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ABSTRACT OF THE DISSERTATION

Topological Physics in Real and Reciprocal Space: Investigations in Electromagnetics

by

Robert Joseph Benton Davis

Doctor of Philosophy in Electrical Engineering (Applied Electromagnetics)

University of California San Diego, 2023

Professor Daniel F. Sievenpiper, Chair

The interaction between symmetry and topology is deep, and at the heart of both are

the dual domains of real and reciprocal space. This dissertation aims to explore and explain

the effects that symmetry has on topological phases of matter from both perspectives. To make

these problems amenable to calculation and experiment, the platform of periodic engineered

media, including photonic and phononic crystals, have been used. They provide a rich and highly

efficient means of probing the different behaviors that different topological aspects can have on

systems with given sets of symmetries.
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Chapter 1

Introduction

Since the beginnings of quantum theory in the 1930s, a cornerstone of condensed matter

physics has been the use of reciprocal space. Natural periodicity of solids combined with Bloch’s

theorem provide an elegant and computationally efficient means of studying materials via band

theory in k-space. However, work on the quantum Hall effect and the development of topological

physics [1] has revealed the inadequacy of purely reciprocal ideas. No longer is it possible to

extract all useful phase information from the eigenvalue-based band structure; information about

the the eigenfunctions themselves has become paramount. More recent developments have shown

another possibility: information in real space can have a profound influence on the properties of

systems.

A parallel advancement, largely born out of the landmark work of Kane and Mele on the

quantum spin Hall effect in 2005 [2], has been that of topological models constructed in classical

wave systems, like electromagnetics and acoustics [3]. The main advantage of these platforms

has been their ease of experiment versus the true condensed matter systems. They also reveal

that the ideas of topology itself are not limited to purely quantum systems [4]. Furthermore, they

allow for a much simpler design to investigate the basic principles of the theory, with greater

control over parameters. The advances in finite element method-based full-wave solvers have
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eased the difficulty of verifying theory as well.

Much the same way photonic crystals (PhCs) applied the ideas of solid-state physics to

photons [5], i.e. electromagnetic waves, the new field of photonic topological insulators [6] (PTIs)

finds its origins in the world of electronic systems. In electronic topological insulators (TIs),

electrons propagate along certain directions only on the exterior of the system. This explains

part of the name: it is an “insulator” insomuch as it acts like a regular electrical insulator within

the bulk of a material. “Topological,” on the other hand, comes from the global topology of

their energy band structure, since it can be categorized by an integer (the “topological invariant”)

that does not depend on the fine details of the system. The occurrence of electrical current on

the surface of TIs—and how it responds to changes in energy—is credited to this topological

invariant rather than minor changes to the surface, as in ordinary materials.

TIs found their start in the 1980s with the discovery of the quantum Hall effect (QHE)

in a two-dimensional electron gas when subjected to periodic potentials and external magnetic

fields [7, 8]. As in the normal Hall effect, applying a magnetic field causes the electrons to spin

in cyclotron orbits, with their frequency being determined by the strength of the B field. When

the material is strongly confined to 2D and cooled to very low temperatures, the quantization of

the energy of these orbits becomes relevant, with the difference between the allowed energies

becoming very large as the field strength increases. When the strength of the B field varies enough

to permit or remove an energy level, there will be a sudden jump in the transverse conductivity

by an exact multiple of fundamental constants. Hence, the QHE shows that conductivity is

fundamentally discrete [9]. Importantly, it was found [10] that this discrete behavior could be

explained by a special phase (called the geometric, or Berry phase, detailed in the next chapter)

that each electron accumulates as it orbits in cyclotron motion in reciprocal (k) space.

How does topology relate to this? As it turns out, the discrete nature of the conductance

is highly robust to deformations to the bulk of the material, and it can be shown that the added

geometric phase responsible for the quantization is tied directly to the mathematical framework

2



of topological invariants [7, 10, 11]. This has some important consequences: it gives us a simple

means to classify materials (i.e., bandgap materials) by calculating their topological invariant

(which is a property of the bulk material), and it results in the technologically useful effects that

topological insulators offer.

Materials that have an invariant of zero are “trivial,” and act the same as an ordinary

material. If the invariant is nonzero, however, then the effects of the geometric phase become

relevant, and “non-trivial” effects can be observed. One of the most startling effects is what

happens at the edge between a non-trivial material and a trivial material (or another non-trivial

material with a different invariant), where a highly robust transport mode can exist [9]. These

special modes, called edge modes, exist within the bandgap of the non-trivial material, and can

be explained by the sudden change in the invariant across the boundary (e.g., going from 1 to

0). Even more remarkable is that electrons moving along these boundaries must do so in one

direction only, with no possibility of scattering back in the other direction [1]. These edge modes

are the corollary of the quantization of conductivity in the QHE.

In repeated experiments these edge states are observed regardless of the impurities in

different material samples [1]. Since the invariant is resistant to a wide range of distortions to

the material, the edge states are said to be topologically “protected,” guaranteed to exist so long

as the invariant stays the same [9]. This is of technological importance due to the potential to

reduce power consumption by eliminating sources of loss, as well as simplify manufacturing by

increasing defect tolerances. These discoveries led to the Nobel Prize in Physics being awarded

to Thouless, Haldane, and Kosterlitz in 2016.

These systems with topological behavior are a consequence of the wave nature of the

electrons, not specifically their quantum interactions [4]. As a result, it is possible to construct

classical wave systems with analogous properties to their electronic counterparts. This opens the

door to a vast range of theoretical proposals and experimental demonstrations. Replacing the

electron with a photon (along with a reinterpretation of some quantities) we arrive at PTIs, which
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demonstrate many of the same features of TIs and are the primary subject of this dissertation.

However, other classical wave systems, including phononics [12] (considered in Chapter 6),

mechanical oscillators [13], and a number of other easily engineered platforms are possible.

In the following chapters, we will examine a range of phenomena that demonstrate

topological features in both real space (periodic systems), as well as others that demand analysis

in real space. Moreover, we will see how, using these engineered platforms, we can interrogate

the physical consequences that symmetries have on the topological character of different systems.

Crystallographic symmetries in 2- and 3-D will be used, as well as the internal symmetries of

time reversal, spin, and electromagnetic duality will be of relevance, as will more subtle issues of

gauge.

In Chapter 2, a brief overview of the mathematical tools and methods used throughout the

dissertation is give. This is to both prepare the unfamiliar reader as well as provide clarity to the

use of terms used, and may be skipped or consulted as needed.

Chapter 3, an efficient means of coupling into a classical, continuous electromagnetic

transmission line to a topological line wave structure is demonstrated and analyzed. The PTI struc-

ture employed here will be used extensively throughout later chapters, and so it is recommended

to at least read the introductory material of this chapter before moving on.

Chapter 4 explores how the reduction of symmetry of the spin duality structure used in

Chapter 3 influences the reciprocal space topology. This chapter begins a greater emphasis on the

use of the mathematical methods of Chapter 2.

Chapter 5 shows how simple triangular lattices can host topologically robust edge states

under certain symmetry settings. This chapter briefly demonstrates this in a photonic crystal,

but the emphasis here is on the underlying physics of gauge dependence and crystallographic

symmetry.

Chapter 6 provides a brief introduction to the broader class of symmetry-based methods

of classifying matter, before analyzing a specific example in phononics.
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Chapter 7 presents a detailed analysis of a model that completely destroys all symmetry,

and must instead be understood using methods based in real space alone. The connections

between the internal symmetry-based topology of the base structure (identical to that in Chapter

3) and the purely real space topology of the geometry are shown using numerical tools, and

measurements are presented.

Finally, Chapter 8 gives a summary and discussion of the major results.

This chapter is partially based on the following paper: D. J. Bisharat, R. J. Davis, Y.

Zhou, P. R. Bandaru, and D. F. Sievenpiper, “Photonic Topological Insulators: A Beginner’s

Introduction [Electromagnetic Perspectives],” IEEE Antennas and Propagation Magazine, vol.

63, no. 3. The dissertation author was the primary author of this material.
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Chapter 2

Mathematical Preliminaries

This dissertation employs a wide range of mathematical tools and formalisms, some of

which may be unfamiliar to readers from different backgrounds. As they often are used in the

literature without any prior elaboration to the uninitiated, following the discussion in research

papers can be challenging, especially for cases where a tool from one area (condensed matter

physics, for example) is employed to another (RF engineering, for example). Throughout the

dissertation these concepts will be invoked when needed, but for the sake of brevity will be

minimal in the main text. To aid the reader, a more detailed discussion is provided below, which

can be skipped or referenced as desired.

2.1 The Tight Binding Method

In many of the projects covered by this dissertation there has been a need to employ the

so-called tight binding (TB) method. Originally developed for electronic systems [14], it has

nevertheless proven very useful in classical wave systems, as it allows for rapid calculations with

analytic forms. Likewise, it permits more direct exploration of symmetry properties of physical

systems. This section will detail the basic computational aspects relevant to the topics discussed

later. Interested readers can consult a number of helpful textbooks [15, 16].
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2.1.1 General Statement

The tight binding method describes the behavior of a particle hopping along a lattice

between discrete sites. In the original formulation the particle is considered to be an electron, and

the sites are atomic sites and orbitals, but this physical framework is actually not strictly needed.

Instead, we may abstract away the assumed physics and begin with the math.

First, for a general eigenvalue problem describing a wave-like phenomenon

Hψ = Eψ, (2.1)

we have an abstract operator H (termed the Hamiltonian), which has eigenfunctions ψ with

corresponding eigenvalues E. Note that the exact representation of H doesn’t need to be specified

here (e.g., it could be the Schrodinger operator, or the Maxwell operator, or a host of others, so

long as it involves the mechanics of wave motion1). If we assume periodicity of the Hamiltonian,

or, in physics terms, the potential is periodic,

V (r+R) =V (r), (2.2)

for some vector R, Bloch’s theorem tells us that the form of the wavefunctions must also be

periodic in the same way:

ψ(r+R) = ψ(r). (2.3)

This statement leads to the general form of the wavefunction, which is the usual statement

of Bloch’s theorem:

ψ(r) = eik·ru(r), (2.4)

where u(r) is a function that is periodic with the same period as the potential V (r). We often term

1Strictly speaking, we can limit the discussion to systems obeying Hill’s equation, which takes the general form
d2y
dt2 + f (t)y = 0.
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the function u(r) the cell periodic part of the wavefunction, and frequently drop the exponential

planewave prefactor, as it always has the same form.

To be more notationally complete, we can represent the wavefunction ψ as the so-called

Bloch state, given as

ψk =
1√
N ∑

R, j
c j(k)ek·(R+a j), (2.5)

, where we have introduced the the crystal momentum k, Fourier expansion coefficients c j, lattice

point vector a j, and system size N. These states can be solved for a given Hamiltonian a number

of ways, and contain much useful information. Returning to the physics, the above states represent

physical solutions of the underlying system described by H under the assumed wave and periodic

conditions. If we can derive a suitable Hamiltonian, we can examine the behavior of the Bloch

states as a function of crystal momentum. Atomic sites and orbital information can be encoded,

as well as added degrees of freedom for spin.

However, we’ll point out here that Eq. (2.5), while general, is far removed from how the

method is used in many applications. As we will see, the most useful formulation abstracts away

most of the complexities of the prior discussion, and instead relies upon simple matrix operations

and definitions. This is most critical for the form that H takes, as the next section will show.

2.1.2 Computational Example

As a basic example, we can build a TB model of a square lattice using a basis of four

atoms, with a single spinless particle at each atom. A sketch of this lattice is shown in Fig. 2.1.

Skipping the usual Bloch state analytical description, we can jump directly to the matrix
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Figure 2.1: A square lattice, with the unit cell choice shown by the dashed lines. Sites are
numbered clockwise, and there are two hopping strengths, t1 and t2, which correspond to the
hopping within a given unit cell and those between unit cells, respectively.

definition, given as

H(kx,ky, t) =



δ t1 + t2e−ikx 0 t1 + t2eiky

t1 + t2eikx δ t1 + t2eiky 0

0 t1 + t2e−iky δ t1 + t2eikx

t1 + t2e−iky 0 t1 + t2e−ikx δ


(2.6)

The hopping amplitude t1 determines the coupling strength between a given site and its

nearest neighbor within the unit cell, t2 between sites between unit cells, and kx, ky are the two

reciprocal space directions, which coincide with the real space coordinate system of the figure.

Note that we have chosen the period a = 1, which simplifies the terms without losing generality.

We stress here that the above matrix form of H is not ”the Hamiltonian” precisely, but is rather

the Bloch Hamiltonian for the chosen basis. By writing it explicitly, we restrict our attention to

the layout shown in Fig. 2.1. Moreover, we can see that the entire matrix can essentially be ”read

off” directly from the figure, each term simply representing the coupling between sites, including

the periodic terms (the exponentials) to create periodic boundary conditions via Bloch’s theorem.

We may use this simple model to examine the bandstructure, calculate symmetries, and compute
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many different topological features of interest, detailed in later sections.

2.1.3 Application to Classical Bosonic Systems

It is worth cautioning the reader of the application of TB models to photonics and

other classical wave systems involving bosons in artificial crystals. Although the math is quite

general, there are some restrictions on the applicability, and certain aspects that it cannot capture

completely.

1. Discreteness: The lattice assumed by the TB method is inherently discrete. Particles live

on infinitesimally small points of the atomic sites, and have zero physical extent. This is

a reasonable enough approximation in electronic lattices where the electrons are tightly

bound (hence the name ”tight binding”) to their atomic nuclei, but in the cases of photonics

and phononics, this is often not the case. Electromagnetic fields are spatially spread out

across the unit cell in a photonic crystal, as are acoustic displacement fields in a photonic

lattice. The periodicity of the lattice makes Bloch’s theorem valid, but the assumption that

modes only exist at a lattice point is qualitatively different.

2. Coupling: The coupling mechanisms between lattice points is easy to obscure without

sufficiently large TB models. This is readily seen in many basic platforms, like the triangular

lattice studied later in this dissertation. In the bosonics case, there is a large bandgap for a

triangular lattice of rods, whereas the equivalent basic TB mode is gapless. This is a natural

consequence of the difference between the underlying ODEs being approximated.

3. Degrees of Freedom: Atomic systems are well described by atomic orbitals, which the TB

method is custom made to use. The potential degrees of freedom (geometrical or otherwise)

can be captured within the framework of the basis choice without much difficulty, provided

enough parameters are specified. In the classical wave case, the geometrical freedom to

warp the shape of the unit cell infinitesimally implies that the exact behavior can not be
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exactly matched. General symmetries can be retained, but, unless a very large number

of parameters are included, the eigenvalues and eigenfunctions will only be qualitatively

matched to the genuine physical system.

2.2 Reciprocal Space Topological Invariant Calculations

A cornerstone of analysis methods of topological systems involves the use of the periodic

functions in reciprocal space. These include the famed Chern number, as well as the more

general phenomena of geometric phase and Berry curvatures. Many projects considered in this

dissertation will make extensive use of these mathematical tools, which are detailed below.

2.2.1 Berryology: Berry Phase, Berry Connection, and Berry Curvature

Consider a lattice described by a general eigenvalue problem in momentum space,

H(k)ψn(k) = λn(k)ψn(k) (2.7)

where λn(k) is the eigenenergy and ψn(k) is the normalized eigen wavefunction of H(k) at each

k for the nth band, which can be determined via Bloch’s theorem. In the following, we will make

use of the shorthand notation of inner product

〈A(r)|B(r)〉 ≡
∫

A(r)† ·B(r)dr (2.8)

to refer to integration of two (possibly vector) functions A and B over a variable r, with † denoting

Hermitian conjugation. Hence, normalized in this case means 〈ψn(k)|ψn(k)〉 = 1. Gradually

changing the k along a given energy band will cause a phase accumulation associated with the slow

evolution of ψn(k). Under most cases when k returns back to where it started this accumulation

will result in zero total phase, but special cases can arise where a non-zero phase is added. In the
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literature this phase, the geometric phase, is referred to by the name Berry phase, specifically to

recall Berry’s formulation in quantum mechanics [17].

