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Abstract

Semantic database models utilize several fundamental forms of groupings
to increase their expressive power. In this paper we consider four of the most
common of these constructs; basic set groupings, is-a related groupings, power set
groupings, and Cartesian aggregation groupings. For each, we define a number of
useful restrictions that control its structure and composition. This permits each
grouping to capture more subtle distinctions of the concepts or situations in the
application environment. The resulting set of restrictions forms a framework which
increases the expressive power of semantic models and specifies various set-related
integrity constraints.

1. Introduction

In the past decade research into the design and implementation of semantic

database models has risen to prominence. Semantic models attempt to cope

with the demands of new sophisticated database applications by modeling their

environment more directly than traditional database models. This trend has been

clearly reflected in the literature from the development of the Entity-Relationship

model [Chen76] and the Hierarchical Relational model [Smith77], to the advent

of the first semantic database models [Codd79, HammerSI] and the evolution

continues today (see, for example, [Bic86, Abiteboul87, Hull87a]). Important

features common to most of these models are a property inheritance hierarchy (is-

a relationship), a decomposition hierarchy (is-part-of.relationship), and a variety of

powerful constructs for collecting related data, referred to as semantic groupings.



The latter allow new sets of database entities to be constructed from the stored

data. The most common groupings are based on extended definitions of sets, power

sets, and the Cartesian product.

In this paper, we present several basic types of semantic groupings and a

number of restrictions that can be imposed on each of them. A semantic grouping

can be specialized to suit the particular concept to be modeled by selecting the

appropriate restrictions. We only consider set-related restrictions, i.e., restrictions

imposed on the structure of the groupings or their population. Other types of

general constraints, such as attribute- or value-based ones, are not considered

here. The purpose of developing such a model is twofold: First, it increases

the expressiveness of the paradigm and second, it serves as a basis for additional

integrity constraints [Hammer76, Lenzerini871.

The paper is organized as follows. In Section 2 we define the several types of

semantic groupings. First an extended notion of a set (called set grouping) is defined

by allowing elements to repeat and an order to be imposed on its elements. Then

the is-a related set groupings, the power set grouping and the Cartesian grouping

are defined based on the set grouping definition. The concepts of identity and

indistinguishability are also discussed in the context of these groupings. Sections

3, 4, 5 and 6 then present the restrictions on the four groupings, respectively, each

illustrated by a set of examples. Conclusionsand some open problems are presented

in the final section.

2. Basic Concepts

2.1. Classes, Types, and Sets

In semantic data modeling, the notions of set, class, and type are not always

clearly distinguished. In this paper we take the following position. Entities in our

data model represent a concept (concrete or abstract) in the application world.



The term entity, the way it is used in this paper, should be interpreted in its

most generic form — it may, for example, stand for a row in a relation table

[Codd79], an entity (or a relationship) in the entity-relationship model [Chen76],

an entity in a semantic data model [King84, Hull87a] or an object in an object-

oriented model [Mylop80, Hudson86]. Entities in the world of the application

are grouped into classes, based on common properties. The class notion, however,

serves a dual purpose. It is a generic description of all entities which belong to

that class and hence it imposes a type on those entities. At the same time a class

represents the set of entities which conform to its generic description (type). This

distinction is important because certain attributes only apply to a set as a whole

(e.g., cardinality) while others are applicable to its individual elements (e.g., color).

In this paper we are interested primarily in the set-aspect of a class and, therefore,

we will be referring to sets rather than classes.

2.2. Set Groupings

A mathematical Set is a collection of elements (entities) taken from a given

domain of discourse. The domain for each set depends on the particular application

being modeled. We will extend the notion of a set as follows:

(1) elements may have their own identity,

(2) multiple non-distinguishable copies of an element may occur, and

(3) an order may be imposed on the elements.

Each of these extensions will be described in the following subsections. Note that

groupings which inhere to these three extensions are called set groupings.

We distinguish between simple, base and constructed entities. Both base and

simple entities are taken directly from a base domain of the application while

constructed entities are built from other entities using Cartesian or power set

aggregation abstractions; both of which will be discussed at the end of this section.

Note that a simple entity is a special case of a base entity which represents a value



(for example an integer or a string) in the database. Base entities in general may

correspond to complex objects in the real world and constructed entities are always

complex. We define a base-set grouping to be a collection of base entities. All other

set groupings are either based on these base-set groupings or on other set groupings,

each of which may be constructed in the three ways described below.

The first type of extension is concerned with is-a related set groupings, in

particular, subset and union groupings. Two sets A and B are said to be is-a related

if every element from A is described by all the properties which elements in B have.

For example, the sets Red Cars and Cars are is-a related, since every red car has the

properties of a car. This is generally referred to as property inheritance. These new

set groupings are constructed by collecting some elements of existing set groupings

without, however, changing the shape or identity of these elements. A subset

grouping is based on the mathematical definition of a subset S which consists of

some elements of an existing set. We employ a more general subset definition where

a subset grouping S is based on one or more existing set groupings Si, S2f.., Sm-

Each element s of the subset grouping S must exist in all these underlying set

groupings Si for i = 1 to m. More precisely, S C (^Si, S2,Sm) if and only if

((Vz, 1 < z < m)(s G 5" s G Si)). Note that the above definition of a subset

is different from a set intersection. The latter corresponds to the largest possible

subset, i.e., a special case of a subset. This definition is necessary to maintain the

is-a relationship between the subset S and all set groupings it is based on. The

following implication holds, S C (^Si, S2,Sm) implies ((Vz,! < i < m){S is-a

S^))•

The union grouping is an abstraction which forms a possibly heterogeneous set

grouping S from several existing set groupings Si, S2, •••, Sm- The union grouping

is denoted by S = Si- This construct collects the elements from all involved

set groupings into one new grouping. The result of a union grouping is again a set



grouping. More precisely, S = Si if and only if ((V i, 1 < « < m) (s e Si => s

G S )) and (s G S ((3 i, 1 < i < m) s G Si )). In other words, if and only if an

entity s belongs to any of the underlying set groupings Si, then s must also belong

to the union S. Again, the is-a relationship is guaranteed, namely, S = l+)i^i Si

implies ((V i, 1 < i < m) (Si is-a S)).

The domain of a subset grouping is the intersection of the domains of all

underlying set groupings. The domain of the union grouping is the union of the

domains of all underlying set groupings.

A Cartesian aggregation grouping ([Smith77]) is an abstraction which allows

a relationship between several database entities to be viewed as a single aggregate

or complex entity. For example, a relationship between a person, a hotel room and

a date can be viewed as a reservation. Each element in the Cartesian grouping is

taken from the cross product of existing set groupings and a new unique identity is

associated with it. A Cartesian grouping C based on the set groupings Si, S2, ...,

Sn is defined by C C Si x S2 x ...x S„. We say that set Si fills position 1 in the

grouping, set S2 fills position 2, etc. The ordering of positions is not essential to

the model, it is just a matter of notational convenience. In fact, the positions pi

are usually referred to by labels unique to C which represent the role that the set

grouping plays in the Cartesian grouping. If Lf is the label chosen for the position

Pi, respectively, then we denote C C (Li : Si) x (L2 : S2) X ... X (L„ : S^).

