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Abstract

In radioactive source surveying protocols, a number of task-inherent features degrade the

quality of collected gamma ray spectra, including: limited dwell times, a fluctuating back-

ground, a large distance to the source, weak source activity, and the low sensitivity of mobile

detectors. Thus, collected gamma ray spectra are expected to be sparse and noise domi-

nated. For extremely sparse spectra, direct background subtraction is infeasible and many

background estimation techniques do not apply. In this paper, we present a statistical algo-

rithm for source estimation and anomaly detection under such conditions. We employ a

fixed-hyperparameter Gaussian processes regression methodology with a linear innovation

sequence scheme in order to quickly update an ongoing source distribution estimate with no

prior training required. We have evaluated the effectiveness of this approach for anomaly

detection using background spectra collected with a Kromek D3S and simulated source

spectrum and hyperparameters defined by detector characteristics and information derived

from collected spectra. We attained an area under the ROC curve of 0.902 for identifying

sparse source peaks within a sparse gamma ray spectrum and achieved a true positive rate

of 93% when selecting the optimum thresholding value derived from the ROC curve.

Introduction

Advanced source surveying protocols are crucial tools in the various national security scenar-

ios for which the presence and location of radioactive material must be quickly acquired. How-

ever, several factors inherent to source surveying degrade or otherwise limit the quality of

information available. Focusing on surveying with a single mobile detector (as opposed to

detector networks), there is a distinction between two prominent surveying strategies: static

protocols and dynamic protocols.

Static protocols, such as the uniform search method [1], are deployed identically in every

surveying scenario and do not involve a decision-making process. Dynamic protocols, on the

other hand, adaptively adjust pathing based on a predetermined model and acquired data in

order to locate the source in as few steps or in as little time as possible. These provide faster
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localization time than the static counterparts [2, 3]. For both protocol types, dwell times are

often very short (on the order of seconds) [2–4]. Combined with a large distance to the source

and the low sensitivity of portable detectors, collected spectra will be background dominated

and contain very few counts. In these cases, dynamic protocols can falter due to lack of rele-

vant information (source counts) compared to the presence of noise (background counts).

Because of this, dynamic protocols often default to static protocols like a uniform search

method or random walk until greater source information is present [2, 3]. Thus, the benefits of

dynamic protocols cannot be realized until they leave this static period of pathing. So, mini-

mizing the static portion of dynamic protocols is critical.

The quality of source information can be improved by either increasing source presence or

reducing background presence in the spectrum. Reducing background presence is feasible in

source surveying scenarios but comes with a set of problems. No matter how sensitive the

detector is, naturally occurring radioactive material (NORM) is an omnipresent and unpre-

dictable (on short time scales) source of radiative counts. Gammas belonging to the NORMs

of 40K, daughters of 238U, 232Th, 235U, and more dominate the background energy spectrum

from 0 to 3 MeV [5–7]. Background subtraction techniques can either estimate the net back-

ground counts in a gross tally or predict the distribution of the full background spectrum for

analysis. In exceedingly sparse data (less than 100 counts/s), however, the total background

count can fluctuate greatly from one sampling to the next; and the counts in a given channel

will also have high relative variance. Low source-to-background counts rates may also hide rel-

evant photopeaks such that background subtraction techniques remove these source peaks as

well.

While there are computational methods for background estimation, many fail to meet the

established criteria for source localization problems as they require either defined peak regions

[8], the tuning of parameters [9], or rely on fully-developed spectra [10]. This is unsatisfactory

for source-search problems as the specific Special Nuclear Material (SNM) present may not be

known, and thus its photopeak region cannot be selected. Secondly, manually tuning or train-

ing parameters requires knowledge of the given system/algorithm, predictable data, and time,

none of which may be present in emergency situations. Finally, given extremely sparse spectra,

many of the provided techniques of background removal simply do not function as they rely

upon features within high-count spectra.

Alamoniotis et al. [11], however, developed a kernel-based Gaussian process (KBGP) for

background estimation under sparse conditions and with no prior information. Their quanti-

fication of “sparse,” however, (~435 background counts/s achieved with a 3 in × 3 in NaI

detector) is more than four times that achieved with handheld detectors such as the Kromek

D3S [12] which are capable of being hoisted with drones (quadcopters). Thus, the Kromek

D3S, which has already been deployed in mobile sensor networks [13–15] provides a better

representation of the background count rate (~50 counts/s) for the mobile detectors likely to

be used in source surveying scenarios. This definition of “sparse” is a necessary consequence

of mobile source surveying, and so a method for analyzing this level of sparse spectra is

needed.

In terms of increasing source presence in the collected spectra, the unique feature of source

localization protocols acquiring an independent spectrum sample at each new testing location

can help. Since a number of gamma spectra are collected over the total surveying period you

can view these collections as a sequence of noisy samples of the true source spectrum distribu-

tion. For each individual spectra collected, source data may be insignificant; but using all the

samplings collectively can improve the confidence of estimated source presence. Combining

this with sparse data background removal provides a statistical framework for estimating

source presence in surveying protocols.

Gaussian process for anomaly detection in sparse gamma-ray data
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In this paper, we present a statistical algorithm for estimating source presence under the

sparse conditions inherent to source surveying protocols. Background presence is first reduced

in collected spectra by using a KBGP structure presented in [11] but further optimized for the

sparse data at hand. Each newly acquired noise-reduced collection is then used to update an

ongoing source distribution estimate via a Linear Innovation Sequences (LIS) scheme for a

KBGP estimation. For this algorithm, we assume no prior information on background or

source, and the source distribution is estimated purely based on the readings acquired while

surveying. KBGPs were selected for both noise removal and source distribution prediction as

they require no previous training and are computationally inexpensive, allowing the algorithm

to be executed by on-board equipment in real-time.

