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Abstract

Glycosylated biopharmaceuticals are important in the global pharmaceutical market. Despite the 

importance of their glycan structures, our limited knowledge of the glycosylation machinery still 

hinders controllability of this critical quality attribute. To facilitate discovery of 

glycosyltransferase specificity and predict glycoengineering efforts, here we extend the approach 

to model N-linked protein glycosylation as a Markov process. Our model leverages putative 

glycosyltransferase (GT) specificity to define the biosynthetic pathways for all measured glycans, 

and the Markov chain modelling is used to learn glycosyltransferase isoform activities and predict 

glycosylation following glycosyltransferase knock-in/knockout. We apply our methodology to 

four different glycoengineered therapeutics (i.e., Rituximab, erythropoietin, Enbrel, and alpha-1 

antitrypsin) produced in CHO cells. Our model accurately predicted N-linked glycosylation 

following glycoengineering and further quantified the impact of glycosyltransferase mutations on 

reactions catalyzed by other glycosyltransferases. By applying these learned GT-GT interaction 

rules identified from single glycosyltransferase mutants, our model further predicts the outcome of 

multi-gene glycosyltransferase mutations on the diverse biotherapeutics. Thus, this modeling 

approach enables rational glycoengineering and the elucidation of relationships between 

glycosyltransferases, thereby facilitating biopharmaceutical research and aiding the broader study 

of glycosylation to elucidate the genetic basis of complex changes in glycosylation.
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1. Introduction

Glycans are major post-translational modifications, and their structures can directly impact 

protein characteristics such as binding kinetics, stability, and bioavailability [1, 2, 62]. 

Therefore, an understanding of their associated biosynthetic pathways is essential for efforts 

to modify or engineer glycosylation [3–5]. However, since glycan synthesis is highly 

stochastic and compartmentalized, real-time observation of the glycosylation process is 

extremely difficult and further complicated by the dynamic structures of the endoplasmic 

reticulum and Golgi apparatus [6, 7]. Thus it has been challenging to fully understand the 

dynamic process of glycan synthesis [8]. Given our incomplete understanding of the 

glycosylation machinery and the costly and laborious glycomics procedures, predictive 

computational glycosylation models can be invaluable for capturing the features of the 

complex glycosylation machinery and to understand how the glycosylation machinery 

responds to external or internal signals and perturbations.

Over the past two decades, several computational models have been built to quantify and 

model glycan synthesis [9–14]. Recently, a Markov chain method [15, 16] was developed for 

modelling N-linked glycosylation. This approach has the advantage of being a low-

parameter framework that does not require kinetic characterization a priori. The Markov 

chain process effectively captures the sequential and stochastic nature of glycan 

modification. In the model, each node represents a glycan and the state transitions are the 

reactions that add a single sugar to the glycan. Thus, the edge weight is a transition 

probability, which represents the ratio of total flux making a single glycan from a single 

precursor glycan, divided by the total flux to make all glycans from that same precursor. The 

stationary distribution of a Markov model represents the distribution of all fluxes used to 

make all measured glycans. One can learn the transition probabilities for each reaction by 

fitting the model to a single glycoprofile, and subsequently predict changes in glycosylation 

following glycoengineering. Initial studies have laid the groundwork for this approach, but 

further work is needed to develop models that are broadly applicable and practical to predict 

the glycosylation outcome of complex glycoengineering for diverse protein products.

One challenge in model-based glycoengineering is how to account for complex regulatory 

mechanisms of the glycosylation machinery and accurately define enzyme and isozyme 

specificity for different glycan substrates. Indeed, glycosyltransferase (GT) isozyme 

specificity and interactions between glycosyltransferases remain unclear and therefore 

difficult to model. Recently, studies have confirmed functional interactions among several 

GT isozymes, wherein one GT impacts the function of another. Examples include 

interactions between β−1,4-galactosyltransferase (B4galt) and Mannosyl-glycoprotein N-

acetylglucosaminyltransferases (Mgat), B4galt and β−1,3-N-acetylglucosaminyltransferase 

(B3gnt), Mgat and B3gnt, and B4galt and beta-galactoside alpha-2,3-sialyltransferase 
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(St3gal) [17–20]. Evidence of these interactions has been based on an observed dependency 

of glycoprofiles or omics data of GT-knockout cell lines (e.g. ST3GAL1 and B4GALT1 

interaction [18]). While these findings suggested GT isozymes interact with each other 

through direct protein-protein interactions or transcriptional regulation, the specific 

mechanisms of these interactions and the extent of such interactions have not been 

extensively studied.

Another significant hurdle for predictive modeling for glycoengineering is our incomplete 

understanding of GT catalytic specificity. Some glycosyltransferase isozymes, such as those 

from the B4galt and St3gal families, have more specific catalytic activity on different 

branches of N glycans [17, 21–24]. However, the complex GT-GT interactions, unknown 

glycan substrate specificities, and the difficulty in obtaining comprehensive omics and 

enzyme kinetic data, have all presented great challenges to rational model-driven 

glycoengineering. Therefore, while considerable efforts have been made for predicting 

glycosylation patterns of recombinant proteins upon the glycoengineered CHO cells [15, 16, 

25, 26], model-based prediction of a glycoengineered glycoprofile from the wildtype 

glycoprofile is still challenging.

To overcome these challenges, we present a more extensive Markov modeling framework for 

glycosylation. Specifically, this modeling framework can learn glycosyltransferase activities, 

including substrate specificities of individual GT isozymes. The methodology was tested on 

four glycoproteins, including erythropoietin (EPO), Rituximab, Enbrel, and alpha-1-

antitrypsin. EPO is a hormone protein widely used for anemia treatment by increasing red 

blood cell count [69], in which glycosylation play essential roles for its bioactivity [69] and 

serum half-life [73]. We first present models that predicted the N-linked glycosylation of 

EPO produced by glycoengineered Chinese hamster ovary (CHO) cells with multiple 

glycosyltransferase isozyme knockouts. The EPO models demonstrated the benefits of 

introducing substrate specificity. Then, we demonstrated that our EPO models can estimate 

the isozyme specificity, and we further employed the model to predict the glycoprofiles of 

multiple glycosyltransferase knockouts. Finally, we show our model effectively predicts 

glycoengineered glycoprofiles for three diverse recombinant proteins based solely on the 

wildtype glycoprofiles for three protein drugs (Rituximab, Enbrel, and alpha-1 antitrypsin) 

produced by CHO cells. Rituximab is a chimeric monoclonal antibody and specifically binds 

to CD20 for B-cell lymphoma [68]; Enbrel is a fusion protein of tumor necrosis factor 

receptor and the Fc part of IgG1, used primarily for treating autoimmune diseases [67]; and 

alpha1 antitrypsin is a protein whose deficiency leads to liver and kidney damage [66]. 

Studies have shown that glycosylation is extremely important for their functionalities, 

inflammatory trigger, and other pharmacokinetic/pharmacogenomic properties [66–69]. 

These results demonstrate that our updated modeling framework provides a valuable 

approach for rational glycoengineering and for elucidating the relationships among 

glycosyltransferases, wherein one can discover the genetic basis of complex glycosylation 

regulatory mechanisms.
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2. Results

2.1 A branch-specific N-glycosylation Markov model effectively predicts glycosylation of 
glycoengineered CHO cells

Here, we present four major changes to the N-glycosylation Markov model [15, 16] to 

overcome the aforementioned challenges (see details in Materials and Methods, Section 5.1). 