The previous example would be denoted by reservation C (who: person) x (where:

hotel-room) x (when: date).

The notion of a domain for a Cartesian grouping is defined as follows. Let Di

be the domain of Si for all i. Then, the domain D of C corresponds to the cross

products of the domains of the set groupings underlying C, i.e., D = Di x D2 x

... X Dtj.



An element t of a Cartesian grouping C is an aggregate entity consisting of n

components where thei'^ component is taken from the set grouping underlying the

i*^^ position, Si. We refer to the i^^ component of t by t[Li] where Li is the label of

the i*^^ position, or simply, t[i]. Of course, t[Li] GSi. To refer to several positions

of an aggregate entity at the same time, we use the notation t[Lii, Li2,Lik]

where Lii,Li2, are distinct labels associated with some of the set groupings

Si. This is called an aggregate projection. Similarly, C[Tii, Ti2,..., Tijk] refers to

the collection of all aggregate projections of the Cartesian grouping C using labels

Lii,Li2,...,Lik. More formally, C[Tii,Ti2,..., Life] := { t[Lii,Li2,...,Lik] | t € C }

where t[Xii, Li2,..., Ti^] retains the identity of the aggregate entity t. The latter

generalizes the notion of a projection in the relational model.

A power set grouping is based on the mathematical concept of a powerset 2^

of a set S which consists of all subsets of S. A power set grouping, denoted by G*, is

an abstraction based on a set grouping G. Each element of G*, which corresponds

to a subset, grouping of G, has its own unique identity. Hence G* consists of some

(or all) of the possible subsets of G. In general, an element of G* models a single

(complex) entity, usually referred to as a cover aggregate. It should be emphasized

that the power set abstraction forms a set of aggregates each of which is formed

from (contains) a set of elements from G. For example, clubs are cover aggregates,

each composed of a set of people. We distinguish between power set groupings

whose elements have or do not have a significant order. In power set groupings

G* where the elements have a significant order, each permutation of a subset g G

G* is considered to be distinct with its unique identity. In a power set grouping

without a significant order defined for its elements, all permutations of a subset g

G G* are considered to be equivalent. In our model, a power set grouping can be

defined based on any existing set grouping which is not a power set grouping. In



[Hull87b] Hull shows that this restriction does not limit the 'information capacity'

of the model;

The domain of a power set grouping G* based on a set grouping G is defined

as follows. If D is the domain of G, then the domain of G* is defined to be D as

well.

Note that the four constructs: set grouping, is-a related grouping, Cartesian

grouping, and power set grouping, are closely related to the following abstractions

respectively: classification, generalization/specialization, aggregation, and associ

ation. All of these are commonly found in some form in semantic database models

[Peckham88].

2.3. Identity

The concept of identity has been introduced implicitly in some semantic

models (explicitly in object-oriented systems [Khoshafian86]) to better cope with

complex entities. We use it explicitly: an entity (with identity) consists of two parts

— an identity and a state. Let us denote the identity and the state of an entity si by

si.id and si.state, respectively. The identity is time-invariajit, i.e., when the state

of an entity is modified its identity is unchanged. This is typically implemented by

a surrogate — a system-assigned global ID invisible to the user. The identity of a

given entity is independent of its current state. Hence it is possible for two entities

to have exactly the same state and thus be indistinguishable from one another,

without actually being the same entity. Note that this is in sharp contrast with

mathematical sets, which do not have the concept identity associated with their

elements. In a mathematical set each element is essentially the string of symbols

used to represent it. When the element is modified (i.e., a symbol is changed), it

becomes a different element. These observations lead us to the following important

definitions:



Definition 1: Let si and S2 be two elements with identity from the set group

ings Si and 82 respectively. The relationship si = S2 ( pronounced dot-equal or

identical) holds if and only if si and S2 represent the same entity, i.e. si.id = S2.id.

Note that some simple entities may not have identities. In this case, the

predicate = is based on the state of the entities instead of their identities. Then,

the relationship si = S2 holds if and only if si and S2 represent the same value, i.e.

si.state = S2.state.

To capture the concept of indistinguishability, we need to consider Cartesian

aggregates and cover aggregates separately.

Definition 2: Let ci and C2 be two Cartesian aggregates in C C Si x S2 x ...

X S„ with ci = Si X S2 X ... X s„ and C2 = s'̂ x S2 x ... x s'„. Then, ci and C2 are

called component-identical, denoted by ci C2, if and only if their components

are pairwise identical, i.e., the following holds: (Vi) (sj = s'̂ .)

Definition 3:

(a). Let ci and C2 be simple entities. Then, ci and C2 are value-indistinguishable,

denoted as ci =" C2, if and only if they have the same state, i.e., ci.state =

C2.state.

(b). Let ci and C2 be Cartesians aggregates defined as in definition 2. Then, ci

and C2 are value-indistinguishable, denoted by ci =" C2, if and only if their

components are pairwise value-indistinguishable, i.e., the following holds:

(vi) Si s;..

Note that the last definition is recursive; it stops when applied to simple

entities.

To illustrate these two definitions which are based on the work of Khoshafian

and Copeland [Khoshafian86], consider a situation where a new car, say car2, has

been built out of the major parts of another (perhaps damaged) car, say cari. Cari
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and car2 have different identities but if only the major parts are recorded by the

model, they are indistinguishable. According to definition 2, we refer to entities

that share the same components as component-identical. On the other hand, two

cars could be indistinguishable by virtue of having the same type of body, engine,

and wheels and being painted with the same color. Their components, however,

would be physically distinct entities (i.e., have different identities). According to

definition 3, we refer to such entities as value-indistinguishable (or just indistin

guishable, for short). We now present analogous definitions of the relations ='^ and

for cover aggregation elements ( of power set groupings ).

Definition Let ci and C2 be two cover aggregation elements with ci.= {si,

S2, ..., s„} and C2 = {s'̂ , s^, ..., s'„}. Then, ci and C2 are called component-identical,

denoted by ci ='̂ C2, if and only if they have the same cardinality ( denoted by

|ci| ) and their elements are pairwise identical. In other words, the predicate ='̂

evaluates to true if and only if the following holds:

(1) |ci| = |c2|, and

(2) if both ci and C2 have a significant order then Si = s( for all i. If ci and

C2 do not have a significant order then there is an ordering of elements of ci and

C2 such that s^ = s(- for all i. If, without loss of generality, ci does and C2 does not

have a significant order then there is an ordering of the elements of C2 such that

Si = s'j for all i.

