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ARTICLE

Topological measures for identifying and predicting
the spread of complex contagions
Douglas Guilbeault1 & Damon Centola 2,3✉

The standard measure of distance in social networks – average shortest path length –

assumes a model of “simple” contagion, in which people only need exposure to influence

from one peer to adopt the contagion. However, many social phenomena are “complex”

contagions, for which people need exposure to multiple peers before they adopt. Here, we

show that the classical measure of path length fails to define network connectedness and

node centrality for complex contagions. Centrality measures and seeding strategies based on

the classical definition of path length frequently misidentify the network features that are

most effective for spreading complex contagions. To address these issues, we derive mea-

sures of complex path length and complex centrality, which significantly improve the capacity to

identify the network structures and central individuals best suited for spreading complex

contagions. We validate our theory using empirical data on the spread of a microfinance

program in 43 rural Indian villages.
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One of the most important network measures today is path
length—defined as the shortest number of steps between any
two vertices on a graph. This measure is considered to be a

robust indicator of the typical distance between any two nodes in a
network, such that the average shortest path length of a graph, also
called its characteristic path length, is taken to identify a general
topological property of all networks1–5. However, this measure of
path length implicitly assumes a process of network traversal that
relies on the theory of simple contagion, in which a single tie is
sufficient for a contagion to travel from one node to another1–5. A
key difficulty arises from the fact that many social contagions are
“complex”, for which individuals require contact with multiple acti-
vated peers before they become activated themselves6–9. According to
the standard measure of path length, network distance is the number
of steps required to travel across a network, where each step is
composed of a single tie1–5. Yet for complex contagions, such as the
spread of new technologies10,11, health behaviors8,9,11, linguistic
conventions12,13, internet memes14, social movements15,16, and
political hashtags17,18, each step in the social network requires peer
reinforcement from multiple ties. Measuring the path of a complex
contagion thus requires measuring each step in the network not in
terms of single ties, but rather in terms of reinforcing ties—typically
referred to as wide bridges6–9,11.

Given the prevalence of complex contagion in social
diffusion6,11, we argue that the classical measure of path length—
hereafter “simple path length”—does not provide a satisfactory
way to measure connectedness in social networks. Simple path
length assumes that if a finite path of single ties exists between
node i and node j, then a contagion can spread from node i to
j1–5. However, numerous empirical and formal studies reveal the
puzzling result that within social networks composed of a single
connected component, it may nevertheless be impossible for a
complex contagion to spread from one node to another6–9,11. The
empirical frequency10–18 of studies which find that nodes are
both topologically connected and yet socially disconnected for the
transmission of social contagions indicates that simple path
length does not provide a satisfactory measure of social distance
and connectedness in social networks.

The inability for simple path length to properly measure network
connectedness leads to a new challenge for longstanding solutions to
the problem of identifying which individuals (i.e., seeds) in a social
network are most influential for spreading a new behavior19–26. Well-
established measures of node centrality (e.g., degree centrality3,
betweenness centrality27, eigenvector centrality3, k-core centrality3,28,
and percolation centality24,25) have become popular tools for char-
acterizing the most influential nodes for the spread of social con-
tagions in both theoretical and applied social networks3,5,21–23,25,29.
Yet, several empirical studies of social diffusion have found that these
measures of node centrality misidentify the most influential
actors15,22,30–33. For example, recent findings on social media show
the counterintuitive result that people with the highest betweenness
and degree centrality are often not the most influential nodes for
spreading political messages and controversial news, because these
kinds of messages are complex contagions6,17,32,33.

Here, we show that the failure of popular measures of node cen-
trality to detect node influence in the empirical spread of complex
contagions is based on their consistent use of simple path length to
calculate network connectedness. We find that measures of centrality
that rely on simple path length are poorly adapted to predicting the
diffusion (i.e., the peer-to-peer spread) of complex contagions. Spe-
cifically, all of the following measures of centrality rely on simple path
length:

● Degree centrality: the centrality of a node is determined by
the number of other nodes to which it is connected via
single ties3.

● Betweenness centrality: the centrality of a node is
determined by the number of shortest simple paths that
pass through it3.

● Eigenvector centrality: the centrality of a node is determined
by the number of single tie connections that a node shares
with other nodes (specifically, accounting for each node’s
single tie connections to other well-connected nodes)3.

● Optimal percolation centrality: the centrality of a node is
determined by whether its removal collapses the largest
connected component (which is defined in terms of simple
paths) of a graph24,25. In practice, percolation centrality
amounts to the product of the reduced degree centrality of
a node and the total reduced degree centrality of all nodes
at a given distance d, measured by simple path length.

● K-core centrality (also known as coreness3,28): the
centrality of a node is determined by decomposing a
network into subcomponents consisting of nodes con-
nected with a degree of at least k or lower, where degree is
measured in terms of single ties3.