These changes are summarized here: 1) we used a complete glycosyltransferase reaction 

network rather than a tailored one to fit the EPO glycoprofiles, which enables a more 

accurate prediction of transition probabilities (TPs); 2) we have deployed the more efficient 

Pattern Search algorithm for obtaining the best TP vector, instead depending on the COBRA 

toolbox [41]; 3) instead of optimizing hundreds of transition probabilities for individual 

reactions in the transition probability matrix (TPX), we optimized only the twenty TPs (see 

details of the twenty different reaction types in the Materials and Methods 5.1 and Table 1); 

and 4) instead of a general TP to all branches, we distinguished the TPs for different 

branches of sialylation, galactosylation, and poly-LacNAc elongation (Table 1). 

Furthermore, these modifications allow us to incorporate unannotated glycan signals and 

efficiently fit a large network of all theoretically synthesizable glycans to a given 

glycoprofile.

To test the changes in the modeling framework, we defined two different types of models: a 

branch-specific model and a branch-general model. The branch-specific model introduced 

the possibility of branch-specific substrate specificity for each isozyme catalyzing 

sialylation, galactosylation, and poly-LAcNAc elongation reactions (see details in Materials 

and Methods, Section 5.1). Meanwhile, the branch-general model does not distinguish the 

glycan substrate branches. We tested this updated framework (Figure 1) on glycoprofiles of 

erythropoietin (EPO) produced in a panel of glycoengineered Chinese hamster ovary (CHO) 

cell lines [24], compared to the reference WT glycoprofile (i.e., from the EPO-producing 

non-glycoengineered cell line). For each model-predicted glycoprofile, we evaluated the 

performance of our framework by two criteria (see details in Materials and Methods): 1) the 

root mean squared error (RMSE) assesses goodness of fit between the model predicted 

glycan abundance and the experimentally measured glycan abundance; and 2) the coverage, 

quantifies how many of the experimentally measured glycans were accurately included in 

our model predictions.

Our newly modified framework demonstrated notable improvements in RMSE and coverage 

(Figure 2), due to the inclusion of the possibility for enzymes to exhibit specificity to 

individual branches in a complex N-glycan. While the branch-specific and branch-general 

models can fit experimental glycoprofiles well (high density interval (HDI) = 95%), the 

branch-specific models provided more accurate results. All model-predicted glycoprofiles 

have significantly reduced RMSEs (mean = 1.1e-2, Std Dev = 3.0e-3) in comparison to those 

produced by random models (i.e., branch-specific Markov models assigned with random 

transition probability (TP) vectors, mean = 7.2e-2, Std. Dev = 7.2e-3). In addition, they have 

high coverage (~90% on average) of experimentally measured glycans. Furthermore, 

introducing branch specificity significantly enhanced the performance of most model 

predictions of EPO glycoprofiles from the glycoengineered CHO cells, wherein the B3gnt-, 
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B4galt-, and St3gal-family glycosyltransferases were knocked out. For the most improved 

glycoprofile (i.e., B3gnt2 and Mgat4a/4b/5 multiple knockouts; Figure 2B), the branch-

specific model produced significantly enhanced performance (RMSE = 3.8e-3 and coverage 

= 100%) compared to the branch-general model (RMSE = 1.7e-2 and coverage = 100%). 

The least improved glycoprofile by the branch-specific model (RMSE = 1.4e-2 and coverage 

= 82%) resulted in a significantly decreased performance (two-sample t test, p <0.05) 

compared to the branch-general model (RMSE = 9.7e-3 and coverage = 91%) (B4galt1 

knockout; Figure 2C). We note that the accuracy of knock-out prediction in our model 

depends on the accuracy and comprehensiveness of the knock-out glycoprofile annotation. 

In this case, the annotation of the B4galt1 was missing annotation of multiple peaks, and 

there were some peaks that seemed to contradict each other (e.g., triantennary peaks that 

differed in the branches, Appendix G), and these issues could impact the prediction 

performance of the branch-specific model. However, our method suggests the identities of 

unannotated peaks and corrections of one annotated peak. However, this observation would 

require further validation, and we aim to pursue this systematically in a future study.

Another interesting observation is that model predictions did not significantly improve with 

the branch-specific models in the Mgat-family knockout samples; however, this is because 

the Mgat-family glycosyltransferases (Mgat2, Mgat4a, Mgat4b, and Mgat5) are intrinsically 

branch-specific in that they are responsible for initiating different branches of N-linked 

glycans. The improved accuracy after introducing branch specificity was consistent with 

previous reports wherein individual B4galt and St3gal isozymes differentially contributed to 

galactosylation and sialylation on different branches [17, 22, 27]. All these results illustrate 

that the proposed branch-specific framework can more effectively simulate glycosylation of 

the glycoengineered CHO cells.

2.2 Substrate specificity of glycosyltransferases can be predicted by model transition 
probabilities

To gain insights into effective glycosylation prediction using the branch-specific models, we 

closely examined the optimized transition probabilities (TPs) of these models. Each 

transition probability (TP) is regarded as the probability of transition from one state 

(substrate) to another (product) for a specific reaction type. The wild-type (WT) model is the 

basis used to compare with the other glycoengineered models. Therefore, we used the wild-

type model to explore if substrate specificity of glycosyltransferases could be described by 

the TPs. The overall WT model showed a good fit (RMSE=7.72e-03) and complete (100%) 

coverage (Figure 3A), which suggested that the modeling framework could effectively 

account for the experimental glycoprofile.

Four important findings from the model TPs (Figure 3B) are as follow. First, the TPs of 

sialylation on branch 3 and 4 (a3SiaT Branch 3–4) were significantly higher than those on 

branches 1 and 2 (a3SiaT Branch 1–2), which is consistent with the predominant signals of 

sialylation on branches 3 and 4 from the experimental glycoprofile. This preferential 

sialylation on branches 3 and 4 compared to branches 1 and 2 has been previously reported 

[17]. Second, the TPs of branch elongation reactions on branches 3 and 4 (iGnT Branch 3–4) 

are significantly lower than the TPs of sialylation on branches 1–4 (a3SiaT Branch 1–4). 
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This finding was consistent across all KO profiles. Third, the TPs of GnTII branching were 

considerably higher than those on GnTIV branching, which was consistent with their 

differentiated enzyme kinetics [9, 10]. Lastly, glycosyltransferase reactions showed, in 

general, much larger (tenfold) TPs than intercompartmental transportation TPs in trans Golgi 

and secretion, with the exception of LacNAc addition. The small TP for LacNAc addition is 

consistent with its small portion of glycans containing poly-LacNAc in the experimental 

profile, and previous reports of poly-LacNAc motifs being uncommon in normal mammalian 

cells [28]. The fitted WT model and the consistency between the TPs and the documented 

glycosyltransferase activities suggested that the optimized TPs quantitatively describe the 

substrate preferences collectively contributed by all glycosyltransferase isozymes and shed 

light on the competition between different glycosyltransferase reactions.

2.3 The branch-specific Markov model reveals glycosyltransferase isozyme specificity 
and co-dependence

Perturbation experiments are widely used to identify potential regulators (e.g., 

transcriptional regulator), their gene targets, and their regulatory relationships. Here, we 

employed the same rationale to study how glycosyltransferases regulate N-linked glycan 

synthesis, using a comprehensive compilation of GT-perturbed glycoprofiles [24]. 

Specifically, we systematically quantified the contribution of each GT isozyme to different 

GT reactions by investigating the impact of a single knockout GT on all other reactions. This 

was done by computing the fold change of TP vectors between the WT model and the GT-

knockout models. A significant interaction between a GT and a reaction is detected if the GT 

knockout significantly altered both the transition probability (TP) and the reaction flux of 

the GT-knockout model in comparison with those of the WT model (Materials and Methods, 

section 5.3).