To calculate the total Berry phase, we need a means to add up the phase contributions

from each small change to the wavefunction. The phase shift between two φn states infinitesimally

separated by ∆k can be represented by their inner product [18], expanded as a low-order Taylor

series as

〈ψn(k)|ψn(k+∆k)〉 ≈ 1+∆k〈ψn(k)|∇k|ψn(k)〉= exp(−i∆k ·An(k)) (2.9)

Here, we can see that ∆k ·An(k) is the phase shift over ∆k, and An(k) is the rate of change of the

phase shift. An(k) is called the Berry connection, or Berry vector potential,

An(k) = i〈ψn(k)|∇k|ψn(k)〉 (2.10)

Therefore, the Berry phase for the nth band is defined as the integral of An(k) over some closed

path l in k-space,

φn =
∮

l
dk ·An(k) (2.11)

The path l is simply a smooth curve of values over the BZ, such as the blue and red lines shown

on the right half of Fig. 2.2. If we know what a given wavefunction looks like in the Brillouin

zone, we could use the above to calculate the Berry phase for that path. However, there is a catch:

the Berry connection An(k) is not uniquely defined. If a phase change ξ(k) is added to the eigen

wavefunction ψn(k), where ξ(k) is a periodic function with ξ(kend) = ξ(kbegin)+2mπ, the new

wavefunction eiξ(k)ψn(k) is still an eigen wavefunction of H(k). The Berry connection is then

transformed as An(k)→ An(k)− ∂

∂kξ(k), where it changes its formula with different choice of
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Figure 2.2: The Brillouin zone can be considered as a torus by taking each periodic boundary
(red and blue in the figure) and connecting them together.

ζ(k). The Berry phase, on the other hand, is invariant modulo 2π,

∮
l
dk ·An(k)→

∮
l
dk ·An(k)−

∮
l

∂

∂k
ζ(k)dk (2.12)

→
∮

l
dk ·An(k)−2mπ (2.13)

This can also be understood qualitatively. As the wavevector k slowly travels around the

loop of a band, the wavefunction ψ(k) eventually returns to where it starts and picks up a phase of

a multiple of 2π, with most systems picking up zero [19]. Since the Berry connection depends on

how we setup the calculation, yet know that the Berry phase should not, it is helpful (especially

for numerical purposes) to define a quantity that will be invariant to any arbitrary phase ζ(k) that

we may add.

The Berry curvature, or Berry flux, a quantity that is invariant under such transformation,

can be constructed by taking the curl the Berry connection,

Ωn(k) = ∇n(k)×An(k) (2.14)
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Then, using Stokes’ theorem, the Berry phase can be rewritten as the integral of the Berry

curvature,

φn =
∫

S
d2k ·Ωn(k) (2.15)

where the integration is over the surface bounded by the path l [16].

2.2.2 The Chern Number

Integration of the Berry curvature over the full BZ gives the ”first” Chern number

Cn =
1

2π

∫
BZ

d2kΩn(k). (2.16)

It is often called the ”first” or ”magnetic” Chern number, to distinguish it from other formulations

of the value.

2.2.3 The Z2 Invariant and the Spin Chern Number

For fermionic systems with time reversal symmetry and nonzero spin-orbit coupling, the

so-called Z2 invariant takes many forms depending on symmetries, but one common formulation

can be written as

(−1)ν =
N

∏
a=1

P f (w(λa))√
detw(λa)

, (2.17)

where N denotes the number of time-reversal invariant momenta (4 for 2D systems and 8 for

3D), P f denotes the Pffafian, w(λa) is the overlap matrix between the Bloch states and their time

reversed pairs. This definition is general, but is rather formidable to use, and so we will not make

further use of it it here. However, we can reformulate the problem into a matrix of Chern numbers

[20], which, without Rashba-like coupling terms, becomes a diagonal matrix of ”spin Chern

numbers”, one per spin. Numerically, these can be calculated via Eq. (2.2.2) , where the Berry

curvature is computed from the spin-projected periodic Bloch states. That is, we only compute
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those eigenfunctions with a specific spin, ignoring the others. For TRS-invariant systems, the

sum of the two spin Chern numbers will naturally equal zero, as required.

2.2.4 The Valley Chern Number

For many forms of system it is possible to generate a large build up of Berry curvature

in the vicinity of degeneracies broken by some symmetry breaking. This is the case even for

time-reversal symmetric and spinless systems, where all other curvature-related values are zero.

To do so, we can compute the integral of the curvature in the vicinity of the Berry curvature at the

two TRS-related points K/K′ in the BZ, which have equal and opposite accumulation [21]. The

resulting value is commonly called the valley Chern number.

2.2.5 Wilson Loops, Wannier Centers, and Charge Polarization

In this section we will primarily follow the preliminaries of [22], which has further details

for the interested reader. For generic tight-binding Bloch Hamiltonian H(k) with eigenstates uk
n

defined for band n, we first define the non-Abelian Berry2 connection A as

Amn(k)≡ i〈uk
m|∇k|uk

n〉. (2.18)

The (continuum) Wilson loop can then be described a path ordered exponential

W (l) = T exp
(
−i

∫
l
dl ·A(k)

)
, (2.19)

where l denotes a closed loop in reciprocal space and T denotes path-ordering. The eigenvalues of

Eq. (2.19) encode the non-Abelian Berry phases of the Bloch bands considered. For calculation

2Note that Eq. (2.18) is nearly identical to Eq. (2.10), but with the difference of the subscripted band indices.
In the non-Abelian formulation, we consider pairs of modes n and m, rather than just one, as in Eq. (2.10). This
alteration is needed to cover cases where there are degeneracies.
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purposes, we may determine the Berry phases of a specific TB model by defining a discrete

version as

θ(ki) =−Imlog∏
j

detMki,k j . (2.20)

Here we have introduced an overlap matrix M to handle cases of degeneracy, whose elements are

defined as

Mki,k j
mn = 〈uki,k j

m |uki,k j+1
n 〉. (2.21)

The result of computing Eq. (2.20) (normalized by 2π) is the location of the Wannier

center for a given ki.

2.3 Symmetry Indicators

A recent development in topological physics has been the introduction of a wide range

of ”symmetry indicators”. These tools, though not topological invariants in the sense of the

Chern number, provide an indication as to the classification of phases. They involve different

formalisms, but in general these methods employ details of the symmetry of eigenstates of the

system, hence the name. They are often substantially more computationally efficient than pure

reciprocal tools, and can provide insight into the physical mechanisms governing the resulting

nontrivial behavior.

2.3.1 Rotational Symmetry Indicators for 2D Systems

Computational Aspects of Symmetry Indicators for Tight-Binding Models

The symmetry indicator method employed in Chapter 5 has gained in popularity recently,

but is often difficult to follow how authors make use of it, and there are few resources to assist

those who wish to perform the calculations themselves. Various rigorous arguments and proofs

for these methods can be found in e.g., [23]. This technique is computationally very efficient, as it
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does not require diagonalization at all k points (like the Chern number), and less mathematically

involved than methods like the Z2 invariant. This section aims to fill in the more numerical details

involved in such calculations, and hopefully make clear what is being presented.

To begin with, for tight-binding models the first step is to calculate the eigenvectors of the

Hamiltonian directly at the relevant HSPs of the BZ. For 2D models, this merely involves the

diagonalization of at most 3 matrices (e.g., Γ,M,K for triangular and Γ,X ,M for square lattices),

giving eigenvectors u j(Π) for each HSP Π and band j.

The second step is to then compute the expectation value of the desired rotational operator

when acting on each computed eigenvector. Construction of such operators is simple within the

TB formalism, and are merely matrices that permute the given orbital sites. The eigenvalues of

each rotational operator are always given as

Π
(n)
p = e2πi(p−1)/n, p = 1,2,3, · · · ,n (2.22)

for an n-fold rotational operator. We therefore know in advance that the computation of the given

symmetry indicators will involve counting up these values, and any computation that differs from

them is likely an error (commonly noticed due to improper handling of degeneracies, which will

be covered shortly, or a error, which is described in Sec. 5.7).

Computing the expectation for a single isolated band involves a simple inner product,

〈r̂u
n(Π)〉= 〈u(Π)|r̂n|u(Π)〉. (2.23)

In the above, u(Π) denotes the eigenvector computed in the first step for the HSP Π, and r̂n is the

matrix representation of the rotational operator of order n, with the size of r̂n being determined by

the number of basis elements of the vectors.

The above equation will give one of the eigenvalues of r̂n, which may then be used for the

later steps in computing the invariant. However, it is often the case, especially for more complex
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bandstructures, that degeneracies occur the the HSPs in question. The resolution to this is to

consider the overlap matrix formulation of Eq. (2.23), given as

S(Π) =



〈u1(Π)|r̂n|u2(Π)〉 〈u1(Π)|r̂n|u3(Π)〉 · · · 〈u1(Π)|r̂n|uM(Π)〉

〈u2(Π)|r̂n|u1(Π)〉 . . . ...
...

〈uM(Π)|r̂n|u1(Π)〉 · · · 〈uM(Π)|r̂n|uM(Π)〉


(2.24)

for a given manifold of M degenerate bands at HSP Π. The eigenvalues of this matrix provide the

desired expectation values of the rotational operator.

Once the expectation values are computed, the final step is to count the number of each

eigenvalue and subtract the number located at Γ, written in general as

[Π
(n)
p ] = #Π

(n)
p −#Γ

(n)
p (2.25)

This final step is less clear notationally, as indicated by the use of the # sign to mean ”count the

number of.” The above is merely stating that to find the integer valued invariant element [Π(n)
p ]

for an n-fold rotation at HSP Π that has eigenvalue Π
(n)
p , we have to count the number of bands

with that same eigenvalue at Π, count the number of bands with that eigenvalue at Γ, and subtract

the two counts. Note that in doing so we are forced to decide where to set the Fermi level (or, to

extend the discussion to bosonics, the desired frequency), which determines the number of bands

we must count the eigenvalues for.

Each calculation of the above results in a single integer. Such integers alone do not

constitute the topological invariant per se, here called χ(n), but rater are the elements thereof. The

previous step can be done for any allowed eigenvalue and rotational operator, but, as shown at

length in [23], the total number of distinct combinations that are needed to properly define χ(n) is
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much smaller. Specifically, we may write the required values as [23]

χ
(4) = ([X (2)

1 ], [M(4)
1 ], [M(4)

2 ])

χ
(2) = ([X (2)

1 ], [Y (2)
1 ], [M(2)

1 ])

χ
(6) = ([M(2)

1 ], [K(3)
1 ])

χ
(3) = ([K(3)

1 ], [K(3)
2 ]).

The above can describe all n-fold rotationally symmetric 2D systems for the allowed n = 2,3,4,6.

By repeating the above steps, the invariant χ(n) may be computed efficiently for any Hamiltonian.

The above walkthrough provides the ”how” of computing rotational invariants, but does

not directly provide insight into what is physically causing the topological distinction. An intuitive

means of understanding what a nonzero χ(n) is to consider a single isolated band. In such a case,

the expression for each element of χ(n) reduces to a single yes-no question on whether the band

has the eigenvalue in question, and comparing that to the same question at Γ. For the element

to be nontrivial, there necessarily must be a difference between Γ and the chosen HSP. More

concretely, the rotational behavior of the eigenvector must change as it passes from Γ to a given

HSP.

This, then, gives the ”topological” aspect: since a symmetry property changes for con-

tinuously defined bands at differing HSPs, the introduction of a finite edge (or other suitable

termination) results in states that are trapped on that same edge, analogous to the edge states of

other topological effects.

Computational Aspects of Symmetry Indicators for Continuously Defined Models

Computing rotational symmetry indicators in continuously defined systems differs from

the discrete TB model in the previous section, since systems like photonic or phononic crystals

have eigenfunctions that are represented numerically by N×M matrices, rather than vectors. The
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physics is fundamentally the same, but the numerical details must be suitably adjusted to handle

this.

For example, the method employed to determine χ(3) for a continuously defined model is

as follows:

1. Numerically solve the eigenvalue problem for the unit cell at the K and Γ HSPs and extract

the phase profile over the full real space unit cell boundaries.

2. Multiply these two phase profiles, point by point, by the numerical value corresponding to

the 3-fold operator to be considered(e.g., 1,e±2πi/3). This results in three altered profiles for

each HSP (6 in total, though two will just be the original, unaltered profiles corresponding

to the eigenvalue 1).

3. Compare each of these altered phase profiles to that of the original phase profile rotated by

120 degrees. This is easily done visually, or can be automated via a point-wise comparison.

Whichever altered profile matches is the correct eigenvalue corresponding to that operator

acting on that HSP.

4. Apply Eq. (2.25) for all modes up to the desired bandgap/eigenfrequency to retrieve the

elements for χ(3).

This process can be readily adapted to any other rotational operator, and is essentially a

point-by-point version of Eq. (2.23), amenable to automated numerical computations.

To see how the above procedure is equivalent to Eq. (2.23) mathematically, we can

consider that the physical effect of rotation operators Rn is to rotate the locations in 2D space of

lattice sites. If instead of a vector of basis sites we have a continuously defined eigenfunction of 2

dimensions |ψ(x,y)〉, the operator will act on the physical coordinates (x,y). To then compute the

desired expectation value, we generalize the inner product definition to the L2 norm to find

〈ψ(x,y)|Rθ|ψ(x,y)〉=
∫

cell
ψ(x,y)†R(θ)ψ(x,y)dxdy = rθ, (2.26)
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where R(θ) is the rotation matrix and rθ are its eigenvalues. This definition is not immediately

useful in the case of numerically computed eigenfunctions, where instead we have a discretely

defined matrix of complex field values ψnm up to a given resolution δr. We may instead construct

a matrix Rθ that performs the rotation on each eigenfield value to enact the rotation numerically,

and compute the inner product discretely as

〈ψnm|Rθ|ψnm〉= ∑
nm

ψ
†
nmRθψnm = rθ (2.27)

The above is formally equivalent to Eq. (2.23) in the limit of δr→ 0, under the same symmetry

constraints Eqs. (5.9)-(5.10) for the matrix defining the Hamiltonian. However, this definition is

cumbersome to apply, as the matrix Rθ is not a simple rotation matrix. The procedure outlined

above is essentially working in reverse of this, where we assume the eigenvalue, apply it to the

field, then rotate the field visually to compare it.

2.3.2 Symmetry Indicators for 3D Space Groups

When the system to be analyzed is extended to 3D, the relevance of the space group

and all possible 3D transformations becomes great. Recent developments [24, 25] have shown

just how powerful knowledge of such symmetries are, and many exotic symmetry-protected

topological phases may be classified using just information about the space group and details of

the group theoretic behavior of a system. The application of these tools to bosonic settings is the

main topic of Chapter 6, and so we will defer explanation of them until needed.

2.4 Real Space Invariants

In chapter 7 the use of topological invariants defined in real space are used. Such tools,

though existing for many years [26], have not been used extensively, and their practical application
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has been largely restricted to condensed matter models. In this section we give the mathematical

basis for one such tool, here called the Kitaev sum, and elaborate how it can be applied to

continuously defined models in electromagnetics and acoustics. The interested reader may consult

the excellent supplementary information of Ref [27] for more details.

2.4.1 The Kitaev Sum

For an eigensystem of arbitrary boundary conditions defined by a Hamiltonian H, we may

define the Kitaev sum as

Cµ = 12πi ∑
α∈A,β∈B,γ∈C

(Pµ
αβ

Pµ
βγ

Pµ
γα−Pµ

αγP
µ
γβ

Pµ
βα
). (2.28)

In the above Pµ
αβ

are projector elements from lattice site α to β, defined for band µ. More formally,

Pµ
αβ

are the elements of the projector operator given by

P = ∑
E∈µ
|uE〉〈uE |, (2.29)

where ω denote the eigenenergies3, and |uE〉 are eigenstates of the Hamiltonian H. We can

interpret P as the projection onto spatially localized points summed up to a given eigenvalue

µ : 0≤ E ≤ E f . This summation has a number of properties relevant to future discussion:

1. For the limit of A,B,C → ∞, Cµ → Cn, assuming the rest of the bulk lattice is larger

than A,B,C. That is, for large enough regions of lattice points included, the Kitaev sum

converges to the first Chern number. Hence, the Kitaev sum is a topological invariant.

2. For a finite lattice, when regions A,B,C include all lattice points, Cµ = 0. This implies that

any nonreciprocal effects described by the bulk must be canceled by surface states on the

external boundary of the lattice.

3Generically, these are just eigenvalues, which may be energies, frequencies, etc.
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3. Lattice points α need not be defined on any regular grid, nor are regions A,B,C required

to be regularly shaped. The only restrictions are that the included regions are roughly

equivalent in number of included lattice sites. This means we can use the Kitaev sum for

amorphous, aperiodic, or quasi-periodic systems.

