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SUMMARY
Cancer-secreted microRNAs (miRNAs) are emerging mediators of cancer-host crosstalk. Here we show that
miR-105, which is characteristically expressed and secreted by metastatic breast cancer cells, is a potent
regulator of migration through targeting the tight junction protein ZO-1. In endothelial monolayers, exo-
some-mediated transfer of cancer-secreted miR-105 efficiently destroys tight junctions and the integrity of
these natural barriers against metastasis. Overexpression of miR-105 in nonmetastatic cancer cells induces
metastasis and vascular permeability in distant organs, whereas inhibition of miR-105 in highly metastatic
tumors alleviates these effects. miR-105 can be detected in the circulation at the premetastatic stage, and
its levels in the blood and tumor are associated with ZO-1 expression and metastatic progression in early-
stage breast cancer.
INTRODUCTION

Metastasis is the leading cause of mortality in cancer patients.

Nearly 50% of breast cancer (BC) patients treated with chemo-
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early diagnostic markers for metastasis and to elucidate the

molecular mechanisms of metastasis that would allow the

development of efficient treatment options. In the ‘‘seed and

soil’’ hypothesis for metastasis (Paget, 1889), migratory tumor

cells leave the primary tumor through intravasation, dissemi-

nate throughout the body via the circulation, and eventually

engraft in a distant organ that provides an appropriate microen-

vironment. These consecutive steps require close interplay

between cancer cells and their microenvironment. Among the

multiple factors underlying metastasis, the adaptation of the

primary tumor microenvironment and premetastatic or meta-

static niches by cancer to facilitate cancer cell dissemination

and distant engraftment plays an important prometastatic role

that is starting to be recognized (Chambers et al., 2002; Kaplan

et al., 2005; Podsypanina et al., 2008; Psaila and Lyden, 2009;

Sethi and Kang, 2011). The recent discovery of microRNAs

(miRNAs) and their extracellular presence suggest a potential

role of these regulatory molecules in defining the metastatic

potential of cancer cells and mediating the cancer-host

communication.

miRNAs are small noncoding RNAs that base-pair with the 30

untranslated regions (UTRs) of protein-encoding mRNAs, result-

ing in mRNA destabilization and/or translational inhibition. The

biogenesis of miRNAs is tightly controlled, and dysregulation

of miRNAs is linked to cancer (Calin and Croce, 2006; Iorio

et al., 2005). miRNAs are also present extracellularly, either

through binding to protein or lipid carriers (Arroyo et al., 2011;

Turchinovich et al., 2011; Vickers and Remaley, 2012) or as a

major RNA component of exosomes (Redis et al., 2012; Valadi

et al., 2007). Exosomes are small (30–100 nm) membrane-

encapsulated vesicles that are released into the extracellular

environment by many cell types, including cancer cells (Skog

et al., 2008; Valadi et al., 2007; Yuan et al., 2009). Exosomal

RNAs are heterogeneous in size but enriched in small RNAs,

such as miRNAs. Cancer-secreted exosomes and miRNAs

can be internalized by other cell types in the primary tumor

microenvironment and premetastatic or metastatic niches

(Hood et al., 2011; Peinado et al., 2012; Skog et al., 2008;

Yuan et al., 2009; Zhang et al., 2010; Zhuang et al., 2012).

miRNAs loaded in these exosomes, which to a certain extent

reflect the dysregulated miRNA profile in cancer cells, can

thus be transferred to recipient niche cells to exert genome-

wide regulation of gene expression. In addition, cancer-derived

exosomal miRNAs may bind as ligands to Toll-like receptors in

surrounding immune cells (Fabbri et al., 2012). Therefore, can-

cer-secreted miRNAs may play a crucial role in regulating

various cellular components of the tumor microenvironment in

order to facilitate metastasis.

Cancer-derived miRNAs have been detected in the blood of

cancer patients, and their levels distinguish cancer patients

from healthy controls (Mitchell et al., 2008; Taylor and Gercel-

Taylor, 2008). Previous studies by us and by other groups have

identified circulating miRNAs associated with the histopatholog-

ical features of breast tumors and clinical outcomes in BC

patients (Heneghan et al., 2010; Jung et al., 2012; Roth et al.,

2010; Wu et al., 2012; Zhu et al., 2009). Some of these miRNAs

may play a role in the metastatic process. The goal of this study

was to identify cancer-secreted miRNAs that participate in

cancer metastasis by adapting the niche cells.
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RESULTS

Metastatic BC-Secreted Exosomal RNA Regulates
the Migration of Endothelial Cells
We chose the MDA-MB-231 metastatic BC (MBC) line and the

MCF-10A noncancerous mammary epithelial line as models for

studying cancer-secreted exosomes and miRNAs. Exosomes

purified from conditioned media by ultracentrifugation exhibited

typical cup-shaped morphology by electron microscopy and a

size range of 30 to 100 nm (Figure 1A).We focused on endothelial

cells in this study for their critical barrier function during

metastasis. When exosomes labeled with the fluorescent

dye1,10-dioctadecyl-3,3,30,30-tetramethylindocarbocyanineper-

chlorate (DiI) were incubated with primary human microvascular

endothelial cells (HMVECs), the recipient cells exhibited high up-

take efficiency, as indicated by fluorescence microscopy (Fig-

ure 1B) and flow cytometry (Figure 1C), without a significant

difference between MCF-10A- and MDA-MB-231-derived exo-

somes. After a 24 hr incubation with labeled exosomes, >90%

of recipient cells were positive for DiI fluorescence (Figure 1C).