Alternative machine learning algorithms exists which have the potential to estimate source

spectra from collected spectra through both regression and categorical approaches, such as

increasingly popular neural networks. With the conditions set out previously, however, such

techniques are not well suited for this application. Namely, any machine learning methodology

with substantial training requirements would hinder the generalizability of the algorithm.

With substantial variation in background activity and composition, diverse combinations of

source type and activity, and biases inherent to the specific detector type used, too many vari-

ables come into play to reasonably incorporate sufficient training examples to learn all cases

accurately. In addition to the breadth of encounterable spectra, time dependencies need to be

taken into account, adding a dimension of complexity to the training data required. The

KBGP presented allows us to bypass the training phase and view generated source spectra as a

statistical inference rather than a learned prediction on a mission-to-mission basis.

Materials and methods

The following sections first provide an overview of Gaussian processes, kernel functions,

hyperparameters, and LIS, followed by a description of the algorithmic methodologies. For the

remainder of this paper, let: 1) the survey period denote the total time spent gathering gamma

spectra while seeking the source, 2) the dwell time be the collection time for each individual

gamma spectrum, and 3) a collection refer to one spectrum acquired during one dwell time.

For example, collection n refers to the nth gamma spectrum acquired while surveying and

always has a sampling period of one dwell time.

Kernel-based Gaussian processes

The goal of regression problems is to estimate the function f, which is defined by y = f(x) and

represents the relationship between an input x and output y. Estimating this relationship is

typically accomplished by constraining a class of test functions and then optimizing the func-

tion parameters by using training data to produce the smallest error. One downside of this

technique is that it only optimizes function parameters and not the function selection itself,

leaving the user to manually pick which functions to test. Gaussian process (GP) regressions,

on the other hand, consider all possible functions simultaneously and compute a prior proba-

bility over this set such that higher probabilities dictate a greater likelihood that the function

represents the data. This approach is more flexible, as it does not constrain the estimation to

certain classes of functions [16, 17].

To understand GP regression, first, consider the general regression set-up:

y ¼
PM

m¼1
wm�mðxÞ ð1Þ

Here, y is the scalar output representing the observations, x = {x1,. . .,xN} is an N-dimesnional

input representing the features, ϕm are the basis functions representing a mapping from

Gaussian process for anomaly detection in sparse gamma-ray data
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feature space to a transformed space defining ϕ = {ϕ1(x),. . .,ϕM(x)}, wm are the associated sca-

lar weights defining w = {w1,. . .,wM}, and M is the number of basis functions considered. As

an example, the linear regression y = mx+b can be derived from Eq (1) by considering x = {x}

(single feature) and ϕ = {ϕ1(x), ϕ2(x)}, where ϕ1(x) = mx and ϕ2(x) = b. Typically, we are given

D training samples with: x(1),. . .,x(D) where x(d) = {x1,. . .,xN}, and corresponding observations

y = {y1,. . .,yD}. Thus, training sample 1 is {x(1),y1}. In the context of our problem, we consider

the single input feature of energy channel such that x(d) = {xd} and the corresponding observa-

tion yd to be the counts in this channel. One full spectrum consists of observations {xd,yd} for

d = {1,. . .,D} where D is the number of detector channels. Our goal is to first remove the back-

ground counts in channel xd and then predict the source presence. Eq (1) can be represented

in vector form as:

y ¼ Φw ð2Þ

where F is the D×M design matrix whose elements are F(d,m) = ϕm(xd) where m = {1,. . .,M}

and d = {1,. . .,D}. GPs allow us to avoid defining the basis functions, and so the final estimate

will be independent of M.

From here, we move toward deriving the GP estimator by casting the regression problem

into a Bayesian formalism. A normal prior distribution over the weight vector takes the form:

PðwÞ ¼ Nð0; s2

wIÞ ð3Þ

The mean of which is zero, and each weight has uniform variance s2
w. This implies each weight

is uncorrelated and that their distribution is governed by the hyperparameter s2
w. We assume

this prior distribution for the weights due to the lack of prior information [2, 3]. Since Eq (2) is

now defined as a linear combination of jointly Gaussian variables, y itself is Gaussian. Thus, its

expectation value and variance are [16]:

E½y� ¼ E½Φw� ¼ ΦE½w� ¼ 0 ð4Þ

covðyÞ ¼ E½ðy � E½y�Þðy � E½y�ÞT� ¼ E½yyT� ¼ ΦE½wwT�ΦT ¼ s2

wΦΦ
T ¼ K ð5Þ

where K is the D×D Gram Matrix with elements:

Kði;jÞ ¼ kðxi; xjÞ ¼ s
2

w�ðxiÞ
T
�ðxjÞ ð6Þ

where i,j = {1,. . .,D} and k(x,x0) is the kernel function with scalar output. Kernel representation

condenses the inner product in feature space without needing to explicitly define the feature

mapping ϕ itself. This inner product, the kernel function, is the covariance of x and x0 in the

transformed space [16]. The prior over our output vector y then follows the distribution:

PðyÞ ¼ Nð0;KÞ ð7Þ

In random processes, however, there is often assumed to be some noise within the observa-

tions of the target values such that:

td ¼ yd þ �d ð8Þ

where � represents the noise in observations y, and each element �d are assumed to be uncorre-

lated with each other and normally distributed with mean zero and variance s2
d. Physically, for

an observation of counts y in channel x, y is not necessarily the true count expected in x but

rather a sampling of a random variable that can take a range of values. The prior over t =