While recent studies have attempted to provide alternative defi-
nitions of centrality that overcome the limitations of standard
approaches, these alternatives continue to rely on simple path length,
typically selecting seeds with high levels of degree, betweenness, or
eigenvector centrality25,26,34–37. None of these alternatives can
explain the recurring empirical finding6,11,15,21,30–33 that nodes with
high centrality (according to any of the measures that rely on simple
path length) are ineffective for spreading complex social contagions.
To address this problem, and the challenges it poses for con-
temporary conceptions of the relationship between network structure
and social influence, we derive a measure of path length, called
“complex path length” (PLC), which illuminates new, generalizable
topological properties of connectedness and centrality (“complex
centrality”), for all social networks. While our study is motivated by
the theoretical challenges raised by empirical findings on the spread
of complex contagions, we identify network measures that generalize
across both simple and complex contagions, including all ranges of
peer reinforcement that may be required for transmission (Fig. 1; see
“Methods”).

We present our findings as follows: (1) First, in the interest of
clarity, we define the general influence model for complex con-
tagion. (2) Second, we derive a general topological measure for
calculating the network distance between the nodes in a graph for
the spread of a complex contagion: i.e., complex path length. (3)
Third, we use the above results to derive a generalized measure of
node centrality: i.e., complex centrality. (4) Fourth, we provide
numerical results (with additional robustness tests in the Sup-
plementary Material) demonstrating that complex path length
provides an excellent match for estimating cascade frequency on
simulated complex graphs. (5) Fifth, we provide numerical results
demonstrating that complex centrality outperforms the most
prominent measures of node centrality for identifying unique
network locations most effective for “seeding” a complex social
contagion. (These results are tested on a wide range of both
artificial and empirical social networks, with additional robust-
ness tests in the Supplementary Material.) (6) Sixth, we use the
measures of complex path length and complex centrality to
predict the most influential network locations for the spread of a
microfinance program, as reported in an empirical study of social
contagion in 43 Indian villages38.

For ease of presentation, in what follows we briefly describe our
formal definitions and derivations, outlined in points 1–3 above.
(The complete derivations are provided in the “Methods” sec-
tion.) We then present findings 4–6 in detail, with supporting
robustness tests (Supplementary Methods and Supplementary
Notes 1–13).
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To begin, we outline the formal influence model that underlies
complex contagion. First, we define G(V, E) as an unweighted and
undirected graph with a set of n agents, where V≔ {1, …, n}, and
a set of edges E. We denote the neighbors of node i as N[i]. In the
complex contagion model, each node i∈V is assigned an adop-
tion threshold Ti that specifies how many activated peers that
node i has to be exposed to for i to adopt the contagion.
Thresholds can be either absolute, where they specify the raw
number of activated neighbors required to trigger adoption by
node i, or they can be fractional, in which case they specify the
fraction of i’s neighbors that must be activated to trigger adoption
by i. Thresholds can be distributed homogeneously (i.e., held
constant for all nodes) or heterogeneously, where each node
receives a different threshold at some probability (e.g., where each
node is assigned a threshold uniformly at random from a defined
interval). Diffusion unfolds in discrete time steps: at step t, all
nodes that were active in t− 1 stay active, and we activate any
node j that has a sufficient number of activated neighbors to
satisfy their threshold, Tj.

We define the complex path between node i and node j as the
sequence of neighborhoods through which a contagion must
traverse to travel from the neighborhood of node i, N[i], to any
node j, where i, j∈V. To characterize the structure and diffusion
capacity of complex paths, we provide a new formal definition of
bridge width that identifies whether the number of reinforcing
ties between connected neighborhoods is sufficient to enable the
spread of a complex contagion (see Supplementary Figs. 1 and 2,
which visually demonstrate how bridge width is calculated on a
comprehensive range of local neighborhood configurations). The
complex path length between node i and node j is defined as the
number of sufficiently wide bridges that are traversed as a com-
plex contagion spreads from N[i] to node j (Eqs. (1–3) in
“Methods”). We use this method to identify chains of bridges
between nodes at any distance in the network, and for char-
acterizing the length and width of these chains (Fig. 1). This
definition of network connectedness, PLC, motivates a new
measure of node centrality for complex contagions (Eqs. (5–7) in
“Methods”), i.e., complex centrality (CC). The complex centrality
of a node i (CCi) is the average length of the complex paths
extending from the neighborhood of node i, N[i], denoted by PLCi

(Eq. (5) in “Methods”). The node with the highest complex
centrality in a graph is the node with the highest average complex
path length, max [PLCi

]Ni=1 (Eq. (7) in “Methods”).