Among a series of cellular analyses in exosome-treated

HMVECs, we found that the transwell migration of endothelial

cells was significantly stimulated by MDA-MB-231-secreted,

but not MCF-10A-secreted, exosomes (Figure 1D). Transfection

of total or small RNA extracted from MDA-MB-231 exosomes,

but not that from the MCF-10A exosomes, recapitulated the

migration-inducing effect (Figure 1E), thereby indicating that

the unique small RNA content of MDA-MB-231 exosomes func-

tions as a migratory regulator in endothelial cells.

miR-105 Is Specifically Expressed and Secreted byMBC
Cells and Can Be Transferred to Endothelial Cells via
Exosome Secretion
To identify the exosome-associated small RNA(s) that induce

migration, we selected and profiled all small RNAs in the exo-

somes by Solexa (Illumina) deep sequencing. Exosomes from

MDA-MB-231 and MCF-10A cells exhibited similar small RNA

composition (Figure S1A available online). We focused on

miRNAs that are known for their gene-regulatory function, iden-

tifying a list of miRNAs differentially secreted between the two

lines (Table S1). Among these, some showed the correspond-

ing up- or downregulation in the cells and the exosomes,

whereas others exhibited opposite changes between the exo-

somal and cellular compartments, which may suggest cell-

type-specific mechanisms for highly selective enrichment or

exclusion of the miRNA in exosome-mediated secretion. We

further focused on miR-105 that was predicted by multiple

algorithms (TargetScan, miRDB, and PicTar) to target TJP1

(tight junction [TJ] protein 1; also known as zonula occludens

1 [ZO-1]), a migration-related gene. The secretion of mature

miR-105 was highly specific to MDA-MB-231, and its expres-

sion was significantly higher in these cells compared with

MCF-10A (Figures 2A and 2B; Table S1). Although the primary

(pri-) and precursor (pre-) miR-105 also exhibited higher intra-

cellular levels in MDA-MB-231, these forms were not detect-

able in exosomes (Figures S1B and S1C). Among a panel of

BC lines, the expression and secretion of miR-105 were spe-

cific to highly metastatic cells originally isolated from pleural

effusion (Figures 2A and 2B).



Figure 1. MBC-Secreted Exosomal RNA Regulates Migration of Endothelial Cells

(A) EM images of exosomes secreted by MCF-10A and MDA-MB-231 cells.

(B) Primary HMVECs were incubated with DiI-labeled exosomes (red) for 24 hr before fluorescent and phase contrast images were captured.

(C) HMVECs incubated with DiI-labeled exosomes for indicated time were analyzed by flow cytometry for DiI uptake.

(D) After 48 hr incubation with exosomes or PBS (as control), HMVECs were analyzed for transwell migration, and cells that had migrated within 8 hr were

quantified from triplicate wells.

(E) HMVECs transfected with equal amount of total or small (<200 nt) RNA extracted fromMCF-10A or MDA-MB-231 (abbreviated as MDA-231 or 231 in figures)

secreted exosomes, or control RNA (cel-miR-67), were subjected to transwell migration at 48 hr after transfection.

*p < 0.005 compared with control group. Results are presented as mean ± SD.
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To confirm that MBC-secreted miR-105 can be transferred

to endothelial cells via exosomes, we measured the miR-105

levels in HMVECs treated with exosomes derived from MCF-

10A or MDA-MB-231 cells. An increase of the cellular level

of mature miR-105, but not pri- or pre-miR-105, was observed

in recipient HMVECs following the treatment with MBC-origi-

nated exosomes with kinetics starting at 4 hr and peaking at

24 hr (Figures 2C and 2D), similar to that observed for exo-

some uptake (Figure 1C). We conclude that this increase of

miR-105 reflects the exosome-mediated miRNA transfer but

not an induction of miR-105’s endogenous expression in the

recipient cells, as its level in exosome-treated cells was not

significantly affected by an RNA polymerase II inhibitor (Fig-

ure 2E). When we treated HMVECs with PKH67 (Sigma-

Aldrich)-labeled exosomes secreted by MDA-MB-231 cells

that were transfected with Cy3-labeled miR-105, the Cy3 fluo-

rescence was observed in >90% of recipient cells, in which it

largely colocalized with the PKH67 lipid dye that labeled the

exosomal membranes (Figure S1D). In contrast, no internaliza-

tion of naked Cy3-labeled miR-105 was observed in HMVECs

(Figure S1D).
Cancer-Secreted miR-105 Downregulates Tight
Junctions and Destroys the Barrier Function
of Endothelial Monolayers
We next examined the miR-105 regulation of the putative target

ZO-1, a central molecular component of TJs, which comprise a

major group of cell-cell adhesion complexes in endothelial and

epithelial cells. The four predicted miR-105 binding sites in the

30UTR of human ZO-1 were cloned into a reporter plasmid and

assessed for their responsiveness to miR-105 in HMVECs.

Site I and site II, which are conserved among most species, re-

sponded to retrovirus-expressed miR-105 by directing a 50%

to 65% reduction in reporter gene expression, whereas the other

two sites did not. When both sites I and II were present down-

stream of reporter gene, a greater reduction in gene expression

was observed (Figure S2A).