Definition 5: Let ci and C2 be defined as in the previous definition. Then,

ci and C2 are called valuie-indistinguishable, denoted by ci ='" C2, if and only if

they have the same number of elements and their components are pairwise value-

indistinguishable. The predicate ='" evaluates to true if and only if the following

holds:

(1) |ci| = |c2|, and



(2) if both ci and C2 have a significant order then s,- =" s'̂ for all i. If ci and

C2 do not have a significant order then there is an ordering of elements of ci and

C2 such that s,- s[ for all i. If, without loss of generality, ci does and C2 does not

have a significant order then there is an ordering of the elements of C2 such that

Si =" Sj- for all i.

The last definition is again recursive; it stops when applied to simple elements.

To illustrate the above two definitions, imagine two cover aggregate entities

racei and race2 which model the sets of cars participating in a certain car race.

Assume that racei and race2 refer to two different car races, but that exactly the

same cars participate in both. Then, elements from racei may be paired up with

elements from race2, such that cari from racei is the same car as cary from race2.

By just looking at the participating cars one would not be able to distinguish

between these two sets of cars and hence they would be component-identical ( by

definition 4 ).

On the other hand, there could be two races. in which different cars take

part, but these cars pairwise look alike. If for each racer (1 ^ r < 2) there exist

an ordering (carr,i, ... carr,n) such that cari^j is indistinguishable from car2,i for

1 < i < n, for instance, they have the same type of body, engine, and wheels

and are painted by the same color. Then, these two cover aggregates (races) are

value-indistinguishable by definition 5.

Definition 6: For simple entities si and S2, the two predicates si S2 and

Si S2 are the same and default to the notion of taking on the same value. This

is because simple entities have no components. Both predicates evaluate to true if

and only if si.state = S2.state.

Simple entities are either both component-identical and value-indistinguish

able or neither.

10



The above definitions capture an important property of the real-world, where

many different entities may have the same attributes and external appearance.

Furthermore, even if two initially distinguishable entities evolve over time so that

they become indistinguishable, their identities as two separate individuals will be

preserved.

2.4. Multiple Element Occurrences

In the following discussion, we use the term indistinguishability for both

component-identity and value-indistinguishability and we denote it by the symbol

=. Although multiple non-distinguishable elements may occur within a given set

grouping each identity is unique and persistent. In other words, given two simple

elements si and S2, the relation si = S2 may be true or false, depending on whether

Si and S2 are distinguishable or not. However, for distinct entities with identity

the relation si = S2 is always false within a single set grouping. Every element

in a set grouping has an identity which is distinct from all other elements in that

grouping, therefore, for any two elements with identity the predicate = is always

false within one set grouping. This is based on pragmatic grounds. There is nothing

fundamental that would prevent us from allowing multiple occurrences of the same

element within a set, however, we did not find any concrete application where this

would be necessary.

In the remainder of this section, we study interrelationships between these

types of predicates within one set grouping.

Lemma 1: Within a given set grouping S the following holds:

(1) si = s2 ^ si s2, and (2) si s2 si ='" s2.

And by (1) and (2), (3) si = s2 => si s2.

11



Lemma 1 establishes that identical entities always consist of exactly the same

components and thus look alike (a natural phenomenon of the world). Also, entities

which share the same components are indistinguishable.

Next, we present conclusions that can be drawn when allowing/disallowing

indistinguishable elements in a set grouping.

Lemma 2: If no component-identical elements are allowed in a set grouping

S, then not only (1), (2) and (3) from lemma 1 hold in S but also:

(4) si ^ s2 si s2.

By (1) and (4), we get: (5) (si ^ s2) (si s2).

Nothing can be concluded^ however, from the fact si s2.

Lemma 3: If no (value-) indistinguishable elements are allowed in a set

grouping S, then not only (1), (2) and (3) from lemma 1 hold in S but also:

(4) si s2 si 7^" s2, and, si s2 ^ si 7^^ s2.

Hence, we have: (5) (si = s2) (si ='̂ s2) 4=^ (si s2).

All eight combinations of truth values for the predicates =, and =•" are

possible within the data model. This is because an entity (base entity as well as

the component of an entity) may look differently when it is viewed as a member

of different set groupings. For instance, a person has different characteristics as

student than when viewed as employee. A person element may have a grade

attribute when viewed as a student whereas as an employee s/he may have a

salary attribute. Therefore, it may be possible for (elementi in employee-class) =

(element2 in student-class) to evaluate to true but (elementi in employee-class) ="

(element2 in student-class) and/or (elementi in employee-class) (element2 in

student-class) to evaluate to false. However, lemma 1 guarantees that within one

set grouping such a situation cannot occur.

12



2.5. Ordering

The third extension to the standard definition of a set is to allow one or

more orders to be imposed on the elements of a set grouping. For each order, this

implies the existence of a predicate which, when applied to any two elements

of a set grouping (si < S2) returns true if si precedes S2 in the ordering and false

otherwise. The specification of such an ordering takes one of two forms — an

explicit enumeration or an evaluable function. An enumerated order requires that

the relationship between elements be specified explicitly. For example, one could

order the collection of cars by their price by explicitly listing them as "cari <

car2 < ... < earn". At execution time, the boolean value for the predicate

"carj < carj" (which can be interpreted as "cari is less expensive than carj") is

obtained by examining the explicit enumeration. In the second case, a function is

specified which derives the boolean value for "<" through some computation on

entities or their components at execution time. Examples of such functions are

the lexicographical order on words or the less-or-equal function defined on numeric

values. For example, if cars were constructed entities with a price component, then

one could order a collection of cars by their price. In that case, the less-or-equal

function defined on numeric values would be applied to the price component of the

respective cars at execution time and the relation "cari < car2 " would be evaluated

by "cari.price is less than car2.price". Then, an explicit enumeration of all cars is

no longer needed to specify such an order.

At most one of the orders defined on a set grouping can be designated as

being significant or primary. If a set grouping has a significant order, then it will

always be represented in that order. Furthermore, this order will be used when

comparing the set grouping with other set groupings as described in definition 4

and 5. To clarify the distinction between a significant and non-significant order,

assume two set groupings A and B which contain the three alphabetic letters 'n'.

13



't', 'o'. Note that A and B have the alphabetic order defined on them by which 'n'

comes before't', etc. This order is, however, not significant since two sets A = {'n',

't', 'o'} and B = {'o', 't', 'n'} are the same even if we do not list their elements in

the same order. If, on the other hand, A and B are to represent the words 'not' and

'ton', then there is a significant order, namely, the order of enumeration, defined

on them. In this case, A and B are no longer the same, since they represent two

different words. Orders - whether significant or not - will be used in the remainder

of this paper in the formulation process of constraints.

3. Restrictions on Set Groupings

3.1. Restrictions

We now present a set of restrictions that may be imposed on any set grouping,

including Cartesian aggregation and power set groupings. By combining restric

tions, distinct special cases of set groupings are produced, which capture a concept

in the application more precisely. There are three kinds of user-specified restrictions

based on: cardinality, the number of indistinguishable elements in a set, and the

range of element values with respect to a user defined order. All three restrictions

are defined below. To simplify future discussions, we will use the term indistin

guishable to mean both component-identical or value-indistinguishableexcept when

explicitly stated otherwise.