Our results show the total effects of glycosyltransferases on N-linked glycosylation, as 

identified by the branch-specific models (Figure 4; Table F1, Appendix D). Specifically, the 

loss of function of a glycosyltransferase impacts not only the GT’s primary enzymatic 

function in glycan synthesis, but also the activities of other GTs beyond their own catalytic 

function. For example, the Mgat-family glycosyltransferases are the key enzymes 

responsible for the branching of N-linked glycans. We observed that single gene knockout 

lines for Mgat2, Mgat4b, or Mgat5 gene significantly impacted their own canonical 

catalyzed reactions – GnTII, GnTIV and GnTV, respectively (see the highlighted red lines in 

Figure 4A (i)). Moreover, for the isozymes of Mgat4a and Mgat4b, our model identified 

Mgat4b as the major isozyme in catalyzing GlcNAc branching. This is consistent with 

previous observations wherein Mgat4a showed low gene expression levels in CHO cells, and 

knocking out Mgat4b led to near complete loss of GlcNAc-β1,4-Man-α1,3 branching [24]. 

Besides their own specifically catalyzed reactions, the model captured the GT interactions 

between Mgat and other GT isozymes (the black lines in Figure 4A (i)). We found that 

Mgat4b or Mgat5 significantly increased the poly-LacNAc extension fluxes, in which the 

Mgat isozymes seem to compete for the same monosaccharides. Specifically, the Mgat4b 

KO increases iGnT activity (Branch 4) and the Mgat5 KO increases iGnT (Branch 3). 

Indeed, following Mgat gene knockouts, the Golgi can generate glycans of equivalent mass 

(or monosaccharide composition) to compensate for the loss of GlcNAc branching by 
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extending the poly-LacNAc [29, 30]. Meanwhile, the lack of GlcNAc branching makes 

existing branches more accessible to subsequent monosaccharide additions. Another 

possible explanation could be the redistribution of excessive UDP-GlcNAc from med to 

trans via inter-cisternal tubules [20]. In addition, the increased sialylation on branch 1 after 

the Mgat5 knockout was also captured by the model, as reflected by increased free 

sialyltransferase available to branch 1 following removal of preferentially sialylated branch 4 

[31].

The B3gnt-family glycosyltransferases add GlcNAc to the galactose of the N-linked glycans 

(poly-LacNAc extension). We observed their differentiated catalytic capabilities on LacNAc 

extension (red lines in Figure 4B (i)): B3gnt1, B3gnt2 and B3gnt8 single knockout models 

all carried significantly reduced flux through poly-LacNAc extensions on branch 4 (Figure 

D4, Appendix D). The result was consistent with the fact that they all contribute to poly-

LacNAc formation in N-linked glycosylation [20, 32, 33]. Beyond its direct impact on the 

poly-LacNAc extension, a B3gnt1 knockout also significantly resulted in changes in the 

reactions of branching (GnTIV/V), galactosylation (b4GalT Branch 2/4), and sialylation 

(a3SiaT Branch 1/2). The discovery is consistent with the finding that the gene products of 

B4galt1 and B3gnt1 co-localize and physically associate in vivo [34, 35], and knocking out 

B3gnt1 will impact B4galt1 activity and all other interacting glycosyltransferases. B3gnt1 

knockout further impaired Mgat4 and Mgat5 branching in addition to sialylation on most 

branches as shown by the modeling result (Figure D4, Appendix D). Finally, while knocking 

out both B3gnt1 or B3gnt8 impacted poly-LacNAc elongation, only knocking out B3gnt2 

significantly impacted total poly-LacNAc extension flux, resulting in significantly increased 

sialylation on branch 1 due to diminished competition for St3gal isozymes. However, while 

the reduction of fluxes through iGnT B4 reactions was determined to be statistically 

significant (Figure 4B), the impact of B3gnt2 and B3gnt8 on branch-4 LacNAc extension 

requires further validation because the sum of fluxes through iGnT B4 reactions is smaller 

than 2.1% of the total flux in both cases. Similarly, for B3gnt1, the fact that knocking out 

B3gnt1 impacted reactions beyond poly-LacNAc extension could stem from its interactions 

with other glycosyltransferases, clonal variation, or phenotypic impacts from the changes in 

glycosylation.

Other salient findings of interactions for the B4galt and St3gal glycosyltransferases are 

summarized in Table F1 (Appendix D). Intriguingly, despite that glycosylation has been 

known as a non-templated glycan synthesis process, all these results suggest glycosylation to 

be a robust cellular process with the mechanism in response to GT knockout. While 

interactions between different isozymes in the same family and other GTs are complicated, 

our model TPs and flux variation were highly consistent with the GTs’ known interactive 

mechanisms or enzyme kinetics. While further experimental validation is required, our 

model captured glycosyltransferase isozyme specificity and suggested how 

glycosyltransferases influence the activities with each other. However, while the 

experimental annotations are highly consistent with the model-predicted major glycoforms 

(with the highest model secretion flux among all isoforms) predicted at the m/z values 

(92.9±12.5 % accuracy for all fitted glycoprofiles, total flux < 5% for mismatched major 

glycoforms), glycosidic linkages cannot be assigned by MS in the current setups (Rapiflour 

LC-MS and Maldi-MS). Although biological knowledge about the glycans of these model 
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proteins can allow experts to manually assign some linkages, the specific positions of 

galactoses, sialic acids, and LacNAc moieties remain largely uncertain. While future 

analysis is necessary, we are hopeful that our model can assist in annotating accurate 

glycosidic linkages to overcome this current characterization limitation of the MS 

technologies measured glycan composition (m/z). These insights may shed light on the 

regulation of N-linked glycosylation.

2.4 Glycoprofiles for complex GT mutants can be predicted from single GT knockout 
models

Genetic interactions complicate the prediction of multi-gene knockout phenotypes, 

especially when the genes are involved in the same pathway. However, since our modeling 

framework captures the pathway architecture in N-linked glycosylation, we examined if our 

models trained on single GT mutants could predict glycoprofiles for mutants with more 

complex genotypes. Specifically, after obtaining the fitted models of single GT knockouts, 

we extracted transition probability (TP) vectors from these models and combined them to 

create new TP vectors, which predicted the GTs’ collective influence on the N-glycosylation 

synthesis for the combinatory knockout experiments. We developed an algorithm that 

enabled us to assess the significance of TP fold change vector elements for a multiplex 

glycoengineered Markov model (Materials and Methods, Section 5.3). Briefly, our algorithm 

identifies the fitted single-knockout TPs that define the changes in reaction flux following 

the knockout of an isozyme. It subsequently merges these TPs for all gene knockouts in the 

more complex mutant to establish a new multi-gene knockout TP vector for glycoprofile 

prediction.

The predicted glycoprofiles produced by our models showed high consistency with the 

experimental profiles for the multi-gene knockouts (Figures G1 and G2, Appendix E). 

Specifically, glycoprofiles were accurately predicted for eight erythropoietin (EPO) samples, 

each produced in different glycoengineered CHO cells with different combinations of 

glycosyltransferases knocked out. The multi-gene knockout models predict glycoprofiles 

with excellent performance (all log2(RMSEs) < −5.5, mean log2(RMSE) = −6.1, 

log2(RMSE) St. Dev. = 1.1), comparable to (two-tailed t test, p-val = 0.23) the fitting 

performance in general (log2(RMSE) RMSE = −6.6, log2(RMSE) St. Dev. = 0.5). 