Consistent with the results from the reporter assay, ectopic

expression of miR-105, or treatment with exosomes derived

from theMDA-MB-231 (high-miR-105) but not theMCF-10A cells

(low-miR-105), resulted in a significant decrease of ZO-1 expres-

sion at both themRNA and protein levels in HMVECs (Figures 3A–

3C). The effect of MDA-MB-231 exosomes could be abolished
Cancer Cell 25, 501–515, April 14, 2014 ª2014 Elsevier Inc. 503



Figure 2. miR-105 Is Specifically Expressed and Secreted by MBC Cells and Can Be Transferred to Endothelial Cells via Exosome Secretion

(A and B) Cellular (A) and exosomal (B) RNAwas extracted from various breast cell lines and subjected tomiR-105 RT-qPCR. Data were normalized to levels of U6

(cellular; A) or miR-16 (exosomal; B) and compared with the nontumor line MCF-10A. MBC lines originally isolated from pleural effusion (PE) are indicated by red

columns.

(C) RNA was extracted from HMVECs incubated with exosomes of different origins for indicated time and analyzed for miR-105 level using U6 as internal control.

At each time point, data were compared with PBS-treated cells.

(D) RNA extracted from HMVECs incubated with exosomes of different origins for 24 hr (or PBS as control) was analyzed for the level of pri-miR-105 or pre-miR-

105.

(E) MDA-MB-231-secreted exosomes were fed to HMVECs in the presence or absence of 5,6-dichloro-1-b-D-ribofuranosylbenzimidazole (20 mM). After 24 hr,

RNA extracted from the recipient cells was analyzed for miR-105 level.

*p < 0.005 compared with PBS treatment. Results are presented as mean ± SD (see also Figure S1 and Table S1). P.Br, primary breast.
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by transfecting the recipient cells with miR-105 inhibitor (Figures

3B and 3C). It was unlikely to require additional exosomal compo-

nents that are unique to MDA-MB-231, as exosomes secreted by

MCF-10Acells stably overexpressing and secretingmiR-105 (Fig-

ure S2B) and by other high-miR-105 BC cells but not by low-miR-

105 BC cells (Figures 2A and 2B) also downregulated ZO-1

expression in recipient HMVECs (Figure 3C; Figure S2C). When

HMVEC monolayers were analyzed by immunofluorescence,

those treated with high-miR-105 exosomes (secreted by MCF-

10A/miR-105 and MDA-MB-231) exhibited marked reduction of

ZO-1 and internalization of another TJ protein occludin from cell

junctions,whereas the junctional level of vascular endothelial cad-

herin (VE-cadherin) was not significantly affected (Figure 3D).
504 Cancer Cell 25, 501–515, April 14, 2014 ª2014 Elsevier Inc.
We next performed an in vitro permeability assay by

measuring the traversing of rhodamine-labeled dextran (relative

molecular mass 70,000) probes through HMVEC monolayers

growing on 0.4-mm filters. Similar to the effect induced by

vascular endothelial growth factor (VEGF), treatment of the

endothelial barrier with MDA-MB-231 exosomes also induced

passage of the fluorescent probes from the top to the bottom

wells in a manner that was dependent on functional miR-105

and downregulation of ZO-1 (Figure 3E). When the transendo-

thelial electrical resistance was measured in HMVEC mono-

layers, treatment with MDA-MB-231 exosomes significantly

reduced the unit area resistance compared with PBS or MCF-

10A exosome treatment. Inhibition of miR-105 and restored
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expression of ZO-1 in recipient HMVECs both abolished the

effect of MBC-derived exosomes (Figure 3F). The effect of

miR-105-containing exosomes on vascular destruction was

further tested in a 3D vascular sprouting assay. In this system,

endothelial cells formed vascular sprouts after 4 to 5 days in cul-

ture. At this time, purified exosomes fromMCF-10A/vec (control)

or MCF-10A/miR-105 cells were added into the culture media,

and the effects on already established vascular structures

were analyzed 5 days later. We observed a clear and significant

destruction of vascular structures with the treatment of miR-105-

containing exosomes (from MCF-10A/miR-105) compared with

the control (Figure 3G). Consistent with these results, ectopic

expression of miR-105 or treatment with MBC exosomes signif-

icantly induced migration in HMVECs through the miR-105/ZO-

1-mediated mechanism (Figure 3H). Last, to directly simulate

the barrier-traversing step in metastasis, transendothelial inva-

sion of cancer cells was examined using HMVEC monolayers

grown on 3-mm filters. The number of GFP-labeled MDA-231-

HM cells that had invaded through HMVECs treated with MDA-

MB-231 exosomes was significantly greater compared with

those that had invaded through untreated or MCF-10A exo-

some-treated HMVECs, and both miR-105 inhibition and ZO-1

restoration in recipient cells interfered with this effect (Figure 3I).

Cancer-Secreted miR-105 Induces Vascular
Permeability and Promotes Metastasis In Vivo
To further demonstrate the in vivo effect of exosomal miR-105 on

endothelial barriers, we injected exosomes secreted by MCF-

10A/vec (low-miR-105), MCF-10A/miR-105 (high-miR-105), or

MDA-MB-231 cells (high-miR-105), or PBS as control, into the

tail veins of NOD/SCID/IL2Rg null (NSG) mice and examined

the lung and brain, organs that frequently host BC metastases,

after exosome treatment. The results indicated that exosomes

with high-miR-105, but not those with low-miR-105, significantly

increased miR-105 levels in lung and brain (Figure 4A), accom-

panied by reduced ZO-1 expression in endothelial cells positive

for cluster of differentiation 31 (CD31) (Figure 4B) and enhanced

vascular permeability (Figure 4C; Figure S3). In another experi-

ment, mice were pretreated with exosomes secreted by MCF-

10A or MDA-MB-231 cells (or PBS as control) before an intracar-

diac injection of luciferase-labeled MDA-MB-231 cells. Three

weeks later, tissues were collected for reverse transcription

quantitative PCR (RT-qPCR) of luciferase gene using mouse

18S as internal control to quantify metastases. Consistent with

their effect on destroying the endothelial barriers, MDA-MB-

231 but not MCF-10A exosomes significantly increased metas-

tases in the lung and brain (Figure 4D).

