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Introduction
When a nuclear reaction is induced by monoehéfgetic incident particles the
- energy distribution of the emitted particles yields(information about the excited
states of the residual nucleus. When the separation of these states is larger
' than both their natural width and the minimum energy spread that the experiment
can resolve, the emitted particles fall into disdrete energy groups; seé fof

example Fulbright and Busho(l) When the level denéity is larger, the energy

(1) . w. Fulbright end R. R. Bush, Fhys. Rev. 74, 1323 (1948)

distribution appears continuous, but the shape of this continuum can yield in-

formatioﬁ about the level density of the residual nucleus; 'see Feld(z) and

(2) B. T. Feld, Phys. Rev. 75, 1115 (1949)

Weisskopf.(B) Using rhotographic plates to detect the charged particles we have -

(3) v. Weisskopf, Phys. Rev. 52, 295 (1937)
investigated the energy spectra of protons emitted from carbon and aluminum when
bombarded by ﬁrotons of 32 and 16 Mev from the Berkeley linear accelerator.

Experimental'Method

A camera was constructed (Fig. 1) which allows & plates to be expésed simul-
taneously each with its center at an angle of 96° with the beam axis and each
plate set so that particles from the target enter it within 20° of grazing inci-
dence. To cover the energy range desired an absorber of either copper or alumi-
num was placed between the target and each plate. The absorberslwere increased

by steps of seven mils (48 mg/sq.cm) equivalent of aluminum which corresponds to
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160 v of emulsion. Tracks from 15U -200 . were read on each plate (tracks less
than 15 were considered unreliable) and éo there was an overlap region of 25M
from plate to plate; This method requires that about 24 plates be read to cover
the region from 0-32 Mev. Reading track lengths of 200 or less has two advan-
tages. (a)‘It makes corrections for tracks scattering out of the emulsion negli-
gible; (b) it makes égunting the tracks quite simple since they all fall well
within one field of view of the miéroséope with a convenient magnification of
440. The tracks are measured by means of an eyepiece reticu}e calibrated against
a Bausch and Lomb stage micrometer. |

The absorbers were placed oh an approximately spherical surface of radius
6.3 cm centered on the target. This insured that the effective thickness of the
absorber for the scattered protons varied by less than 0.2 percent. All tracks
read wefe at a polar angle of 96 + 4°,

Ilford E—l, IOQ}L, plates were used. These plates are sufficiently insensi-
tive to distinguish alpha=-particles but not deuterons from protons. 1In order to
minimize the number of tracks arising from recoil protons struck by neutrons
incident on the plates, only those tracks'coming‘from the direction of the tar-
get and starting at the top surface of the emulsion were read.

The background tracks were determined in two.separate ways, with no térget
preéent and by using an absorber thick encugh to cut out all scattered protons.
In the high energy tail of the aluminum curve (Fig. 6) the background amounted
to about 20 percent. In other regions of interest, it was much less than that.

Results and Conclusions

Carbon. A one mil polystyrene target was used in two sets of runs, one at 16.3
Mev and one at 3155 Miev. The experiment at the lower energy is essentially a
duplication of work done by Fulbright and Bush(l) and provided a check on our

- method. The résults are shown in Figs. 2, 3, ﬁnd L. Fig. 2 shows the distribu-
tion vs. range in the 31.5 Mev run as an example of the raw data taken from the

plates. Each run shows two levels in 012, the 16.3 Mev run at 4.8 and 10.2 lev;
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the 31.6 Mev run at 407.énd 10.1 Mev., Fulbright and Bush find three levels; at
9.7, 5.5, and 4.4 Mev, but their results were obtained at 162° and some of these

levels probably have strong angular variations. W. M. GibSon(A) found levels at

B

R a5 L e

_(&5 ﬁ.’Mt'Gibédn:;Préé: ?ﬁyél Sbc;,

PR et
ez

‘,:‘,& a7
A, 62, 586 (1949)

Lo, 9.72 and less certainly at 7;7 Mev., The half-width at half maximum is
about 0.4 Mev for the 32 Mev run and about 0.5 Mev for the 16 Mev run. The half-
width calculated froﬁ straggling, spread in polar angle, and target thickness is
0.3 Mev; The half?ﬁidth in the 16 Mev run is larger because of the énergy spread
introduced by.stopping down the beam.