Furthermore, the model reliably predicted glycoprofiles involving major St3gal or B4gal 

isozyme knockouts, which had remained challenging due to their complicated interactions 

with the functions of other glycosyltransferases and difficulty in correlating specific isozyme 

manipulation with model parameters. For example, the double B4galt/St3gal isozyme 

knockouts (B4galt1/3 and St3gal3/4; Figures 5B and 5C) reduced sialylation even further 

than B4galt1 knockout alone (Figure 4B and Figure E2C, Appendix E), validating the active 

roles of B4galt2 and B4galt3 in galactosylation despite their lack of impact when they were 

individually knocked out [17]. The robust prediction performance further validated the 

quantification of isozymes’ catalytic capabilities by TP vectors and alluded to the model’s 

potential for de novo prediction of biologically accurate glycoprofiles for glycoengineered 

CHO cell lines. Indeed, by comparing the fitted TPs to the predicted TPs, for each isozyme 

we identified the fluxes they impacted and quantified their influence on those fluxes. 

Intriguingly, while B4galt2 and B4galt3 only applied small modifications to TPs beyond 
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B4galt1’s impact, the predicted glycoprofiles were distinctive from each other and consistent 

with the fitted results. Therefore, our modeling framework can be used to predict 

glycoprofiles of multiple glycosyltransferase knockouts using single GT knockout models.

2.5 Glycoprofiles can be predicted for additional glycoengineered drugs de novo, based 
solely on TP fold changes learned from EPO

Various factors impact the glycoprofile of each unique protein, including protein sequence, 

structure, post-translational modifications, etc. Thus, it is unclear if glycosyltransferase 

preferences for one glycoprotein substrate will translate to other protein substrates. Thus, we 

tested if the EPO-trained models could be generalized to predict the glycoprofiles of other 

glycoengineered protein drugs (see details in Materials and Methods, Section 5.5) directly 

from their corresponding wildtype models (see Figure 6A for procedure). To do this, the 

modeling framework learns TPs for the wildtype glycoprofiles of a new protein. We 

hypothesized that the TP fold changes captured by the EPO models are strongly associated 

with the isozymes’ intrinsic catalytic capabilities and are therefore applicable to other 

protein drugs produced by CHO cells. In particular, N-linked glycosylation for EPO uses a 

wide variety of glycosyltransferase isozymes from all four families (Mgat-, B4gat-, St3gal-, 

and B3gnt-family) and produces complex glycoprofiles. This allowed us to extract rich and 

more complete information regarding the isozyme activities and preferences. Thus, this 

information could enable the prediction of equally or less complex glycoprofiles of other 

protein drugs, which may only utilize a subset of glycosyltransferase isozymes.

Testing our hypothesis, we predicted glycoprofiles for three different drugs (Rituximab, 

alpha-1 antitrypsin, and Enbrel) produced by CHO cell lines with both single and multiplex 

GT knockouts covering all the four GT families (Figures 6B–C and F1A–B). We found that 

the predicted KO glycoprofiles demonstrated outstanding performance (all log2(RMSE) < 

−4) for both slightly impacted (Rituximab; Figure F1B) and severely impacted (alpha-1 

antitrypsin; Figures 6C) glycoprofiles, in addition to the highly complex Enbrel 

glycoprofiles (Figures 6B and F1A). Successful prediction of perturbed glycoprofiles of 

Enbrel and AAT is especially encouraging as their extremely complex WT glycoprofiles. For 

the glycoengineered Enbrel glycoprofile prediction (Figure 6B), our model showed that 

knocking out B3gnt2 and St3gal3/4/6 severely impacts sialylation, which agrees well with 

the experimental measured glycoprofile (RMSE=5.85e-02). This result was expected due to 

the major roles of these St3gal isozymes. Moreover, although we learned from the previous 

models that B3gnT2 single knockout could decreases LacNAc elongation on branch 4 and 

activate sialylation on branch one (Figure 4B), we didn’t observe the activated sialylation 

effect. This observation is not surprising since the knockout of multiple St3gal isozymes 

already eliminated the sialylation, and there was no LacNAc from the WT glycoprofile. For 

the glycoengineered AAT glycoprofile, our model showed that knocking out Mgat4a/4b/5 

and B4galt1–5 upregulated the only glycan (Glycan #1) but decreased most of the other 

glycans (Figure 6C), which is in accordance with the experimentally measured glycoprofile 

(RMSE=4.89e-02). Indeed, the Mgat-family glycosyltransferases are responsible for the N-

glycan branching, and the B4galt-family glycosyltransferases are responsible for the 

galactosylation of N-glycans. The model therefore demonstrated that we are able to capture 

the dominance of this exact glycan (Glycan #1) in this knockout profile. All these results 
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suggest that, with little a priori knowledge, the TP fold changes learned from EPO models 

could be employed to predict the glycoprofiles of other protein drugs.

3. Discussion

3.1 The low-parameter Markov framework is further simplified for more efficient modeling 
of glycosylation

Over the past two decades, several mathematical models have provided insights into the 

complex glycosylation machinery [8, 10, 25, 36, 37]. Here, we extended our low-parameter 

Markov model framework [15] and demonstrated its ability to predict GT substrate 

specificity and the outcome of multiplex glycosyltransferase mutations. This low parameter 

approach does not require the input of kinetic or concentration information, and we further 

simplified it by updating the transition probability (TP) formulation only describe the 

activity of the 20 different glycosyltransferases and glycosidases (the previous formulation 

considered all transitions at each branch point in the biosynthetic network independently). 

Note that, the details of these 20 different glycosyltransferases and glycosidases are 

described in the Materials and Methods 5.1 and Table 1. In essence, the updated framework 

makes strong ties between transition probabilities (TPs) and the enzymes’ catalytic 

capabilities, which is especially effective for modeling glycoengineered glycoprofiles.

By closely examining the fluxes of glycosylation models, our results demonstrated that the 

new method comprehensively captures the active parts of the glycosylation network 

following glycoengineering. For example, our single knockout models (Mgat4b and Mgat5) 

identified significantly increased poly-LacNAc extension fluxes, which is consistent with 

known competition between the Mgat isozymes and B3gnt isozymes for the same GlcNAc 

monosaccharides ([29, 30], see Results, section 2.3). Furthermore, we replaced the original 

flux variability analysis (FVA) with the efficient global optimization algorithm–Pattern 

Search. At present, we are able to model a glycoprofile within 2 hours for a model with 

8,435 glycans and 19,719 reactions, which took a few days to complete by using the original 

FVA optimization algorithm. Both the reduced number of TPs and the new algorithm make 

the computational time of fitting a large reaction network more practical.

Another common issue in modeling is the overfitting problem. Overfitting is seen when a 

model fits the training data well but generalizes poorly to new data [70]. In this study, we 

addressed the overfitting issue by examining the generalizability of our model in the below 

two scenarios: 1) predicting multiplex mutants from single knockout models. Specifically, 

the model parameters (TPs) were trained on the single-knockout EPO glycoprofiles, and 

they were used to predict the unseen data of the multiple-knockout glycoprofiles for EPO 

(Results 2.4 and Appendix E); and, 2) predicting the glycoprofiles of different 

glycoengineered drugs (Rituximab, erythropoietin, Enbrel, and alpha-1 antitrypsin) 

produced in a different parental CHO cell host (EPO was produced in an adherent CHO-K1 

derivative, while the rest were produced in suspension grown CHO-S derivative lines), based 

solely on TP fold changes trained from EPO (Results 2.5 and Appendix F). Despite the 

variety of GT knockout combinations and drugs, the previously trained models showed 

generalizability in predicting the unseen datasets with excellent performance (Figure 5BC, 

6BC; Appendix E, F), further diminishing the concern for overfitting.
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3.2 Computational analyses can unravel multi-glycosyltransferase interactions impacting 
activities beyond their simple enzyme rules

A critical challenge in developing a predictive glycosylation model lies in the difficulties of 

quantifying the genetic interactions beyond each GT’s simple enzyme rules. Recently, large 

amounts of glycoprofiling data were generated from GT knockouts. These data allow us to 

capture how each perturbed GT impacts the expected activities of other GTs, providing new 

insights into the genetic interactions between different glycosyltransferases. We presented 

here a comprehensive documentation of genetic interactions between glycosyltransferases. 