miR-105 Overexpression in Poorly Metastatic BC Cells
Promotes Metastasis In Vivo
To determine if the miR-105 level in primary tumors regulates

endothelial barriers and metastasis, we stably overexpressed

miR-105 in an MCF-10A-derived tumorigenic line, MCFDCIS,

which forms lesions similar to comedo ductal carcinoma in situ

that spontaneously progress to invasive tumors (Hu et al.,

2008;Miller et al., 2000). Comparedwith vector-transduced con-

trol cells, the miR-105-overexpressing MCFDCIS cells also

secreted a higher level of miR-105 (Figure S4A) and showed

reduced ZO-1 protein expression and significantly enhanced
migration in transwell and wound closure assays (Figures S4B–

S4D). Restoration of ZO-1 using an overexpressing plasmid

that lacks the 30UTR abolished the promigratory effect of

miR-105. We next established orthotopic xenografts using lucif-

erase-labeled MCFDCIS cells with or without miR-105 overex-

pression. AlthoughmiR-105 did not seem to affect primary tumor

growth (Figures S4E and S4F), distant metastases were signifi-

cantly induced in the lung and brain in mice bearing miR-105-

overexpressing tumors at week 6 (Figures 5A and 5B). Histolog-

ical staining indicated that in contrast to the MCFDCIS/

vec tumors, which showed moderate local invasiveness,

MCFDCIS/miR-105 tumors displayed no clear margin and

extensively infiltrated into the surrounding tissues (Figure 5C).

In addition, the in vivo vascular permeability in the lung, liver,

and brain of mice bearing miR-105-overexpressing tumors was

dramatically increased compared with that in the control group

(Figure 5D; Figure S4H), whereas relatively high vascular perme-

ability was observed in the primary tumors of both groups (Fig-

ures S4G and S4H). In mice bearing miR-105-overexpressing

tumors, miR-105 was detected not only in primary tumors but

also in the metastasis-free areas of distant organs (Figure 5E).

Reduced level of ZO-1 was observed in the CD31+ vascular

endothelial cells in the lung and brain of mice with high-miR-

105 xenografts (Figure 5F). These results collectively suggest

that tumor cells expressing and consequently secreting higher

level of miR-105 acquire greater metastatic potential through

the dual advantages of enhanced tumor cell invasion and weak-

ened endothelial barriers in the host.

miR-105 Inhibition SuppressesMetastasis and Restores
Vascular Integrity In Vivo
To further explore the potential therapeutic effect of miR-105

intervention, we established xenografts from high-miR-105,

high-metastatic MDA-231-HMcells that were generated through

explant culture of a spontaneous meningeal metastasis of MDA-

MB-231. In vitro treatment of these cells with an anti-miR-105

compound increased ZO-1 expression and suppressed migra-

tion (Figures S5A and S5B), consistent with the effect of miR-

105 observed in other experiments. In vivo treatment with the

anti-miR-105 compound reduced the volume of primary tumors

and suppressed distant metastases to the lung and brain

compared with the groups receiving PBS or control compound

(Figures 6A–6C). Tumors treated with anti-miR-105 had clear

margins with significantly reduced tumor cell infiltration into the

surrounding tissues (Figure 6D). Although Ki-67 staining did not

show a significant difference among the tumor groups, anti-

miR-105-treated tumors showed higher levels of ZO-1 and

higher percentages of apoptotic cells, as indicated by cleaved

caspase-3 (Figure 6E). The in vivo vascular permeability assay

indicated a lack of rhodamine-dextran penetration into various

tissues in tumor-free mice; conversely, leakage of the dye into

these tissues in tumor-bearing animals occurred even at a pre-

metastatic stage (Figure 6F; Figure S5C), which suggests an ef-

fect of tumor-secreted factors in destroying the vascular integrity

of a distant organ during early premetastatic niche formation.

Notably, treatment with anti-miR-105 efficiently blocked this

effect, restoring the vascular integrity in tumor-bearing animals

(Figure 6F; Figure S5C). Restored ZO-1 expression in CD31+

vascular endothelial cells was observed in the lung and brain
Cancer Cell 25, 501–515, April 14, 2014 ª2014 Elsevier Inc. 505



Figure 3. Cancer-Secreted miR-105 Downregulates TJs and Destroys the Barrier Function of Endothelial Monolayer

(A) HMVECs transduced with miR-105 or vector were analyzed for ZO-1 expression by RT-qPCR.

(B) HMVECs treated as indicated were analyzed for the RNA level of ZO-1.

(C) HMVECs treated as indicated were analyzed by Western blot.

(D) HMVEC monolayers were treated as indicated for 48 hr and analyzed by immunofluorescence (IF) for ZO-1 (green), occludin (red), and VE-cadherin (green).

DAPI (blue): cell nuclei.