Gaussian process for anomaly detection in sparse gamma-ray data
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{t1,. . .,tD} is subsequently [16]:

PðtÞ ¼ Nð0;Kþ s2

dIÞ ð9Þ

Since the goal of GP is regression, we want to predict new values in t given features x. Sup-

pose you are given the output vector t = {t1,. . .,tD} and corresponding input vector x = {x1,. . .,

xD}.We would like to estimate point tD+1 for a new input xD+1; in other words, we want to com-

pute the probability distribution for tD+1, P(tD+1|t), given training set {x,t} and testing point

xD+1. From this probability distribution, we can acquire an estimated mean and variance for

tD+1. By conditional probability:

PðtDþ1jtÞ ¼
Pðt; tDþ1Þ

PðtÞ
ð10Þ

Thus, computing P(tD+1) = P(t1,. . .,tD,tD+1) is necessary. As t1,. . .,tD,tD+1 are jointly Gaussian,

tD+1 is Gaussian as well with distribution [16]:

Pðtdþ1Þ ¼ N 0;
Kþ s2

dI k

kT kðxdþ1; xdþ1Þ

" # !

ð11Þ

where the elements of k are given by k(i) = k(xi,xD+1) for i = {1,. . .,D}. Then, the conditional

distribution in Eq (10) is the conditional distribution of two Gaussian functions. The mean

and variance of Eq (10) are then [16]:

mtDþ1 jt
¼ kT

ðKþ s2

dIÞ
� 1t ð12Þ

StDþ1 jt
¼ kðxDþ1; xDþ1Þ � kT

ðKþ s2

dIÞ
� 1k ð13Þ

Here, Eqs (12) and (13) are used to predict the mean and variance of tD+1 given input xD+1,ker-

nel function k, and training data. For predicting a series of new points t� with features x�, the

scalar kernel function k is replaced with the covariance matrix of t�, and k becomes the D×D�

covariance matrix between x and x�, where D� is the number of points in t�.
If the observations are known to have non-zero mean, the simple transformation of t0 = t−E

[t] creates a new random variable t0 with mean zero, and the GP estimator derivation proceeds

identically, ultimately yielding:

μt�jt ¼ μt� þ kT
ðKþ s2

dIÞ
� 1
ðt � μtÞ ð14Þ

The covariance is the same as in Eq (13).

Kernel functions overview. Kernel functions define the covariance between x and x0 in a

feature mapped space without needing to explicitly define the feature transformation ϕ(x)

[16]. As a note, kernel functions can have vector or scalar input. The notation in this section

uses scalar inputs as it reflects the data at hand. Eq (6) provides the definition of a general ker-

nel function. Perhaps the simplest kernel is the linear kernel, in which ϕ(x) =x such that the

kernel function is:

kðx; x0Þ ¼ xx0 ð15Þ

Not all functions are valid kernel functions, however. The primary condition to satisfy is

that the Gram Matrix constructed from a given kernel must be positive semidefinite for all

possible choices of x [16]. Since the purpose of a kernel-based approach is to conveniently

define covariance, one can simply select a kernel which is known to be valid and captures the

Gaussian process for anomaly detection in sparse gamma-ray data
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covariance in a desired way. Popular kernels include the Gaussian (or squared exponential)

kernel (Fig 1A) [17]:

kGðx; x
0Þ ¼ s2 exp �

ðx � x0Þ2

‘
2

� �

ð16Þ

where ‘ is the characteristic length which controls how quickly covariance decays, and σ2 is the

output variance, analogous to the weight variance in Eq (6); and the periodic kernel (Fig 1B)

[17]:

kPðx; x
0Þ ¼ s2 exp �

2 sin2 pjx� x0 j
p

� �

‘
2

0

@

1

A ð17Þ

where p defines the periodicity of the covariance, and σ and ‘ are the same as in Eq (16). Here,

‘, σ, and p are examples of hyperparameters which need to be selected or optimized for over a

given data set.

Valid kernels can also be combined or transformed to form new kernels to capture unique

features. Given valid kernels k1(x,x0) and k2(x,x0), these can be transformed into a new valid

kernel k3(x,x0) following a selection of permitted transformations and combinations such as:

k3ðx; x
0Þ ¼ c k1ðx; x

0Þ ð18Þ

k3ðx; x
0Þ ¼ k1ðx; x

0Þ þ k2ðx; x
0Þ ð19Þ

k3ðx; x
0Þ ¼ k1ðx; x

0Þ � k2ðx; x
0Þ ð20Þ

Given Eq (20), the periodic and Gaussian kernels can be multiplied to form the locally periodic

kernel (Fig 1C), where r = x−x0:

kLPðrÞ ¼ s
2 exp �

1

‘
2

d2 þ 2 sin2 pjrj
p

� �� �� �

ð21Þ

Selection of a kernel function and its hyperparameters depends upon the data and is ulti-

mately what determines the effectiveness and generalizability of the KBGP used. While meth-

ods for selecting kernels in some machine learning methods such as Support Vector Machines

(SVMs) exist [18], the predominant method for choosing kernels in GP regression is by select-

ing a finite number of kernels which may provide good results given your data, testing each,

and selecting from among them [19]. This inference approach requires the analyst know some-

thing about the data since an infinite number of kernels exits.

The primary distinction in classes of kernel functions are stationary vs. nonstationary [16].