Importantly, while GTs are expected to be specific toward their own catalytic functions, we 

show here that knocking out a glycosyltransferase could impact the function of other GTs. 

For instance, the Mgat2 knockout decreased its own GnTII reaction but promoted the 

b4GalT–Branch2 reaction (galactosylation). The above findings raise at least two important 

issues for biotherapeutic glycoengineering applications. The first issue concerns the extent to 

which potential unintended GT changes (off-target effects) may arise from a specific GT 

perturbation, and rational glycoengineering of a specific glycoform could be more non-

intuitive than we thought. However, as multiplex GT mutants are constructed and profiled, 

computational approaches as presented here can identify and account for genetic 

interactions, thus helping improve rational glycoengineering of biotherapeutics. 

Furthermore, such computational analyses can be leveraged to guide research into the 

underlying molecular mechanisms (e.g., transcription, epigenetic, and feedback loops) 

regulating GT-GT interactions. Despite that the surrounding literature on these GT-GT 

interactions (Results 2.3 and Appendix D) appears to be generally compatible with our 

model predictions obtained in the present study, we should be cautious about the potential 

clonal variation among the differentially glycoengineered cell lines when interpreting the 

model-assessed GT-GT interactions, as knocking out these GTs can potentially trigger more 

profound and diverse changes in cellular phenotypes. Future research is therefore necessary 

to determine with certainty the exact effect at which a GT-GT interaction in the 

glycoengineering of CHO cells.

3.3 Predicting glycosylation with minimal a priori knowledge

Another major goal of developing glycosylation models is to provide valuable guidance for 

glycoengineering therapeutic proteins. The present findings of this research contribute to the 

field’s understanding of the underlying rules acting on single GT knockout models resulting 

in a complex GT mutated model, which enables us to predict glycoprofiles of multi-gene 

mutations. The excellent performance for our model indicates that TP fold changes capture 

the specificity of each isozyme. These TP values that were learned and quantified from 

glycoengineered EPO profiles could be combined to predict the glycoprofiles from multi-

gene mutants producing distinct glycoproteins, as long as one has the WT glycoprofile for 

the new protein of interest (Results 2.5). These results lend credence to the hypothesis that 

the GT interactions are generally encoded in the glycosylation machinery, which could be 

captured by our glycosylation model. It is apparent that the effect of complex GT knockout 

strategies impact different biologics in a similar manner. The satisfying accuracy of 

prediction results and the generalizability of the model pave the way to prospective research 

for consolidating the study of glycosyltransferase interactions and for rational 

glycoengineering for better biopharmaceuticals.
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3.4 Disentangling the functions of different isozymes

We demonstrated here that model-based analyses can discover or reinforce our 

understanding of the unique functions of different GT isozymes. We found that there are 

major isozymes whose knockouts impacted more reactions. Several studies have 

demonstrated the diversity of GT isozymes. For example, in different mammalian cells, 

Mgat4b is more responsible for the GlcNAc-β1,4-Man-α1,3 branching [24], B4galt1 for 

galactosylation [24, 38], St3gal4 for sialylation [39], and B3gnt2 for poly-GlcNAc formation 

[20, 32, 33]. Our glycosylation modelling framework confirmed putative GT specificity but 

reinforced the dominant role of these major GT isozymes in CHO cells. Furthermore, our 

results also suggest that different GT isozymes have differences in their functions. For 

instance, our model suggests that knocking out St3gal6 or St3gal4 had the most severe 

impact on sialylation (decreased sialylation fluxes by >85%), but knocking out St3gal3 had 

little influence. These results are in accordance with its primary role for sialylation [39]. 

This knowledge is particularly important and could be applied to improve product quality 

through glycoengineering by being able to partially dial down some glycan epitopes. Indeed, 

sialylation is a key factor in most glycoengineering, since it can improve the serum half-life 

and activity of these drugs [40]. On the other hand, limiting sialylation on monoclonal 

antibodies (mAb) could enhance antibody-dependent cell-mediated cytotoxicity (ADCC) 

and complement-dependent cytotoxicity (CDC). In these cases, we could consider knocking 

out a few sialyltransferases (St3gal3, St3gal4, or St3gal6) for better control of the sialylation 

on mAbs. The proposed model framework thus provides a toolbox that could help identify 

the best combination of different GT isozymes for desired glycoforms. The more we are able 

to disentangle the functions of different isozymes, the better we can ultimately control the 

glycosylation machinery, which should be an important steppingstone toward rational 

glycoengineering.

4. Conclusions

Here we present a substantial improvement to the Markov chain modeling framework for 

glycosylation, which accounts for branch-specificity and isozyme preference. These refined 

models effectively simulated the N-glycosylation process of recombinant proteins produced 

by various glycoengineered CHO cell lines. The essence of our model is transition 

probabilities, which capture the catalytic capabilities of glycosyltransferase isozymes and 

quantify the changes in glycosylation after knocking out various isozymes. Exploiting the 

new modeling framework, we systematically examined the potential interactions between 

different families of glycosyltransferases and their substrate/branch specificities, which 

provides insights into the roles of GT isozymes in specific contexts. Our results here further 

demonstrated that we can predict complex glycoengineered glycoprofiles from single-KO 

models. With the learned fold changes of transition probabilities from EPO, we achieved de 
novo prediction of GT-KO glycoprofiles directly from their WT glycoprofiles for new 

protein drugs produced by CHO cells. Therefore, as this framework facilitates rational 

glycoengineering of various glycosylated protein drugs, it will accelerate the development of 

effective, safe, and affordable glycosylated biopharmaceuticals.
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5. Materials and Methods

5.1 Framework of Markov chain model for the N-linked glycosylation

The Markov model of glycosylation is implemented as previously published [15], with a few 

adaptations described here to improve the fitting to glycoprofiles subsequent model 

predictions (Figure 1). In essence, this updated Markov model framework can be used for 

modeling the N-glycosylation process by accounting for all measured and quantified 

glycans. The new proposed model also provides additional capabilities, such as the means to 

address glycosyltransferase isozyme specificity and interactions for model-based rational 

glycoengineering. Here, we highlight four major changes in the newly proposed framework 

to overcome the aforementioned challenges. First, our updated framework enables the use of 

a complete glycosyltransferase reaction network rather than a tailored one (i.e., we do not 

trim out unannotated glycans), which enables us to account for all measured glycans and to 

fit the model with more accurate transition probabilities (TPs) (see details in the 

Discussions). Second, instead of using the COBRA toolbox [41], we have deployed the 

Pattern Search algorithm (MATLAB 2018b, Global Optimization Toolbox) for obtaining the 

best TP vector. Briefly, the algorithm employed a GPS-like searching strategies [64], which 

iteratively samples the solution space with increasingly higher resolution. Specifically, it 

first creates a coarse-grained grid of points (a matrix of sampled solutions–TP vectors) 

centered at the current TP vector and observing whether the objective function value 

improves or worsens at each of the grid points. The best solution will serve as the new center 

in the next iteration and the algorithm samples new solutions. If no new solutions are better 

than the current center-point solution, the sampling grid will be shrunken to a fine-grained 

grid of points by decreasing the Euclidean distances (among the fixed number of grid points) 

and look for new solution points. Such process is repeated until the convergence criteria 