(legend continued on next page)
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of tumor-bearing mice treated with anti-miR-105 compound

(Figure 6G). Thus, anti-miR-105 treatment suppresses metas-

tasis by reducing tumor invasiveness and restoring the barrier

function of endothelial niche cells.

miR-105 Is Associated with ZO-1 Expression and
Metastatic Progression in BC
Because miR-105 is uniquely expressed and secreted by MBC

cells, it is possible that cancer-secreted miR-105 can be de-

tected in the circulation of BC patients, such that miR-105 may

serve as a prognostic marker for metastatic potential. To explore

this, we first measured the serum miRNA levels in mice bearing

MDA-231-HM xenograft tumors at either the premetastatic

(week 3 after cancer cell implantation) or metastatic (week 6 after

cancer cell implantation) stage in comparison with tumor-free

animals. Circulating miR-105, but not two other miRNAs (miR-

155 and miR-375), was significantly elevated in tumor-bearing

animals at both premetastatic andmetastatic stages (Figure 7A),

suggesting that miR-105 derived from primary tumors with high

miR-105 levels and high metastatic potential can be detected in

the blood at an early stage before the clinical detection of metas-

tasis. We next compared serum miRNA levels among 38 stage II

and III BC patients. By comparing miRNA levels in circulating

exosomes and the corresponding exosome-depleted serum

fraction, we found that circulating miR-105 and miR-181a pre-

dominantly existed in exosomes, whereas two other miRNAs

(miR-375 and miR-422b) were detected in both exosomes and

exosome-depleted fraction at comparable levels (Figure S6). In

circulating exosomes purified from sera, levels of miR-105, but

not two other miRNAs (miR-181a and miR-375), were signifi-

cantly higher in patients who later developed distant metastases

during the 4.2 years of mean follow-up (n = 16) than those who

did not (n = 22) (Figure 7B). To further determine if circulating

miR-105 in BC patients is functionally active in regulating endo-

thelial cells, we treated established 3D vascular structures with

serum from a healthy donor or a BC patient with a high level of

circulating miR-105. The patient serum but not normal serum re-

sulted in a destruction of vascular structures, which was abol-

ished by the anti-miR-105 compound (Figure 7C).

In patients with paired serum and tumor specimens, we further

detected a strong positive correlation between circulating (exo-

somal) and tumor miR-105 levels (r = 0.85, p < 0.01). In contrast,

significant inverse correlations were detected between tumor

miR-105 and ZO-1 (r = �0.48, p = 0.03) and between circulating

(exosomal) miR-105 and tumor-adjacent vascular ZO-1 expres-
(E) The permeability of treated HMVECmonolayers grown on 0.4 mm filters was m

well at the beginning of the experiment, in the bottomwell during a 1 hr time course

HMVECmonolayer with VEGF (50 ng/ml) for 8 hr was included as a positive contro

was compared with the PBS (control) condition. *p < 0.005. **p > 0.05.

(F) HMVEC monolayers grown on filters and treated as indicated were analyzed

triplicate wells was normalized to the control (PBS) treatment.

(G) Treatment with miR-105-containing exosomes resulted in a vascular destruct

purified exosomes from MCF-10A/vec (control) or MCF-10A/miR-105 cells were a

treatment, and representative images are shown (left). Vascular sprouts per sphe

each experiment, and the experiment was repeated three times. *p < 0.05.

(H) HMVECs treated as indicated were subjected to transwell migration. Cells th

(I) HMVEC monolayers grown on 3 mm filters were treated as indicated before GF

the GFP+ cells on the bottom side of filters were quantified under a fluorescent m

Results are presented as mean ± SD (see also Figure S2). GAPDH, glyceraldehy
sion (r =�0.49, p = 0.04) (Figures 7D and 7F). These observations

are consistent with the role of miR-105 in downregulating ZO-1.

In addition, higher levels of tumor miR-105 and lower levels of

tumor and vascular ZO-1 were observed in patients who later

developed distant metastases compared with those who did

not and compared with normal mammary tissues (Figures 7E

and 7F), thus supporting the functional association of these

genes with cancer metastasis. In a BC tissue array, significantly

higher miR-105 and lower ZO-1 levels were detected in the pri-

mary tumors with distant or lymph node metastases (n = 15)

compared with those without (n = 60), and the inverse correlation

between miR-105 and ZO-1 remained significant among all

cases (r = �0.24, p = 0.04) (Figure 7G). Overall, our clinical

data suggest that cancer-derived miR-105 can serve as a

blood-based marker for the prediction or early diagnosis of BC

metastasis and may play a role in promoting cancer progression

by targeting ZO-1.

DISCUSSION

Exchange of cellular materials between cells through various

paracrine and endocrine mechanisms is an important means of

intercellular communication and can be mediated by exosomes.

The tumor-derived adaptation of endothelial cells by miR-105

occurs during early premetastatic niche formation. Enhanced

vascular permeability could then enhance cancer cell dissemina-

tion and growth at distant sites through multiple means,

including (1) plasma protein leakage that results in enhanced

entrapment and hence concentration of tumor cells; (2)

enhanced dissemination of tumor cells to distant sites, resulting

in autocrine signaling that overwhelms any inhibitory signaling at

the distant site; and (3) additional exosome cargos and/or

plasma proteins that leak into secondary organs and alter

cellular physiology toward a prometastatic/tumor-supportive

phenotype. In fact, vascular destabilization at the premetastatic

lung niche has been previously described and involves a syner-

gistic effect among angiopoietin 2, matrix metalloproteinase

(MMP) 3, and MMP10 (Huang et al., 2009). Thus, therapies tar-

geting miR-105 and these protein factors, in combination with

existing conventional therapies, may serve as an effective treat-

ment for cancer patients with high risk for metastasis (e.g., indi-

cated by high levels of circulating miR-105). Understanding

mechanisms leading to miR-105 overexpression in MBC, which

is an ongoing direction in our laboratory, may reveal additional

strategies for miR-105 intervention.
easured by the appearance of rhodamine-dextran, which was added to the top

. The absorbance at 590 nm at each time point was indicated. Treatment of the

l to show cytokine-induced permeability. The absorbance at the 1 hr time point

for transendothelial electrical resistance. Calculated unit area resistance from

ion. Vascular sprouting assay was established for 5 days, at which time 1 mg of

dded into the culture media. Vascular structures were imaged 5 days after the

roid were counted and graphed (right). At least 50 spheroids were counted in

at had migrated within 8 hr were quantified from triplicate wells. *p < 0.005.