The prior introduction is general, but in this dissertation we may loosen the abstraction

to make the physics clearer. Namely, we are interested in applying this calculation to examples

in simulated electromagnetic structures, so we can introduce concrete forms for the projector

elements, the simplest of which is

Pµ
αβ

= ∑
En≤E f

φ(rα)φ(rβ)
∗. (2.30)

Here, α and β are both points in the chosen region (e.g., α = (xα,yα) on a Cartesian

grid), and φ are the (scalar) complex field, either electric or magnetic. Within the usual tight

binding methods these projectors are simply lattice sites, but for our purposes these projectors are

continuously defined, since the electromagnetic modes themselves are spatially extended. Hence,

within numerical calculations we must choose a sampling of the real space axis that is sufficiently

dense to resolve the behavior.

From Eq. (2.30), we can see that the elements included in the Kitaev sum Eq. (7.1) are

simply overlaps of finite points of the EM mode in two locations. We can naturally assume that

such terms will average to zero for points far apart, while closely separated (and therefore strongly

coupled) points will be larger. From this we can then see that each summation in the Kitaev sum

is essentially a ”circulation” of the electric field for a given eigenmode. Fully reciprocal structures

will naturally have each summation value equal to zero, as the coupling in one direction is equal

to the opposite direction. Hence, the Kitaev sum is a local measure of nonreciprocity.

This chapter is partially based on the following papers: D. J. Bisharat, R. J. Davis, Y. Zhou,

P. R. Bandaru, and D. F. Sievenpiper, “Photonic Topological Insulators: A Beginner’s Introduction
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[Electromagnetic Perspectives],” IEEE Antennas and Propagation Magazine, vol. 63, no. 3. The

dissertation author was the primary author of this material. R. J. Davis, S. Singh, D. J. Bisharat,

and D. F. Sievenpiper, “Topological Defects with Both Real and Reciprocal Space Signatures,” In

preparation, 2023. The dissertation author was the primary author of this material. R. J. Davis, Y.

Zhou, D. J. Bisharat, P. R. Bandaru, and D. F. Sievenpiper, “Topologically protected edge states

in triangular lattices”, Phys. Rev. B 106, 165403 (2022). The dissertation author was the primary

author of this material.
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Chapter 3

Connecting Classical Systems to Nontrivial

Systems

Photonic topological insulators (PTIs) are an exciting option for advanced manipulation of

electromagnetic modes, but there is a present lack of understanding on how such modes interact

with traditional (classical) electromagnetic modes. PTIs, generally implemented via metamaterials

or metasurfaces, permit the flow of electromagnetic (EM) energy only along a boundary of a

nontrivial bulk [3]. A chief benefit of such modes is their inherent robustness to disorder, where

backscattering is effectively eliminated for fabrication defects and sharp bends of the propagation

channel. Despite these benefits, there are currently limited means of efficiently coupling energy

into any of these topologically protected devices. Standard experimental methods generally

rely on local point source excitations placed near the boundary [28][29], or via direct (non-

optimal) coupling to waveguides or other transmission lines [30]. This allows for verification

of nontriviality, but is incompatible with any practical application and restricts quantitative

comparisons to classical devices. This chapter [31] presents a design and general methodology for

an optimized abrupt coupler between a classical microwave transmission line and a topological

edge mode, with corresponding analyses on loss mechanisms and robustness, which will permit a
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greater understanding of how these exotic topological modes interact with ordinary EM modes. It

is an expansion of the authors’ preliminary results of [32].

3.1 Duality-Based Abrupt Transitions

Previous efforts have been made to couple energy from traditional transmission lines to

spoof surface plasmon polariton (SPP) modes [33][34], as well as to 1-D line waves [35], and

a recent study [36] has demonstrated a unidirectional source for a parallel-plate waveguide PTI

with high efficiency. However, there are as yet no methods for efficient coupling between surface-

wave engineered PTI modes, which represent a promising platform for application, and planar

transmission lines. In both [33] and [35] adiabatic transitions are used to convert continuously

homogeneous transmission lines into spatially periodic modes, which allows for flexibility in

matching the transverse mode profile and/or the propagation constant to achieve high transmission.

Such methods are attractive for their flexibility to the initial choice of source, but are limited

by the length of the transition and by unwanted effects of radiation from flaring ground planes.

In [36], the source is judiciously chosen to permit a unidirectional excitation, and impedance

matching methods are employed to minimize reflections. Such techniques can achieve very

high efficiency, but are complicated by the difficulty in choosing an appropriate definition for

impedance, and by the number of potential geometrical degrees of freedom used to match [37].

A particularly attractive option for practical implementation of PTIs is given in [38],

which employs a stack of two patterned metallic metasurfaces between a dielectric spacer, easily

implemented via standard PCB fabrication methods. Such a platform for PTIs combines two key

ideas: 1. EM duality [39] and 2. the pseudospin degree of freedom for photons. As analyzed

in [40]-[42], when a 2D material characterized by a capacitive surface impedance Zc is placed

next to another of complementary inductive surface impedance Zi, there can exist an EM mode

at the interface. By necessity, such a mode is tightly confined to the interface and can therefore
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Figure 3.1: (a) EM duality-based spin PTI structure used, with the dielectric removed. The
black dashed line shows the path the 1D line wave follows. Inset is the unit cell used, with the
lattice period a = 7 mm and frame width l = 1 mm. (b) Overview of the presented classical-
to-topological mode coupling region. Orange denotes metal, while the green is the dielectric
support (Rogers RT/duroid R 5880 of thickness t = 0.787 mm). The blue dashed region shows
the modification to the interface, as discussed in the text. (c) Electric field profile 0.1 mm above
the top of the structure (10 unit cells long by 6 wide), with the classical antipodal slot line
sections connected at either side.
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be considered a 1D mode, or line wave. The condition for complementary surface impedances

can be accomplished via EM duality, where ε = µ, which is possible to implement via Babbinet’s

principle in metallic surfaces. [40] demonstrates this via a sheet of metal matches (capacitive)

interfaced with the dual surface of a connected metal frame (inductive).

Line waves show surprising robustness, but are limited by their lack of a bandgap. The

second property, the pseudospin degree of freedom of photons, is where the connection to PTIs

comes in. As demonstrated in [38], by bianisotropically coupling modes from two such 1D line

waves, it is possible to induce a topologically nontrivial mode at the interface, which emulates the

quantum spin Hall effect [2]. To do so, the lattice is chosen to be hexagonal, such that there is

guaranteed degeneracy at the K(K’) point of the Brillouin zone. To induce the PTI mode, this

degeneracy is broken by placing a second sheet of complementary metasurfaces on top of the first,

but flipped with respect to the interface (i.e., patches above frames, frames above patches), as

shown in Fig. 3.1(a). When the two sheets are close enough to hybridize the TE-dominant patch

surfaces and TM-dominant frame surfaces, there is a bianisotropic coupling that opens a bandgap

near K(K’), where it can be shown that the hybrid electromagnetic modes ψ↑↓ ≡ E±H exhibit

a non-trivial spin Chern number [43]. Hence, such a structure supports highly robust (though

reciprocal) PTI edge modes.

3.2 Mode Behavior and Field Matching

The spatial variation in the unit cell of the PTI gives rise to rapidly varying mode profiles,

as depicted in Fig. 3.2. Along the unit cell the electric field changes from highly elongated at

the edges to tightly confined vertically between the two inductive layers. This suggests that the

location where a traditional transmission line is coupled to the PTI will have a large influence

for such structures. A natural choice of traditional transmission line is the antipodal slot line

(ASL, the mode profile for which is shown in Fig. 3.2(b)), commonly used for feeding planar
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Figure 3.2: Effects of spatial inhomogeneity coupling. (a) Reference plane for (c)-(e), showing
the longitudinal locations chosen. Cross sectional electric field profiles of the (b) ASL (uniform
along x) and (c)-(e) PTI along half a unit cell, demonstrating high variation. Note that at
d = 0.25a the profile is a near match for the ASL shown in (b). (f) Scattering parameters for
the ASL directly interfaced with the PTI vs coupling point on the unit cell d. Here, 0 denotes
the outer edge of the unit cell. Note that S11 is minimized when the field matching condition
is closest, at d = 0.25a, as predicted by the field profiles. (g) S parameters for the modified
interface case, as discussed in the text. Here S11 remains unchanged, but S21 at d = 0a is
improved by reducing edge coupling.
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Vivaldi antennas [44]. Such a slot line has the E-field concentrated between the edge of the top

and bottom metal layers and closely matches the PTI field profile at 1/4 and 3/4 of a unit cell.

Combining this choice of transmission line with the feed point location as determined

by the field profile along the unit cell results in a good match. This is shown in Fig. 3.2(f) by

sweeping the connection point between the ASL and the unit cell edge. For all further analysis

the results are given for a 10 unit cell long (i.e., along the propagation direction) and 6 cell wide

(3 cells on either side of the interface) sample, with the coupler being equal on both sides. Note

that 3 unit cells in the ”bulk” is reasonable due to the rapid field decay (see later sections). Fig

3.2(f) shows there is a dip in the simulated reflection (S11) at the d = 0.25a connection point,

with a corresponding peak in transmission (S21).

Another difficulty is the mismatch that occurs between the hexagonal lattice of the PTI

and straight transmission lines. The regions between the abrupt transition create small cavities

along the edge, which can be undesirably coupled into by the ASL. This is also the cause of the

slight shift in transmission maximum for the case shown in Fig. 3.2(f). To reduce such effects, it

is sufficient to metalize a half unit cell past the interface cells, thereby increasing the distance

between the first potential edge coupling site and the ASL mode, shown the blue dashed region

in Fig. 3.1(b) (the modified interface case). This causes a slight shift in the optimal location

from 0.25a to 0a, as indicated in Fig. 3.2(g), where the improvement in S21 comes as a result

of reducing this unwanted boundary coupling, rather than from the field match. Performing the

same procedure on more rows can reduce such effects further, but the exponential decay of the

classical mode causes these coupling effects to decrease rapidly with distance, so doing so is

unnecessary. Fig. 3.1(c) shows the electric fields 0.1 mm above the top sheet for this case.

The proposed design uses a balanced transmission line to achieve the field match, and as

such is readily converted into many other transmission lines. In such cases, an adiabatic transition

is frequently used [45]. Alternatives can include stub matches or other impedance transformations.

For the purposes of generality the performance here was characterized in terms of the ASL itself,
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neglecting contributions from other transmission line conversions. For the experimental data

presented, an exponential taper from a microstrip line to the antipodal mode was designed to allow

for straightforward connection between the vector network analyzer (VNA, which uses standard

SMA connectors) and the device. The taper was partially optimized via a genetic algorithm, but

otherwise was not considered further.

3.3 Loss Analysis of the Coupler

To determine the efficiency of the proposed transition, the losses can be broken into

several parts and analyzed separately via simulation. Namely, the magnitude of the loss is the

sum of the dielectric losses, the radiation losses (both in the PTI and the antipodal sections), and

the two transitions,

L = Ld +Lrad,PT I +Lrad,anti +Ltran. (3.1)

Dielectric losses Ld can be extracted by setting the loss tangent of the material to zero and

subtracting the results. To determine the radiation losses of the PTI section the number of cells

is swept while keeping the dielectric lossless. Likewise, the radiation loss from the antipodal

sections can be found by sweeping their length. After these are found, adding them to the total

loss will give the losses incurred by the transitions themselves. Results of this analysis are given

in Table 3.1, with details of each component shown in Figs. 3.3(a)-(b).

The current design exhibits a maximum S21 of -0.833 dB for the entire structure operating

at 16.2 GHz, with a corresponding S11 of -21.0 dB. From the loss analysis, the contribution from

the classical-to-topological mode conversion Ltran is only 0.181 dB (2.1%) per transition.
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Figure 3.3: (a) Estimated radiation losses of the PTI section Lrad,PT I , extracted by sweeping
the number of unit cells and calculating the slope, assuming a linear relationship. (b) Estimated
radiation losses of the ASL, Lrad,anti, via simulating a length sweep.

Table 3.1: Loss mechanisms and magnitudes

Mechanism Magnitude
Dielectric (Ld) 0.174 dB

Radiative, PTI (Lrad,PT I) 0.0298 dB/cell
Radiative, Antipodal (Lrad,anti) 0.000454 dB/cm

Transitions x2 (Ltran) 0.181 dB

3.4 Experimental Verification

To verify the design, a sample of the structure was fabricated and measured, using the

same parameters as given previously (with the addition of the aforementioned exponential taper to

microstrip line, shown in Fig. 3.4(b)). Fig. 3.4(a) shows the comparison between simulated and

measured scattering parameters, where the agreement is strong for the majority of the bandgap.

Note that the simulation (solid lines) is for the antipodal fed structure (including all forms of loss),

while the experimentally measured data shows the full structure with taper, minus the contribution

from the taper. When the taper is included, an additional 2 dB of loss is added to the shown

values. Near 16.2 GHz, the transmission is above -1 dB, in close agreement with the simulated

values.
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For visual confirmation, the near field electric fields were measured via a 2D scanner with

the probe tip placed ∼1 mm above the surface. Fig. 3.4(c) and (d) show the comparison between

the simulated and measured real electric fields. Even with the tight vertical confinement it is clear

that the desired nontrivial edge mode is strongly excited.

3.5 Analyzing the Robustness of Topological Features

As discussed previously, a chief interest in PTI designs is their immunity to backscattering

when presented with a wide class of defects and deformations to their propagation channel.

Examples of these are sharp bends, removal of unit cells, and deformations to structure. However,

it is often not clear to what extent these robust features present a practical benefit over more

common transmission lines and waveguiding technology. With the utility of the efficient transition

presented here, it is possible to quantify the performance vs backscatter presented in many

implementations.

The most common test for robustness in a PTI is the sharp bend, where the waveguide

follows along the 60 or 120 degree bends present in the lattice [30]. In ordinary transmission

lines such angles present substantial backscatter, and must be dealt with individually via miter or

other bend engineering. Such methods frequently work in microwave devices by reducing the

capacitance of the bend, and there are various empirically derived rules of thumb to compute the

needed parameters [46]. However, PTIs present an interesting design possibility, as such bends

are automatically ”immune” from scattering at any angle that fits within its lattice, as such modes

cannot smoothly convert into those moving in the other direction.

Fig. 3.5(a) shows a model of the duality PTI with the presented coupler to a classical

ASL, with its field profile shown in Fig. 3.5(c). There is no major scattering visible, but the

presented transition enables further analysis of the losses. Using the values in Table I we can

calculate the losses incurred by the bends separately. For the model shown we calculate a loss

33



Figure 3.4: (a) Classical-to-topological conversion performance vs frequency. For the exper-
imental result, an exponential taper was used to connect to the SMA connectors of the VNA
(shown in (b)), but to isolate the actual mode conversion performance, the simulation was
performed without the taper, and the experimentally measured response of the taper subtracted
from that of the full structure. Both simulated and measured data include all forms of losses
otherwise. The measured transmission is better than -3 dB within 15-18 GHz, and above -10 dB
for the whole bandwidth of the bandgap. (b) Experimental setup used for measuring the near
fields. Simulated (c) and measured (d) real electric field ∼1 mm above the structure.

34



Figure 3.5: (a) Simulated sharp bending path, with two 120 degree turns. (b) Simulated magic
T structure, with four input/output ports. (c) Electric field profile for (a), showing negligible
losses. The excitation is marked with a pink star. (d) Electric field profile for (b), with port 1
(denoted by the pink star) excited. The downward side has high transmission, while there is
practically zero in the ”forward” channel. The asymmetry at the gap causes the upward side to
have lower transmission, but still well above the ”forward” channel.
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of 0.036 db per bend (0.073 dB for both). Since the bending losses are close to the simulation

accuracy, they can be considered negligible compared to other sources (i.e., dielectric, radiation,

and transition). Being an inherent property of topological protection, such a device can be scaled

to much higher frequencies (e.g., into the the mmWave band of 5G telecommunications systems)

without changing the device design. This is in contrast to classical waveguides, where increasing

frequency often degrades the performance of sharp bend compensation methods, thus requiring

re-engineering.

The other major demonstration of PTI devices is the so-called ”magic T,” which is

a four-way junction of non-trivial waveguides [47]. In a classical rectangular waveguiding

system, such a junction results in equal energy splitting between the two side channels and no

transmission through the forward channel. It is significantly harder to form such a junction in

planar transmission lines without careful engineering [48]. Due to the spin-momentum locking

feature of PTIs, however, such behavior is intrinsic to such structures, even in the case of large

mismatches of the propagation direction [49].