Stationary processes satisfy k(x,x0) = k(x−x0) whereas nonstationary do not. This implies sta-

tionary processes are independent of shifts in input and rather depend solely on the distance

between points, whereas nonstationary processes vary under these conditions. The aforemen-

tioned Gaussian kernel is a stationary kernel whereas the linear kernel is nonstationary.

Smoothness, how well a kernel handles discontinuity, is another distinction in class. Stationary

kernels should be selected for stationary processes, and smooth kernels should be selected for

smooth data.

In the problem at hand, sparse spectrum data varies abruptly and discretely between neigh-

boring channels, making it nonsmooth; but the overall distribution of source presence per

channel varies relatively smoothly. In both cases, the process is stationary as distance between

the channels dictates how much information we expect them to share.

Gaussian process for anomaly detection in sparse gamma-ray data
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Hyperparameter overview and selection. Kernel functions typically contain some num-

ber of hyperparameters which need to be selected prior to use. These include the previously

mentioned characteristic length ‘ and periodicity p. Hyperparameter selection can be as influ-

ential as the kernel itself as seen in Fig 1A. Typically, KBGPs go through a training phase

where the hyperparameters are selected to optimize the fit over the training data. This is done

by optimizing P(t|θ), where θ is the hyperparameter vector, for an optimal hyperparameter

selection θ̂. While there are optimization strategies for computing θ̂, we omit these in this

paper in favor of fixed, system-defined hyperparameters. This choice is motivated by the con-

text of the problem and the time constraints it enforces: by eliminating the training for θ̂, the

estimation time is kept to on the order of the dwell time.

Linear innovation sequences overview. The source estimation task has a sequence of

inputs {y(1),. . .,y(T)}, where yðtÞ ¼ fyðtÞ1 ; . . . ; yðtÞD g, y
ðtÞ
d is the estimated source counts in channel

d for the tth collection, T is the number of collections, and D is the number of detector chan-

nels. The goal is to estimate the source presence z = {z1,. . .,zD} in each channel after the Tth

newest collection given by sðTÞ ¼ fsðTÞ1 ; . . . ; sðTÞD g ¼ E½zjyð1Þ; . . . ; yðTÞ�. This task then has a train-

ing set of size (T�D) and testing set of size D. The covariance matrix K in Eq (14) is then of size

(T�D)× (T�D). For example, for a detector with 1024 channels, by the tenth collection, the

covariance matrix will be of size 10240×10240.

The size of the training data is problematic since the primary complexity cost of KBGPs is

inverting the covariance matrix present in Eq (14). While methods for inverting large matrices

quickly exist, such as Cholesky Decomposition [20], taking more than a couple seconds to do

so breaks the criteria for the quick search method desired. An alternative to inverting an ever-

increasing covariance matrix is needed. These computational scaling issues inherent to simple

GP implementation have been alleviated via sparse GP approximations [21, 22, 23], but such

approaches introduce additional complexities including the need to initialize large sparse

matrices or access to utilize batches of training samples. These drawbacks are not of conse-

quence under normal computational conditions, but here data enters the algorithmic pipeline

serially in time and has no bound on survey period. Additionally, all computations will be

done with on-board hardware (such as a smartphone), greatly limiting computational power.

Finally, since we fully omit hyperparameter training, the benefits these advanced approaches

offer are reduced.

Fig 1. Kernel functions. Examples of the Squared Exponential (a), periodic kernel (b), and locally periodic kernel (c).

https://doi.org/10.1371/journal.pone.0228048.g001

Gaussian process for anomaly detection in sparse gamma-ray data
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Linear Innovative Sequences (LIS) provide a solution to this inversion problem, requiring

the inversion of only the most recently acquired sequence to update an existing estimate.

Namely, let z,y(1),. . .,y(T) be random vectors with finite second moments. First, Linear Mini-

mum Mean Squared Error (LMMSE) estimation provides a solution for the estimation of E[z|
y(t)] as [24]:

Ê½zjyðtÞ� ¼ E½z� þ Covðz; yðtÞÞCovðyðtÞÞ� 1yðtÞ ð22Þ

for y(t) with zero mean. For nonzero mean y(t), one can substitute these with y(t)0 = y(t)−E[y(t)].

Note the similarity in form between Eqs (22) and (14). In fact, if z is taken as test points t� and

y(t) as training points t, then these estimators are identical except for their covariance defini-

tion. Explicitly, Eq (14) relies upon a kernel definition while Eq (22) uses the traditional covari-

ance definition. Second, for y(t) which satisfies E[y(t)] = 0 and E½yðiÞyðjÞT� ¼ 0 for i6¼j
(orthogonality), it can be shown that [24]:

sðTÞ ¼ Ê½zjyð1Þ; . . . ; yðTÞ� ¼ E½z� þ
PT

t¼1
Ê½z � E½z�yðtÞ� ð23Þ

This provides the solution to our desired estimation. However, we do not know E[z] by def-

inition of our problem. Neither can we say that E[y(t)] = 0 or are orthogonal outright. LIS pro-

vide a direct solution for imposing E[y(t)] = 0 and orthogonality via the transformation [24]:

~yðtÞ ¼ yðtÞ � Ê½yðtÞjY ðt� 1Þ� ð24Þ

where Y(t−1) = {y(1),. . .,y(t−1)} and:

Ê½yðtÞjY ðt� 1Þ� ¼ E½yðtÞ� þ
Pt� 1

i¼1
CovðyðtÞ; ~yðiÞÞCovð~yðiÞÞ� 1

~yðiÞ ð25Þ

such that [24]:

~yðtÞ ¼ yðtÞ � E½yðtÞ� �
Pt� 1

i¼1
CovðyðtÞ; ~yðiÞÞCovð~yðiÞÞ� 1

~yðiÞ ð26Þ

and we define ~yð1Þ ¼ yð1Þ � E½yð1Þ�. Eq (26) defines the LIS. Substituting Eq (24) into Eq (23)

yields the final form:

sðTÞ ¼ Ê½zjY ðTÞ� ¼ Ê½zj~Y ðTÞ� ¼ E½z� þ
PT

t¼1
Ê½z � E½z�j~yðtÞ� ð27Þ

Note, for each new sequence y(t) observed, updating the estimate only requires inverting

Covð~yðtÞÞ as all other inversions are computed and stored in past steps. Returning to the moti-

vating example, instead of inverting a single (T�D)×(T�D) matrix on the Tth iteration, a D×D
matrix is inverted instead. But, Eq (26) demands the covariance of ~yðtÞ, where we require the

inverse of ðKþ s2
dIÞ for the KBGP previously described. These are fortunately the same thing

because in the GP derivation, we imposed Cov(y) = K in Eq (5), where y is our observation, as

it is here.

Addressing the final undefined term, it can be shown that CovðyðtÞ; ~yðiÞÞ ¼ 0 in Eq (26).

This relies on the assumption that each collection is independent such that: Cov(y(i),y(j)) = 0

for i6¼j. This result simplifies the incorporation of LIS, with the final results being:

sðTÞ ¼ Ê½zjY ðTÞ� ¼ E½z� þ
PT

t¼1
Covðz; ~yðtÞÞCovð~yðtÞÞ� 1

~yðtÞ ð28Þ

And in the GP notation established previously:

sðtÞ ¼ μzjY ¼ μz þ
Pt

i¼1
kT
ðKþ s2

dIÞ
� 1

~yðiÞ ð29Þ

where y(t) is the tth estimated source spectrum. Finally, the undefined μz is the estimate from
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the previous collection step. For example, the first collection assumes μz = 0, as GPs do. The

second collection will assert μz =s(1) and so on. Thus, the mean of the source distribution is

updated after each collection step.

Algorithm overview

The algorithm for anomaly detection is broken into two parts: the first part is a KBGP for

noise reduction (KBGP-NR), and the second part is a KBGP for source distribution estimation

(KBGP-SE). The KBGP-NR views only the most recent collection and reduces noise in the

spectrum. The KBGP-SE considers all noise reduced collections and uses LIS to update an

ongoing estimate of the source distribution. The estimated source distribution is analyzed for

anomalies. The following sections provide an overview of these distinct algorithms. Fig 2 pres-

ents a typical sparse spectrum acquired with a D3S detector over 2 s and an injected source

peak at channel 100. The training set generation is outlined in the validation portion of this

report. Fig 3 presents the same spectrum with labelled source counts for comparison.

KBGP-NR overview

The KBGP-NR is a GP used to reduce the presence of background in collected spectra leaving

a greater source to background ratio for further analysis. The structure of the KBGP-NR is

based upon that presented in [11], and so only the sparse data improvements and a brief over-

view are presented here.

Using the KGPB framework established previously, the input to this KBGP, x, is channel

number and the output, t, is the number of counts attributed to background in channel x.

The KBGP-NR is broken into three stages: 1) defining training set and testing sets from the

most recent collection, 2) KBGP training and prediction, and 3) spectrum reconstruction.

Fig 2. Example spectrum. Example of a sparse gamma ray spectrum with a weak source peak with centroid at channel 100.

https://doi.org/10.1371/journal.pone.0228048.g002
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1) Training and testing sets. Stage one, called “spectral decomposition” in [11], involves

decomposing a single collection into a training set representing background channels and test-

ing set representing channels which have a mix of background and source counts. The training

set, comprised of {channel number, counts} pairs, must adequately represent background and

is thus defined by the spectrum minima. All counts in the minima channels are assumed to be

purely background counts [11, 25, 26]. The remaining {channel number, counts} pairs form

the test set and contain a mix of background and source counts; the goal is to estimate how

many counts belong to background. For extremely sparse data, however, this definition is

insufficient since the majority of channels are zero-count (minima) and many of the non-zero

count channels are adjacent to these. This leads to the common situation where channels with

any non-zero count are labelled as a nonminimum.

To resolve this issue, two spectra are collected (1 second of data each) rather than one. The

minimum check is performed on each 1 second of data independently. If a given channel d is

labelled as a minimum in either of the spectra, then the associated channel in their summed 2 s

spectrum is labeled as a minimum (only background). A channel with no source presence

should not consistently contain counts on such a short time scale, so using this technique to

select against low count channels aids in defining a reliable training set.

2) KBGP estimation. Now with a testing and training set, estimation commences. As

mentioned previously, we omit training the hyperparameter training phase common for GP

regression opting for a direct definition in order to reduce the time of estimation.

While the Matérn and Gaussian kernels tested in [11] were found to perform satisfactorily

for their data, the samples considered here contain one tenth the counts. The data is extremely

non-smooth and thus the semi-smooth Gaussian and Matérn kernels underperform. The

locally-periodic kernel in Eq (21) is instead used as it better captures the discontinuous nature

Fig 3. Labelled spectrum. Input spectrum from Fig 2 with explicitly labelled source counts. The algorithm does not

see this labelled information.

https://doi.org/10.1371/journal.pone.0228048.g003
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of the data over short length scales. The hyperparameters ‘ and p are fixed at implementation.