P-labeled MDA-231-HM cells were seeded in the transwell inserts. After 10 hr,

icroscope. *p < 0.005.

de 3-phosphate dehydrogenase.

Cancer Cell 25, 501–515, April 14, 2014 ª2014 Elsevier Inc. 507



Figure 4. Cancer-Secreted miR-105 Induces Vascular Permeability and Promotes Metastasis In Vivo

(A) Exosomes secreted by MCF-10A/vec, MCF-10A/miR-105, or MDA-MB-231 cells, or PBS (as control), were intravenously injected into the tail veins of NSG

mice (n = 3) twice a week. After five injections, tissues were collected for RT-qPCR of miR-105 using U6 as internal control. *p < 0.05.

(B) Collected lung and brain tissueswere subjected to double-label IF for ZO-1 (green) andCD31 (pink). Structures positive for CD31 are indicated by arrowheads.

The scale bar represents 100 mm.

(C) In vivo vascular permeability determined by the appearance of intravenously injected rhodamine-dextran (red) (n = 3). Representative images are shown. DAPI

(blue): cell nuclei. The scale bar represents 100 mm.

(D) Exosomes secreted by MCF-10A or MDA-MB-231 cells, or PBS (as control), were intravenously injected into the tail veins of NSG mice (n = 6) twice a week.

After five injections, all mice received intracardiac injection of luciferase-labeled MDA-MB-231 cells. Three weeks later, tissues were collected for RT-qPCR of

luciferase gene using mouse 18S as internal control to quantify metastases. *p < 0.05.

Results are presented as mean ± SD (see also Figure S3).
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Downregulation or loss of TJs, frequently as a result of

reduced expression of TJ-associated proteins, contributes to

cancer progression by altering cell migration, proliferation, polar-

ity, and differentiation (Brennan et al., 2010; Georgiadis et al.,

2010; Itoh and Bissell, 2003; Martin and Jiang, 2009). Reduction
508 Cancer Cell 25, 501–515, April 14, 2014 ª2014 Elsevier Inc.
of TJ-associated ZO-1 in primary breast tumors due to

decreased expression or cytoplasmic localization is associated

with metastasis in BC patients (Martin et al., 2004; Polette

et al., 2005). Our study identifies miR-105 as a key regulator of

ZO-1, suggesting one mechanism of TJ disruption associated



Figure 5. miR-105 Overexpression in Poorly Metastatic BC Cells Promotes Metastasis In Vivo

(A) Luciferase-labeledMCFDCIS/vec orMCFDCIS/miR-105 cells were injected into the number 4mammary fat pads of NSGmice (n = 8). Bioluminescent imaging

(BLI) at week 6 is shown. *Because of the extensive tumor burden, these three mice were sacrificed at week 5.5; their images at week 5 are shown.

(B) Quantification of metastases in the lung and brain. Mice shown in (A) were sacrificed at week 6, and tissues were subjected to RT-qPCR of luciferase gene

using mouse 18S as internal control (n = 8). Results are presented as mean ± SD. *p < 0.05.

(C) Representative hematoxylin and eosin (H&E) stained images of the tumor edges showing local invasiveness. The scale bar represents 50 mm.

(D) In vivo vascular permeability determined by the appearance of intravenously injected rhodamine-dextran (red) in various organs. Tissues were collected from

mice bearing MCFDCIS/vec or MCFDCIS/miR-105 xenografts (n = 3) that were sacrificed at week 6. Representative images are shown. DAPI (blue): cell nuclei.

The scale bar represents 100 mm.

(E) Representative images of miR-105 in situ hybridization (ISH) in tissues collected from the two groups. The scale bar represents 50 mm.

(F) Collected tissues were subjected to double-label IF for ZO-1 (green) and CD31 (pink). Structures positive for CD31 are indicated by arrowheads. The scale bar

represents 100 mm.

See also Figure S4.
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Figure 6. miR-105 Inhibition Suppresses Metastasis and Restores Vascular Integrity In Vivo

(A) Luciferase-labeled MDA-231-HM cells were injected into the number 4 mammary fat pads of NSG mice. Mice were divided into three groups (n = 6) for

treatment with PBS, anti-miR-105 compound, or control compound. BLI at week 3 and week 6 is shown.

(B) Tumor volume determined in the three groups. *p < 0.005 compared with the other two groups.

(C) Quantification of metastases in the lung and brain. Mice shown in (A) were sacrificed at week 6 and tissues were subjected to RT-qPCR of luciferase gene

using mouse 18S as internal control (n = 6). *p < 0.01.