- The third level shown in the 31.6 Mev run has two possible interpretations.
It may be either deuterons or protons. Considered as deuterons going to the |
ground state of 1l it leads to a threshold of 16.7 Mev for the C12(p,d)cil
react_ionsa The threshold for the reaction calculated from the masses is 16.5
Mev. Considered as protons it leads to a level at 21.2 Mev in cl2. The low
_energy tracks could be associated with levels in c12 at excitations between 20-
28 Mev or could be associated with protons arising.from_Clz(p,np)Cll or
012(p,a.p)B38.reactionso

The energy and the relative intensity of the third level in the 32 Mev run-

seem to indicate thét.it ié composed of deuterons, From the thré%ﬂola of thé  ;

¢12(p,pn)cll reactioné; Panofsky and Phillips<5)- showed that deuterons are

(5) w. K. H. Panofsky and R. Phillips, Phys. Rev. 74, 1732 (1948)

. emitted at threshold and the intensity of the supposed deuterons in thils experi-

ment suggests that a substantial fraction of the C1l is due to detteron emission
even at 32 Mev., This is not surpfising in view of‘the sparsity of levels in C12
and the high binding energy of a neutron to N13, both of which mean that the
processes'competing with the deuteron emission are very much reduéed°
Thé:relafive intensities of the exciﬁed states‘is of some interest,v From

thg‘volume_gvailable in rhase space, neglecting selection rules and statistical

BRI
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weights of the states of the excited nucleus, the ratio of the intensities should

The calculated and

observed intensities are shown in Table 1. The agreements between the cqlculated

and observed results indicate that all of the reactions are equally allowed.

VTable 1
16 Mev Run 32 Mev Run
Obsérved Calculated Observed Calculated
Ratio of intehsity
of 1lst excited state 2.2 2.1 1.6 1,2
to second excited state ‘
Assuming deuteron Assuming proton
Observed Calculated* Calculated
A B
Ratio of intensity
of lst exeited state .
to 3rd level in 32 1.4 1.25 . 0,8 4.2
Mey run ) 7

momenta are excited.

~

* Case "A" neglects the statistical weight of the deuteron. Case "B" ascribes
a statistical weight of 3/2 relative to that of proton. One cennot decide
which is correct without knowing the angular momentum ¢f the original ex-

cited state of Cl2., It is likely that many states with different angular

Aluminunm

The target was one mil aluminum foil and the bombarding energy 30.4 Mev.

The distribution in Fig. 5 shows no levels eXcept‘the elastic peak. Dicke and
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Marshall(é) have shown that there are levels in aluminum at 0.87, 2.03, 2.70,

(6) R. H. Dicke and J. Marshall, Jr., Phys. Rev. 63, 86 (1943)

and 3.5 Mevi These could not be seen as separated levels,»probably because the
1eveié are too close to be resolved with the statistics available in this region.
The elastic scattering is assumed to be due primarily to diffraction scattering
since it ié mhch more intense than the léw lying excited levels. The experimen-
tal cross section for the‘elastic scattering is & (96°) = 4.1 x 10727 sq. cm/
sterédian, The fhebrétidél cross section, assuﬁihg only diffraction scattering,

(7)

is glven by

(7) . A. Bethe, Fhys. Rev. 57, 1125 (1940)

o (0)a ="le 20+ 1) (B - D R (@)% an @

Here 1 = |ﬁl i 2 is tpe sticking probability of protons of angular momentum L.
If one assumes a_completely absorbing nucleuq,ﬁjr = 0, If the suﬁ is taken to
Qmax =R , approximately 5 in this case, where R = radius of aluminum nucleus,
one finds (7(g:> = 5,53 x 10-27 sé. cm/steradian. This agreement is probably
better than one should expect from the crude model used. However, it indicates
that this explanation is not unreasonable.