The parameter ‘ is set to the full width at half maximum (FWHM) value at the peak resolution

of the detector. The justification of this selection is that the detector cannot resolve below this

threshold, and so the tails of any photopeak will just barely fall within this characteristic length.

The periodicity p is set equal to 2 such that the discrete changes in counts between neighboring

channels can be accounted for. Setting p = 2 (as seen in Fig 1C) increases the covariance

between every second channel while selecting against immediate neighbors. The hyperpara-

meter s2
d is determined by computing the maximum variance in counts achieved over the

characteristic length.

With a tuned kernel, the training set, and testing set, Eq (12) yields the estimated mean

number of background counts in nonminima channels while Eq (13) provides the variance for

each of those estimations.

3) Source and background decomposition. The final stage decomposes the full spectrum

into estimated background and estimated source spectra using the estimated mean back-

ground counts in mixed channels. Each tested channel (nonminima) undergoes the variance

check and discretization from [11]. The variance check uses the variance computed from Eq

(13) to test whether the recorded counts fall within two standard deviations of the mean back-

ground estimate; if so, then all counts in that channel are assigned to background, else only the

estimated amount are and the remainder are assigned to source. Discretization is necessary as

the output of the KBGP is not discrete but counts are.

Since the spectra are so sparse, however, an additional step was required to help offset the

problem of many nearby minima (zero count channels in particular) causing the KBGP to

place channels with few counts into the background spectrum despite having a high count

neighbor channel. For any testing channel which had all counts placed into the background

estimate after the variance check, if its immediate neighbors still contain source counts, then

only the estimated counts are set as background instead of all.

Thus, the output consists of an estimated background spectrum and estimated source spec-

trum each of length D. This output can be seen in Fig 4.

KBGP-SE overview

Relying on the noise reduced output from the KBGP-NR, the KBGP-SE is for the task of

source distribution estimation and anomaly detection.

Each noise reduced collection y(t) can be viewed as a sampling from the true source distri-

bution z, and the KBGP-SE uses these samples to build a mean estimate for it. Each new noise

reduced collection y(T+1) is added to a sequence of observations Y(T+1) = {y(1),. . .,y(T),y(T+1)}

and all channels x need be tested for source presence. Thus, the estimate for the true source

distribution z is computed with Eq (28). Utilizing the LIS scheme for updates reduces the com-

plexity of the problem as compared to an ever-growing observations vector. The estimation

cycle is separated again into three stages: 1) prepare the training set with weighting, 2) KBGP

prediction with LIS, and 3) source estimation and anomaly detection.

1) Training set. In order to build a training set, stage one processes the noise reduced col-

lections from the KBGP-NR by weighting each channel with the inverse of the number of

neighboring zeros. Since higher count density is expected in photopeak regions, this process

helps select against poorly filtered background peaks. This weighting scheme counts the num-

ber of zeros around channel d with a window of size ‘ across all T collections; let this vector be

noted as w where the dth element is:

wd ¼
PT

t¼1

Pdþ‘
2

i¼d� ‘
2

d
�
yðtÞðCiÞ

�
ð30Þ

Gaussian process for anomaly detection in sparse gamma-ray data

PLOS ONE | https://doi.org/10.1371/journal.pone.0228048 January 23, 2020 11 / 22

https://doi.org/10.1371/journal.pone.0228048


The counts in each channel are then divided by the square of this zero-weight and normalized

across each collection:

yðtÞd 0 ¼
yðtÞd
w2

d

PD
i¼1

yðtÞi
w2

i

 !� 1

ð31Þ

where D is the number of channels. Following the LIS requirement, our training set is then:

~yðtÞ ¼ yðtÞ0 � E½ yðtÞ0� ð32Þ

where E[y(t)0] is directly computable as the average counts in each channel. This weight vector

is updated after every collection.

2) KBGP estimation with LIS. Stage two uses Eq (28) to compute the mean of the esti-

mated source distribution. The Gaussian kernel function Eq (16) with characteristic length ‘

set equal to the detector resolution was chosen for the source estimation regression task

because the expected source distribution will be smooth. The summation in Eq (28) is over T
collections and where μz = y(T−1) for t>1. The hyperparameter s2

d is also defined at this point

as:

s2

d ¼ s
2

h þ s
2

spectrum ð33Þ

where s2
h is the variance in counts C in channel d across all collections T:

s2

h ¼
1

T
PT

t¼1
ðyðtÞd ðCdÞ � E½yðtÞd ðCdÞ�Þ

2
ð34Þ

Fig 4. Labelled spectrum. Example spectrum with estimated source counts from the KBGP-NR labelled in blue. These

estimated counts are the input into sure KBGP-SE.

https://doi.org/10.1371/journal.pone.0228048.g004
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And s2
spectrum is the variance across all channel measurements:

s2

spectrum ¼
1

TD
PT

t¼1

PD
d¼1
ðyðtÞd ðCdÞ � E½yðCÞ�Þ2 ð35Þ

3) Source estimation and anomaly detection. The final stage takes mean estimate after

each new collection to build an updated source distribution estimate and performs anomaly

detection. Since the output of the KBGP-SE s(T) can be negative, but counts cannot be, any

channel containing negative values is set equal to zero. Negative estimates occur in channels

predicting approximately zero but which are near channels with higher count rates. Then,

since the training data was scaled down with weighting, the output spectrum s(T) is scaled by

the cumulative counts in the noise reduced collections, sðtÞNR:

ŝðTÞ ¼
sðTÞ

PD
d¼1

sðTÞd

 !
PD

d¼1

PT
t¼1

sðtÞNRd ð36Þ

Here, ŝðTÞ updates after each collection and provides a smooth estimate for the source distri-

bution over all detector channels. This can be seen in Fig 5 over the course of 10 collections.

