleep and PVS 
volume fraction in the BG and CSO in a healthy aging cohort. Overall, we 
found that different sleep behaviors were associated with the PVS vol
ume fraction in the BG in the older age group but not in the middle-aged 
group. In addition, we did not find an association between sleep and PVS 
in the CSO. After categorizing our population into middle-aged (36–65 
years old) and older groups (above 65 years old), we found that there 
were different patterns of association between sleep measures and PVS 
volume fraction in the BG by age. We found that better sleep quality and 

Fig. 4. Demonstration of the mediation analysis of the perivascular space (PVS) in the basal ganglia (BG), sleep quality/efficiency and cognitive per
formance in the older participants. (a) There is no mediating effect of BG-PVS volume fraction on the association between sleep quality and the Montreal Cognitive 
Assessment (MoCA) score. (b) There is no mediating effect of BG-PVS volume fraction on the association between sleep efficiency and Montreal Cognitive Assessment 
(MoCA) score. Mediation (%) = (c-c’)/c. ACME: Average Causal Mediated Effect; ADE: Average Direct Effect. Significant *p<0.05. 
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sleep efficiency, as indicated by lower scores in the corresponding PSQI 
components, were associated with larger BG-PVS volume fraction. Our 
results in the healthy older group were in contrast to the results in the 
previous PVS studies with diseased samples, where poor sleep was found 
to be associated with enlarged BG-PVS [32,36]. Our hypothesis is that 
there are pathological and physiological PVS such that the pattern of 
change in PVS may differ. In healthy persons, larger PVS may be a sign of 
better brain clearance. 

One possible explanation for the contradictory results could be 
related to the different mechanisms of PVS for healthy adults on 
removing metabolic waste from the brain. A recent review article sug
gested that sleep and glymphatic function may interact differently in 
healthy adults than in animal models [59]. As sleep has been shown to 
drive metabolite clearance from the adult brain [60], it is possible that a 
large amount of fluid in BG-PVS might indicate a higher rate of fluid 
exchange and an efficient waste clearance, as previously proposed [61]. 
On the other hand, in patients with cerebrovascular diseases [32,36], 
the negative correlation between BG-PVS volume and sleep efficiency 
might indicate either a compensatory mechanism where accumulation 
of fluid is a consequence of the perivascular/glymphatic system 
dysfunction determined by lower sleep efficiency. Lysen et al. found that 

higher sleep efficiency was associated with higher CSO-PVS counts in a 
middle- to old-aged participants [61]. However, the association of the 
sleep efficiency and the CSO-PVS volume fraction in the middle-aged 
healthy population was not significant in our study. Another possible 
reason for the contrary results we found could be due to our mapping all 
PVSs rather than only PVSs larger than a certain diameter. Using the 
high-resolution images of the HCP-Aging dataset and the accuracy of 
PVS segmentation by EPC technique, we detected higher PVS volume 
fraction compared to other studies [39]. Moreover, it is also possible that 
the findings might be impacted by variations across studies in sleep 
assessment methods and PVS measurement methods [59]. 

We did not find a significant association between sleep and CSO-PVS. 
One explanation could be that CSO is a large brain region, and some 
subregions may have an association with sleep, while others do not, thus 
cancelling one another out on the final outcome. Therefore, future 
research is needed on the association between sleep and PVS in sub
regions of the CSO. 

In our mediation analysis, we noted that BMI plays a role in medi
ating the relationship between sleep and BG-PVS volume in the entire 
healthy cohort (N=513). This cohort shows that BMI has a larger asso
ciation to BG-PVS than sleep. This is consistent with a previous study 