(legend continued on next page)
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with cancer progression and metastasis. The Rho family of small

guanosine triphosphatases (GTPases) has been implicated in

the regulation and function of TJs (Connolly et al., 2002; Gonzá-

lez-Mariscal et al., 2008; Jou et al., 1998; Shen et al., 2006). The

Rho-associated protein kinase, a downstream effector of RhoA,

regulates actomyosin contractility, TJ assembly, and endothelial

capillary formation through phosphorylation of the regulatory

myosin light chain (MLC2). Relevant to our study, junctional pro-

teins including ZO-1 have been reported to regulate Rho

GTPases through interacting with guanine nucleotide exchange

factors and GTPase activating proteins (Citi et al., 2011). In our

study, overexpression of miR-105 or treatment with exosomes

carrying miR-105 did not alter the activity of RhoA, Rac1/2/3,

or Cdc42, or the phosphorylation of MLC2, in recipient HMVECs

(data not shown), suggesting that the small GTPases are not

downstream effectors of the herein identified miR-105/ZO-1

pathway. In endothelial cells that normally express low miR-

105 levels (data not shown), ectopic, cancer-derived miR-105

transferred via exosomes can effectively reduce ZO-1 expres-

sion and disrupt the barrier function of these cells both in vitro

and in vivo. Although miR-105 secreted by the primary tumor

may only affect a fraction of endothelial niche cells, this would

be sufficient to open ‘‘gates’’ in these natural monolayer barriers

for traversal of cancer cells, thereby facilitating metastasis. In

addition, contact-dependent intercellular miRNA transfer be-

tween two adjacent cells through the transmembrane channel

protein SIDT1 has recently been reported (Elhassan et al.,

2012). Through this pathway, cancer-derived miRNAs (e.g.,

miR-105) that are transferred to a distant organ via circulating

exosomes may further extend their regulatory effect to those

interconnected niche cells without direct exosome uptake. In

patients with familial hypercholesterolemia but not normal sub-

jects, circulating miR-105 can be detected on high-density lipo-

protein, which delivers the miRNA to recipient cells as an exo-

some-independent mechanism (Vickers et al., 2011). It would

be interesting to determine the noncancer source of circulating

miR-105 and its role in regulating vascular permeability through

the herein demonstrated pathway in these patients.

It is likely that additional target genes and pathways regulated

by miR-105 also contribute to its prometastatic effect. Although

overexpression of miR-105 in MCFDCIS xenografts did not

significantly affect primary tumor growth, anti-miR-105 treat-

ment in animals bearing MDA-231-HM xenografts reduced

tumor volume and induced apoptosis of tumor cells. This may

suggest a cancer- or/and niche-specific effect of miR-105 that

facilitates cancer cell survival and, therefore, promotes metas-

tasis. Interestingly, miR-105 has been reported as a tumor sup-

pressor that inhibits proliferation through downregulating cyclin-

dependent kinase 6 in prostate cancer cells (Honeywell et al.,
(D) Representative H&E images of the tumor edges showing local invasiveness.

(E) Immunohistochemistry (IHC) was performed in xenograft tumors using antibo

shown. The scale bar represents 50 mm.

(F) In vivo vascular permeability indicated by the penetration of rhodamine-dextran

well as mice bearing MDA-231-HM tumors that were untreated when sacrificed

treated as indicated and sacrificed at week 6 (n = 4). Representative images are

(G) Tissues were subjected to double-label IF for ZO-1 (green) and CD31 (pink).

resents 100 mm.

Results are presented as mean ± SD (see also Figure S5).
2013). This miRNA may also have an anti-inflammatory effect

in gingival keratinocytes through targeting Toll-like receptor 2

(Benakanakere et al., 2009). In several cancer cell lines of non-

breast origin, maturemiR-105 is undetectable, possibly because

of the nuclear retention of miR-105 precursors (Lee et al., 2008).

These suggest important tissue-specific mechanisms control-

ling the biogenesis and function of miR-105. Understanding

these mechanisms and their relevance to cancer progression

and metastasis will provide further rationales for targeting miR-

105 as a treatment for MBC.

miRNA transfer between cancer cells and the genetically

normal niche cells is apparently bidirectional. In addition to

the cancer-derived adaptation of niche cells, normal epithelial

cells also secrete and transfer antiproliferative miRNAs (e.g.,

miR-143) to cancer cells, as a potential strategy to maintain tis-

sue homeostasis at an early stage in cancer formation (Kosaka

et al., 2012). In contrast, exosomes secreted by stromal fibro-

blasts promote BC cell protrusion and motility through Wnt-

planar cell polarity signaling (Luga et al., 2012). Because exo-

somes are secreted by multiple types of normal cells and

mediate their natural functions such as antigen presentation

(Théry et al., 2002), targeting exosome secretion as a potential

means of blocking this mode of cancer-host crosstalk requires

the identification of cancer-specific molecules or pathways that

control exosome production. The recently reported high

expression of Rab27A in cancer and the effect of Rab27A inter-

ference by reducing exosome production in multiple melanoma

cell lines may provide an approach to specifically inhibit can-

cer-derived exosomes (Peinado et al., 2012). In addition, as

the exosomal secretion of miRNAs exhibits a highly selective

pattern that differs between cancer and normal cells (Table

S1) (Pigati et al., 2010), understanding the cellular selection

mechanism for miRNA secretion, which may involve RNA-bind-

ing proteins, recognizing the primary or secondary structures of

miRNA and its dysregulation in cancer may reveal unique stra-

tegies to block cancer-specific miRNA secretion. Last, charac-

terization of cancer-secreted messengers and effectors, such

as miR-105, will enable the selection of patients for the corre-

sponding targeted therapy and eventually combination therapy

simultaneously targeting multiple secretory miRNAs and/or pro-

teins. Such patient selection may be achieved by a quantitative

blood test for circulating miR-105, which correlates with metas-

tasis in early-stage BC patients. In developing personalized

diagnostics and therapeutics, a combination of miR-105 with

other miRNA and/or protein markers in the blood that would

better specify the disease traits at the individual level will likely

enhance our ability to select BC patients with high risk for

metastasis for preventive treatment that targets miR-105 and

other effectors.
The scale bar represents 50 mm.

dies of Ki-67, cleaved (clvd) caspase-3, and ZO-1. Representative images are

(red) into various organs. Tissues were collected from tumor-free NSGmice as

at week 3 after tumor cell implantation (the premetastatic [pre-met] group) or

shown. DAPI (blue): cell nuclei. The scale bar represents 100 mm.