Results
We begin by showing how our measure of bridge width effectively
captures the connectedness of a social network for the spread of
complex contagion. To present our findings in a way that is
consistent with canonical work on connectedness and path
length1,2, we begin by studying a continuum of k-regular graphs
generated using the same approach adopted by this canonical
work2,7. Specifically, we start with a ring of n vertices in a regular
lattice, each connected to k nearest neighbors, and we generate a
continuum of k-regular graphs by rewiring pairs of edges chosen
uniformly at random around the ring (with probability p),
ensuring that all rewired edges are degree-preserving and main-
tain the k-regular degree distribution7,8. Previous work1,2 found
that increasing the randomness of a graph substantially decreases
the average shortest simple path length between all nodes, which
accelerates the spread of simple contagions1,2. However, we find
the opposite effect for the spread of complex contagions, for
which increasing randomness in network structure disrupts the
fraction of sufficiently wide bridges, leading to sharp declines in
the capacity for complex contagions to spread. Here, we analyze
every neighborhood bridge in each graph and calculate the pro-
portion of bridges that are sufficiently wide to enable diffusion.
We refer to this quantity as the proportion of locally sufficient
bridges (LB) (“Methods”). We use LB to estimate the capacity of a
graph to support global cascades of complex contagions, which
we calculate by averaging the diffusion outcomes that result from
attempting to use each node and its neighborhood as the initial
seeds for a diffusion process. After demonstrating these results for
randomization on regular graphs, we then generalize these find-
ings for random scale-free graphs (the full set of robustness tests
are included in the Supplementary Material).

Panels a–d of Fig. 2 show that as graphs become increasingly
random, the frequency of global cascades decreases precipitously
along with the average proportion of sufficiently wide bridges.
The frequency of locally sufficient bridges accurately estimates the
capacity for k-regular graphs with varying levels of randomness to

Fig. 1 Identifying complex paths. This figure displays a visualization of the method for extracting the shortest complex path between nodes at any arbitrary
distance in the network, as defined by Eqs. (1), (2), and (3) in the “Methods” section. The set of complex paths between seed neighborhood of node l and
target node q (shown in green) is highlighted in red, while the shortest simple path length between l and q is highlighted in blue. This figure visualizes the
complex path for a contagion where the adoption threshold is 2 for all nodes.
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support global cascades of complex contagions—regardless of
whether thresholds are homogeneously or heterogeneously dis-
tributed. Put another way, the frequency of locally sufficient
bridges in a graph provides an effective measure of a graph’s
connectedness—that is, the graph’s ability to support the spread
of a complex contagion between any two nodes in the population.

Panel e of Fig. 2 generalizes these results to random scale-free
networks by examining average complex path length. Since
complex paths are formed by chains of sufficiently wide bridges, it
follows that the average complex path length of a graph should
effectively estimate the fraction of nodes in a population that can
be reached by a complex contagion. Panel e shows that the
average complex path length of a complex (scale-free) graph
accurately estimates the average size of the cascades generated
across all possible seed neighborhoods in the network, using both
homogenous fractional thresholds (Ti= 0.1, Ti= 0.2, Ti= 0.3, Ti
= 0.4, Ti= 0.5; p < 0.0001, rs= 0.95, CI= [0.92, 0.97]) and het-
erogeneous fractional thresholds (Ti= [0.1, 0.5]; p < 0.0001, rs=
0.99, CI= [0.99, 1.0]). These findings are robust for homo-
geneous and heterogeneous distributions of absolute thresholds
(Supplementary Figs. 7 and 8), and for k-regular graphs (Sup-
plementary Fig. 9).

The above findings on complex path length offer a new
approach, called complex centrality, for addressing the long-
standing problem of identifying the most influential (i.e., the most
central) nodes in a network diffusion process. In what follows, we
evaluate the performance of competing measures of centrality for
identifying the most influential seed nodes for spreading social
contagions within a set of empirical social networks collected for
studying the spread of public health behaviors39 (e.g., wearing
face masks during the COVID-19 pandemic). We use 74
empirical social networks taken from the Add Health dataset—
the largest publicly available collection of adolescent social

networks drawn from over 70 distinct communities in the US39

(see “Methods” for further detail on this dataset). In each net-
work, we compare the effectiveness of nodes with the highest
complex centrality against the nodes identified by each of the
theoretically defined measures of the most “central” network
locations—i.e., by degree centrality, betweenness centrality,
eigenvector centrality, k-core centrality, and percolation centrality
—and evaluate the spread of complex social contagions of varying
thresholds.

We initiated each test of each centrality measure by activating
the theoretically identified seed node (according to each theory of
node centrality) and a random subset of its neighborhood suffi-
cient to trigger subsequent adoption (i.e., the current threshold of
Ti minus 1 for node i) (Supplementary Fig. 4). For instance, for T
= 3 we would initiate diffusion by activating the identified seed
node and 2 of its randomly selected neighbors (see “Methods” for
further details on our approach).

Based on prior studies of complex contagion6,7 and for clarity
of exposition, we present our basic findings for populations with
homogeneously distributed absolute thresholds ranging from Ti
= 2 to Ti= 6. (For Ti= 1, all strategies produced complete global
adoption; for Ti > 6, we observed minimal spreading across all
networks.) Our complete results (provided in the SI) show these
findings to be robust to both homogeneous and heterogeneous
threshold distributions, and to the use of absolute or fractional
thresholds. In the results presented below, each network pro-
duced 6 observations (one for each seeding strategy) for each of
the 5 values of Ti (Ti= 2, Ti= 3, Ti= 4, Ti= 5, Ti= 6). This
produced 30 observations for each network, and 2220 observa-
tions in total. To provide a summary result for each strategy, we
averaged the diffusion success over all thresholds for each seeding
strategy on each network. This produced 444 observations in
total, as shown in Fig. 3.