Fig. 5. Demonstration of the mediation analysis of the perivascular space (PVS) in the basal ganglia (BG), sleep quality and BMI in the whole sample 
(N¼513), middle-aged participants (N¼363) and older participants (N¼150). (a) The relationship between sleep quality score, body mass index (BMI), and BG- 
PVS volume fraction in the whole sample. It depicted the significant indirect effect of sleep quality on the BG-PVS volume fraction through the BMI in whole sample. 
(b) In the middle-aged group, there is no mediation effect of sleep quality on BG-PVS volume fraction through BMI in the middle-aged cohort. The BMI is directly 
positively associated with BG-PVS volume fraction. (c) In the older age group, the sleep quality is significantly associated with BMI. BMI is significantly associated 
with PVS. But, the effect of sleep quality on PVS was not mediated through BMI significantly. The direct effect of the path is the coefficient a, b, and c. The indirect 
effect is the coefficient c’. Mediation (%) = (c-c’)/c. ACME: Average Causal Mediated Effect; ADE: Average Direct Effect. Significant *p<0.05. 

Fig. 6. The perivascular space (PVS) in the basal ganglia (BG) by race/ethnicity. (a) Asians had significantly smaller BG-PVS volume fraction than Whites. 
African Americans had significantly smaller BG-PVS volume fraction than Whites. Participants of other races had significantly smaller BG-PVS volume fraction than 
Whites. (b) Hispanic or Latino participants had smaller BG-PVS than non-Hispanic persons. Significant *p<0.05; **p<0.001; ***p<0.0001. 
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showing a significant positive correlation between BMI and PVS volume 
fraction in a young participants (22–37 years old) [7]. Recent research 
found a positive association between visceral fat, MRI-visible PVS and 
white matter lesions in the brain [62]. Currently, it is unknown exactly 
how BMI is linked to PVS, but it may be related to higher intracranial 
pressure, since CSF pressure correlates linearly with BMI [11]. Alter
natively, the BMI-PVS association may be linked to reduced vascular 
contractility and vascular dysfunction that is often associated with 
obesity [11]. It is worth noting that the relationship between the BG-PVS 
volume fraction and sleep was not mediated by BMI status in the older 
population (N=150), although the sample size was smaller than the 
whole sample, there was the trend towards marginal significant 
(p=0.07). One potential explanation is that body fat mass increases 
while lean body mass and bone mineral density decrease in the older 
adults, so that body fat may be underestimated by BMI in the older study 
participants [63]. In another mediation model between sleep, BMI, and 
BG-PVS, we tested sleep quality as the mediator and BMI as the predictor 
of BG-PVS. However, no mediation was found (data not shown). These 
findings suggest that BMI may influence the association of the PVS and 
sleep in various ways. 

We also investigated the association of the sleep measurements on 
the PVS by race and ethnicity. Sleep quality did not significantly interact 
with race/ethnicity; however, the BG-PVS volume fraction did signifi
cantly differ by race. One previous study reported larger dilated BG-PVS 
volume in Whites, compared to African Americans, Asians, and other 
racial participants [64]. In line with this result, we found that Whites 
had significantly larger BG-PVS volume fraction than Asians, African 
Americans, and other racial groups (Fig. 6a). In addition, Hispanics or 
Latinos had smaller BG-PVS than other ethnic groups (Fig. 6b). There 
was no difference for CSO-PVS volume fraction by race. This is the first 
study to demonstrate the association of the PVS volume fraction and 
sleep in a racially/ethnically diverse sample. These findings should be 
investigated cautiously with additional social and biological factors, as 
the mechanism and association between race and PVS is still not fully 
investigated. These data from the HCP-Aging dataset provide initial 
insight of the potential differences, and more studies are necessary. 

In this study, we investigated how PVS alterations and sleep were 
associated with cognitive status. In the mediation analysis for older age 
group, we observed the trend of higher BG-PVS volume fraction and 
better cognitive status in older participants who had poor sleep quality; 
however, there was no significant causal mediation effect between the 
BG-PVS volume fraction and cognitive status. Moreover, there was no 
significant association between the PVS and the results of the NIH 
toolbox working memory test (data not shown). Other findings in the 
literature also showed that the higher PVS burden is not associated with 
cognitive dysfunction in older adults [65,66]. However, recent findings 
from our previous study showed that cognitively impaired females from 
the ADNI had higher PVS volume fraction in the white matter compared 
to males, and the PVS changes in the anterosuperior medial temporal 
lobe in persons with mild cognitive impairment were associated with tau 
uptake [12]. These findings encourage more research on the effect of the 
PVS burden on cognition. 