1. The cardinality of a set grouping S (denoted by ]S|) is the number of elements

in S. The cardinality of a set grouping is determined by counting its distinpt,

but not necessarily distinguishable, elements. By lemma 1 an element may

not occur more than once in a set grouping. Therefore the cardinality of a

set grouping is easily determined. Cardinality can be restricted by giving

an integer range [ci:C2] where ci < C2 and ci and C2 are the lower and upper

limit, respectively. If ci = C2 then the set grouping S must have exactly ci

14



elements at all times during its existence in the database. If ci < C2 then

the cardinality can vary within that range. The values ci = 0 and C2 =

oo impose no restrictions on the cardinality of the grouping. The latter is

assumed to be the default.,

2. The repetition characteristic of a set grouping S specifies how many indistin

guishable copies of an element may exist within S. The restriction has to be

parameterized by ='^ and to indicate which type of indistinguishability is

to be restricted. The repetition count can be limited by specifying a range

[ri:r2] where ri and r2 are integers and 0 < ri < r2. This can be interpreted

as: for any element s from the domain of S there exist at least ri and at

most r2 distinct elements of S which are indistinguishable from s (including

s). If ri = r2 with parameter ='̂ or ='" then for every element si in the set

grouping there must be exactly ri —1 elements Sj (i = 2, ..., ri) with si ='̂

Si or Si Si. Recall that si = S2 is always false within a set grouping,

and consequently, s ^ Si for all i. The special case where ri = r2 = 1 and

the parameter is =" implies that no two elements in the set grouping are

allowed to look alike. By lemma 3, this also implies the implicit restriction

of a repetition count of [ri,r2] = [0,1] with parameter =®. More general, by

lemma 3 any repetition restriction [ri, r2] with the parameter =" enforces

the upper bound of the range for parameter ='^ never to exceed r2. Again,

the unrestricted case, ri = 0 and r2 = oo with either parameter, is assumed

to be the default.

3. For a set grouping S with an order defined over its elements, a sequence of

ranges [li:ui], [12:^2], ..., [In^Un] may be specified with respect to that order.

Only elements which are contained within one of the ranges may appear in

S. More precisely, an element s may appear in S if for one of the ranges

15



[IjiUi] (1 < i < n) the following holds: li < s < Uj. If no range is specified

then the set grouping is unrestricted.

Since not all three restrictions need to be specified for all sets, we use the fol

lowing labels to designate which restriction is being referred to: (i) set cardinality,

(ii) set repetition with or =", and (iii) ordering.

3.2. Examples of Set Groupings and their Restrictions

In this subsection examples of restricted set groupings are presented which

demonstrate the usefulness of various combinations of these three basic restrictions.

Example 1:

A committee S of n people can be characterized by:

1. set cardinality: [n:n].

Interpretation: The cardinality of S is fixed to n. The fact that

any person can occur in S at most once, i.e., the same person cannot

act as two or more committee members, is automatically enforced by

definition 1. The repetition restriction does not apply, since we do

not care whether two people look alike (value-indistinguishability) or

possibly even share similar properties, such as, live at the same address

(component-identity).

Example 2:

Let S model the collection of words in a dictionary. Its domain is the collection

of character strings formed from a given alphabet. This set grouping can be

characterized by the following:

1. set cardinality: [100.: oo]

2. set repetition with =": [0:1],

3. ordering: [a : z+j.

16



Interpretation: We assume that a dictionary must have at least

hundred words; the maximum number is unrestricted. A given string

may occur at most once as a word in the dictionary, and since strings

are simple entities without identity we may enforce this by the repe

tition restriction with the parameter Since all words are ordered

alphabetically, the "smallest" word is the letter 'a' and the "largest"

word is the infinite sequence 'z...z', denoted as z"*". This implies that no

special symbols (like quotes or hyphens) would be allowed in our simple

dictionary.

Example 3:

The conventional set S may be modeled as a special case of a set grouping by

the following restrictions:

1. set repetition with parameter [0 : 1]

Interpretation: The cardinality of S can take any value from zero

(empty set) to infinity, and thus no restriction is specified for it. The

elements, taken from an underlying domain, are simple entities without

identity; each may occur at most once in the set. Elements are unordered

and thus a range restriction is not applicable.

While the restrictions presented in this section could be applied to any set

grouping, there are certain additional restrictions that may be applied only in

the case of Cartesian or power set groupings. Furthermore, even the three basic

restrictions may not always be applied, freely in the case of non-base set groupings.

The various constraints and possible additional restrictions will be presented in the

next three sections.
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4. Restrictions on IS-A Related Groupings

4.1. Restrictions

In this section, we discuss restrictions that may be imposed on non-base

groupings that are part of the is-a hierarchy. We shall refer to these as IS-

A related set groupings. Base set groupings do not depend on any other set

groupings and thus the three restrictions as discussed in the previous section can

be freely imposed on them. The most common representatives of IS-A related

groupings are subset and union groupings, which were introduced in section 2. Such

groupings are based on existing set groupings ( through various derivation rules)

and, consequently, additional constraints have to be met when applying the three

set grouping restrictions to them. This is because there are strong interrelationships

between all set groupings which are IS-A related to one another. Below, we discuss

the constraints on applying the three kinds of set grouping restrictions to subset

and union groupings. For subsets, the following must hold:

1. The cardinality of a subset grouping S based on the sets Si (1 < i < m)

must meet the following additional constraint. If [ciitcj^] is the cardinality

constraint for the set grouping Si (for all i), then the cardinality constraint

[cjica] for the subset grouping S must satisfy the restriction : Cu < min^^

ci„. This guarantees that the cardinality of S is always less than or equal

to the cardinality of the smallest set Si. The lower bound is not restrained,

and can take on any value between 0 and the upper bound. Note that this is

a powerful mechanism which may cause the non-base grouping (S) to force

a restriction on the is-a hierarchy, i.e., the set groupings underlying S. It

permits you to state the minimum number of elements which the underlying

set groupings have to have in common. For example, if l^il = n and |S'2|

= m and the lower cardinality bound of S C (5i,5'2) is k, then and S2

must share at least k elements.
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2. The repetition characteristic of a subset grouping S, which specifies how

many indistinguishable copies of aii element may exist within S, must meet

the following constraint. Let [rj/iriu] be the repetition constraint with pa

rameter (=") for the set grouping S,- ( for all i ). Then the repetition

count [r/:ra] with parameter ='̂ (=") for the subset grouping S has to satisfy

the following: (V i) ( r^ < Tiu). The lower bound can again take any value

between 0 and the upper bound.

3. If all underlying set groupings Si have the same kind of order defined on

them, then the subset grouping S can be ordered by the same ordering. In

this case, the range restriction of the subset grouping consists of a subset

of the intersection of the range restrictions of the underlying Si. It is also

possible to define additional orders and to further restrict S by specifying a

range on the explicitly defined order.