Fig. 2 Using bridge width and complex path length to estimate the frequency of global cascades. We assume a constrained seeding budget, such that
we evaluate cascade frequency for the minimum number of seed nodes sufficient to trigger a given threshold, T. For each threshold value, T, we conducted
1000 independent simulation trials on each graph, each of which began by initially activating a focal node and a random subset of its neighborhood,
corresponding to Ti− 1 (i.e., the threshold of Ti as indicated by the panel minus 1 for node i). This procedure exhaustively explored all possible focal nodes
in each network (without replacement). For each graph configuration (e.g., value of p), and for each value of T, we replicated the full ensemble of
1000 simulation trials across 50 distinct network realizations. Results show the average cascade frequency across all replications. The fit between the
frequency of locally sufficient bridges and the frequency of global cascades on k-regular graphs (N= 1000, 〈k〉= 8, replicated over all possible seed
nodes), shown for a Ti= 2; b Ti= 3; c Ti= 4; and d heterogeneously distributed (Ti= [2, 4]). e The fit between the average complex path length of a graph
and the proportion of adopters in scale-free graphs with homogeneous fractional thresholds (N= 1000; γ= 3; m= 4; p= 0.5; Ti= 0.1, Ti= 0.2, Ti= 0.3, Ti
= 0.4, Ti= 0.5) and heterogeneous fractional thresholds (N= 1000; γ= 3; m= 4; p= 0.5; Ti= [0.1, 0.5]). Homog., homogeneous. Hetero., heterogeneous.
Thresh., thresholds.
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Panel a of Fig. 3 shows that seeds with the highest complex
centrality generated significantly more adopters than seeds with
the highest degree centrality (n= 148, p < 0.001, CI= [0.41,
0.51]), betweenness centrality (n= 148, p < 0.001, CI= [0.55,
0.66]), eigenvector centrality (n= 148, p < 0.001, CI= [0.35,
0.50]), k-core centrality (n= 148, p < 0.001, CI= [0.38, 0.49]),
and percolation centrality (n= 148, p < 0.001, CI= [0.46, 0.59]),
across all Add Health networks (Wilcoxon signed-rank test, two-
tailed). The horizontal axis in panel a indicates that the complex
centrality of a node effectively identifies its overall influence in the
network, regardless of the particular seeding strategy that selected
that node (n= 444, p < 0.001, r= 0.77, CI= [0.72, 0.81], two-
tailed). (These results are robust to comparing seeding strategies
within each threshold regime separately; Supplementary Fig. 10,
Supplementary Table 1). Figure 3b–f shows that complex cen-
trality identifies influential nodes with qualitatively distinct
topological positions as compared to the nodes identified by
centrality measures based on simple path length (Supplementary
Note 12). Perhaps most surprisingly, complex centrality identifies
seed nodes that have low influence according to the most popular
centrality measures.

Our supplementary analyses (Supplementary Notes 1–13)
show that these results are robust across a wide range of theo-
retical network conditions. In brief, we use a diverse ensemble of
simulated scale-free networks to test a variety of common social
influence models, including: (1) the complex contagion model,
using heterogeneous distributions of absolute thresholds; (2) the
complex contagion model, using heterogeneous distributions of
fractional thresholds; (3) the Independent Cascade model26; and
(4) the Linear Threshold26 model (Supplementary Fig. 11). We
show that our results also hold when (i) varying the amount of
clustering in scale-free networks using Holme and Kim’s tuning
algorithm40 (Supplementary Fig. 12), (ii) using homogeneous

distributions of absolute and fractional thresholds in the complex
contagion model (Supplementary Fig. 13), (iii) considering dif-
ferent values of θ (the activation parameter) in the Independent
Cascade model (Supplementary Fig. 14), (iv) comparing complex
centrality against additional centrality measures based on simple
path length that are not typically used for seeding, such as clo-
seness centrality and reach centrality (Supplementary Fig. 15), (v)
holding node degree constant in k-regular networks (Supple-
mentary Fig. 16), (vi) with conventionally generated scale-free
networks3 (Supplementary Fig. 17), and (vii) when varying the
parameter d for measuring optimal distance in percolation
centrality24,25 (Supplementary Fig. 18). In addition, our supple-
mentary analyses show that, across various topologies and
influence models, complex centrality also identifies influential
seeds for the spread of complex contagions more effectively than
a canonical greedy algorithm, which simulates diffusion from
every possible seed and selects the set of seeds with the greatest
expected diffusion based on their individual performance (Sup-
plementary Fig. 11)26.