Such a setup is shown in Fig. 3.5(b), with the corresponding electric field profile for port

1 activated shown in Fig. 3.5(d). Note that the hexagonal unit cells cause there to be a jump in the

left-right symmetry of the waveguiding channel at the interface, which causes a drop in signal

across the gap. Nevertheless, there is more than a 20 dB difference in transmission between the

forward channel and the oppositely-oriented side channel. The transmission into the forward

channel is close to -30 dB, despite being well matched to the direction of propagation compared

to the side channel, which is -11 dB. It is possible to manually modify the interface region (e.g.,

via collapsing the center cell) which allows for greater similarity of the energy split to each side

channel, but comes at the expense of increased signal in the forward (forbidden) port. This is due

to spin flip processes that allow for energy coupling between the two pseudo-spin modes. See the

further sections for further details.
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3.6 Field Decay and Finite Effects of Various Bulk Sizes

The model analyzed in the main text employs only 3 unit cells on either side of the

interface mode. This may seem surprising, considering the overall approximation being made

is of the infinite bulk used to derive the topological behavior of the band structure, but it is well

supported by considering the practical effects of the system. Physically, the metallic elements

present a very high contrast for the photonic crystal-like structure, which implies a rapid decay

into the bulk [5].

To see this, Fig. 3.6 shows the simulated magnitude of the electric field 0.1 mm above the

surface of a 10-cell long and variable width sample, excited via a wave port on the bottom of the

plot. Fig. 3.6(a) shows the fields with a bulk size of 10 unit cells on either side of the interface (20

total), while Fig. 3.6(b) shows the fields using only 3 cells on either side. They appear visually

identical. However, if we then consider fewer bulk cells, the situation changes. Fig. 3.6(c) shows

a 2-cell bulk, and Fig. 3.6(d) shows a single cell bulk. The 2-cell case appears to still work, but

there is now a visual difference appearing along the outer edges of the sample. As expected, the

single cell case hardly works at all, with considerable field concentration at the transition region

between the antipodal feed and the interface. The mode that is propagating here is no longer

topological, but rather closer to a modified form of antipodal twin line, which has large scattering

at each zig-zag bend.

For a more quantitative verification, we can also observe the scattering parameters as a

function of bulk width. Fig. 3.7(a) shows S11 and S21 of the results of Fig. 3.6. As expected, we

see that there is essentially no difference in insertion loss for more than 3 unit cells, and negligible

difference in return losses. Likewise, we see a rapid decrease below 3 cells.

A general way of characterizing this from a fields perspective (without needing to know

the S parameters) is given in Fig. 3.7(b), where we plot the estimated minimum number of

cells required to contain 90% of the total fields in the plane of propagation as a function of the
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Figure 3.6: Simulated electric field effects of finite bulks. Panels (a), (b), (c), and (d) show the
magnitude of the electric field 0.1 mm above the top layer of the PTI for a lateral bulk side of
10, 3, 2, and 1 cells on either side of the interface, respectively. Note that there is no visual
difference between the 10 and 3 cell case, supporting the choice of using 3 cells. Further, the 2
and 1 cell cases show larger and larger deviations from the ”infinite” case, leading to field build
up and deterioration of the PTI mode, supporting the lower bound of 3 cells.
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Figure 3.7: Quantitative effects of finite bulk width. Panel (a) shows the simulated scattering
parameters of the 10-cell long device as a function of the number of lateral bulk cells. We see
that there is essentially no transmission for 1 cell, slightly higher transmission for 3 than 2 cells,
and negligible change for larger bulks. (b) shows a general description of the required number
of cells needed to contain 90% of the E field as a function of the number of cells simulated. The
dashed line represents the point where the required cells matches the simulated cells, which we
see is satisfied beginning at 3 cells (points below the line).

total number of unit cells simulated. This is determined by integrating the fields along a line l

stretching from the interface outwards laterally as a function of distance x, and taking the first

point where the the value is greater than or equal to the threshold τ,

C f (l)≡
∫ l

lmin
|E(x)|2dx∫ lmax

lmin
|E(x)|2dx

≥ τ (3.2)

When C f (l)> 0.9, 90% of the total fields are therefore contained within the distance, the

result of which is given in Fig. 3.7(b). The dashed line is simply the value when the number of

cells required is equal to the number simulated, which we see is first reached when three cells are

included. For this case the line of integration is placed in the middle of the sample (5 unit cells

in) at the 0.25a point of the cell, and at the zero point between the two complementary layers,

stretching out from the interface to the right hand side. By symmetry the result is the same if

we flip it to the left hand side as well. Note that this last analysis is easily applicable to other

interface-mode systems as well.
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3.7 Sharp Turns and Magic T Frequency Responses

Fig. 3.8 presents the full simulated frequency response of the ”torturous path” sharp

turning model presented in the main text, which includes all forms of loss. It can be seen that

the behavior closely matches the straight path case of the main text, with the overall reduction in

transmission coming primarily as a result of the extra propagation length, rather than scattering

from the sharp turns. This is one of the attractive features of PTI-based designs, for the symmetries

of their system cause there to be essentially zero coupling between forward and backward

propagating modes.

Likewise, Fig. 3.9 presents the simulated frequency response of the ”Magic T” presented

in the main text, broken down into the four different active channel configurations. Part (a), (b),

(c), and (d) show the relevant S parameters for an excitation for ports 1, 2, 3, and 4, respectively.

In each case we can observe that 1. the reflection is below -10 dB for the full bandwidth of

the device, 2. the ”forward” channel, which is the direction that requires a spin-flip process

to couple and is therefore expected to be very small, is indeed below -20 dB for most of the

bandwidth, 3. side channel 1 is above -2 dB for most of the bandwidth, much the same as a

straight configuration, and 4. side channel 2, which is across the symmetry gap, is around -10 dB

for most of the bandwidth. As discussed in the text, the lack of symmetry right at the junction

between the two channels caused by the triangular lattice results the difference between the two

side channels. Nevertheless, the ”forbidden” forward channel is still more than -10 dB lower than

the lowest of the two side channels, proving substantial isolation even in the most basic case.

3.8 Discussion and Summary

The coupler presented here compares favorably with similar slow-wave devices. The SPP

designs of [33], [34], and [50] report S21 values of -0.6 dB, -1.5 dB, and -2.0 dB, respectively, for

most of their bandwidth, which are all close to or below the -0.866 dB reported here. Moreover,
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Figure 3.8: Frequency response of the 2-turn ”torturous path” sharp turn simulation. All losses
are included. Note that the behavior is nearly identical to the straight path, with the decrease in
S21 caused primarily by the extra propagation losses.

the topological protection afforded to the design allows for negligible losses under sharp bends

like those of Fig 3.5(c), which would otherwise cause substantial scattering for SPP designs.

Likewise, the propagation losses reported for the PTI structure itself are comparable to those of

standard microwave devices (e.g., a 50 Ω microstrip would have ∼0.032 dB/cm vs the ∼0.031

dB/cm for the PTI design with both at 16.2 GHz and equal material settings [51]), all without the

need for gradual bends or engineered corners [46].

This chapter presents a compact transition for efficiently coupling energy from a traditional

planar transmission line to a topologically protected line wave. An antipodal slot line was used

as the initial transmission line, which displays a field profile closely related to the PTI structure.

Since the PTI’s E-field distribution varies substantially along a unit cell, the exact coupling point

is chosen for the greatest match to the antipodal line. Additional alterations to the abrupt transition

to account for lattice mismatch and edge coupling effects improve the design further. Use of

such a design permits quantitative analyses of many popularly reported structures that rely upon

topological phases in waveguiding applications. The resulting transition allows for less than 2.1%

/transition of added loss, bringing topologically robust structures closer to integration in practical
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Figure 3.9: Frequency response of the simulated magic T presented in the main text. (a): Port
1 excited, (b): Port 2 excited, (c): Port 3 excited, (d): Port 4 excited. As expected, all four
situations result in identical behavior, with the ”forbidden” forward channel being as low as -30
dB, the lowest side channel (across the gap) being close to -10 dB, and the highest side channel
being above -2 dB.

42



applications.

This chapter is based on and is mostly a reprint of the following paper: R. J. Davis, D. J.

Bisharat, and D. F. Sievenpiper, “Classical-to-topological transmission line couplers”, Appl. Phys.

Lett., vol. 118, no. 13, p. 131102, (2021). The dissertation author was the primary author of this

material.
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Chapter 4

Reduction of Symmetry: Hexagons to

Rhombi

Symmetry breaking has wide sweeping consequences across physics, and are the foun-

dation underlying the modern theories of topological classification of matter. For the original

studies involving the quantum Hall effect, the crucial symmetries are time reversal symmetry

(T symmetry), and for the later discoveries of the quantum spin Hall effect inversion symmetry

was included. It was further shown that crystallographic symmetries can also have a profound

effect on topological phenomena in condensed matter systems. The ready application of these

symmetries onto the experimentally simpler bosonic platforms (photonics and phononics in

particular) have led to wide sweeping discoveries with myriad practical applications, including

nonreciprocal waveguides for T -breaking systems, spin-filtered routers, and robust cavity modes.

One electromagnetic platform in particular, which employs the additional symmetry of

duality of the electric and magnetic fields to generate pseudospin pairs, is especially useful

for introducing topological behaviors inside practical waveguiding systems. From the original

conception of the idea for waves in pure 2D systems came a version that employs surface waves

instead, thereby allowing for a platform readily tested in the lab with traditional PCB fabrication
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techniques. They also offer a simple model by which to test how the different symmetries (T ,

inversion, duality, crystallographic) influence the derived behavior of the edge states.

In this chapter, we show how the reduction of the point group symmetry from C6v

(hexagons) down to C2h (rhombi) maintains the same robust edge states, while possessing a

number of unexpected properties with regards to its topological features. As such a unit cell

can define edges that are straight lines, it also provides a considerably easier to use system for

applications in waveguiding.

The chapter is organized as follows: In Section 4.1 we introduce the model, and analyze

its topological features in reciprocal space numerically. We show how the reduction in point

group symmetry has consequences on the Berry curvature, and prove via group theory how this

comes about. Then in Section 4.3, we show how altering the angle of the rhombus (thereby

reducing the symmetry further still) changes the band structure as well as the topological behavior.

In Section 4.2 we derive an effective Hamiltonian of our model and show how it relates to the

Kane-Mele Hamiltonian. Then in Section 4.4 we showcase a range of finite lattices that show how

the topological features discussed can be exploited into practical devices. Finally, we provide

some conclusions and suggestions for future work.

4.1 Model and Nontrivial Topology

For the original studies of spin-type photonic topological insulators (spin PTIs), the basic

models assume a direct mapping to the Kane-Mele Hamiltonian [2] as their basis, and consist of a

honeycomb lattice of cells that possess an internal degree of freedom owing to bianisotropy [39].

This mapping retains as much symmetry as allowable, namely the crystallographic symmetry

and time reversal symmetry for spin 1/2 particles. The former is achieved by geometry (e.g.,

selecting a hexagonal unit cell obeying C6v point group symmetry), while the later is enabled by

the hybridized electromagnetic polarizations. In this chapter, we retain the electromagnetic duality
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Figure 4.1: Rhombic unit cell and related band structures. (a) The basic unit cell chosen, where
the period a = 20 mm, thickness h = 1.57 mm, and cell boarder width b = 0.43 mm. (b) The
photonic band structure of the full duality cell seen in (a).

(and therefore the pseudospin degree of freedom), while reducing the point group symmetry.

The unit cell used is shown in Fig. 4.1(a), with corresponding band structure shown in

Fig. 4.1(b). We can observe that the EM duality leads to doubly degenerate bands throughout

the BZ, as expected. However, we note that, as the point group of the unit cell (here C2h when

considering the dual modes) does not omit 2D irreducinble representation, and therefore will not

have any enforced Dirac cone at K. This differs from the hexagonal case of Ref. [38].

4.1.1 Chern Number and Berry Curvature

The (spin-projected1) Berry curvature for the C6v symmetric model studied in [38] pos-

sesses two spikes at the K/K′ HSPs, each of which contribute a Berry phase of ±π/2, or a

spin Chern number of ±1/2. The location of these points is fixed by the symmetry of point

group: in the absence of bianisotropic coupling there is a Dirac cone pinned to the K/K′ points

by the C6v rotational symmetry of the unit cells [52]. The introduction of bianisotropy induces

a bandgap, which causes the Berry curvature to accumulate in the region of the gapped Dirac

1As in Ref [38], the definition of the spin-projected modes is given by the hybrid electromagnetic fields ψ± =√
ε0Ez±

√
µ0Hz
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crossing. Integration of the Berry curvature across the whole BZ yields a spin Chern number of

±1 for the upper and lower bands [6].

However, as a rhombic unit cell lacks the initial rotational symmetry and associated

degeneracies, it naturally does not permit the same Berry curvature. To see this concretely, Fig.

4.2 shows the Berry curvature for the first spin-projected band, calculated using the methods of

Ref [6]. We note two key features:

1. There is an accumulation of Berry phase near the K/K′ points, as in the C6v model.

2. There is equal and opposite accumulation at the interior BZ points Σ/Σ′.

The latter feature distinguishes the rhombic cells from the hexagonal cells, and results in a

spin-Chern number of 0 for all bands, which would nominally indicate triviality. However, a

non-zero accumulation of curvature localized around the K/K′ in valley-Hall phase systems leads

to nontrivial edge states [21], provided the two valleys are well separated in reciprocal space.

Noting that propagation is along the K/K′ direction regardless, we may integrate the curvature

show in Fig. 4.2 just near those points, which yields a spin-Chern number of +1. Likewise, the

second band below the bandgap properly flips sign, yielding a spin-Chern number of -1, satisfying

the requirements for time reversal symmetry Cn =C++C− = 0.

4.2 Hamiltonian Description and Symmetry Breaking

The previous sections have examined the behavior of the specific EM dual unit cell

numerically, and we have seen the non trivial topology appear. However, to see the generality of

these results it is informative to consider a pared down model, namely the original Kane-Mele

Hamiltonian. The tight binding description of the model is given by

HKM = ∑
〈i, j〉α

tc†
iαc jα + ∑

〈〈i j〉〉αβ

it2νi jsz
αβ

c†
iαc jβ, (4.1)
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Figure 4.2: Berry curvatures of the rhombic cells. Left panel shows the first spin-projected
band, while the right shows the second spin-projected band.

with the first summation covering hopping from nearest neighbor (1NN) atoms, and the second

sum covering second nearest neighbor (2NN) hopping between spins. t denotes the hopping

amplitude between atomic sites i and j with spin α, t2 is the 2NN hopping amplitude, νi j is the

spin-dependent term that selects between spin states depending on direction, and sz
αβ

is the spin.

To connect the model of Fig. 4.1(a) to HKM, we will need to appropriately alter the

crystallographic properties to match. In Eq. (4.1), the first sum has equal hopping amplitudes

among first nearest neighbor lattice sites (e.g., between the two sublattices). Before the 2NN

terms are added, we have a simple model of graphene, which has point group C6v, which naturally

possesses an enforced degeneracy at the K point due to the existence of the 2D irrep. To force

this into C2v, we can simply alter one of the three 1NN bonds, which preserves the two mirror

symmetries. This texture is easier to see via the real space arrangement, which is shown in Fig.

(4.3). The single altered 1NN bond is shown in the light blue, and the 2NN spin-hopping terms

are included as well. Note that without the 2NN terms the model has a continuous bandgap.

This modified model, given again as

HKM = ∑
〈i, j〉α

t1c†
iαc jα + ∑

〈〈i j〉〉αβ

it2νi jsz
αβ

c†
iαc jβ, (4.2)
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Figure 4.3: Unit cell and hopping arrangement of the modified Kane-Mele Hamiltonian. The
unit cell is shown in the dashed blue rhombus, with two atomic sites inside. The black lines
denote the first nearest neighbor hopping terms, which are all equal. The red and blue lines
denote the imaginary, spin-dependent second nearest neighbor hopping terms. The blue terms
are equal, but when the red terms do not equal the blue terms, the model drops to C2v symmetry.

where we have the site-dependent 1NN hopping amplitude t1, has a representative tight binding

band structure shown in Fig. 4.4. Note that here we have not included on-site potential terms, and

as such the two spin bands above and below the bandgap are fully degenerate at all k.

To check the topological properties of this reduced symmetry model, we can compute the

Wilson loop spectra, which is shown in Fig. 4.5. We see that the two spin bands wind oppositely,

and cover the full BZ range, indicating a Z2 = 1, identical to the standard Kane-Mele result. We

can also compute the surface band structure for this model, which is given in Fig. 4.6.