Let us now consider the characteristics and restrictions on union set group

ings. By lemma 1, an entity is only allowed to appear once in any set grouping.

Therefore, an entity will occur only once in the union grouping S even if it occurs

in more than one of the underlying set groupings. A union grouping may contain

indistinguishable elements even if none of the set groupings participating in the

union contain duplicates.

1. The cardinality constraint of the resulting union grouping S is determined

from the cardinality constraints of the involved set groupings ^i, ^2,..., Sm-

Let [si/ : Sjm] be the cardinality constraint for the set grouping Si for all i =

1, ..., m. Then the cardinality constraint for S will be [l:u] with:

1 > max^^ Sii and

u<Er=i^--

This guarantees that the lower bound of the cardinality of S is no smaller

than the cardinality of the set grouping with the largest lower bound and no

19



smaller than the sum of the maximal cardinalities of all set groupings. Note

that this is a very powerful constraint which permits you to state how many

elements the underlying set groupings have in common. For example, if |5i|

= n and |52| = m and the upper cardinality bound of Si U82 is k, then

and 82 must share n + m - k elements. Hence, this constraint should be

used carefully because it may result in a union which is so restricted that it

will always be empty.

2. The number of indistinguishable elements that appear in the union depends

on the number of indistinguishable elements in the set groupings underlying

the union. Let [rj-/ : riu] be the repetition constraint on the set grouping 8i

for all i = 1, ..., m. Then the constraint on S, denoted by [l:u], must be as

follows:

1 > min^j rn and

^ \-^7n

u < 2^i=iriu-

3. A union grouping can be ordered if all underlying set groupings are ordered

by the same type of ordering. This means that all elements of the union have

at least one attribute in common and the ordering is based on a common

attribute. The range associated with the order is the union of the ranges of

all set groupings.

4.2. Examples of IS-A Related Set Groupings and their Restrictions

In this subsection examples of IS-A related set groupings are presented.

Example 1:

Let S model the collection of words in a dictionary as described in example

2 of section 3. Then the set grouping Sub = {s | s is a word in a dictionary

starting with the letter 'a'} is a subset grouping of S. It can be characterized by

the following:
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1. set repetition with =•": [0:1],

3. ordering: [a : 6).

Interpretation: The fact that a given string may occur at most

once as word in the dictionary is a restriction directly inherited from S.

Since S is ordered, a range restriction can also be specified on Sub. In

this case, all words of Sub must start with the letter 'a'.

Example 2:

Let Sjcs and Seng be the set of all students enrolled in the ICS and

engineering departments, respectively. The corresponding cardinalities are

= 100 and = 50. Then the set grouping S, which contains all students

with a double major, i.e., enrolled in the ICS as well as engineering department is

a subset grouping of both. S C ( Sjcs , Seng ) could be constrained by:

1. set cardinality: [0 : 50]

Interpretation: The set grouping S contains only students who are

in both underlying set groupings, Sjcs and Seng- The upper bound

on the cardinality of S is set to the maximum possible value, according

to the rules of section 4.1. That is, all 50 engineering students could

possibly have a double major with ICS. Neither repetition nor order

restrictions are imposed on S.

Example 3:

Let Sjcs and Seng be as in the previous example and assume that students

are ordered by their CPA. Let the set grouping S contain all double major students

who have a grade point average of 3.5 and better. Then S C (Sjcs, Seng) is

constrained by:

1. set cardinality: [0 : 50]

2. ordering on CPA: [3.5 : 4.0]
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Interpretation: S's cardinality is again limited by the cardinality

constraints of Sjcs ^-nd Seng- Since both set groupings are ordered by

the students' GPA, a range restriction can be imposed. Note that, this

time, S is a true subset of the two underlying set groupings (assuming

that some of the double majors have GPAs of less than 3.5), whereas

in the previous example, S corresponds to their intersection - a special

case of a subset grouping.

Example 4-'

Let Si be the catalogoue of books of the Computer Science library, and S2

be the catalogoue of books of the Mathematics library with l^i] > 1000 and |5*2|

> 500. The two libraries wish to combine their catalogues in order to have access

to more material, especially since overlapping interest and thus books exist. Then,

the combined book catalogue S = 5i l+J ^2 can be modeled by:

1. set cardinality: [1300 : 00]

2. set repetition with parameter =": [0:15],

3. ordering: ['QA':'QB') & ['Y':T').

Interpretation: The resulting cardinality of S is constrained to be

at least 1300. This implies that Si and S2 together must have referenced

at least 1300 distinct books. Repetitions in the combined library should

be at most as high as in the individual libraries. So if Si never kept more

than 15 duplicates and S2 never more than 5 duplicates of a given book,

then S will have at most 15 duplicates of any book. In the case that

both libraries had kept the maximally allowable number of copies of a

given book, then 5 of these must have been shared. All university books

are categorized by the same library code, and hence, there is again a

order defined on the unified collection. The range associated with the

order has to be extended to encompass both ranges. Assuming that Si
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had the range ['QA':'QB') & and S2 the range ['Y':'Z'] then S is

described by the union of these ranges, namely, ['QA':'QB') &

5. Restrictions on Cartesian Groupings

5.1. Restrictions

The Cartesian grouping is itself a set grouping, containing complex aggregate

entities. Therefore the set grouping restrictions of section 3 also apply to Cartesian

groupings. In addition, there are restrictions specific to Cartesian groupings.

Each of these may be repeated zero or more times within a Cartesian grouping

description. They have the general form [p, r] where p is some combination of

positions and r a range restriction. For each possible p, only one restriction of each

type may be specified., i.e., if [p, ri] and [p, r2] then ri has to be equal to r2.

The first two restrictions limit the number of times an element from a set

grouping Si may appear within some prespecified positions of C. These two restric

tion types are parameterized by == ( sameness ) , ( component-identity ) or

=" ( value-indistinguishabihty ). The first applies to the entire Cartesian group

ing while the second applies to individual elements of C. The third restriction is

concerned with aggregate projections, and the fourth characterizes constraints on

relationships that can be modeled by a Cartesian aggregation. This is similar to

the idea of "functional dependencies" in the relational model.

Before the restrictions can be presented formally, we need to introduce the

notion of appearance of an entity within a Cartesian grouping element:

Definition 7; Let Li with i = 1, ..., m be labels for some of the set groupings

Si underlying C. These set groupings Si have to be defined on the same domain

D. Let the symbol o stand for one of the three predicates =, =" or =^. Let t € C

and t[ Li, ...TLm ] be the aggregate projection of t on the labels Li as defined on
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section 2. Then x appears in t[ Li,Lm ] with parameter o if and only if at least

one of the following two conditions holds:

1. for some Li with Si not a power set grouping:

X o t[Li],_

2. or for some Li with Si a power set grouping:

3 e G t[Li]: x o e.

Let the aggregate projection of C be C[ ] = {t[Li,Lm]\t G C}.

Then x appears in C[ Z-i, ] with parameter o if and only if a t exists in C

such that X appears in t[ Xi,Lm ] with parameter o.