The presence of WMH was evaluated through the quality control 
process by trained PVS analysts, and WMH was not excluded using Fluid 
Attenuated Inversion Recovery (FLAIR) sequences since FLAIR was not 
part of the HCPA dataset. However, the effect of WMH on PVS seg
mentation in our previous study was evaluated in a random sample of 
200 participants from the entire HCP datasets (100 HCP-Aging, 50 HCP- 
Young Adults, and 50 HCP-Developing participants), but no significant 
correlation was observed [8]. Therefore, the altered PVS structure in this 
study cannot be attributed to the presence of WMH in the PVS seg
mentation method. 

As a mean of removing metabolic waste from the brain, the glym
phatic system has gained increasing attention in recent years [67,68]. 
There is also evidence that this clearance mechanism is cyclic, notably 
more prominent during non-rapid eye movement (NREM) sleep than 

during waking hours [68]. With age, sleep fragmentation increases, 
which causes less NREM sleep to occur [51]. In this sense, sleep depri
vation may contribute to waste protein accumulation in the brain. In the 
aging population, occurrence of sleep disturbances during NREM hap
pens many years before the clinical diagnosis of AD. NREM sleep 
disruption has also been linked to the aggregated amyloid and tau 
proteins associated with Alzheimer’s disease, and sleep disruption in 
normal older adults increases risk of AD [67,69]. In our study of PVS in a 
healthy aging cohort, we established a baseline against which patho
logical PVS changes can be compared against, thus helping us gain a 
better understanding of how sleep affects PVS in healthy adults and in 
those with neurodegenerative diseases. 

There are three advancements in this study compared to previous 
research in this area. First, we calculated the actual PVS volume rather 
than the traditional PVS five-point rating [70]. The rating system is 
based on counting the visible PVSs in the ROI region and rating in
dividuals accordingly; thus, this technique is only useful for the large 
PVSs, and it may miss subtle important information of global PVS 
alteration. Second, we analyzed data from a large healthy cohort study, 
thereby providing a normative map. Third, PSQI included several broad 
domains of sleep: sleep duration, sleep disturbance, sleep latency, day
time dysfunction, sleep efficiency, sleep quality, and sleep medication 
use. These measures cover many different sleep problems, mostly related 
to insomnia, and sleep quality. In addition, some studies also suggest 
that removing sleep medication and daytime dysfunction can help 
achieve more reliable results from the PSQI questionnaire [71,72]. 
Therefore, we used individual aspects of the PSQI questionnaire in this 
study to investigate if there were associations between a range of sleep 
behaviors and PVS. 

However, there are also certain limitations to this study. First, the 
PSQI is a self-reported questionnaire; thus, biases might exist in the 
responses to the PSQI items [73,74]. Objective validation of the PSQI 
measures could include polysomnography in future studies to ensure 
validity and precision in sleep findings. Second, the MoCA and NIH 
toolbox working memory questionnaires used in this study are not 
thorough assessments of memory performance; therefore, more exten
sive cognitive measurements are needed. Nevertheless, these question
naires were the only data available in the HCP-Aging dataset. Since this 
study is a cross-sectional study, the direction of causation of the reported 
associations are hard to assess; therefore, additional tests and longitu
dinal assessments are warranted to structure causal relationships in 
future studies. Exploring other biophysical characteristics of PVS, such 
as diffusion [75,76], and its relationship with sleep quality is another 
future direction to this study. 

In conclusion, we investigated the relationship between the PVS 
volume fraction and sleep measures in the HCP-Aging healthy cohort. 
The effect of sleep on the PVS volume fraction varied in different ages. 
PVS volume fraction differed by race/ethnicity. In the future, this study 
could provide a baseline of comparison for the relationship between 
physiological changes in PVS and sleep behavior. Our study advances 
our understanding on the role of sleep and brain clearance in cognitively 
healthy aging adults. 
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