(RMSE change < 1e-6 for consecutive 50 iterations) is met. Furthermore, the algorithm 

constrains the optimization problem by the augmented Lagrangian method [64], which 

solves a series of unconstrained problem with penalty and a Lagrange function instead of the 

constrained problem [64]. The Lagrange function allows the approximation of unknown 

function gradients from the linear combination of the constraint gradients at stationary 

points satisfying the constraints [45, 46]. This well-established, derivative-free global 

optimization algorithm has been known for its excellent optimization performance in 

efficient convergence and effective identification of global extrema in a high-dimension 

solution space [42–44]. Third, instead of optimizing hundreds of transition probabilities in 

the transition probability matrix (TPX) by using the COBRA framework [15, 47], only the 

twenty TPs are defined, corresponding to the twenty different reaction types (17 

glycosidases and glycosyltransferase reactions listed in Table 1 and three Golgi 

intercompartmental transport reactions), which were optimized by the Pattern Search 

algorithm. Fourth, the TPs for sialylation, galactosylation, and poly-LacNAc elongation 

were further distinguished by the branch on which the corresponding monosaccharides were 

added (Table 1). The reaction rules were compiled and curated for consistency based on 

previous publications on Markov or kinetic-based models [10, 12, 15, 25, 48, 49]. Notably, 

unlike all previously published models, the reaction constraint for a6FucT was removed 

from its reaction rule as new studies have confirmed the feasibility and presence of 

fucosylation without the presence of ɑ−1,3-branch (Branch 1/3) GlcNAc moiety [50–52]. 
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For branch-general models, substrate branches were not distinguished for B4GalT (BX), 

a3SiaT (BX), and iGnT (BX) (10 reaction types), resulting in only B4GalT, a3SiaT, and 

iGnT reaction types (3 reaction types). ‘X’ denotes branches numbered 1, 2, 3, or 4, which 

represent GNb2|Ma3, GNb4|Ma3, GNb2|Ma6, and GNb6|Ma6 respectively.

5.2 Model evaluation metrics – RMSE and Coverage

Two model evaluation metrics were used for evaluating the performance of our models. The 

first one is the root mean squared error (RMSE) for assessing the goodness of fit between 

the model-predicted glycan intensities and the experimentally measured glycan intensities. 

The experimental glycoprofiles were fitted by minimizing the RMSE of TP vectors between 

the model prediction glycoprofile and the experimental glycoprofile. The RMSE was 

calculated by equation 1, where N represents the number of all glycan compositions (m/z 

values or retention time points) in an experimental glycoprofile. ypre,i (yexp,i) represents the 

predicted (experimentally measured) signal intensity measured at the ith m/z value or at the 

ith retention time for the LC data. Note that, the glycans predicted but without experimental 

signals were also considered for RMSE calculation by setting their experimental signals to 

be 0.

RMSE = ∑i
N (ypre, i − yexp, i)2

N
(1)

Statistical significance was further assessed using the highest density interval (HDI), 

wherein the statistical meaning of HDI=95% is that the two groups of tested models are 

significantly different with a 95% confidence interval (for details see Appendix A).

Another model evaluation metric is ‘coverage’ for assessing how many of the experimentally 

measured glycans were accurately included among the glycans predicted by our framework. 

For an experimental glycoprofile, the m/z values corresponding to glycans with the top 

signal intensities and collectively representing at least 90% of the total signal intensity were 

selected as experimentally detected glycans. The coverage was defined as the ratio of these 

glycan compositions that can be captured by the glycoprofiles predicted by the Markov 

models (branch-specific and branch-general models).

5.3 Predicting multiple GT knockouts from single GT knockout models

The TP vector for a given multiple knockout glycoprofile was derived from the TP vectors 

of the relevant fitted single-knockout glycoprofiles. Four criteria were used to define the 

significance of TP vector elements for a multiplex glycoengineered Markov model. 

Specifically, the fitted single-knockout TPs are required for substantiating the impact of 

knocking out an isozyme on the reactions listed in Table 2. First, the TP fold change of 

reaction i after knocking out glycosyltransferase k must be statistically different from 0 (i.e., 

the 95% highest density interval (HDI) does not include 0 from the BEST analysis, as 

described in Appendix A). Assessment of the statistical credibility of flux and TP using 

Bayesian estimation is described in Appendix A. Second, the mean flux fold change of 

reaction i, after knocking out glycosyltransferase k, must have a scaling factor of at least 1.5 

fold (|log2(mean flux fold change)| ≥ 0.58), and the mean flux fold change ± one standard 
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deviation does not include 1. Then, two additional criteria were established for predicting a 

new TP for a glycoprofile with combinatorial glycosyltransferase knockouts. Third, if all 

isozymes of the same family are knocked out, the TP log2 fold changes of the associated 

direct reaction(s) will be reduced to at most −10 (eliminating fluxes of direct reactions). 

Fourth, log2(flux fold change) and log2(TP fold change) must have the same sign for the KO 

model of glycosyltransferase k. These four criteria were applied in equations 2–3for deriving 

the final combined TP vectors:

log2 FC TPCi, k = ∑k log2 FC TPFi, k + 1
Ai

∑k log2 FC TPSi, k (2)

FC TPFi, k andFC TPSi, k ) = 0, if anyof tℎefourcriteriaarenotmet . (3)

Briefly, the fold change of the transition probability values, FC(TPFi,k), is defined as the TP 

fold change of reaction i, which is the reaction (denoted as ‘F’) directly catalyzed by GT-

isozyme k, whereas FC(TPSi,k) is another reaction (denoted as ‘S’) potentially impacted by 

GT-isozyme k knockout. Table 2 listed the reactions directly catalyzed by a given enzyme 

based on their known reaction rules. The potentially impacted reactions are all the other 

reactions not directly influenced by the GT-isozyme k knockout, which can be indirectly 

influenced by either kinetic or genetic interactions of these GTs (i.e. B4galt and Mgat4). Ai
is the number of non-zero FC(TPSi,k), and FC(TPCi,k) is the TP fold change of reaction i for 

the predicted multiple glycosyltransferase knockout glycoprofile. FC (Fold change) is 

defined as the TP of reaction i for the fitted WT divided by the predicted multiple GT-KO 

glycoprofiles. The derived (predicted) TP vector for a combined GT-KO Markov model was 

then assigned to the initial TPX, which was used in models to predict the multiple knockout 

glycoprofile (Figures 1B and 1C). Here, nonparametric cosine similarity is used to measure 

how similar between two vectors (predicted and fitted) for fluxes and TPs. Specifically, it 

measures the cosine of the angle between two vectors, and a smaller angle means higher 

similarity.

5.4 Protein purification and glycan analysis for additional glycoengineered drugs

GT-knockout cell line generation and model protein expression.—Glyco gene 

knockout cells used for the expression of EPO were derived from CHO-K1 cell line with 

glutamine synthetase knocked out, and glycoprofiled in a previous study [29]. Here we 

conducted further glycosyltransferase knockouts for the cells expressing Rituximab, alpha-1-

antitrypsin, and Enbrel. These lines were derived from the CHO-S cell line (Gibco Cat. # 

A11557–01), and they were generated and verified according to the procedures described 

previously [53]. Cells were cultured in CD CHO medium (Gibco 10743–029) supplemented 

with 8 mM L-glutamine (Lonza BE17–605F) and 2 mL/L of anti-clumping agent (Gibco 

0010057AE) according to the Gibco guidelines. The day prior to transfection, cells were 

washed and cultured in exponential phase in medium not supplemented with anti-clumping 

agent. At the day of transfection, viable cell density was adjusted to 800,000 cells/mL in 125 

mL shake flasks (Corning 431143) containing 30 mL medium only supplemented with 8 

mM L-glutamine. Plasmids encoding for Rituximab, Enbrel, and alpha-1-antitrypsin, 
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respectively, were used for transient transfections. For each transfection, 30 ug plasmid was 

diluted in OptiPro SFM (Gibco 12309019) to a final volume of 750 uL. Separately, 90 uL 

FuGene HD reagent (Promega E2311) was diluted in 660 uL OptiPro SFM. The plasmid/

OptiPro SFM mixture was added to the FuGENE HD/OptiPro SFM mixture and incubated 

at room temperature for 5 minutes. The resultant 1.5 mL plasmid/lipid mixture was added 

dropwise to the cells. Supernatants containing model protein were harvested after 72h by 

centrifugation of cell culture at 1,000g for 10 minutes and stored at −80°C until purification 

and N-glycan analysis.