For the first two restrictions, let us assume that pi, p2, p^ are positions

of C whose set groupings have the same domain. The restrictions have the general

form [pi, p2, Pm, [ri:r2]] where the pi's identify the positions to be restricted

and [ri:r2] with 0 < ri < r2 gives the allowable range.

1. This restriction limits the number of times an entity may appear within the

designated positions of all aggregate elements of C, i.e., within the projection

C[ pi, ...,pm ]• If the parameter = is specified, then this 'appearance restric

tion' refers to the number of occurrences of a single entity across the positions

of all occurrences of C. If the parameter =" (=") is specified, then it refers to

the number of component-identical (value-indistinguishable) elements. The

range [ri:r2] states that an element of the domain underlying these pi posi

tions has to appear at least ri and at most r2 times within the pi positions

over all aggregate elements of C. When the restriction is applied to a single

position a number of interesting special cases can be modeled. In particular,

[pi, [ri:r2]] with n = r2 = 1 and parameter = captures the idea that position

Pi is a key for elements of C. It states that position pi is unique for each

aggregate element. The same restriction with the parameter provides a

mechanism for modeling the concept of a "value-based" key, which means
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that all elements of C can be distinguished based on the value of their i^^

component. Note that a value-based key corresponds to the concept of a key

in the relational model.

2. This restriction limits the number of times an entity may appear within the

designated positions within a single element of C. Again, a parameter of the

restriction regulates whether this refers to the sameness or the indistinguisha-

bility of entities. The specification of the restriction and their meanings are

equivalent to those of restriction 1. The major difference is that this restric

tion imposes limits on the appearance of an element within a single aggregate

element while the first restriction limited its appearance in C as a whole.

The third restriction is concerned with combinations of values across the

positions within aggregate projections of C. For the following, let X and Y be

collections of the set groupings underlying distinct positions of C. X corresponds

to the group of positions limited by the component-identity parameter and Y

corresponds to the group of positions restricted by the value-indistinguishability

parameter. Then, the restriction has the general form [(X) with x (Y) with

=•", [ri:r2]] where [ri:r2] (0 < ri < r2) is the allowable range. Note that either X

or Y may be omitted.

3. Restriction 3 limits the number of elements in C which have a certain

combination of values in C[X x Y]. The user specifies whether the constraint

is based on ='^, =", or a combination of both. In the last case, all positions

for which is to be applied are listed first in parenthesis with the ones to

which =" applies thereafter. For instance, [(pi,P2) with ='^ x (pa) with ,

[ri:r2]]. If a single parameter or =" is specified, then the restriction ranges

over a single collection Z (for example, [(p4,P5,P7) with [ri:r2]). This

restricts the number of elements t of C which have value-indistinguishable t[Z]

components. In this case, the range [ri:r2] states that for a given aggregate
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projection v of C[Z] there must be at least ri and at most T2 distinct aggregate

elements t^ G C with tj[Z] ='" v for 1 < i < r2. If a combination of these

two parameters is specified, then the number of elements t of C which have

component-identical aggregate projections t[X] and value-indistinguishable

aggregate projections t[Y] are both restricted. This implies that, for a given

aggregate projection value of C[XY] there must be at least ri and at most r2

distinct aggregate entities in C such that (ti[X] tj[X]) and (ti[Y] ty[Y])

for all 1 < i,j < r2.

The fourth restriction constrains dependencies between combinations of val

ues across the positions of all aggregate projections of C. Let X and Y again denote

collections of labels for set groupings underlying distinct positions of C. Then, the

restriction with the general form [X / Y, [ri:r2]] limits the number of element-s of

C which have the same value combination for X but distinct values for Y. In other

words, it limits to how many different Y values an X value can be related to by C.

Note that we have two types of sameness for aggregate projections t[X], namely,

='̂ and =". Similarly there are two interpretations for aggregate projections t[Y]

to be considered distinct, namely, and 7^^. Consequently, these are used as

parameters to indicate which type of sameness or distinctness we are referring to.

4. Restriction 4 limits the number of distinguishable (with interpretation or

7^") elements from C[Y] that can occur together with a certain same value

combination of C[X] (with interpretation ='̂ or =•") across all aggregate ele

ments in C. This class of restrictions has the general form [ X with parameter

/ Y with parameter, [ri:r2]]. For a given parameter pair pari for X and par2

for Y, the range [ri:r2] states that for each aggregate projection x of C[X]

there must be m (with ri < m < r2) distinct elements t^j, ti2, •••, in

C with (tijX] pari x) and (ti^.[Y] par2 tijY]) (j 7^ k) for all 1 < j,k < m.

For instance, if the parameter pair is =" for X and 7 '̂' for Y, then for each
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aggregate projection x of C[X] there must be m ( m at least ri and at most

r2 ) distinct elements in C with (t,v [X] =" x) but (t^^ [K] t,j, [Y] ) ( j 7^ k )

for all j, k from 1 to m.

In the examples below, we shall use the following labels to denote the four

possible Cartesian grouping restrictions: (i) appearance in C (with parameter

=, ='^ or ='^), (ii) appearance in one entity (with parameter =, =•" or (hi)

aggregate projection (with parameter =^, or both), and (iv) dependency (with

the parameter pairs (=" or ='̂ ) and (7^^ or t '̂̂ )).

Note that each position in a Cartesian grouping C may contain elements from

other set groupings, including entities from power set groupings. This allows us,

for example, to specify the cardinality of a 'multi-valued component' directly at the

underlying set grouping level. It is done by defining a power set grouping based on

set grouping Si and then constraining the cardinality for the power set's elements.

To clarify this consider the following simple example. Suppose a hotel reservation

grouping includes a position for the number of people who will share a room. If

a group of up to 3 people is allowed to reserve a single hotel room, then the set

grouping underlying the people position of the reservation aggregation would be

a power set of the set of persons with the restriction that its elements (subsets of

people) contain between 1 and 3 people. The power set grouping is a mechanism

powerful enough to determine many other important types of relationships between

the elements of a set grouping as will be demonstrated in section 6.

5.2. Examples of Cartesian Groupings and their Restrictions

Different combinations of restrictions specific to Cartesian groupings are dis

cussed below.

Example 1:
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Consider a set of committees of company officers represented by Company-

Officers C (President: person) x (Treasurer: person) x (Vice-Presidents: person*).

Each committee must be composed of exactly 1 president, exactly 1 treasurer,

and any number of vice presidents. Then, the Cartesian grouping can be further

characterized by the following restrictions:

1. appearance in C with =: [president, [0:1]]

2. appearance in C with =: [president. Treasurer, Vice-Presidents [0:5]]

3. appearance in an element with =: [President, Treasurer, Vice-Presidents

[0:1]]

Interpretation: Since people have unique identities only restric

tions with the parameter = are applicable. The first constraint limits

the number of times an element from the domain person may appear in

the president position to a maximum of one. That is, a person can be

president of at most one company. The second declares that a person

may not belong to more than five different committees ( in any position

) simultaneously, i.e., a person can not hold more than 5 offices. The

third restriction refers to an individual committee, and hence, insures

that a person cannot hold more than one position on a single committee.