This estimated distribution can be seen plotted against the cumulative collected spectrum in

Figs 6, 7 and 8 corresponding to collection numbers 1, 5, and 15, respectively.

The features of ŝ are used to determine location of anomalies by acquiring the height

(counts) and location (channel) of maximums. Each maximum is then tested against a Gauss-

ian peak as the KBGP-SE produces Gaussian features due to choice of kernel function. An area

Fig 5. Updating source estimate. Series of the estimated source distribution after each of 10 collections. Note the

source peak (channel 100) raises at a much faster rate than the noise peaks (all other peaks).

https://doi.org/10.1371/journal.pone.0228048.g005
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Fig 6. Source estimate after 1 collection. The estimated source distribution is given in blue, the collected spectrum is

given in black, and the true source spectrum is given in green. The collected spectrum is 2 s worth of data.

https://doi.org/10.1371/journal.pone.0228048.g006

Fig 7. Source estimate after 5 collections. The estimated source distribution is given in blue, the cumulative collected

spectrum is given in black, and the true source spectrum is given in green. The collected spectrum is 10 s worth of data.

https://doi.org/10.1371/journal.pone.0228048.g007
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[dlower,dupper] is drawn around each maximum where: dlower is the first point left of the maxi-

mum where the value is equal to or less than one percent of the peak’s height, reaches zero, or

begins to rise again; and dupper is the first point right of the maximum which meets the same

criteria. A Gaussian distribution is then fit to the cumulative output of the KBGP-NR source

estimate over this range:

sð1:TÞ
NR ¼

PT
t¼1

sNR
ðtÞ
½dlower ;dupper �

ð37Þ

If the R2 value computed for this fit is less than a defined threshold, then the peak is ignored

for this collection. This is referred to as the R2 test. Poor fits are caused by either a small num-

ber of counts or peaks formed from background counts which leaked through from the

KBGP-NR. Peaks formed from leaked background are not Gaussian and so fit poorly to a

Gaussian distribution. If the R2 value is greater than a determined threshold, then this peak is

considered subject to a density test. If two-thirds of the area under the curve of ŝ is within

[dlower,dupper], then the peak is considered an anomaly. The relative area under the curve over a

specific window is referred to as “density”.

Results

This section summarizes the testing of the KBGP-NR and KBGP-SE portions of the algorithm,

keeping in mind the latter depends upon the output of the former. Firstly, the source and back-

ground spectrum acquisition protocol is summarized; then the KBGP-NR and KBGP-SE are

tested separately.

Fig 8. Source estimate after 15 collections. The estimated source distribution is given in blue, the cumulative

collected spectrum is given in black, and the true source spectrum is given in green. Note the estimated noise peak as

compared to the actual counts in corresponding channels. The collected spectrum is 30 s worth of data.

https://doi.org/10.1371/journal.pone.0228048.g008
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Source and background spectrum

The background test data was collected with a Kromek D3S gamma-ray detector on the Uni-

versity of Illinois at Urbana-Champaign campus with no sources other than NORM present.

This background set consists of 14077 sample spectra, each 1 s collections, with an average

count rate of 40±16 counts/s. An artificial source spectrum was synthesized via a statistical

model. With a given source activity a and dwell time t, for each spectra, a Poisson random

number was computed representing the total emissions λ as λ~Pois(at). With a defined dis-

tance d meters from the source and the face dimensions of the detector (0.5 in × 2.54 in), the

geometric efficiency �g was calculated and used to compute the number of counts captured by

the detector as c = �gλ. The standard deviation of the detected count spread σ was computed

using the FWHM of the detector. Detected counts c were then placed in the source spectrum

around channel d according to a random Normal distribution following N(d,σ2). This peak is

computed for each second of dwell time independently.

Since these tests are meant to be performed under sparse conditions, a source count rate of

20 counts/s, half that of the background count rate, was selected. This roughly equates to an

activity of 2.2 mCi at a distance of 10 m. The source peak was placed at channel 100, just over-

lapping the noise region. For source peaks at higher channel numbers, the source counts are

more easily distinguished from background. For source peaks at lower channel numbers, the

background counts add to source peaks consistently, reducing the number of local minima,

reinforcing the source peak location.

The source spectrum is then injected into the background spectrum such that a ground

truth about background and source spectrum are known for each collection.

Fig 9. The average R2 test results for the 100 trials with source present. The source peak is increasingly Gaussian

with each successive collection whereas the most convincing noise peak is poorly fitted over all collections. While the

average R2 value for noise never passes 0.3, this is averaged over all 100 trials, and so some noise peaks do surpass this

threshold.

https://doi.org/10.1371/journal.pone.0228048.g009

Gaussian process for anomaly detection in sparse gamma-ray data

PLOS ONE | https://doi.org/10.1371/journal.pone.0228048 January 23, 2020 16 / 22

https://doi.org/10.1371/journal.pone.0228048.g009
https://doi.org/10.1371/journal.pone.0228048


KBGP-NR Validation

The validation of the noise removal algorithm consisted of a test with source present and

another where no source is present. The metric of each test was how well the background and

source spectra were separated as quantified by the correlation coefficient between the respec-

tive true and estimated spectra. Each test consisted of thirty independent trials using 2 s collec-

tions each. These results are compared against the results presented in [11] since these are

functionally similar algorithms with ours being tuned for extremely sparse spectra. The algo-

rithm from [11] was incorporated in full except for the hyperparameter tuning, opting instead

for the fixed parameter approach.