From these, we can see that the reduction in symmetry does not destroy the expected

topological insulator behavior. It’s worth noting that the mapping from TB model and the

electromagnetic model in Fig. 4.1 is not exact; the detailed energetics of the system differ, and the

tight binding approximation used does not fully capture the physics that the PTI model possesses.

Nevertheless, the fact that we can break the requisite symmetries in the idealized Kane-Mele

model without destroying the expected topological surface states is indicative of the effect that

switching from a hexagon to a rhombus has on the topology.
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Figure 4.4: Representative band structure for the modified Kane-Mele Hamiltonian, Eq. (4.2).
The 2-band TB model used has t1 = 1 for intercellular hopping terms (red in Fig. 4.3), t1 = 0.9
for intracellular hopping, t2 = 0.25, and the spin texture as shown in Fig. 4.3. Note that the spin
bands are doubly degenerate at all momenta.

Figure 4.5: The Wilson loop spectra of the modified C2v-based Kane-Mele Model of Eq. (4.2).
The blue and red lines are the spin up and spin down modes.
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Figure 4.6: Surface band structure for a finite ribbon of unit cells of Eq. 4.2.

4.3 Altering Rhombic Angle

From the prior analysis we can see that the primary symmetry required for the nontrivial

surface states to exist is EM duality. To see how far we can push the basic rhombic unit cell,

we can alter the angle from the nominal 60 degrees (which lives on the triangular lattice) to any

arbitrary angle. This includes the square lattice of θ = 90 degrees. The alteration of symmetry

implies differing properties for the Berry curvature accumulation, but we may predict that robust

edge states will persist under a wide range of angles, as the bandgap remains open. At 90 degrees,

we effectively have a duality spin version of the ”line wave” concept of Ref. [40], though a more

detailed analysis is required to understand its robustness.

4.4 Device Implementations

Beyond the topological features observed in reciprocal space, there is a practical benefit

to the rhombic unit cell as presented: it is straightforward to construct robust waveguides from

them. In Chapter 3 a coupler design was presented, which required carefully adjusting the field
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Figure 4.7: Normalized bandgap width as a function of rhombic angle. Here 60 degrees
corresponds to the main model under study in this chapter.

match. This was complicated by the hexagonal unit cell, which moves laterally as you move

along the propagation path (the ”zig-zag” path). In the rhombic case, the propagation path is a

straight line, significantly easing this difficulty. This may also prove useful for topological-based

antenna designs [53].

An example of unidirectional excitation of the pseudospin states is shown in Fig. 4.8

[54]. The pink star denotes a hybrid dipole source of electric and magnetic dipoles, the sign

of which determines the propagation direction by the usual spin definitions [39]. We see the

mode is tightly confined, and negligible field propagates in the opposite direction. Similarly, Fig

4.9 shows a simulation of a model with several sharp bends. The pseudospin mode propagates

without scattering, despite the sharp turns.
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Figure 4.8: Demonstration of unidirectionally excited spin PTI modes, with a Hertzian dipolar
excitation of (a) Ez +Z0Hz and (b) Ez−Z0Hz, both placed in the center (pink stars), at 6.25 GHz.
The structure is the same as shown in Fig. 4.1(a), with simulated electric fields plotted at the
same height.

4.5 Conclusions

In this chapter we have demonstrated and analyzed a platform for studying photonic spin

states in a rhombic lattice, which displays surprising topological features. The nontrivial nature

of the bulk material was computed via Berry curvature calculations from full-wave simulations,

as well as via modifying the Kane-Mele Hamiltonian. The impact of altering the rhombic angle

and relevant bandgap closing behavior was also presented. Finally, device implementations were

shown, which provide a simple experimental platform useful for applications.

This chapter is based on and is mostly a reprint of the following papers: R. J. Davis, D.

J. Bisharat, and D. F. Sievenpiper, “Spin-Type Photonic Topological Insulators on a Rhombic

Lattice” In Preparation, 2023. R. J. Davis, and D. F. Sievenpiper, “Robust Microwave Transport

via Nontrivial Duality-Based Rhombic Unit Cells,” in 2021 IEEE International Symposium on

Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI) 619–620 (2021).

The dissertation author was the primary author of this material.
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Figure 4.9: Demonstration of the spin modes’ robustness to backscatter at sharp turns. (a) top
half of the dual structure, with metal shown in orange, (b) simulated electric field in the middle
between the two metasurfaces. The excitation is a Hertzian Ez +Z0Hz dipole (pink star) at 6.5
GHz
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Chapter 5

Topological Crystalline Insulators and

Symmetry Indicators

Recent advances in topological physics have revealed a wide class of nontrivial phases

that can exist in condensed matter systems, each relying upon maintaining or breaking various

symmetries [9]. These studies began with the quantum Hall effect [7] and related time reversal

symmetry (T ) broken systems, but later were generalized to spin-based platforms that preserve

T symmetry [2]. Still more recently, many experimental demonstrations have explored the use of

various crystalline symmetries to create topological insulators (TIs) [55], owing to their simplicity

of implementation in bosonic systems. Such crystalline symmetry-protected phases have been

demonstrated for systems in square lattices [56] and Kagome crystals [57, 58, 59], and can be

well characterized by their various rotation eigenvalues at high symmetry points in the Brillouin

zone (BZ). In each case, such phases require a minimum of orbital sites within a unit cell to define

the given rotational symmetry (e.g., 4 four the square lattice, 3 for the Kagome, etc.); as such

non-primitive cells are required for each.

These crystalline phases stand in contrast to the earlier Chern [7], spin [2], and valley

[21] phases, which are defined by topological invariants computed in reciprocal space, as they
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instead involve information of the real space defined configuration of the system. The earliest

example of Ref. [55] showed how point group symmetries can induce a phase possessing gapless

surface states, which are otherwise trivial in the framework of earlier topological classification

systems [60, 61]. More recent studies into the influence of crystalline symmetries has yielded

a plethora of new phenomena, including higher order topological insulators [62] and surface

rotation anomalies [63, 64]. These demonstrations have been recently unified under more general

notions of symmetries based on point and space groups, commonly referred to as symmetry

indicators [65, 66, 67, 24, 23], which rely on information of the real space configuration as well

as knowledge of the wavefunctions at various high symmetry point in the BZ. These techniques

reveal a broad class of topologically nontrivial structures in real material systems, which have

been efficiently tabulated [68, 69].

Such phases are frequently referred to as topological, insofar as they define a global

property of the band structure and can be described by an invariant that changes discretely [65].

This naturally leads to a gauge-dependence for the various topological invariants that characterize

them, in sharp relief to those in other systems. This can be seen even in the 1D Su-Schrieffer

Heeger model, where the Zak phase depends on the choice of unit cell, though the difference of

two such choices is unique [70]. Throughout the paper we will refer to ”topologically protected”

to include such gauge-dependent systems, as well as obstructed atomic orbital states [23].

Recently, a number of physical systems in photonics [71, 72] and phononics [73] have

demonstrated a form of unidirectional propagation for bosons on triangular lattices within a defect

line. Such platforms have zero Berry curvature [56, 74], and as such appear trivial from the spin

and valley perspectives. We will show via a tight binding model that these systems can in fact be

described by a non-trivial topology based on a specific flavor of symmetry indicator that focuses

on rotational symmetries [23]. Specifically, in this chapter [75] we demonstrate that a triangular

lattice with C3v-symmetric hopping terms can lead to topologically protected edge states.
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Figure 5.1: Triangular Lattice in a three-band model. (a) Diagram of unit cell in chosen basis,
with t+ bonds shown in blue and t− bonds in red. (b)-(d) Band structure of the first three bands of
the (b) pure triangular lattice with equal hopping δ = 0 (t+ = t−), (c) nontrivial gapped hopping
δ < 0 (t+ > t−), and (d) Dirac-cone hopping δ > 0 (t+ < t−).

5.1 Tight Binding Model and Reciprocal Space Characteristics

We adopt a Hamiltonian on a triangular lattice with the hopping texture as shown in Fig.

5.1(a), given generically as

H =−∑
〈i j〉

t±c†
i c j +H.c (5.1)

Here, 〈i j〉 denotes nearest neighbor hopping from site i to site j, and t± ≡ 1± δ describes the

texture of the hopping terms. We will initially set the onsite potential to zero and limit the analysis

to the region of −1≤ δ≤ 1. We adopt a three-site basis as illustrated in Fig. 5.1(a) with kernel

57



Figure 5.2: Berry curvature distributions for the (a) pure triangular, δ = 0, (b) nontrivial
triangular, with a typical gapped value δ = 0.4, and (c) Dirac cone-like, δ =−0.4 cases. In (a)
there is rapid fluctuations along the degeneracies at boundary of the reduced BZ (noted by the
black dotted line) which average to zero. For (c), a small staggered on-site potential of 10−3

was added so the sign of the singularities at K/K′ were uniquely defined.

of the Bloch Hamiltonian

H(δ) =


0 h∗12 h∗13

h12 0 h∗23

h13 h23 0

 . (5.2)

where

h12 = t−+ t+eikx + t−ei(kx/2+
√

3/2ky)

h13 = t−+ t+ei(kx/2+
√

3/2ky)+ t−e−i(kx/2−
√

3/2ky)

h23 = t−+ t+e−i(kx/2−
√

3/2ky)+ t−e−ikx

The model obeys time reversal symmetry, and falls into class AI of the Altland-Zirnbauer

classification [60, 61]. Note that the form of H is similar to Kagome lattices [57], but here

each site has 6 nearest neighbors, rather than 4. This has an important consequence in that the

low energy band structure is degenerate at all k values along the M−K boundary for δ = 0,

rather than the Dirac degeneracy seen in Kagome models. These extra band degeneracies are

not protected by rotational symmetry, as the little group of the wave vector at the M point for
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the lattice (C2v) does not permit any 2D irreducible representations [52] (See Section 5.6 for

more details). Nevertheless, this difference from Kagome or honeycomb models manifests in the

symmetry properties of the Berry phase and how they determine the existence of edge states.

In the ideal triangular lattice with unity potential, δ = 0, we have the degenerate band

structure seen in Fig. 5.1(b). If we modify the hopping such that δ > 0, a band gap is opened

for the lowest band, as shown in Fig. 5.1(c). For the opposite case of δ < 0, a C3v-protected

Dirac cone is found, shown in Fig. 5.1(d). In the following sections we analyze these three cases

individually, and show how the latter, gapped case posses an interesting question not readily

solved with reciprocal space techniques.

5.1.1 Ideal δ = 0 Case

The ideal triangular lattice under a tight binding (TB) formalism, Fig. 5.1(b) does not

have a bandgap, and therefore cannot demonstrate any edge states independent from bulk states.

However, as we will further detail in Sec. 5.4.2, such systems do in fact posses a fundamental

bandgap within bosonic systems.

Fig. 5.2(a) shows the Berry curvature distribution for Eq. 5.2 under this case. From the

combination of T and inversion symmetry I , the curvature is pinned to zero for all values within

the Brillouin zone, except those along the points of degeneracy, where the non-Abelian form of

the curvature must be used to determine the values. Here we employ the Abelian form, and as a

result we observe rapid numerical fluctuations along the BZ edges that average to zero [56].

5.1.2 Dirac δ < 0 Case

The Dirac case, Fig. 5.1(d) is reminiscent of the valley Hall physics of graphene [21], but

here a difference arises in how a gap can be introduced. Namely, if a staggered onsite potential

is applied, a gap will appear near K/K′, but in doing so the point group is lowered to Cs, rather
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than the C3v of a valley-like model. This causes the location of the Berry curvature singularity to

shift from K/K′, deteriorating any resulting edge states as the ”valleys” are no longer at T -linked

locations in the BZ. To show this in reciprocal space, Fig. 5.3 shows the evolution of the Berry

curvature as the alternating on-site potential is increased. Here the definition for ”alternating” is

0, +d, −d for sites 1, 2, and 3 of the unit cell as labeled in Fig. 1(a).

It can be observed that as soon as the on-site potential d is non-zero, the Dirac cone is

gapped and the singularities form well-defined peaks at the K/K′ valleys (Fig. 5.3(a)). However,

as d is increased, Fig. 5.3(b)-(d), we see the two peaks drift from the valleys, destroying the

valley-like behavior and the valley-projected Hamiltonian will not have a well-defined valley

Chern number [76].

5.1.3 Gapped δ > 0 Case

The gapped case, with δ > 0, is different. It is clear that doing so reduces the point

group from C6v down to C3v, which permits nonzero Berry curvature via breaking of inversion

symmetry (Fig. 5.2(b)). Unlike effective Hamiltonians defined near the K/K′ point in valley

models, however, the degeneracy being lifted is along the outer boundaries of the BZ rather than

the point degeneracy at K/K′, and so the resulting Berry phase accumulates along the M−K path

with a 3-fold rotational symmetry, provided the correct gauge is chosen [77] (see Section 5.7 for

details). As such, standard valley-polarized states cannot appear in this case either. As we will

see, however, such a situation does indeed give rise to surface states, but of a different nature.

5.2 Symmetry Indicators of Rotational Invariants

As the Berry curvature of the gapped (δ > 0) phase does not reveal the topological

properties, we turn instead to the symmetry properties of each band by the behavior of their

eigenstates at the high symmetry points (HSPs) when acted on by various rotation operators
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Figure 5.3: Berry curvature distribution for the Dirac-like case of δ < 0 with variable staggered
onsite-potential d for (a) d = 10−4, (b) d = 0.5, (c) d = 1.5. In each figure a representative
value of δ =−0.4 is used. We see that as the staggered potential is increased, the distribution
becomes asymmetric, with K/K′ singularities becoming poorly defined.

[23]. Importantly, unlike the gauge-invariant behavior of the Berry curvature, such symmetry

behaviors can be influenced by transformations to the real space configuration of the system.

More specifically, for a given n-fold rotation operator r̂n, we seek the expectation 〈r̂u
n(Π)〉 =

〈u(Π)|r̂n|u(Π)〉 for an eigenstate u evaluated at the HSP Π. In the ideal triangular lattice the

relevant rotations are r̂3 and r̂6, but within the modified hopping terms (which break C6v symmetry)

we will only need r̂3 [65].

In the chosen basis, the three fold rotation operator r̂3 can be represented as

r̂3 =


0 0 1

1 0 0

0 1 0

 . (5.3)

To evaluate the topology, we must calculate 〈r̂u
n(Π)〉 for each occupied band at certain HSPs,

which we here set to the lowest band only (1/3rd filling), as we are concerned with edge states

within the first bandgap. From the theory of [65] and [23], we can then evaluate the topological

invariant associated to this rotation operator, given as a vector of two integers

χ
(3) = ([K(3)

1 ], [K(3)
2 ]), (5.4)
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where [K(3)
1 ] and [K(3)

2 ] are given as

[K(3)
p ] = #K(3)

p −#Γ
(3)
p , (5.5)

and #Π
(3)
p is the number of occupied bands with eigenvalue Π

(3)
p = e2πi(p−1)/3, p = 1,2,3, for

the HSPs Π = K,Γ.

For the sake of generality, we note that to include the degenerate cases of δ≤ 0, we may

evaluate χ(3) by determining the eigenvalues of the overlap matrix S jk(Π)≡ 〈u j(Π)|r̂n|uk(Π)〉,

where j,k = 1,2,3 are the band indices. However, this will naturally give the n-band manifold’s

invariant, which is not of interest here (see Section 2.3.1 for further details).

In our case we have simplified the expressions from [23] to the case of 3-fold symmetry.

In the case of the 6-fold symmetric case of Fig. 5.1(b) (valid only at δ = 0) the rotational invariant

is instead χ(6) = ([M(2)
1 ], [K(3)

1 ]), which can be found to be trivial by considering an expanded

6-site basis TB model. Likewise, any symmetry properties for other invariants on this basis are

also trivial for the 1/3rd filling case. At the critical point of δ > 0, however, we observe a phase

transition where χ(3) = (−1,1), indicating a nontrivial topology. We note here that such a phase

is topologically equivalent to the h(3)2b primitive generator Hamiltonian from Ref. [23], which

possesses an identical χ(3).