To test the effectiveness of our network measures of complex
path length and complex centrality for predicting the effects of
network structure on an empirical diffusion process, we evaluate
the theoretical predictions of complex path length and complex
centrality using an empirical network study on the spread of a
microfinance program in rural India38. These data offer an
unusually comprehensive record of network diffusion, collected
from 43 distinct villages in which complete network data were
recorded for every village, along with a complete record of the
spreading dynamics of a novel microfinance program (referred to
as the Bharatha Swamukti Samsthe, or BSS, program) across
every household in every village (see “Methods” for details on the
data for each of the village networks and their associated adoption
dynamics)38,41. These data offer an exceptionally robust test of

Fig. 3 Comparing seeding strategies by simulating diffusion in empirical social networks. Diffusion results are displayed for seeding strategies based on
node centrality for 74 Add Health networks, across a range of homogeneously distributed absolute thresholds for complex contagion (Ti= 2, Ti= 3, Ti= 4,
Ti= 5, and Ti= 6). For each network under each T regime, we identify the most central focal node for each seeding strategy and simulate diffusion by
activating this focal node and Ti –1 of its neighbors (i.e., the current threshold of Ti minus 1 for node i). a Each datapoint represents the success of diffusion
and complex centrality (averaged across all threshold values) for each seeding strategy on each Add Health network. Six seeding strategies across 74
networks yield a total of 444 datapoints. To average the diffusion outcomes on the same graph across different homogeneous threshold conditions, the
final number of adopters and complex centrality were standardized using min–max normalization for each threshold condition prior to averaging. a For each
datapoint, the vertical axis represents the success of diffusion, and the horizontal axis represents the measure of complex centrality for the focal nodes
used for each seeding strategy (regardless of the centrality measure that selected that node). Results are averaged across all threshold values on each Add
Health network. Slight horizontal jittering is used to reveal overlapping points (δ= 0.01). This normalization technique captures the average ranking of each
seeding strategy on each network, averaged across threshold regimes. Additional panels show comparisons across all seeds according to their b
betweenness centrality, c degree centrality (normalized), d eigenvector centrality, e percolation centrality (normalized; d= 3), f K-core centrality
(normalized), and g complex centrality. Error bars show 95% confidence intervals.
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our hypotheses that (i) complex path length will be predictive of
the village networks in which the microfinance program will
spread most effectively, and (ii) complex centrality will be pre-
dictive of the specific households in each village that will be most
influential in spreading the BSS program.

We calculated each village’s average complex path length and each
household’s average complex centrality within each village using an
ensemble of estimated threshold distributions for each village (see
“Methods” for details on this estimation procedure; see Supplemen-
tary Fig. 6 for a schematic of this analytic approach). Similar to the
approach adopted in Fig. 3, we evaluated the correlation between the
complex centrality of each household in every village and the
resulting spread of the microfinance program from each adopting
household to its network contacts. Figure 4 panel a shows the results
for “leader” households (i.e., households specifically selected during
the original study to initiate the microfinance program within each
village), and panel b shows the results for “regular” households (i.e.,
all households from all 43 villages, many of which were subsequent
adopters of the program who helped to spread it through their
respective villages). To provide a reference point for our results,
panels a and b in Fig. 4 also report the same analyses for all of the
centrality measures discussed above: degree, eigenvector, between-
ness, k-core, and percolation (see Supplementary Tables 2 and 3 for
complete details). In addition, similar to the approach adopted in
Fig. 2 above, we also evaluated the correlation between each village’s
complex path length and the overall rate of adoption in each village
(as shown in Fig. 4 panel c, below).

Panel a of Fig. 4 shows that leader households with the highest
complex centrality are associated with a significantly higher prob-
ability of inducing the spread of the microfinance program than the
leader households that had the highest centrality scores based on
existing measures of node centrality (n= 258, p= 0.003, CI= [0.24,
0.33]; see Supplementary Table 2 for details on statistical analysis and
controls). Notably, complex centrality is the only topological measure

that was able to identify the leader households that had a significant
impact on increasing the spread of the microfinance program
(relative to the baseline expectations for the program generated by
selecting at random leader seed households identified by competing
centrality measures, see Supplementary Methods). Panel b of Fig. 4
replicates the same results while broadening the search for seeds
beyond the pre-specified leaders selected by Banerjee et al.38 Across
every possible household in each village, households with the highest
complex centrality are associated with a significantly higher prob-
ability of inducing the adoption of the microfinance program among
their network neighbors (n= 258, p < 0.001, CI= [0.26, 0.37]; see
Table S2 for details on statistical analysis). Supplementary analyses
show that these results are robust to (i) controlling for the full range
of socioeconomic variables associated with each household in the
Banerjee et al. dataset38,41 (Supplementary Tables 2 and 3), (ii)
clustering standard errors at the village-level to adjust for non-
independence, (iii) when examining adoption solely among non-
leader households, and (iv) when exclusively examining the ability of
non-leader households to trigger adoption of the BSS program
(Supplementary Note 14).

Panel c of Fig. 4 tests the village-level hypothesis that the average
complex path length of an entire village is positively correlated with
the overall rate of adoption of the microfinance program. Consistent
with the theoretical predictions displayed in Fig. 2, panel c of Fig. 4
shows that villages with higher average complex path length exhibited
significantly greater program adoption (p= 0.009, rs= 0.41, n= 43,
CI= [0.04, 0.69], two-tailed). By contrast, the average simple path
length of each village fails to predict the overall capacity of the village
to spread the microfinance program (p= 0.1, rs=−0.27, n= 43, CI
= [−0.58, 0.07], two-tailed).