Note that further restrictions could be imposed, for example, on how

many different committees exist or whether some of them contain the

same people, using the set grouping restrictions of section 3. Similarly,

additional restrictions could be placed, for example, on the number of

Vice Presidents using power set restrictions, which will be discussed in

section 6.

Example 2:

A flight reservation can be viewed as a relationship between a person, a

date, a plane, and a seat with the corresponding domains: Reservation C (Person
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: persons) x (Date : dates) x (Plane : planes) x (Seat ; seats). Seats are

indistinguishable entities half of which are 'business class' (BC) while the remainder

are 'tourist class' (TC). This is captured by the following six restrictions:

1. aggregate projection with =": [Plane , [20,400]]

2. aggregate projection with =": [Date x Plane x Person, [0:1]]

3. aggregate projection: [(Date x Plane) (=") x (Seat) (=^), [0:150]]

4. aggregate projection with =": [Date x Plane x Seat, [0:300]]

5. dependency: [(Date) (=^) x Plane with 7^" , [0:15]]

6. dependency: [(Date x Plane) (=") / (Person) (7^"), [20:300]]

7. dependency: [(Plane) (=") / (Seat) (7^^), [2:2]]

Interpretation: The first restriction represents the fact that this

reservation system monitors between 20 and 400 different planes. The

second indicates that a person needs only one seat on a given plane and

date. Constraint number 3 states that for a given plane and date there

are at most 150 reserved seats of the each type (0 < number of BC

seats, number of TC seats < 150). The lower bound is set to 0, since

this restriction refers to the number of reserved seats rather than their

actual count. Restriction number 4 models the fact that each plane

has a maximum of 300 seats that can be reserved. The next constraint

states that there are at most 15 different flights ( planes ) scheduled

on any date. The sixth restriction indicates that a flight must have a

minimum occupancy of 20 passengers and a maximal load of 300. This

is because each reservation includes exactly one seat and exactly one

person; therefore, the maximum of passengers depends on the number

of seats on the plane. Finally, restriction 7 indicates that a plane has

exactly two types of seats (namely, TC or BC).

Example S:
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A course can be viewed as a relationship between a professor, a teaching

assistant (TA), and a class of students. It has the form Course C (Professor :

person) x (TA : Students) x (Class : Students*). Possible restrictions are:

1. appearance in C with =: [Prof, [3:5]]

2. appearance in an element with =: [TA, Class, [0:1]]

3. aggregate projection with [Prof x TA, [0:3]]

4. dependency: [Prof {='̂ ) / TA (7^*^), [0:2]]

Interpretation: The first restriction guarantees that a professor

will teach at least three and at most five courses. The second constraint

ensures that a student is not both a TA and a participant in the same

course. Restrictions 3 and 4 regulate the frequency of interactions

between professors and TAs. Number 3 states that a professor will have

to deal with any given TA at most three times (i.e., in three different

courses), and vice versa. Number 4 guarantees that a professor will have

to deal with at most two different TA's at any given time.

6. Restrictions on Power Set Groupings

6.1. Restrictions

A power set grouping is a set grouping and therefore the set grouping re

strictions described in section 3 may be applied to it as in the case of Cartesian

groupings. In addition, a power set grouping's definition can restrict the structure

of the cover aggregates which are its elements. These additional restrictions are

listed below. To disambiguate the following discussion the term elementp^ is used

for an element of a power set grouping G* and element^ for an instance of the

underlying set grouping G.

1. The cardinality of each elementps ps G G* must be in the range [ki:k2]. If

ki=k2 then only subsets of G with cardinality ki are potential valid instances
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of G*. If ki<k2 then all subsets of G with cardinality within that range are

potential valid elements. The extreme case, where ki=0 and k2=oo, imposes

no cardinality constraints on the subsets of G; this is assumed as default.

2. This restriction limits the number of indistinguishable copies of an element^

g G G within a given elementps ps G G*. A range [li,l2] and a parameter to

indicate the applicable notion of indistinguishability are specified. If li=l2

with parameter ='^ (=") then for each element g G ps with ps G G* there

must be (li - 1) other elements in ps that are component-identical ( value-

indistinguishable ) from g. All other special cases are analogous to those for

set groupings (in section 3).

3. This restricts the number of different cover aggregations ps of G* in which

an element g of G may participate. Again, the range restriction [ji,j2] with

the parameters =,=^,or =" may be specified. If the parameter is ='̂ (=")

then component-identical (value-indistinguishable) copies of an element g of

G may participate in n elements ps of G*, where ji<n<j2. If ji=j2 and

the parameter is or ='" then indistinguishable copies of all elements of

G participate in exactly ji elements of G*. If ji=j2=l and the parameter is

or =•" then a value based intersection of cover aggregations ps is always

empty. The parameter = requires that an element g G G participates in at

least ji and at most j2 elementSpg ps G G*. This corresponds to the total

number of elements^ G G* since, by definition 1, an element with identity can

appear only once in any of the cover aggregates ps G G*. For any parameter,

the default is ji=0 and j2 = oo.

4. This characteristic restricts the total number of occurrences of indistinguish

able elements^ g ^ G within all elementspg ps G G*. It is parameterized by

and (Conceptually, the = parameter would also make sense, but, due

to definition 1, this restriction is identical to restriction 3 with parameter =.)
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The total occurrence restriction is again specified by a range [ If

mi=m2 then there are exactly mi indistinguishable copies of each element g

of G which participate in G*, i.e., for each element g G G, there are g,- (1 <

i < mi) copies of g such that gj G ps for some ps G G*. If mi<m2 then the

total number of indistinguishable copies of elements g from G in G* may vary

between mi and m2. An important special case is mi=m2=l; this restriction

does not allow any duplicates within any element ps of G* nor within G* as

a whole. In this case, G* is a simple partitioning of G, where each partition

is one element of G*. Once again the defaults are mi=0 and m2=oo.

Note that the four measures are closely interrelated, and hence setting one

may influence the others. It is this interplay which allows the model to formulate

rather complex semantic concepts, as will be illustrated by the examples which

follow.

Most applications seem to utilize restrictions using either the sameness pa

rameter or the indistinguishability parameters. One reason for this is that when

representing power sets, it often does not matter whether two or more of the un

derlying entities look alike. For example, when we model a group of people (let's

say a committee) the fact that two people have a similar appearance does not have

any bearing on the composition of this group. On the other hand, when we model a

situation where the existence of indistinguishable copies of an entity is important,

we are usually not be concerned about whether they also have matching identities.

For example, consider a set of courses {A,B,C} where each course may be taught

more than once. In this case, we want to model the fact that different sessions of a

particular course are indistinguishable from each other even if they have different

identities.