If we rotate the site assignments of the Bloch Hamiltonian Eq. (5.2) by C2, or, equivalently,

perform a C2 rotation on the Brillouin zone which swaps the K and K′ points, the band structure

remains identical to that shown in Fig. (5.1)(d). The difference manifests when considering the

symmetry indicator: in this new rotated basis, we find χ(3) = (−1,0) from the differing phase

of the K′ point. This new Hamiltonian is topologically equivalent to the h(3)2c primitive generator

of Ref. [23]. This implies that a geometrical rotation can result in differing topological phases,

which is the mechanism that several recent studies [72, 71, 73, 78] have exploited to realize

unidirectional modes in bosonic platforms, which will be discussed in Section 5.4.2.
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Figure 5.4: Ribbon spectrum of the modified triangular lattice with open boundaries on the top
and bottom, showing edge modes within the bulk bandgap, using a normalization of a = 1. The
color bar shows the expectation value of the position operator in the vertical (y) dimension with
with red (blue) denoting modes localized on the top(bottom) of the ribbon. Bulk bands appear
black, being fully delocalized.

5.3 Edge States on Finite Lattices

The symmetry indicators show that the Hamiltonian Eq. (5.2) is that of a nontrivial phase

protected by C3 rotation, but it does not guarantee the existence of edge states for all finite edges.

Namely, the non-zero value of the χ(3) indicator here denotes a protected fractional charge per

unit cell which can exist along suitably chosen boundaries, rather than the existence of edge states

pinned within the bulk band gap (see also Sec. 5.5) Finite boundaries that break the straight-line

edge geometry will not support nontrivial edge states. This is important as the existence of the

edge states is therefore gauge-dependent, being removable by a change in coordinate system or

redefinition of the finite boundary, similar to those seen in Kagome lattices [58]. Fig. 5.4 shows
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the spectrum of a finite ribbon of the triangular lattice with δ = 0.4, a boundary that maintains

the required symmetry along the top and bottom, and open boundary conditions. We see two

edge modes appearing within the bulk bandgap, caused by the non-zero topological invariant χ(3).

The modes are pinned to the top and bottom of the ribbon. The two edge states are here shown

at differing energies, which is a natural result of the edge termination being different (i.e., the

unit cell is not C2-symmetric, so the top and bottom edge must necessarily have differences in the

hopping texture).

We note here that at δ = 0 there can be no edge states at any energy, but for finite δ 6= 0

they will emerge from the bulk spectrum, including the Dirac-like δ < 0 case. In such cases, as

well as the nontrivial δ > 0 case studied here for small δ, the edge states exist within a continuum

of bulk states. Only when the finite dispersion of the nontrivial δ > 0 case permits a complete

bandgap (here for δ = 0.16) will fully isolated states 1 bound to the edges appear from the

continuum (see Section 5.8). Fig. 5.5 gives an energy diagram as a function of δ for a finite

lattice, showing these isolated modes appearing for δ > 0.

5.4 Symmetry Indicators for Bosonic Implementations

5.4.1 Numerical Example in Photonics

A key benefit of the symmetry indicator methods used here is that they are readily applied

to other physical systems via simulation. This is detailed in [73], where a surface acoustic wave

platform results in the same indicators for phonons. As a further demonstration of this, here we

show the results for a 2D photonic crystal model, similar to those studied in [72] and [71].

As a computational aside, to transfer the idea of symmetry indicators to such a platform

where the wave function is defined continuously over the simulation domain, the definitions for

1The states themselves can be removed by a surface perturbation, forced back into the bulk, as they are not
required by symmetry to exist at a fixed energy in the bandgap. However, they will emerge under the circumstances
presented in the model
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Figure 5.5: Edge mode existence as a parameter of the difference in hopping strengths δ for a
finite triangular lattice. Pairs of modes emerge from the bulk band once the bandgap is opened
large enough.

the symmetry indicators must be suitably altered. Namely, to compute the various rotational

eigenvalues, the procedure can be simply performed via a scalar multiplication of the 2D eigenfield

by the relevant complex number corresponding to the rotational eigenvalue. This results in another

2D eigenfield, and the value of the indicator element becomes a sum of each of these fields that

match the original eigenfield. For additional details and a walkthrough of this process, see Sec.

2.3.1.

For a 2D photonic crystal in a triangular lattice composed of circular holes (for TE modes)

or rods (for TM modes), we may define the unit cell first by placing the circular hole/rod at the

center of a hexagon, as show in the inset to Fig. 5.6, which shows a representative photonic

band structure calculation; note the high degree of similarity to the nontrivial case analyzed in

the main text. The simulation results are done using Ansys HFSS FEM solver using a unit cell

size of a = 20 mm, air hole radius r = 4.6 mm, and a thin (� λ) height of h = 0.2 mm, with the

background material being silicon (εr = 11.9). By symmetry, an equally valid choice of unit cell

is one where the hole/rod is shifted, which will keep the bandstructure visually unaltered. Such a

choice along with the original symmetrical choice is illustrated in Fig. 5.7.
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Figure 5.6: Photonic band structure for the first 3 bands of a 2D silicon (εr = 11.9) photonic
crystal in a triangular lattice. Inset is the structure, where here a = 20 mm, r = 4.6 mm. The
gray indicates silicon, while the white is air.

Figure 5.7: Computation of symmetry indicators from 2D photonic crystal phase plots. For the
two definitions of unit cell (a), (e), the right three columns plot the 2D phase of the Hz eigenfield
at the indicated HSPs.
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For the first case, the unit cell has point group C6v, which by symmetry constraints on the

Berry curvature is trivial. Likewise, under this orientation the 2D charge polarization (see Section

5.5) is trivial. To compute the symmetry indicator, Fig. 5.7 shows the Hz phase profile at Γ, M,

and K, which are C6, C2, and C3-rotationally symmetric, respectively. From these, we compute

the symmetry indicators (which can intuitively be seen by visualizing the rotation of the phase

plot) and find χ(6) = (0,0), giving a trivial phase. Hence, from this unit cell definition we do not

expect any nontrivial behavior, analogous to a pure triangular lattice on a single site basis, with

the difference of the existence of a bandgap.

For the second case, we shift the unit cell center, thereby placing the phase vortex observed

from the edges to the center. This shift results in the point group reducing to C3v, and we find

the resulting symmetry indicator to be χ(3) = (−1,+1), matching that found for the nontrivial

case of the TB model. Performing a C2 rotation on the unit cell results in χ(3) = (−1,0), again

matching the TB case.

5.4.2 Connections to Recent Experiments

The TB Hamiltonian Eq. (5.2) describes an idealized spinless particle on a triangular

lattice, where topological bandgaps can be induced by tuning of the hopping amplitudes. Despite

this idealization, the phenomenon of greatest relevance to experiments is the influence of the

crystalline symmetry upon surface states. From the previous section, it can be seen that analogous

surface states can be introduced into a photonic system, where the symmetry of the array of holes

results in edge states along suitable boundaries.

These numerically predicted edge states have been demonstrated experimentally in both

photonic [72] and phononic [73] platforms. In these and other triangular lattice systems, the

usual definition of the unit cell is the high-symmetry choice of Fig. 5.7(a), with crystalline C6v

symmetry, which would naively map to the δ = 0 gapless case of Eq. (5.2). However, as seen in

the previous section, the gauge-freedom in unit cell choice permits a lower-symmetry unit cell
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(Fig. 5.7(e)), which reveals a non-trivial topology in analogy to the C3v models analyzed here. An

important difference between Eq. (5.2) and such systems, however, is the atomic orbital basis

used in TB models does not include the influence of the non-localized nature of classical waves

[79], which are instead faithfully represented by a basis of generalized Wannier functions [80].

Despite these differences, such a basis possesses distinct symmetry properties that match

those of the atomic orbital basis employed here [81], and the Hamiltonian Eq. (5.2) yields a

similar band structure to that of 2D photonic crystal realizations [71]. The only major physical

difference is that in the bosonic implementations a flipped copy of the lattice is used to form an

interface, rather than open boundaries; as shown here such a rotation results in gauge-dependent

phases, and as such also leads to edge states. Such an arrangement also provides a bandgap

material on both sides of the finite edge, useful for experiments.

Furthermore, the symmetry indicator method employed here has been extended to the

phononics case in a similar system [73], and even to photonics on surface wave metallic systems

[78]. Similar ideas have been applied in other photonic platforms, but using different theoretical

explanation [82]. These platforms have illustrated the high degree of robustness to perturbations

of the system, including sharp angle turns and defects along the boundary.

Care must be made when applying Eq. (5.2) to directly model such bosonic systems for

the aforementioned issues of the basis choice. Similarly, within the experimental models in Refs.

[72, 73] the states manifest as propagating edge states, though the symmetry indicators used

here merely protect the accumulation of edge charges. Propagating states can be expected in

such experimental platforms by the inherent setting of a fixed k-vector by the excitation source

used, coupled with the non-zero group velocity observed in their band structure. Such states

can therefore be removed from the bandgap or have their propagation direction flipped by a

continuous surface perturbation, and can be compared to those seen in Fig. 5.4. Nevertheless,

the numerical example of the previous section shows a strong connection behind the symmetries

involved and the resulting behavior of finite systems. To construct a more direct mapping between
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the physics of the bosonic systems and Hamiltonians on triangular lattices as studied here, it

would be possible to define a triplet of orbitals on the same lattice site, which can open a bandgap

without reducing the symmetry in real space [83].

5.5 Wilson Loop Spectra and 2D Charge Polarization Descrip-

tion

The discussion in prior sections employs the use of symmetry indicators as an efficient

and general means of understanding the topology of the system, but this is not the only technique.

Alternatively, the Wilson loop spectra can be used to determine the location of the Wannier centers,

which gives the fractionalized charge of the lattice. This approach, like the Berry curvature,

requires diagonalization of the Hamiltonian for all values within the BZ, and as such is much

more computationally demanding for large systems. Unlike the curvature, however, the Wilson

loop allows for another topological invariant, the charge polarization [84], to be computed. Here

the principle is that displacement of the Wannier center from the center of the (real space) unit cell

indicates a charge imbalance that is compensated by edge states on a finite sample. This section

will illustrate how the Wilson loop spectra can be alternatively used to explain the behavior of the

triangular lattice system studied here.

For the nontrivial δ > 0 case of the triangular lattice, we find the Berry phase as shown in

Fig. 5.8. It is important to note that here the coordinate axes are selected such that the lattice sites

are displaced symmetrically about the origin (e.g., as in Fig. 5.1(a)). The charge polarization

depends on the choice of unit cell, but the location of the Wannier center with respect the physical

lattice does not (see Section 5.7 for more details).

We can see that the first band is pinned to +1/3 a full BZ winding. As we are concerned

with the first bandgap, the important behavior is contained in the fractionalized nature of the first

band alone. This indicates a nontrivial topology, which we may formalize via the 2D charge
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Figure 5.8: The Berry phase computed from the Wilson loop spectra of the δ > 0 TB model. It
is pinned to 1/3rd the full winding for all values across the BZ.

polarization given by

P =
1

2πLW

∫
LW

Wdl (5.6)

Here we have defined the polarization normalized by the electric charge e, and, based on

symmetry constraints, reduced the 2D polarization to a single term (as it is equal in both directions

for our case). In what follows, we have chosen the lattice vectors a1 = x̂, a2 =
1
2 x̂+

√
3

2 ŷ. From

this, we find the nontrivial band to have charge of +1/3 for the configuration in Fig. 3.1(a) (e.g.,

corresponding to χ(3) = (−1,+1)). For the C2-rotated version (corresponding to χ(3) = (−1,0)),

we instead get −1/3.

As expected, we recover the same topological protection as that found via the symmetry

indicators, albeit with greater computational expense. However, the usefulness of the indicators

extends still further, as there is a strong connection between the symmetry indicators found and
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the bulk charge polarization itself. Namely, for χ(3), we may consider the polarization as given by

[23]

P(3) =
2
3
([K(3)

1 ]+2[K(3)
2 ]). (5.7)

Noting again that we have dropped the vector component here (as both elements will be equal),

and that we are still defining the polarization normalized to e, we can now quickly compute the

polarization for our model without the full BZ information used in the Wilson loop approach. We

find a polarization of +1/3 for the χ(3) = (−1,+1) case, and −1/3 (or, equivalently, +2/3) for

the χ(3) = (−1,0) case.

Such a connection to the charge polarization makes the existence of the edge states seen

in Fig. 3.3 clearer: the states arise due to the fractionalized charge per unit cell, which are pinned

to specific locations within the unit cell. When the boundary is chosen such that the charges align,

a surface state can appear, but can be removed by a surface deformation.

Lastly, we note that higher order states can be induced within the triangular lattice model

presented here using suitable modifications to the hopping structure, in an analogous fashion to

those seen in Kagome lattices. This can be predicted by the corner charge (normalized by e) [23],

Q(3)
corner =

1
3
[K(3)

2 ] mod 1, (5.8)

which is equal to +1/3 and 0 for the χ(3) = (−1,+1) and χ(3) = (−1,0) cases, respectively.

As the bulk charge polarization of Eq. (5.2) is non-zero for the gapped phase there can be no

fractionalized corner charges, but the Hamiltonian can nonetheless can be combined with other

crystalline models that cancel the polarization (the so-called nominal corner charges). Under

such a combination, we expect to see localized corner states appearing for finite lattices with

the arrangement shown in Fig 1(a) of the main text, but not its C2 rotated copy. This can be

understood by considering the edge geometry of a finite lattice with C3 symmetry, which naturally

leads to the Wannier centers appearing on the corners for only one orientation of the unit cell (see
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the supplementary info of [23] for further details).

5.6 Group Theoretic Constraints for Ideal Triangular Lattices

Here we give a brief derivation of the constraints on the triangular lattice states based on

group theory, much of which can be found in [52].

If we consider a Hamiltonian on a triangular lattice (Eq. (5.2)), the space group is P6mm.

To understand the allowable states for the periodic case, we can impose a potential that retains the

6-fold rotational symmetry, as in the case of δ = 0 of the main text. In such cases we can then

analyze the behavior of the little group of the wave vector at the various high symmetry points

(HSPs) [85].

At the Γ point, the little group coincides with the point group, which is C6v. This group

contains 1D and 2D irreducible representations (irreps), and as such implies at Γ we expect

isolated as well as doubly degenerate modes. Likewise, at K the little group is C3v, which has both

1D and 2D irreps. Conversely, at the M point the little group becomes C2v, which only contains

1D irreps, and therefore any degeneracy is not required by symmetry.

From the above, we may conclude that the degeneracy along the M−K path shown in

the main text is not protected by symmetry, and may be broken by considering differing models

of the potential. Indeed, employing perturbation theory to the nearly-free electron model with

finite potential will separate the bands at the M point [52]. Nevertheless, a key aspect to the

symmetry indicator method used here is that the resulting topological invariant is maintained

for these alternative models, as it only requires eigenvectors at HSPs and the preservation of

rotational symmetry.
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5.7 Gauge Choices for Symmetry Indicator Methods

For the application of the symmetry indicators from e.g., [23], it is worth digressing on

the importance of the gauge condition required, particularly for simple TB models like those

employed here. Namely, there are two characteristics required to compute the values, the first

being the generalized symmetry constraint

r̂nh(k)r̂†
n = h(Rnk) (5.9)

where h is the (Bloch) Hamiltonian, r̂n is the desired n-fold rotational operator, and Rn is the

corresponding 2D rotation matrix acting on the crystal momentum k. The second constraint is

that placed by the HSPs Π for which the relation

RnΠ = Π (5.10)

holds within the periodic BZ. The combination of the above two conditions can be combined

to show that, in order for the symmetry indicators to be defined, the rotational operator must

commute with the Hamiltonian, [r̂n,h] = 0.

The above conditions are innocuous enough, but there is some subtly with respect to

”gauge choices,” which can result in unexpected or erroneous conclusions. By ”gauge,” here we

mean both with regards to the gauge choice of the Hamiltonian in the Bloch basis, as well as the

”physical” gauge of the real-space Hamiltonian.

The first issue, the Hamiltonian’s gauge choice, is seldom discussed, but has genuine

consequences, particularly in tight-binding models [86]. When defining a TB model, there are

two main methods, the so-called ”periodic gauge,” wherein the wavefunction is expanded as a

sum of Bloch functions, each containing their own phases,
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ψk =
1√
N ∑

R, j
c j(k)ek·(R+aj)|φR, j〉, (5.11)

where aj denotes the atomic location of orbital site j, and the ”Bloch” gauge, where the all atomic

sites are considered together with a single phase,

ψ̃k =
1√
N ∑

R, j
c̃ j(k)ek·R|φR, j〉. (5.12)

The ”Bloch” choice is the one most familiar from textbook examples, as it is both simpler

to write down (hopping terms within the unit cell are real numbers) and has the benefit of being

periodic in the BZ, h(k+G) = h(k) for reciprocal lattice vector G. However, the ”periodic”

choice is often more physical with respect to features like the Berry curvature [77] (in the main

text this gauge was used for Figs. 5.2-5.3 for this reason). It is likewise often more natural for

calculations involving electrical polarization, as in the Wilson loop spectra. The conventions are

related by a unitary transformation, but there are added consequences depending on what further

calculations are desired.