Structures positive for CD31 are indicated by arrowheads. The scale bar rep-
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Figure 7. miR-105 Is Associated with ZO-1 Expression and Metastatic Progression in BC

(A) miRNA levels in the sera of tumor-free orMDA-231-HM tumor-bearingmice (premetastasis: serum collected at week 3;metastasis: serum collected at week 6;

n = 5 or 6) were measured by RT-qPCR and normalized to miR-16. **p > 0.05.

(B) Circulating exosomes were isolated from serum samples of stage II and III BC patients. miRNAs were measured by RT-qPCR, normalized to miR-16, and

compared among patients who developed distant metastases (mets) during follow-up (n = 16) and those who did not (n = 22). **p > 0.05.

(legend continued on next page)
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EXPERIMENTAL PROCEDURES

Clinical Specimens

Human specimens were obtained from voluntarily consenting patients at the

City of Hope Medical Center (Duarte, CA) under institutional review board-

approved protocols. The clinical information is summarized in Tables S2–S5.

Details can be found in Supplemental Experimental Procedures.

Cells, Plasmids, and Viruses

Please see Supplemental Experimental Procedures.

Exosome Purification and Electron Microscopy

Detailed protocols for preparing exosomes by ultracentrifugation can be found

in Supplemental Experimental Procedures. For electron microscopy (EM),

exosomes were fixed with 2% paraformaldehyde, loaded on 200-mesh

Formvar-coated grids, and then contrasted and embedded as previously

described (Thery et al., 2006). Solexa deep sequencing of exosomal and

cellular RNA and genome-wide interrogation were performed as described

(Wu et al., 2012); data sets were submitted to Gene Expression Omnibus

(GEO) (GSE50429).

RNA Extraction, RT-qPCR, Western Blot Analysis, and

Immunofluorescence

These procedures were performed as described previously (Tsuyada et al.,

2012; Wang et al., 2011; Yu et al., 2010). See Supplemental Experimental Pro-

cedures for details.

Transendothelial Electrical Resistance, Endothelial Permeability,

and 3D Vascular Sprouting Assays

Detailed protocols can be found in Supplemental Experimental Procedures.

Vascular sprouting assay was performed as described using microcarrier

beads coated with endothelial cells and embedded in 3D fibrin gel (Newman

et al., 2011).

Wound Closure, Transwell Migration, and Transendothelial Invasion

Assays

Wound closure and transwell migration assays were performed as previously

described (Wang et al., 2006). Detailed protocols for transendothelial invasion

assay can be found in Supplemental Experimental Procedures.

Animals

All animal experiments were approved by the institutional animal care and use

committee at City of Hope. Detailed procedures can be found in Supplemental

Experimental Procedures. The control and miR-105 targeted compounds

used in the miR-105 intervention study had the same chemical modification

pattern, chimeric 20-fluoro and 20-methoxyethyl modifications on a phosphor-

othioate backbone (Davis et al., 2006), and were synthesized at Regulus

Therapeutics. The same compounds were also used in vitro to transfect

MDA-231-HM cells (Figures S5A and S5B).

In Situ Hybridization and Immunohistochemistry

Please see Supplemental Experimental Procedures.
(C) CirculatingmiR-105 in patient serum resulted in a vascular destruction. Vascula

compound or control compound were treated with human serum from a healthy

images of the treated vascular structures are shown (left). Inset: Structures we

spheroid were counted and graphed (right). At least 50 spheroids were counted

(D) Correlation analyses of tumormiR-105, serum (exosomal) miR-105, and ZO-1 l

(tumor ZO-1) or tumor-adjacent vascular structures (vascular ZO-1) were determ

Procedures. Serum (exosomal) miR-105 levels were determined by PCR usingmiR

quantified data as indicated. Pearson’s correlation coefficient (r) and p value are

(E) The scores of tumormiR-105, tumor ZO-1, and vascular ZO-1 staining were co

(n = 10) and those who did not (n = 10). Mean and SD of the staining scores in e

(F) Representative images of miR-105 and ZO-1 staining in tumor and normal brea

bar represents 100 mm.

(G) Levels of tumormiR-105 and ZO-1 determined in a BC tissue array. The ISH or

(LN) metastases (n = 15) and those without (n = 60). The correlation between miR

Results are presented as mean ± SD (see also Figure S6 and Tables S2–S5).
Statistical Analyses

All results were confirmed in at least three independent experiments, and data

from one representative experiment were shown. All quantitative data are pre-

sented as mean ± SD. The statistical analysis was performed using SAS 9.2

software (SAS Institute). Student’s t tests were used for comparisons of means

of quantitative data between groups. The correlations between serum and

tumor miR-105 and between miR-105 and ZO-1 expression were evaluated

using Pearson’s correlation coefficient (r). Values of p < 0.05 were considered

significant.
ACCESSION NUMBERS

The GEO accession number for the exosomal and cellular RNA sequencing

data reported in this paper is GSE50429.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, and five tables and can be found with this article online at http://

dx.doi.org/10.1016/j.ccr.2014.03.007.
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