For pure background, the proposed method provides an average correlation coefficient of

0.76±0.08 between the estimated background and true background spectrum over the thirty

trials; the background estimation scheme from [11] yields a correlation coefficient of 0.36

±0.14 between estimated background and true background. The discrepancy of the reported

0.816 correlation coefficient from [11] and the one present here comes down to the sparsity of

the data used. Without implementing the additional strategies for selecting against noise, the

sheer abundance of zero count channels leads channels with counts to be improperly placed in

the source spectrum.

With a 2.2 mCi source placed 10 m from the detector, thirty 2 s source spectra were created.

These were then injected into background spectra. The average correlation coefficient of esti-

mated background to true background spectrum was 0.629±0.15; and the estimated source to

true source spectrum average correlation coefficient was 0.67±12. Implementing the KBGP

from [11] as before yields a background correlation coefficient of 0.33±13 and a source corre-

lation coefficient of 0.60±0.08.

Fig 10. The average density of the noise and source peaks over the 100 trials with source present. The density

within the source region increases with each successive collection while that of noise regions fall. This shows that the

algorithm is correctly placing more counts in the source region with each new collection.

https://doi.org/10.1371/journal.pone.0228048.g010
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These tests indicate that the proposed method for background and source spectra predic-

tion improves over [11] in the case of extremely sparse data and fixed hyperparameters. How-

ever, there is still sub-optimal estimation of source spectrum as indicated by the relatively low

correlation coefficients. This motivates the need for the KBGP-SE.

KBGP-SE Validation

The KBGP-SE tests consisted of, like in the previous section, one experiment with a source

and another without. Each of these experiments consisted of 100 trials taking 15 successive col-

lections of 2 s measurements each to make use of the updates available to the KBGP-SE. Each

collection was first passed through the KBGP-NR to reduce the noise.

In observing the output from the KBGP-SE in Figs 6, 7 and 8, two notable peaks form: a

peak centered near channel 100 correlating to source and another around channel 40 correlat-

ing to noise. This can be seen in Fig 7 and Fig 8. The noise peak is present with or without

source presence. While some smaller peaks are identifiable, the results presented here focus on

the noise peak which demonstrated the strongest chance to incorrectly pass the anomaly detec-

tion criteria.

Both the noise and source peaks form Gaussian-like peaks due to the selection of kernel.

The R2 coefficient used for the anomaly detection test rose with each successive trial for the

source peak as the number of counts become sufficient enough to be represented as a Gaussian

as seen in Fig 9. Here the most prominent noise peak R2 value only surpassed the photopeak

R2 value in early collections. These were the average values over all 100 trials. It also demon-

strates that the noise leaked through filtering becomes less Gaussian over time as the value falls

over the successive collection. Relative density accumulated within the true peak region consis-

tently while the noise region decreased in estimated source presence as seen in Fig 10.

Fig 11. The average R2 test results for the 100 trials with no source present. The average R2 value for the best

performing noise peak mirrors that of Fig 9, illustrating that the noise peak shape is independent of source presence.

https://doi.org/10.1371/journal.pone.0228048.g011
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For the trials with no source, every trial passed the density test. This makes sense as only a

single peak from leaked noise is present and so would necessarily contain the majority of the

density. As such, the R2 test did a good job selecting again noise peaks as their distribution was

not well captured by a Gaussian fit. The R2 value of the best scoring noise peak can be seen in

Fig 11 and the density of the largest noise peak in Fig 12.

The true positive rate for anomaly detection across the full algorithm (using the KBGP-NR

for noise reduction and the KBGP-SE for source estimation) with an R2 threshold of 0.65 and

averaged over all trials was 0.93. This can be improved upon by noting that these tests were

conducted with a stationary detector. If paired with a surveying algorithm, as intended, the

amount of information available to the algorithm should improve upon this accuracy. The

ROC curve for anomaly detection while adjusting the R2 threshold can been seen in Fig 13.

The area under the ROC curve was 0.902 demonstrating a good estimation process.

Conclusion

Through a two-stage statistical model, we have developed an algorithm for anomaly detection

for sparse data, source search scenarios. By using a KBGP for noise removal in order to have a

more consistent source spectrum, we were able to demonstrate that by using successive sam-

pling, a source peak can be identified in extremely sparse conditions and immune to selecting

against noise peaks. While this algorithmic approach has been contextualized by a source sur-

veying scenario, the detector position was held fixed in these trials, representing a scenario in

which the surveyor never actually approaches the source. This equates to operating on only the

worst quality information available during source surveying and still achieving the presented

results.

Fig 12. The average density of the noise peak over the 100 trials with no source present. While density is

accumulating within the peak, this is done very slowly as indicated by the small percent increases with each new

collection. This high value make sense as the noise region.

https://doi.org/10.1371/journal.pone.0228048.g012
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While we demonstrated that this procedure is successful for a 2.2 mCi source 10 m from a

low sensitivity detector whose photopeak just overlaps a noise dominated region, this algo-

rithm can be applied to any number of combinations of source type, detector type, and dis-

tance. Most notably, this algorithm requires no training prior to use and is independent of

gamma detector specifics except for a single hyperparameter governed by resolution. As such,

it can be immediately incorporated into any sparse data gamma analysis for which a source

location (peak, region, etc.) is required. Future work will explore using the source distribution

estimate to bias against certain channels.

Supporting information

S1 Table. Background radiation measurements. The time column is in the unit of epoch.

Each s# column represents the counts in channel #.
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