For the purposes of symmetry indicators, the Bloch gauge is necessary, as condition (5.10)

cannot be met without the periodicity of the wavefunctions. As different numerical software

packages for creating TB models differ in their gauge choice, the user may arrive at incorrect

answers if the wrong gauge is chosen. This can also lead to great confusion since the initial

symmetry constraint (5.9) will hold regardless of gauge choice, as will all physical observables.

The second issue, the ”physical gauge” is more easily understood pictographically, but

is no less important for the proper investigation of a given model. By ”physical,” we mean the

coordinate system chosen in real space, and the resulting arrangement of the atomic sites. This is

often not an issue for most studies, but in cases like the triangular lattice studied here, there can

be a great difference between two otherwise identical models.

For example, suppose instead of the unit cell chosen in the main text (Fig. 5.1(a)), the
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choice shown in Fig. 5.9 is made. This unit cell has (in the Bloch gauge), the Hamiltonian kernel

H(δ) =


0 h∗12 h∗13

h12 0 h∗23

h13 h23 0

 . (5.13)

with h12 = t++ t−eikx + t−ei(kx/2+
√

3/2ky), h13 = t++ t−e−i(kx/2−
√

3/2ky)+ t−ei(kx/2+
√

3/2ky), and

h23 = t++ t−e−i(kx/2−
√

3/2ky)+ t−e−ikx .

This Hamiltonian, being related to the one used in the main text by a translation of the

real space coordinates, has identical eigenspectra as Eq. (5.2). However, a significant difference

distinguishes them: Eq. (5.13) has fully trivial symmetry indicators for all δ.

This can be understood by referring the the Wilson loop spectra as analyzed in Sec.

5.5. As the Wilson loop spectra gives the charge polarization, we can see that the center of

charge for this model resides at the midpoint between the three lattice sites linked by blue bonds.

For the model considered in the main text, this results in the charge polarization being split

between three locations on the outer edge of the unit cell, while in the case of Eq. (5.13), it is

symmetrically located at the center. From Eq. (5.7), we can conclude that this immediately gives

trivial symmetry indicator values. This latter gauge dependency was also exploited recently for

waveguiding applications [78].

The above discussion illustrates that, while powerful, symmetry indicators are sensitive

to gauge/unit cell decisions, and can cause issues when care is not made in their use. It is also

worth stressing here that this gauge-dependence may seem to contradict the notion of ”topological

protection” in the traditional sense of the quantum Hall effect. Systems as discussed here differ

from these others in a number of ways (particularly on the termination structure), but the key

feature that permits the ”topological” nomenclature here is that they are still a phase defined by

a global behavior, and can be characterized by a discretely changing parameter linked to the

existence of edge states.
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Figure 5.9: Alternative choice of unit cell, with identical eigenspectra but differing symmetry
indicators

5.8 Surface States in the Dirac (δ < 0) Case

In the case of the gapless Dirac case, with δ < 0, there is no bandgap, but nevertheless

states exist that are localized at the edges of the system. Without a bandgap they naturally coexist

with bulk states, which is shown via a ribbon spectra for a semi-infinite model shown in Fig. 5.10.

As discussed in Sec. 5.3, as δ is tuned to the transition point of δ = 0, a bulk bandgap is opened,

which permits these localized states to be isolated from the continuum under the parameter regime

given in Fig. 3.4. Such states cannot be naively classified as topological (as there is no bandgap),

but are still related to the symmetry-enforced existence of Dirac cones (see Fig. 5.1(d)).

5.9 Conclusions

We have demonstrated that a triangular lattice chosen with a 3-site basis and a specific

hopping texture is topologically nontrivial, and can support states bound to finite edges that

maintain a straight line termination. The model does not possess nonzero valley or inversion-

symmetry topological invariants, and is instead described by a symmetry indicator arising from

rotational eigenvalues. Our model deepens our understanding of a number of recent experimental

demonstrations related to anisotropic wave/energy propagation and verifies their real space
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Figure 5.10: Ribbon spectrum of the modified triangular lattice with open boundaries on the
top and bottom for the Dirac (δ < 0) case, showing edge states, using a normalization of a = 1.
The color bar shows the expectation value of the position operator in the vertical (y) dimension
with with red (blue) denoting modes localized on the top(bottom) of the ribbon. Bulk bands
appear black, being fully delocalized.

topological origin.

This chapter is based on and is mostly a reprint of the following paper: R. J. Davis, Y.

Zhou, D. J. Bisharat, P. R. Bandaru, and D. F. Sievenpiper, “Topologically protected edge states

in triangular lattices”, Phys. Rev. B 106, 165403 (2022). The dissertation author was the primary

author of this material.
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Chapter 6

Symmetry Indicator Analysis for 3D

Systems

The tools of symmetry shown in the previous chapters are only a small subset of possible

tools to evaluate the topology of different systems. In particular, they have focused on 2D systems,

where the relevant symmetry groups are those of point groups and the 17 wallpaper groups. In

3D systems, a large number of new symmetries appear, and with them a huge number of possible

crystallographic-protected phases. In this chapter we show an example of the application of one

recent tool, the so-called symmetry indicator method for space groups [24]. Specifically, we will

show an analysis of the topological properties of a phononic lattice, where the introduction of

a screw dislocation induces a pair of unidirectional helical modes propagating within the bulk

bandgap.
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6.1 Symmetry Indicators and Band Representations for Space

Groups

Symmetry indicators [24] are a recent development that draws on earlier works on the

combinatorics of band structures [87, 66, 67]. Parallel developments using alternative mathemati-

cal methods have also proven useful for classifying symmetry-protected systems [25]. The critical

insight to all such methods is the relationship between the symmetry properties of a given system’s

eigenfunctions and the set of possible atomic insulators corresponding to a given space group and

collection of internal symmetries (spin, time reversal, etc.). In brief, the theory permits a rapid

diagnosis of the potential topological surface states on symmetry protected boundaries, using

just the knowledge of irreducible representations (irreps) of the bands up to a given bandgap at

the various high symmetry points, expanded onto a basis of symmetry allowed atomic insulators.

The later have been exhaustively computed for all 230 space groups, with and without time

reversal symmetry and spin-orbit coupling [68, 69], which are simply unimodular matrices. The

calculation of the irreps is also a standard process, though in the case of vector-valued fields in

3D (as the phononic example shown here is) require slight modification, as detailed in Sec 6.2.

We will now give a brief overview of the relevant mathematical tools. For greater details,

Ref [88, 89] provide a wealth of examples.

6.1.1 Symmetry Eigenvalues and Irreducible Representations

For a given periodic system under question, modeled as an eigenvalue system with Bloch

Hamiltonian H, Hun(k) = Enun(k), we have a set of bands n ∈ µ, up to a bandgap1. With a

closed Brillouin zone (BZ), we may associate each separate eigenmode un(k) with a set of high

symmetries points, dictated by the space group [90, 91].

1The theory summarized here works for gapless systems as well [24], but we will not concern ourselves with
such cases here.
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For each of these eigenmodes at HSPs, we may compute the set of symmetry eigenvalues

for each by the same method employed in Chapter 5, via

χg = 〈un(Π|g|un(Π)〉, (6.1)

where the inner product computes the eigenvalue of mode un at a given HSP Π under the action

of a given symmetry element g of the little co-group of the space group. Concretely, we may

think of this as the behavior of the mode when we apply a symmetry (rotation, mirror, etc) that

is allowable by the symmetries the wave vector may have at that HSP, which in turn set by the

symmetries of the space group, all of which may be readily found from tables [90].

Once the χgs have been calculated for all g, the irrep may be found by the ”magic formula”

of character orthogonality [91], given as

mp =
1
||G|| ∑g∈G

χ
∗
p(g)χg, (6.2)

where mp is the multiplicity of an irrep p of the little co-group Gk, ||G|| denotes the cardinality of

the little co-group, and χp is the characters for irrep p. The latter can be found via tables [90]. mp

will be zero for all but one choice of p, and the remaining nonzero mp will give the dimension of

the correct irrep that the mode un corresponds to (e.g., m1 = 1 implies the mode is a 1D irrep,

mp = 2 implies a 2D irrep, etc). This allows a quick means of checking the irrep of a particular

eigenmode.
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6.1.2 Compatibility Relations

Once the given irreps have been computed for all modes un at all HSPs up to a given

bandgap, we may consolidate this information, along with the number of bands ν, into a ”vector”2,

n = (ν,n1
k1
,n2

k1
, · · · ,n1

k2
,n2

k2
, · · ·). (6.3)

Each value n j
ki

is the sum of all modes at HSP ki transforming as irrep j. This vector contains all

the symmetry content of the band structure, taken as a whole. As was shown in Ref [67], such a

vector is closely related to the so-called compatibility relations of the given space group. Such

relations can be likewise found tabulated [90].

6.1.3 Atomic Insulator Basis

For a given space group, a set of vectors n can be likewise computed, which are a general

consequence of the imposed symmetries of the space group itself. These vectors have been

exhaustively computed [68], and interested readers may consult Ref. [24, 88, 68, 69] for full

details on their methods. For our purposes, we will simply read off the vectors, consolidated into

the matrix A for a given symmetry setting (space group and related internal symmetries).

With the matrix A of atomic insulators, we may then simply expand the specific system’s

band structure behavior n onto this set,

Aq = n, (6.4)

where we have expansion coefficients q. The above may be computed via the pseudo-inverse of

A, such that q = A−1n. Based on q, there are two main possibilities:

1. All elements of q are integers: The system is trivial, as far as the symmetry indicator method
2This object is not a true vector, as it is not a member of a vector space, but its has properties very similar to one

[88]
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is concerned. That is, the band structure can be represented by a set of atomic insulators.

This does not preclude all topological phases, but merely that other, more specialized tools

must be used.

2. Some of the elements of q are fractions: The system is either topologically nontrivial,

or possesses at least one degeneracy (e.g., is in a semi-metal phase). We can distinguish

these two cases by the largest common factor of the columns of matrix A, Ci, which,

when multiplied by the corresponding value of q, qi, will be either integral (implying the

nontrivial first case), or fractional (giving the semi-metal second case) [69].

As shown in Ref [24], the atomic insulators bases A possess an algebraic structure of a

finitely generated Abelian group, and as such can be

6.2 Aspects of Indicator Theory for Bosonic Systems

The above discussion applies to a general eigenvalue system, but there are certain subtleties

when using it to analyze bosonic systems like the phononic lattice studied here. Namely, unlike

fermions, bosonic structures do not have Kramer’s degeneracy under time reversal symmetry.

Likewise, their eigenmodes are vector valued fields, rather than the scalar fields of the Schrodinger

equation. Finally, the vector nature of the fields implies a polarization degree of freedom, which

gives rise to different constraints at the Γ point [92].

Regarding time reversal invariance, we will simply note that the systems under study here,

phononic and photonic alike, belong to the AI group of the usual Altland-Zirnbaur classification

[60, 61]. This setting is naturally more limited in possible topological phases, as the lack of

spin-orbit coupling shrinks the set of nontrivial atomic insulator bases [88].

The second difference, the vectorial nature of the fields, simply requires an alteration of

the calculation of the symmetry eigenvalues χg. Namely, a scalar field u(r) transforms under a
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symmetry group element g as

gu(r) = u(R−1r). (6.5)

In the above, R is the matrix representation of the group element g. For vector fields u, the

transformation must also consider the basis of unit vectors, giving

gu(r) = (gu)(R−1r), (6.6)

where the term (gu) denotes that we must apply the symmetry on the basis vectors (ax,ay,az for

what follows).

The last feature of the bosonic implementation of symmetry indicators, that of the polar-

ization, has been studied at length in Ref. [92]. The primary conclusion is that the polarization

vortex that occurs at the Γ point leads to difficulties with clearly defining the irrep content n, but

can be removed via suitably introducing a fictitious zero mode. Moreover, for phononic systems,

which possess both longitudinal as well as transverse wave solutions, this vortex does not occur,

and we may safely compute the irreps as usual.

A perk of such tools is there computational simplicity and efficiency. Requiring only a

small number of unit cell simulations for periodic boundary conditions, the topological classifica-

tion can be very simple [69]. However, as should also be clear, the number of group-theoretic

steps is somewhat large, and there are currently few tools to perform these symmetry operations

in a general, 3D vector fields setting. To help alleviate this, we have written a software package

3 which automates many of these tedious operations. The software simply takes in a set of

eigenvalue data and corresponding space group information, and computes symmetry data and

indicator.
3Available soon on the Applied Electromagnetics GitHub page, https://github.com/Applied-Electromagnetics-Lab
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Figure 6.1: The phononic HCP lattice. (a) The HCP lattice structure, with layers A and B
colored separately. (b) The phononic bandstructure of the model under study. Adapted from
[93].

6.3 Application of the Method to 3D Phononic Crystal in a

HCP Lattice

With the tools available, we may now proceed to analyze the example system, which is a

hexagonal close packed (HCP) lattice of metal spheres embedded in an elastic medium, shown in

Fig. 6.1(a). The phononic bandstructure is given in Fig. 6.1(b). Full details of the system will

be provided in a future publication [93]. For our purposes, we will merely summarize the key

features of this system, then proceed with the symmetry indicator analysis as an example:

• The system has a bulk phononic bandgap near 5 kHz

• The system (space group 196) has both inversion symmetry and time reversal symmetry,

implying triviality of the Berry curvature and related Chern numbers.

• 2D sheets of the material are likewise trivial as far as the usual topological classification is

concerned.

• When a screw dislocation of Burgers vector B = cz (a full period in the z direction) is

induced in the lattice, unidirectional modes are found within the bulk band gap. These have
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been found both in simulation as well as in measured samples.

The above properties raise a question: if the system is otherwise trivial, how do the helical modes

appear in the screw dislocation? Past studies have shown that screw dislocations do indeed result

in nontrivial modes [94], but these efforts have focused mostly on spinfull systems in the AII

Altland-Zirnbaur class, and critically hinge on the existence of spin-orbit coupling. Likewise,

many past studies have shown that stacks of nontrivial 2D topological insulator models, even in

class AI, may possess nontrivial modes at dislocations [95, 96], but still require the 2D system’s

nontriviality. In the present HCP lattice, such is not the case, being fully trivial for all 2D surfaces.

Since the unidirectional modes appear only via the inclusion of the screw axis, the next

question is whether the model possesses a nontrivial symmetry indicator which is left unbroken by

the screw axis. Such a case would then explain the observed modes. To check, we may compute

the vector n for the model using the tools of the previous section. We find it as

n = [0,2,2,0,4,4,6,6,2,2,8,6,6,2,2,8,4,4,4,0,0,0]. (6.7)

If we then expand this onto the AI basis A for space group 194, we find all values of q are

integers, implying triviality. Moreover, we can predict this in advance, given knowledge that

the symmetry indicator group for spinless systems with TRS in space group 194 is given by Z1,

which is automatically trivial [24]. Hence, we see that the specific HCP phononic bulk crystal is

trivial by a wide range of classification tools, implying a special feature of the screw dislocation.

6.4 Screw Discontinuities and Modification of the Atomic In-

sulator Basis

Since symmetry indicator (as well as all other topological markers) imply triviality of the

bulk crystal, we must examine further how the introduction of a screw dislocation influences the
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system. In Ref. [94], a special index was derived that links the Burgers vector B with the weak

index Gv to determine the existence of nontrivial modes along the screw axis, given as

Θ =
1

2π
Gv ·B. (6.8)

They showed that when this value is nonzero, a pair of helical modes will be trapped in the bulk

bandgap. However, this index assumes a nonzero value of the weak index, which, in the case of

systems in AI with time reversal symmetry, are automatically zero.

We may instead observe that the introduction of the screw discontinuity into the otherwise

trivial crystal structure acts to lower the allowed symmetries of any mode near the defect line.

Specifically, we can see that the there is an induced chirality, in the sense that all rotational

eigenvalues must necessarily follow the helicity of the screw discontinuity. This is most relevant

at the A point in the BZ, which corresponds to the top hexagonal surface. At this point, the

structure factor vanishes, and there is an enforced ”sticking together” of bands (see Table 6.4).