Protein purification and N-glycan labeling.—Rituximab and Enbrel were purified by 

protein A affinity chromatography. A 5-mL MAbSelect column (GE Healthcare) was 

equilibrated with 5 column volumes (CV) of 20 mM sodium phosphate, 0.15 M NaCl, pH 

7.2. Following column equilibration, the supernatant was loaded, the column was washed 

with 8 CV of 20 mM sodium phosphate, 0.15 M NaCl, pH 7.2, and the protein was eluted 

using 0.1 M citrate, pH 3.0. Elution fractions (0.5 mL) were collected in deep-well plates 

containing 60 μL of 1 M Tris, pH 9 per well. alpha-1-antitrypsin, C-terminally tagged with 

the HPC4 tag (amino acids EDQVDPRLIDGK), was purified over a 1-mL column of anti-

protein C affinity matrix according to the manufacturer’s protocol (Roche, cat. no. 

11815024001). 1 mM CaCl2 was added to the supernatants, equilibration buffer and wash 

buffer. The protein was eluted in 0.5 mL fractions using 5 mM EDTA in the elution buffer. 

For all three proteins, elution fractions containing the highest concentration of protein were 

concentrated ten-fold using Amicon Ultra 0.5-mL centrifugal filter units (MWCO 10 kDa).

N-glycan analysis.—For Rituximab, Enbrel, and alpha-1-antitripsin, 12 μL of 

concentrated protein solutions (concentrations varying between 0.1 and 1 mg/mL) were 

subjected to N-glycan labeling using the GlycoWorks RapiFluor-MS N-Glycan Kit (Waters). 

Labeled N-glycans were analyzed by LC-MS as described previously [53]. Initial conditions 

25% 50 mM ammonium formate buffer 75% Acetonitrile, separation gradient from 30% to 

43% buffer. MS were run in positive mode, no source fragmentation. The normalized, 

relative amount of the N-glycans is calculated from the area under the peak with Thermo 

Xcalibur software (Thermo Fisher Scientific).

5.5 Framework of de novo prediction of glycoengineered glycoprofiles for diverse 
glycoengineered drugs (Enbrel, Rituximab, and alpha-1-antitrypsin) from their 
corresponding wildtype glycoprofiles

The wildtype glycoprofile of new drug X (produced by wildtype CHO-S cells) was first 

obtained by fitting the model to its experimental glycoprofile as described in Materials and 

Methods 5.1. Meanwhile, we quantified the TP fold changes for each single GT knockout by 

fitting their experimental measured EPO glycoprofiles. Then, to assess the impact of a 

desired combination of GT knockouts on drug X’s glycoprofile, we quantified the total 

impact of these knockouts as TP fold changes estimated by the algorithm described in 

Materials and Methods 5.3. Finally, the predicted TP fold changes were applied to the TPs 

of drug X’s wildtype models, resulting in predictive models for the glycoprofile of drug X 

with the given GT knockouts.
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Figure 1. Glycoprofiles are fit to the Markov model using global optimization with the Pattern 
Search algorithm.
(Start) A list of all possible reactions (including compartment transportation of glycans) 

involved in the reaction network is generated based on reaction rules from Table 1 (see 

Appendix A). The network complexity is restricted by the number of steps required to 

generate the most complex glycoform in the WT profile. Transition probabilities (TPs) for 

each enzyme are assigned to each relevant reaction. (Step 1) Given the assigned TPs, an 

adjacency matrix of transition probabilities (TPX) is constructed to represent the Markov 

chain process. (Step 2) Given the TPX and a starting flux feeding into the root node 

(representing the initial glycan Man9GlcNAc2), the predicted glycoprofile is calculated by 

running the Markov chain model until reaching a stationary flux distribution. (Step 3) The 

Pattern Search algorithm is used to identify the optimal TP vector by minimizing the RMSE 

between the predicted glycoprofile and the experimentally measured glycoprofile. The blue 

dot represents the current TP vector (i.e., polling center), which produced the minimal 

RMSE = 1.3 from all previous rounds of optimization. The newly selected TP vector (red 

dot) was identified as the optimal solution (the minimal RMSE = 0.3) for the next round of 

optimization. (Step 4) The optimization process will be iterated from (Step 1) to (Step 4) 
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until less than 1e-6 RMSE reduction is achieved for 50 consecutive iterations (defined as 

“convergence”). If the optimization process fails to reach convergence within 1000 iterations 

or exceed two hours, the current round of optimization will be terminated, and the currently 

optimized TP vector will be excluded from any further analysis. The resulting optimized TP 

vectors will be used for further analysis. RMSE: root mean squared error.
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Figure 2. Prediction performance of the N-glycosylation Markov model.
(A) The RMSE and coverage were quantified for the model predictions of EPO produced in 

glycoengineered CHO cells. We tested three different categories of models: the branch-

specific models, the branch-general models, and the random models (i.e., the branch-specific 

models assigned with random TP vectors). A red star indicates a significant difference of 

RMSE between the branch-specific and the branch-general models (highest density interval 

(HDI) = 95%). RMSEs of all models (branch-specific models and branch-general models) 

were significantly different from those of the random models. (B) The glycoprofile of EPO 

from the CHO cell line wherein B3gnt2 and Mgat4a/4b/5 were all knocked out has the 

greatest improvement in prediction (RMSE decreased) after introducing branch specificity 

reactions. (C) The glycoprofile from the B4galt1 knockout showed the least improvement in 
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prediction (RMSE slightly increased and coverage slightly decreased) after introducing 

branch-specific reactions. The error bars were calculated as the standard deviations of the 

glycan intensities produced by multiple optimized models. Note that the originally annotated 

glycoform at m/z = 3777 was potentially a misannotation and corrected in this figure. Please 

refer to Appendix G for the original annotated glycoprofile.
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Figure 3. The branch-specific model effectively predicted glycoprofile and optimized transition 
probabilities for EPO produced in the wild-type CHO cell line.
(A) The model-predicted and experimental glycoprofiles of EPO produced in wild type 

CHO cells. Note that the top ten glycans presented here account for >85% of the total 

detected glycan abundance in the experimental glycoprofile. (B) The optimized transition 

probabilities (TPs) by reaction types, in which the TPs were normalized by transport TPs to 

the next compartments. For example, TPs of reactions localized in cis (Golgi apparatus) 

were normalized by the TP of glycan transport from cis to medial. The reaction types were 

separated into three subplots by compartments: cis (cis to medial transport, cg2mg), medial 
(medial to trans transport, mg2tg), and trans (secretion, tg2ab). The error bars were 

calculated as the standard deviations of the glycan intensities produced by multiple 

optimized models.
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Figure 4. The branch-specific model identifies indirect effects one GT may have on the activity of 
other GTs.
(A) The Mgat family GTs. (B) The B3gnt family GTs. In each enzyme family, there are 

three subplots. (i) When a GT isozyme is knocked out (left), we detect changes in the flux of 

reactions (right), where expected reaction changes are in red, and genetic interactions with 

other GTs are shown in black. (ii) The heatmap shows the log2 fold change transition 

probability (TP) in for the GT knockout models, compared to the WT models. (iii) The 

heatmap shows the log2 fold change in flux for the GT knockout models in comparison with 

the WT models. The yellow dots indicate significant non-zero fold changes of the 

corresponding TP (HDI = 95%). The yellow stars indicate the major isozymes whose 

knockouts most significantly and severely impacted their enzymatically catalyzed reactions. 