The labels used to specify power set restrictions are (i) element^s cardinality,

(ii) element^ repetition within each elementp^ with or =", (iii) elementp^ overlap
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with or ='̂ , and (iv) total participation of elementsj in all elementsps with

=" or

6.2. Examples of Power Set Groupings and their Restrictions

The following examples demonstrate the utility of the characteristics defined

above.

Example 1:

The set G* of study groups of up to 3 students over the set G of students can

be characterized by:

1. elementps cardinality: [2,3]

Interpretation: A group ps G G* has 2 or 3 students. The fact

that each student can participate in any group ps at most once is taken

care of automatically by the model (definition 1). Also, the fact that a

student may participate in any number of study groups (including none)

follows from the defaults.

Example 2:

The set G* of convoys of ships over the set G of ships can be characterized

by:

1. elementps cardinality: [2 : |G|]

2. elementps overlap with =: [Q:l]

Interpretation: A convoy ps 6 G* has at least two and at most all

ships from G in it. Again, the fact that each ship occurs in a convoy at

most once is automatically enforced by the model (definition 1). The

second restriction specifies that each ship g G G may participate in at

most one convoy ps G G*.

Example 3:
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Let G be the set grouping consisting of all students who take ICS courses.

Then, ^ power set grouping based on the set grouping G defined by

= { s I s is the group of students in an ICS graduate course }. It can be restricted

by:

1. set cardinality: [20:25]

2. set repetition with ='̂ : [0:5]

3. elementp^ cardinality: [6:30]

4. elementpa overlap with =: [3:5]

Interpretation: Restrictions 1 and 2 are general set grouping re

strictions, while 3 and 4 are specific to power set groupings. Restriction

1 models the fact that there axe between 20 and 25 graduate courses

offered by the ICS department Several courses may have ex

actly the same group of students enrolled in them and, therefore, some

courses may be component-indistinguishable. Consequently, the second

restriction allows for indistinguishable courses. The third constraint

limits the size of graduate classes to be in the range from 6 to 30 stu

dents. Finally, the last constraint states that a graduate student has to

take between 3 to 5 courses.

Example J^:

The power set G* defines the teaching assignment of instructors for the

duration of three terms over a set G of courses. It can be described by:

1. set cardinality: [15:20]

2. elementps cardinality: [2:5]

3. element^ repetition with =": [0:4]

4. elementpa overlap with =^: [0:6]

5. total participation with [1:6]
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Interpretation: We assume that the department has between 15 to

20 instructors (restriction 1). Each has to teach at least 2 and at most

5 courses during a year (restriction 2). An instructor rnay teach a given

course up to four times (restriction 3). By restriction 4, a course can be

taught by at most 6 different instructors. A course may be taught up

to 6 times within the year but must be taught at least once (restriction

5).

Example 5:

Let Gyjord be the set of all words in a given dictionary defined as the power

set over the set G of all characters. The word order, the enumeration of letters

within a word, is considered to be a significant order. The following restrictions

could be applied:

1. set cardinality: [60000:60000]

2. set repetition with =": [0:1]

3. elementps cardinality: [1:28]

4. element,, repetition with =•": [0:10]

5. elementya overlap with [50:40000]

6. total participation with =^: [50:400000]

Interpretation: The first restriction assumes that there are exactly

60,000 words in the dictionary. The second states that each word ap

pears only once. The third restriction refers to the cardinality of the

subsets, i.e., the minimal and maximal word length. (One of the short

est English words is the article "a" while the the longest English word

known to us is "antidisestablishmentarianism" comprising 28 charac

ters). We assume that a given character can be repeated up to 10 times

in a word (restriction 4). For the purposes of this example it is further

assumed that each letter appears in at least 50 and at most 40,000
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words (restriction 5). The total occurrences of a character in the entire

dictionary will be at least 50 and at most 400,000 times. This final

upper bound was derived by combining the fact that a character can

appear in up to 40,000 different words (restriction 5) with the fact that

this same character can appear up to 10 times within the same word

(restriction 4).

Example 6:

Let G* represent a tennis tournament over the set of players G. Every player

must play against every other player except himself. The following restrictions

have to be imposed:

1. set cardinality: [(|G| * |G| —|G|)/2 : (|G| * |G| —|G|)/2]

2. set repetition with =": [0:1]

3. elementps cardinality: [2:2]

4. elementps overlap with =: [|G| —1 : |G| —1]

Interpretation: There will be exactly |G| * |G| —lG|)/2 different

matches, since every player plays against everybody else (restriction 1).

Each player may occur in a match at most once which is guaranteed by

definition 1. Furthermore, there is no significant order defined on the

elements of the power set, since A playing against B is the same as B

playing against A. Consequently, no two matches within the tournament

are identical (restriction 2). The cardinality of teams is 2 (restriction

3). Each player will participate in |G| - 1 matches, since s/he does not

play against him/herself.

7. Conclusion

The concept of a semantic grouping is a major focus in semantic database

modeling research. In this paper we have presented enhancements to several kinds
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of groupings which form the basis of most semantic database models. We have

enriched the basic groupings by identifying a number of semantic restrictions for

each. Combinations of these constraints produce potentially new variations of

semantic groupings and provide us with higher-level mechanisms to more accurately

model real world concepts. Furthermore, they allow us to place integrity constraints

directly into the structure of the database model. Hence, this work represents

another step towards overcoming a major disadvantage of conventional database

systems, which have to maintain constraints separately from their data and to

enforce them explicitly.

The emphasis of our work has been on identifying and formulating these new

modeling constructs. We present a general framework which attempts to capture

the most important real-world phenomena. In any given application only a, pos

sibly small, subset of the proposed restrictions will be useful. The framework is

based on pragmatics and hence examples are provided throughout the paper to

show its potential usefulness. Real world knowledge is too unstructured and het

erogeneous to hope for a rigorous formal framework that could be proven "correct"

or "complete" in any mathematical sense.

There are, of course, issues which still have to be resolved. One of these is

the, perhaps intractable, problem of resolving inconsistencies between the various

restrictions that can be placed on different parts of a database. For now, we

consider it to be the responsibility of the database designer to determine a sensible

collection of constraints. Furthermore, we believe that since database applications

attempt to captured information a,s it exists in the real world, inconsistencies will be

the exception rather than the rule. An example of an inconsistent specification that

can never be satisfied is the following restriction tuple for a set grouping: (1) set

cardinality [5:5], (2) set repetition [3:3]. The first restriction requires the cardinality

to be exactly five and the second states that each element must repeat exactly
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three times which implies that the cardinality is a multiple of three. Violations of

constraints could indicate one of two things: either the user has entered some data

incorrectly or the specified constraints are indeed inconsistent. The first case is

preferable to the user, since this acts as a protection from entering inappropriate

data. In the second case, the user will have to reconsider the original specification.

Once, the changes have been made, the loading (and checking) phase continues.

Another problem, currently under investigation, is to determine which of

these constraints can be enforced efficiently. Finally, we will look for heuristics

which minimize the possibility of inconsistencies between the restrictions without

losing the modeling power gained through specifying them in the first place.
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