Discussion
Path length is one of the most important and influential measures
of network structure. It underlies nearly every theory of social

Fig. 4 Using node centrality to predict the empirical diffusion of the Bharatha Swamukti Samsthe (BSS) microfinance program in rural India. Empirical
diffusion results are displayed for seeding strategies based on node centrality for 43 rural Indian villages. Bars represent the probability that the network
neighbors of a seed household adopt the contagion once the household has adopted, averaged across all 43 rural villages. a Displays these results when
selecting seeds only from the set of village leaders who were empirically found to initially adopt the BSS program and agree to assist in its diffusion
(referred to as ‘leader’ households); and b displays these results selecting seeds from any possible household in the village. Forty-three network
observations across 6 distinct centrality measures yield 258 observations for each panel. Panel c displays the relationship between the average complex
path length of a village and the overall fraction of the village that consequently adopted the BSS microfinance program. For percolation centrality, the
optimal distance d is set to 3. Error bars display a standard deviation. Betwn., betweenness centrality; Eigen., eigenvector centrality; Perc., percolation
centrality. Baseline indicates the expected diffusion outcomes when randomly selecting seed households from the possible seeds identified by the
competing centrality measures, not including complex centrality.
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connectedness, social distance, and social influence within social
networks. Here we show that the classical measure of simple path
length, upon which most popular measures of node centrality
depend, implicitly assumes the spreading dynamics of simple
contagion. This assumption has resulted in several puzzling
empirical findings in which individuals with putatively low cen-
trality have been shown to be more influential for diffusion than
individuals with high centrality (according to prominent measures
of degree centrality, betweenness centrality, eigenvector centrality,
k-core centrality, and percolation centrality). We derive new
topological definitions of bridge width, path length, and centrality,
which provide general topological measures for accurately esti-
mating the network properties of connectedness, distance, and
centrality for the spread of complex social contagions. We find that
these measures offer significant theoretical improvements over
existing measures of population-level network topology, and
individual-level node centrality, for predicting the network prop-
erties that will increase the spread of complex social contagions.

Our findings offer several noteworthy departures from the
dominant strategies for applying network theory to problems of
social diffusion1,3,5,29,42–47. First, a common assumption among both
theoretical and applied studies of network diffusion is that people
with more connections are more influential5,21,22,29,30,42–45. Our
findings disagree with the frequently asserted claim in this literature
that degree centrality is an effective, if approximate, means of iden-
tifying the most influential individuals within a social network,
regardless of context5,21,22,29,30,42–45. Second, a common assumption
within organizational studies of social networks is that information
brokers—i.e., people who participate in multiple distinct network
communities that are largely disconnected—have outsized influence
because they are the gatekeepers in the flow of contagions between
communities46,47. This assumption has resulted in betweenness
centrality becoming one of the most widely used measures of net-
work influence within organizational theory1,27,29,42,43,46–49. By
contrast, our findings indicate that network locations with low degree
centrality and low betweenness centrality may nevertheless be the
most influential locations in the population. We also find that indi-
viduals with the highest levels of degree centrality and betweenness
centrality typically occupy ineffective network positions for initiating
the spread of complex social contagions—including health
behaviors8,9, linguistic conventions6,12,13, political memes14, social
movements15,16, and complementary technologies6,10. We anticipate
that an important direction for future work will be the exploration of
new algorithms for computing the theoretical properties of complex
path length and complex centrality, which may benefit from recent
developments that improve the scalability of novel algorithmic
techniques50. Another interesting direction for future research is the
application of our topological measures for identifying specific net-
work locations that can be used to efficiently stop the spread of an
existing complex contagion from one part of a network to the entire
population (akin to the problem of network “immunization” for
simple contagions)6,51,52.

Methods
Here we provide a formal logic for representing and reproducing our measures of
bridge width, complex paths, and complex centrality. Supplementary Figs. 1 and 2
provide a step-by-step guide for how to identify the network structures captured by
our measures, as well as how to calculate bridge width across a comprehensive
range of neighborhood configurations.

Definition of local measure of sufficient bridge width. To describe complex
paths, we provide a formal definition of bridge width that provides (i) a method for
measuring the local connectivity of bridges across all nodes, (ii) a method for
identifying chains of bridges between nodes at any distance in the network, and (iii)
a method for measuring the length of these chains. We begin by considering an
unweighted undirected graph G with the set of vertices V and edge set E. We define
the complex path between node i and node j as the sequence of neighborhoods
through which a complex contagion must traverse to travel from the neighborhood

of i, N[i], to any node j, where i, j∈ V. We measure the connectivity between two
neighborhoods using the concept of a bridge between neighborhoods (defined
below). If a bridge between two neighborhoods is “wide” enough to support dif-
fusion, it is called a “sufficient bridge”. For a contagion with an adoption threshold
Tj (defined for each node j), a sufficient bridge exists from node i’s neighborhood to
node j’s neighborhood if and only if the following conditions are met. For sim-
plicity, we specify these conditions assuming that Tj is homogeneous across all
nodes, but these measures can be readily adapted to heterogeneous distributions of
Tj (discussed below).

Let N[i] refer to the closed neighborhood of node i, defined as the induced
subgraph of G including all vertices adjacent to i, along with i.