By assuming a statistical model for the nucleus, one can use the déta td"
calculate the variation of level density with energy. At excitations of about
30 Meﬁfit seems likely that even as light én elementbas aluminum can be treated
by these ﬁiethods° The energy distribution of the emitted protons can be shown
to be given by(3)

I(g)de = K& wp(E)og(e)de , (2)
where I(€ ) = number of protons of energy € emitted per unit‘time,
wp (E) = density of iévels of the residuél nucleus at excitation E.

ag(e) = capture cross section for protons of energy &. .

K = constant independent of energy.
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In all calculation og(¢ ) was taken as WR2P(€). Here, P(£ ) is probability
of a proton of energy € penetrating the Coulcmb barrier.

1 v -
(E) /2.\ Here E = 29.4 - £ , where 29.4 is

Weis&skiop“f}(%) gives Wg(E) = Be A
energy of protons in éenﬁer of mass system. Thus, by piotfing ln’l%§=l vs.
(29.4 - E.,)l/2 one.éets the constant A as the slope of the curve. However, this
neglects the fact that not all the protons measured come from the A127(p,p)A127*
reaction. They may also come from multiple reactions such as~A127(p,np)A126* or
2127 (p,2p)MgR6*. From an analysis of the binding energies involved one can
éstimate that about half of all the protons arise from multiple reactions and
that the energj distribution of the second proton would be about the same whether

it follows a neutron or a proton. One can find the energy distribution of these

protons as follows.® Let the distribution of second protons be given by

I(g*) det = K&:ﬂe“‘*(E"’E')l/2 og(€t) dg
E' = 29,4 - Ep - £ , where Ep = binding energy of proton to A1<7. E} - &' is
the excitation of Mg26 after emission of second proton. This must now be multi-
pliéd by the probability of the first proton being emitted with ernergy & and
integrated over all & for which &' is possible. |
Thus: |

: 29.4-Ep= € * :
0 .

This integral was evaluated numerically as a function of €1 for A= 3.0 M‘ev"l/2
and 4 = 3.6 Me‘v”l/2 and the resulting distribution normalized so that it con-
tained half the total number of protons. This was then added to the distribu-

tion expected for the first proton assuming the same value of K. The smooth

LAY SRy - P
PNEICT . A

e

* The calculation is done for the A127(p,2p)Mg26* reaction. As stated in text,
there would be no substantial difference iffit_were done for the A127(p,np)A126*

reaction.
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curve (Fig. 5) is calculated for A = 3.6 and the dashed curve for A = 3.0.%*
There seems to be a qualitative agreement betweep the experimental and calcu-
lated distributions for energies below 12 Mev. This corresponds to an excita-
tion of the aluminum of about 15 Mev. Thus, the evidence seems to be that at
excitations above 15 Mev the density of levels increases quite rapidly and possi-
bly exponéntiallyo The much slower decfease of the experimental curvé than the
calculated one above 12 Mev indicates that for excitations less than 15 Mev the
level density changes much more slowly than the exponential form chosen in the
(8)

calculations. Weisskopf(B) estimates A = 3.1 for light nuclei. Bethe gives

{8) H, A. Bethe, Phys. Rev. 50, 332 (1936)

A= (E¥331/2 , or A = 3,5 Mev”l/2 for Al, where M = mass number,
One can estimate the absolute level density at any excitétion from Eq. (2),
by using relative values of I(% ) and éssuming a value of w (E) at some energy.
Using the known levels(é) to get the average density for the first few Mev, one
arrives at a level distance of 10 kv at 20 Mev. This level distange:is consider~
ably iarger than one would obtain from the statistical models of the nucleus

which are used by Weisskopf and Bethe.
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*#The value of A caelculated directly from the raw data is 3.8 Mev°1/2° It is
seen that the correction for the protons from multiple reactipns does not
change the value of A very much. This is because the distribution of these
protons is not greatly different from the distribution-of the first protons.
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