The color for the solid line represents the type of reaction impacted by the GT knockout: 
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‘red’ (GT specific impact) and ‘black’ (GT-GT interaction). The terminal symbol for a line 

represents the interaction type impacted by the GT knockout: ‘arrow’ denotes activation and 

‘filled circle’ is inhibition.

Liang et al. Page 28

Curr Res Biotechnol. Author manuscript; available in PMC 2020 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Models predict glycoprofiles of multi-GT knockouts.
(A) The multiple GT knockout models were built by combining TP vectors from single GT 

knockout models. We simulated the glycoprofiles for several multi-GT KOs involving the 

B4galt- and St3gal- family GTs: (B) B4galt1/3 and (C) St3gal3/4 (see Supplementary Figure 

E1 and E2 in Appendix E for more multi-GT KOs). The relative intensity (m/z) of glycans 

shown in each barplot correspond to the most abundant 7–10 glycans detected in the 

corresponding experimental glycoprofiles. For each profile, these m/z values collectively 

capture >85% of the total experimental signal intensity. Three different heatmaps (from left 

to right) show the fold change (FC) for TP values: the FC(TP) for single GT KOs, the 

FC(TP) for multiple GT KOs, and the FC(Flux) for multiple GT KOs. In the multiple GT 

KOs (FC(TP) and FC(Flux)). The yellow dots indicate significant non-zero fold changes of 
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the corresponding TP or Flux (HDI = 95%). Note, EPO is a Human erythropoietin NMR 

structure from PDB database (PDB ID code: 1buy). Cosine similarity (CosSim) is a 

nonparametric method used to measure the similarity of the two vectors (predicted and 

fitted). Specifically, it measures the cosine of the angle between two vectors, and the smaller 

angle means the higher similarity. The error bars were calculated as the standard deviations 

of the glycan intensities produced by multiple predicting models.
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Figure 6. Multiple GT knockout glycoprofiles can be predicted de novo for diverse drugs.
(A) We established a workflow for de novo model prediction of glycoengineered 

glycoprofile for drugs, wherein TPs learned from glycoengineered EPO (Figure 5A) are 

used to inform changes from WT TPs for any engineered glycoprotein. The multiple GT 

knockout glycoprofiles for (B) Enbrel and (C) alpha-1 antitrypsin were predicted directly 

from their corresponding wildtype models by adjusting the TP vector fold changes (isozyme 

impact) inferred from the EPO models. For Enbrel and Rituximab, the glycoprofiles with 

Sppl3 single knockout were treated as the wildtype glycoprofile, as it was the base genotype 

used prior to GT knockouts. For each glycoprofile, at least 90% of the total flux was 
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accounted by present signals. The error bars were calculated as the standard deviations of 

the glycan intensities produced from 48 iterative runs of the model prediction.
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Table 1.

Branch-specific reaction rules for the N-linked glycosylation model

Reaction
*c

Substrate
*a

Product
*a

Constraint
*a,b Localization

ManI (Ma2Ma Ma - cis

ManII (Ma3(Ma6)Ma6 (Ma6Ma6 (GNb2|Ma3 medial

ManII (Ma6)Ma6 (Ma6 (GNb2|Ma3 medial

GnTI (Ma3(Ma3(Ma6)Ma6)Ma4 (GNb2Ma3(Ma3(Ma6)Ma6)Ma4 - cis

GnTII (GNb2|Ma3(Ma6)Mb4 (GNb2|Ma3(GNb2Ma6)Mb4 - medial

GnTIV (GNb2Ma3 (GNb2(GNb4)Ma3 - medial

GnTV (GNb2Ma6 (GNb2(GNb6)Ma6 - trans

a6FuT GNb4GN (GNb4(Fa6)GN ~*…Ma2 medial

b4GalT (B1) (GN (Ab4GN *…GNb2|Ma3 trans

b4GalT (B2) (GN (Ab4GN *…GNb4|Ma3 trans

b4GalT (B3) (GN (Ab4GN *…GNb2|Ma6 trans

b4GalT (B4) (GN (Ab4GN *…GNb6|Ma6 trans

a3SiaT (B1) (Ab4GN (NNa3Ab4GN *…GNb2|Ma3 trans

a3SiaT (B2) (Ab4GN (NNa3Ab4GN *…GNb4|Ma3 trans

a3SiaT (B3) (Ab4GN (NNa3Ab4GN *…GNb2|Ma6 trans

a3SiaT (B4) (Ab4GN (NNa3Ab4GN *…GNb6|Ma6 trans

iGnT (B3) (Ab4GN (GNb3Ab4GN *…GNb2|Ma6 trans

iGnT (B4) (Ab4GN (GNb3Ab4GN *…GNb6|Ma6 trans

*a
‘A’, ‘F’, ‘GN’, ‘M’, and ‘NN’ represent galactose, fucose, GlcNAc, mannose, and NAcNAc respectively, whereas ‘aX’ or ‘bX’ (where ‘X’ is a 

number) represents an alpha or beta glycosidic bond connecting the two adjacent sugars (e.g. a3 represents alpha 1,3 glycosidic bond).

*b
‘*’ indicates the position of added moiety and associated bond strings, ‘…’ a string of any length with all brackets matched, and ‘|’ a branching 

point.

*c
‘B1–4’ indicate the four possible branches of a glycan as described by the Constraint

Note that, we specified the glycans as linear code strings with complete linkage and composition information for easy computation in the model.
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Table 2.

Reactions potentially influenced by the knockout of a given enzyme.

Gene Knockout Direct Reactions*

Mgat2 GnTII

Mgat4a/4b GnTIV

Mgat5 GnTV

St3gal3/4/6 a3SiaT (Branch 1–4)

B4galt1/2/3/4 b4GalT (Branch 1–4)

B3gnt1/2/8 iGnT (Branch 3/4)

*
Direct reaction included reactions directly catalyzed by the given enzyme encoded by the knocked-out gene(s), whereas the potentially impacted 

(dependent) reactions are those whose TPs may be influenced by the knockout of a given enzyme.

Curr Res Biotechnol. Author manuscript; available in PMC 2020 November 01.


	Abstract
	Introduction
	Results
	A branch-specific N-glycosylation Markov model effectively predicts glycosylation of glycoengineered CHO cells
	Substrate specificity of glycosyltransferases can be predicted by model transition probabilities
	The branch-specific Markov model reveals glycosyltransferase isozyme specificity and co-dependence
	Glycoprofiles for complex GT mutants can be predicted from single GT knockout models
	Glycoprofiles can be predicted for additional glycoengineered drugs de novo, based solely on TP fold changes learned from EPO

	Discussion
	The low-parameter Markov framework is further simplified for more efficient modeling of glycosylation
	Computational analyses can unravel multi-glycosyltransferase interactions impacting activities beyond their simple enzyme rules
	Predicting glycosylation with minimal a priori knowledge
	Disentangling the functions of different isozymes

	Conclusions
	Materials and Methods
	Framework of Markov chain model for the N-linked glycosylation
	Model evaluation metrics – RMSE and Coverage
	Predicting multiple GT knockouts from single GT knockout models
	Protein purification and glycan analysis for additional glycoengineered drugs
	GT-knockout cell line generation and model protein expression.
	Protein purification and N-glycan labeling.
	N-glycan analysis.

	Framework of de novo prediction of glycoengineered glycoprofiles for diverse glycoengineered drugs (Enbrel, Rituximab, and alpha-1-antitrypsin) from their corresponding wildtype glycoprofiles

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Table 1.
	Table 2.