Let E(N[i]) indicate the edge set of the neighborhood of node i, including all ties
to i within N[i].

Let Tj refer to the adoption threshold of node j (i.e., the number or fraction of
activated peers that node j needs to encounter to adopt).

Let Oij refer to the overlap (intersection) between N[i] and N[j], i.e., Oij≡N[i] ∩
N[j].

Let Dij refer to the disjoint set of nodes in N[j] that are not in N[i], such that ∀v
(v∈Dij→ v∈N[j] ∧ v∉N[i]).

Let Rij refer to the “reinforcement” set of nodes, which consists of the nodes in
Dij that are connected to the nodes in N[i]. Formally, ∀v(v∈ Rij→ v∈Dij ∧ |E(N
[i]) ∩ E(N[v])| ≥ 1).

Let the bridge between node i and j be defined as the union of Oij and Rij, i.e.,
BWij≡Oij⋃ Rij.

Let the width of the bridge between i and j be defined as Wij, where Wij≡ |BWij|
(the cardinality of the bridge between node i and j).

Under the above definitions, the bridge between N[i] and N[j] can support the
spread of a contagion—i.e., the bridge is locally sufficient—if Wij ≥ Tj.

We ascribe every bridge in G a binary value indicating whether the bridge is
sufficiently wide to enable diffusion. We indicate this binary value in notation by
placing sharp brackets around the term for bridge width:

½Wij� �
1 if Wij ≥T j

0 otherwise

�
ð1Þ

The above definition of bridge width can be readily adapted to heterogeneous
distributions of thresholds by requiring that Rij consists only of nodes from Dij that
can be activated by N[i]. Specifically, this requires that we keep each node x in Rij

only if Oix ≥ Tx—i.e., if there are enough ties from N[i] to satisfy Tx.
This quantity provides a robust measure for the local connectivity of a network,

defined via the following procedure:
Let Bi refer to the subset of nodes from V that locally share a bridge with N[i].

Formally, ∀v(v ∈ Bi→ v∈V ∧ v ≠ i ∧Wvi ≥ 1).
We can use these measures to calculate the proportion of local bridges that are

sufficiently wide for a node to spread a contagion beyond its neighborhood:

LBi �
1

jVðBiÞj
�∑8xðx 2 Bi ! ½Wix�Þ ð2Þ

This local measure can then be averaged across all nodes in a graph:

LB � 1
n
∑
n

i¼1
LBi ð3Þ

Definition of complex path length. The complex path length (PLc) between nodes
i and j is defined as the number of sufficient bridges that are traversed in the
complex path between N[i] and node j (Fig. 1). We assume that if a contagion
cannot spread from N[i] to node j, then PLCij

= 0. As visualized in Fig. 1, we define

complex paths and their length through the following procedure:
Let CPij refer to the induced subgraph of nodes activated when spreading a

complex contagion from N[i] to node j, which contains the set of possible complex
paths between N[i] and node j.

Let GEOCPij
refer to the geodesic between node i and node j within CPij, which

identifies the shortest complex path within CPij.
Let ϕ(GEOCPij

) refer to the vertex sequence in GEOCPij.

The complex path length (PLCij
) between N[i] and node j is thus defined as:

PLcij � jϕðGEOCPij
Þj ð4Þ

The average PLCi
(for a given node i) is given by:

PLci �
1

n� jVðN½i�Þj �∑i≠j PLcij ð5Þ

Finally, the global complex path length of G is determined by averaging across the
average complex path length of all nodes in G, giving:

PLc �
1
n
∑
n

i¼1
PLci ð6Þ

Definition of complex centrality. The definition of complex path length yields a
new measure, called complex centrality (CC). Similar to the definition of degree
centrality3, the complex centrality of a node i (CCi) is PLCi

, where the node with
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the highest complex centrality in a graph is the node with the highest average
complex path length, formally expressed as:

max½PLci �
N
i¼1 ð7Þ

By defining a node’s centrality in terms of its highest average complex path length,
this method identifies the nodes in any graph, and for any contagion, that have the
longest and most robust chains of sufficient bridges that reach the greatest number
of target nodes.

Description of the Add Health network dataset. The Add Health dataset was
constructed from an in-school survey, administered to 90,118 students from over
70 distinct communities throughout the US in 1994–199539. All network data is
available at this github: https://github.com/drguilbe/complexpaths53. The Add
Health survey was designed to gather data on students’ social networks. Each
student was given a paper-and-pencil questionnaire and a copy of a roster listing
every student in the school and, if the community had two schools, the students
were provided with the roster of the “sister” school. Students were asked to “List
your closest (male/female) friends. List your best (male/female) friend first, then
your next best friend, and so on. (Girls/boys) may include (boys/girls) who are
friends and (boy/girl) friends”. This dataset was chosen for the purposes of our
study because the social networks possess high levels of topological variation, in
terms of population size, average degree (all with nonuniform degree distributions),
and average clustering (Supplementary Fig. 3).

Simulating diffusion on the Add Health dataset. For this analysis, we initiate
diffusion by initially activating each possible seed and a random subset of its
neighborhood corresponding to Ti− 1 (i.e., the current threshold of Ti minus 1 for
node i) (Supplementary Fig. 4). For example, when Ti= 3, we initiate diffusion
from every possible seed node by first activating that node and 2 of its randomly
selected neighbors, and then we observe the simulated contagion process. Given the
importance of clustered social influence for complex contagions, we adopt a
clustered seeding strategy, such that if the seeding budget exceeds the size of the
most central node’s neighborhood, we iteratively activate nodes that are directly
connected to the neighbors of the most central node until we reach the corre-
sponding seeding budget. Once diffusion has been attempted from every possible
seed node, we then compare the ability for each centrality measure to accurately
identify the most influential seeds. Consistent with the canonical complex con-
tagion model6,7, we studied populations with homogeneously distributed absolute
thresholds ranging from Ti= 2 to Ti= 6. (For Ti= 1, all strategies produced
complete global adoption; for Ti > 6, we observed minimal spreading across all
networks.) All results are robust to using homogeneous or heterogeneous dis-
tributions of either absolute or fractional thresholds (Supplementary Notes 1–11).
Each network produced 6 observations (one for each seeding strategy) for each of
the 5 values of Ti (Ti= 2, Ti= 3, Ti= 4, Ti= 5, Ti= 6).

Description of the Banerjee et al. dataset on microfinance diffusion in rural
India. The empirical dataset examined for Fig. 4 derives from Banerjee et al.38,41,
who collected information about social networks and tracked the adopters of a
microfinance program (referred to as the Bharatha Swamukti Samsthe, BSS, pro-
gram) among all households in 43 distinct villages. In each of the 43 villages, the
microfinance program was first introduced to the town leaders, who were asked to
organize a meeting at which their followers could be informed about the micro-
finance program and its benefits. Crucially, Banerjee et al. monitored whether each
household in each village adopted the microfinance program overtime, with the
ability to link their adoption of the BSS program to each household’s position in
the village’s social network, both with respect to the leaders who seeded the pro-
gram, and also with respect to the households without leaders that adopted and
provided reinforcement for other households to follow suit. This data thus supports
an analysis of how the BSS program spread as a social contagion.

To measure the social network structure of each village, Banerjee et al.
administered surveys to each household, which identified social relations across
twelve dimensions: those who visit the respondent’s home, those whose homes the
respondent visits, kin in the village, nonrelatives with whom the respondent
socializes, those from whom the respondent receives medical advice, those from
whom the respondent would borrow money, those to whom the respondent would
lend money, those from whom the respondent would borrow material goods (e.g.,
kerosene and rice), those to whom the respondent would lend material goods, those
from whom the respondent gets advice, those to whom the respondent gives advice,
and those with whom the respondent goes to pray (at a temple, church, or
mosque). Banerjee et al. showed how all of these measures can be combined to
form a single binary, bidirectional network, where two households are represented
as being connected by a single tie if they are connected through at least one of the
twelve social dimensions above. A unique strength of this dataset is that Banerjee
et al.’s survey also associated each household with a range of demographic and
socioeconomic variables—such as the number of beds in the household and
whether it has electricity—which can be used as statistical controls when estimating
the effect of node centrality on the ability for households to trigger adoption of the
BSS program among their network peers. Supplementary Fig. 5 indicates that these

villages possessed significant topological variation, in terms of population size,
average degree (all with nonuniform degree distributions), and average clustering.

Calculating the average complex centrality of nodes in Banerjee et al.’s
dataset on microfinance diffusion in rural India. Since it is not possible to
directly determine the empirical adoption thresholds that characterized each
household’s willingness to adopt, we calculated a household’s expected complex
centrality as its average centrality across a range of adoption thresholds (see Sup-
plementary Fig. 6 for a schematic of this analytic approach). We first simulate
diffusion from each household while holding the thresholds of all households
constant across a range of absolute adoption thresholds, from Ti= 2 to Ti= 6. For
example, we set the adoption threshold of each household to Ti= 2 and then we
simulate diffusion when seeding from each possible household. Similar to our Add
Health simulation, we adopt a clustered seeding approach. We take the same
approach for each Ti from Ti= 2 to Ti= 6. In each case, when activating a given
household as the seed, we set the number of nodes to activate from the seed’s
neighborhood to Ti− 1. We then take the average of each household’s complex
centrality across each value of Ti. As the final step, for each village, we identify the
household with the highest centrality according to each centrality measure—degree,
eigenvector, betweenness, k-core, and percolation—in addition to identifying the
node with the highest average complex centrality. To evaluate our predictions, we
compare the ability for each centrality measure to identify influential households,
where an empirical measure of household influence is determined by measuring the
fraction of a household’s neighbors who adopted after the seed household adopted
(see Supplementary Tables 2 and 3 for full details on our statistical approach).

Data availability
The data in this study have been deposited on github and are available here: https://
github.com/drguilbe/complexpaths53. Source data are provided with this paper.

Code availability
Code for replicating this study has been deposited on github and is available here: https://
github.com/drguilbe/complexpaths53.
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