Along the path Γ→ A the C3 eigenvalue must be maintained, but the resulting bands combine

once the A point is reached.

Inducing the screw, the C3 operation splits into the two values, one corresponding to a

positive Burgers shift, the other to a negative Burgers vector. As the two bands at A can no longer

maintain the same degenerated eigenvalue, the chiral mode ”splits”, leading to a band inversion.

As a result, there will necessarily exist two helical modes trapped at the screw dislocation, with

their direction locked to the direction of the screw and which span the bandgap.

Such modes are robust insofar as the two helical directions cannot directly couple, provided

the bulk bandgap is maintained, although they naturally obey time reversal symmetry. This is also

clear from the inability of a mode to discontinuously flip its C3 eigenvalue without sufficiently

large energy. In fact, this behavior has been shown numerically as well, see Ref. [93].
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6.5 Discussion

This chapter has considered the application of symmetry indicator methods to a specific

system in bosonics. Using theoretical considerations of the symmetry properties, as well as direct

numerical calculations of the phononic bands, that such a system appears trivial at first glace, but

the introduction of a screw discontinuity results in topologically robust modes along the defect

line. This is in sharp contrast to previous efforts [94], where there is always an assumption of

either weakly coupled 2D systems possessing inherent topology, or the requirement of a spin-orbit

coupling, neither of which is the case here.

6.6 Appendix: Symmetry Eigenvalues and Irreps of the HCP

Phononic Lattice

In this section we provide the full listing of calculated symmetry eigenvalues and resulting

irrep classifications of the HCP phononic lattice examined in the previous sections. Note that

the number of bands, 12, matches the expected minimum band connectivity as predicted by Ref.

[92].

This chapter is partially based on the following paper: Y. Zhou, R. J. Davis, L. Chen,

E. Wen, P. R. Bandaru, and D. F. Sievenpiper. “Helical Phononic Modes Induced by a Screw

Dislocation”. In preparation, 2023. The dissertation author was the primary author of this

material.
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Table 6.2: Symmetry eigenvalues and corresponding irreps for the 12 modes below the bandgap
at the M HSP, which has D2h symmetry.

Element {E|0} {C2|τ} {C′A2 |τ} {C′′A2 |0} {i|τ} {σh|0} {σA
d |0} {σA

v |τ} Irrep
Mode

1 1 1 -1 -1 1 1 -1 -1 M+
2

2 1 -1 1 -1 1 -1 1 -1 M+
3

3 1 -1 1 -1 -1 1 -1 1 M−3
4 1 1 -1 -1 -1 -1 1 1 M−2
5 1 -1 1 -1 1 -1 1 -1 M+

3
6 1 1 -1 -1 1 1 -1 -1 M+

2
7 1 -1 1 -1 -1 1 -1 1 M−3
8 1 -1 -1 1 1 -1 -1 1 M+

4
9 1 1 -1 -1 -1 -1 1 1 M−2

10 1 1 1 1 -1 -1 -1 -1 M−1
11 1 -1 -1 1 -1 1 1 -1 M−4
12 1 1 1 1 1 1 1 1 M+

1

Table 6.3: Symmetry eigenvalues and corresponding irreps for the 12 modes below the bandgap
at the K HSP, which has D3h symmetry.

Element {E|0} {C+
3 |0} {C′A2 |τ} {σh|0} {S3|0} {σA

v |τ} Irrep
Mode

1 2 -1 0 -2 1 0 K−3
2
3 1 1 -1 1 1 -1 K+

2
4 2 -1 0 2 -1 0 K+

3
5
6 1 1 -1 -1 -1 1 K−2
7 2 -1 0 -2 1 0 K−3
8
9 1 1 1 -1 -1 -1 K−1

10 2 -1 0 2 -1 0 K+
3

11
12 1 1 1 1 1 1 K+

1
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Table 6.4: Symmetry eigenvalues and corresponding irreps for the 12 modes below the bandgap
at the A HSP, which has C3v symmetry.

Element
Mode {E|0} {C3|0} {σd|0} Irrep

1 4 -2 0 A3
2
3
4
5 4 -2 0 A3
6
7
8
9 2 2 -2 A2

10
11 2 2 2 A1
12

Table 6.5: Symmetry eigenvalues and corresponding irreps for the 12 modes below the bandgap
at the H HSP, which has D3h symmetry. The two values for the improper rotation are complex
conjugates of each other, and so are listed separately.

Element
Mode {E|0} {C+

3 |0} {C′A2 |τ} {σh|0} {S+3 |0} {S
−
3 |0} {σA

v |τ} Irrep
1 2 -1 0 0 −

√
3i +

√
3i 0 H1

2
3 2 -1 0 0 +

√
3i −

√
3i 0 H2

4
5 2 1 0 0 0 0 0 H3
6
7 2 -1 0 0 +

√
3i −

√
3i 0 H2

8
9 2 1 0 0 0 0 0 H3

10
11 2 -1 0 0 −

√
3i +

√
3i 0 H1

12
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Table 6.6: Symmetry eigenvalues and corresponding irreps for the 12 modes below the bandgap
at the L HSP, which has D2h symmetry.

Element
Mode {E|0} {σd|0} Irrep

1 2 2 L1
2
3 2 -2 L2
4
5 2 -2 L2
6
7 2 2 L1
8
9 2 2 L1

10
11 2 -2 L2
12
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Chapter 7

Real Space Topology

There is an important connection between the physics of non reciprocity in periodic

systems and the global topology of their bandstructure. Symmetry protected phases, including

time reversal symmetry, chiral, and crystallographic have yielded innumerable topologically

robust systems. A chief interest in these platforms has been their intrinsic robustness to the

microscopic properties of their bulk. Photonic crystals have proven a simple platform to explore

these forms of topological phases [6], which is the strategy we have employed for most of this

dissertation.

The majority of the analysis presented so far has focused on analyzing the properties

that possess some form of periodicity, but what if this cannot be established? There are many

cases, such as amorphous systems [27, 97, 98], quasicrystalline systems [99, 100], and single

defect states [101, 102, 103], which cannot be fully understood using purely reciprocal space

methods. Tools such as the Bott index [99], Kitaev sum [26], and the local Chern marker [104]

have proven useful in these settings, though full application of them remains a challenge in

continuous systems.

In this chapter we study the effects of both forms of topology, real and reciprocal, on a

time reversal symmetric photonic topological insulator platform, and reveal how the combined
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topologies manifest in different measurable settings. Our primary platform will be the pseudospin-

type duality cell explained in Chapter 3, and the main tool to analyze its behavior will be the

Kitaev sum, described in Chapter 2.

7.1 Momentum Space Analysis

The model used here is the C6v-symmetric unit cell employing electromagnetic (EM)

duality, as demonstrated in Ref. [38], which has the bandstructure shown in Fig. 7.2(c). This

model emulates the quantum spin Hall effect via the construction of pseudospin states composed

of electric and magnetic fields via anisotropic coupling. Full details of the physics of this model

can be found in Ref. [38].

We will be using this unit cell for two reasons:

1. The system is time reversal symmetric, and therefore does not require external magnetic

fields or exotic materials. This makes for simpler experimental demonstrations, and

2. Although the cell is properly 3 dimensional, the effective topology exists in the form of

the surface waves existing on the thin structures. As such, the behavior can be considered

as 2D, permitting the full range of possible computational and experimental techniques

developed for such systems.

To begin with, we can first characterize the model purely in reciprocal space, the result

of which can be found in the supplemental material to Ref. [6]. The two spin-polarized bands

display Berry curvature similar to those seen in topological insulators of electronic systems (e.g.,

those of Bi2Te3 and other compounds). Spikes are observed at the K/K′ points, each with the

same sign and magnitude. Integration of the curvature over the full BZ results in spin Chern

numbers 1 come out to ±1 for the pseudospin states ψ±.

1Note that in this case there is no effective coupling terms equivalent to Rashba coupling, and as such the spin
Chern number matrix [20] is diagonal and can be considered separately
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This accumulation predicts robust surface states on interfaces of the material, which are

indeed observed on properly chosen interfaces.

7.2 Real Space Analysis

The previous section examined the behavior of a periodic lattice of unit cells. In this

section we employ a different method, here called the Kitaev sum, which can be likened to a

Chern number localized to real space [26]. The benefit of this tool is that it permits us to probe the

topology for finite systems, including those with defects or other breaks to the global symmetry.

7.2.1 The Kitaev Sum

Formally, the Kitaev sum is given by a sum of projector elements Pαβ as [26, 27, 105]

Cµ = 12πi ∑
α∈A,β∈B,γ∈C

(Pµ
αβ

Pµ
βγ

Pµ
γα−Pµ

αγP
µ
γβ

Pµ
βα
). (7.1)

In the above, Pµ
αβ

is the projector element between sites α and β over a full band µ. Each of these

points are chosen from three equal domains A,B,C, as illustrated in Fig. 7.1. Concretely, for an

electromagnetic system we can define the projector elements as the sum over eigenfrequencies

for pairwise locations of the chosen lattice as

Pµ
αβ

= ∑
En≤E f

φ(rα)φ(rβ)
∗. (7.2)

Here, α and β are both points in the chosen region (e.g., α = (xα,yα) on a Cartesian grid). Within

the usual tight binding methods these projectors are simply lattice sites, but for our purposes these

projectors are continuously defined, since the electromagnetic modes themselves are spatially

extended. Hence, within numerical calculations we must choose a sampling of the real space axis
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Figure 7.1: The computational domain of the Kitaev sum calculation. The three regions A,B,C
are arbitrary in shape but roughly equivalent in area. The sum corresponds to the ”real space
Chern number” localized to the point where the three regions intersect.

that is sufficiently dense to resolve the behavior (see Section 7.6 for details).

To verify the expected behavior of the Kitaev sum, we may construct a finite sample of

the base unit cells and apply closed boundary conditions (here we use perfect electric BCs, but

others are possible). The geometry of such a sample is shown in Fig. 7.2(a). Corresponding

eigenmodes are given in Fig. 7.2(d). We note a few features:

1. The exact geometry of the bulk (e.g., the shape of the edges) does not matter, provided

there are enough cells included in the simulation.

2. The full-wave simulation reveals states within the expected bandgap region, which corre-

spond to the edge modes excited on the outside boundary.

3. As the pseudospin degree of freedom is only weakly maintained, there are more modes

within the bandgap that correspond to spurious numerical artifacts. They can be removed

by tuning the edge geometry.

Using this data, we may then compute the Kitaev sum of Eq. (7.1), selecting a single
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Figure 7.2: Spin-type photonic topological insulators on a finite lattice. (a) The supercell
model of EM duality unit cells. (b) A typical eigenmode of the supercell for modes in the bulk
spectra, showing the complex magnitude of the electric field. (c) The periodic unit cell band
structure, with the expected two-fold degeneracy above and below the fundamental bandgap.
The horizontal black lines denote the bandgap. (d) The supercell eigenspectra. Note that the
bandgap region possesses a continuum of states, which correspond to the nontrivial topological
modes.
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Figure 7.3: The Kitaev sum as applied to the duality spin cell on a finite sample. The simulated
model is as shown in Fig. 7.2(a). (a) Kitaev sum convergence behavior taken in the middle of the
simulated region as a function of the included bulk size δ, measured in pixels for an 81x81-sized
domain. The black horizontal line is the expected spin Chern number of -1. (b) Behavior of the
Kitaev sum as we increase the upper eigenlimit E f . The region between the black vertical lines
denotes the topological bandgap.

point at the center as the center of the computational domain. An example of sum vs included

bulk size is given in Fig. 7.3(a), and against eigenspectra in Fig. (7.3)(b). We see that once a

sufficient bulk is included, in Fig. 7.3(a) denoted by the side length δ, measured in pixels for a

81x81 sized data set, the value converges towards the bulk integer. For Fig. (7.3)(a), the input

data were those of the hybrid spin down values, which have an expected spin Chern number of -1,

which is reached when > 12 pixels is included in the computational domain. Fig. (7.3)(b) shows

the computation for the spin up mode, which has a spin Chern number of +1. As the bulk size

chosen here is δ = 11, the value does not completely converge within the bandgap (denoted by the

vertical lines), but as δ increases this behavior stabilizes. The behavior at values past eigenvalue

300 are from higher bands, which are not of interest here.
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7.2.2 Adding Real Space Defects: The 5-Sided Inclusion

Although the previous sections of this chapter have used finite lattices, the underlying

physics is still dominated by the behavior of the periodic unit cell underlying them. In this section,

we show the result of applying the Kitaev some to a model with a special defect, which possesses

topological characteristics in the real space.

If we apply the Volterra process to remove a sector of a hexagonal lattice, at the center

we are left with a single pentagon surrounded by hexagons, Fig. 7.4(a). Far from the center, the

hexagons are otherwise close to symmetric, and become increasingly regular the farther from

the defect they become. Hence, such a defect is a real space topological defect [101, 102, 103].

As detailed in Ref. [101], such disclinations naturally have fractionalized charge behavior, with

modes appearing in the center defect and remaining finite corners.

However, what is not immediately clear is what we should expect when we form the lattice

not from a trivial unit cell lattice (e.g., like in [102]), but one made from a nontrivial topological

lattice. Using the Kitaev sum, which can be localized for sufficient bulk sizes [27], we may

observe the nonreciprocal pseudospin flow in the model, while including the real space defects.

The results of such a calculation are shown in Fig. 7.4(b). Here 10% of the bulk is included,

which is large enough to converge for the periodic case with expected spin Chern number of -1.

We can see that for much of the bulk, far from the center, the value pushes towards the expected

bulk value2. Meanwhile, at the center and towards the edges we see a large positive accumulation,

caused by the real space defects.

The flipping of sign can be interpreted as a result of the trapped states at the defects

naturally possessing a chirality that opposes that of the bulk. This behavior has been observed in

models of different reciprocal space topology [106], though here the effect is seen from the view

of a spin degree of freedom. Hence, when we connect real space defects together, as done in Ref.

2The top/bottom asymmetry is a numerical artifact caused by the finite number of modes chosen. If the mesh size
is increased, or the model scaled appropriately, such fluctuations will eventually cancel out.

98



Figure 7.4: Combined real and reciprocal space defects. (a) A lattice of the 6-fold symmetric
unit cells placed into a supercell, with a 1/6 sector removed via the Volterra process. This results
in nearly regular hexagonal unit cells everywhere except the geometric center, where the center
cell is a heptagon. (b) The spatially resolved Kitaev sum for a fractional bulk inclusion of 10%
and a lattice discretization of 81×81. The upper eigenvalue limit E f is chosen to be at the upper
end of the bandgap, including both center and corner states.

[106], we are constructing a topologically stable region for the spin states to propagate through,

which is protected by both the real space nature of the defect as well as the underlying reciprocal

space topology of the unit cell. The Kitaev sum shows this directly.

7.2.3 Amorphous Defect States

As mentioned, a major benefit of the locality of the Kitaev sum is that it permits us to

weaken the lattice periodicity condition further still. Specifically, we can make the model in Fig.

7.4 semi-amorphous, breaking the C6v symmetry that was retained far from the center and edges,

as shown in Fig. 7.5(a). In such a case, the only symmetry retained are the internal EM duality

as well as time reversal symmetry; all others are effectively broken. Nevertheless, the lattice

behavior is retained enough to maintain the bulk bandgap behavior. The eigenspectra for this

supercell is shown in Fig 7.5(b), where we observe a near continuum of states within the expected

bandgap region. This differs from the semi-uniform defect model of the previous section, as the

amorphous behavior results in numerous trapped states. These states are real-space in origin, like

99



the center defect, but are not tightly pinned (e.g., a small deformation may shift their location or

frequency). The center and corner modes remain pinned, however.

We can then perform the same Kitaev sum analysis, scanning over the region to observe

the behavior. As in the regular sample, we can choose to either include or exclude the center

defect states via the upper eigenlimit E f . However, as there are many additional trapped states

within the bandgap, we will naturally get extra Chern accumulation at various points where these

modes arise. This is seen in Fig. 7.5(c), where we have set the upper eigenlimit well within the

bulk bandgap, but stopped before including the center and corner modes. As a result, we observe

that most of the bulk displays the expected 1/2 value, but as it drifts towards different regions of

more trapped states the value fluctuates. We still do not see a strong center mode.

If we then increase the upper eigenlimit to include the genuine defects, we then see

a large spike in the Kitaev sum, seen in Fig. 7.5(d). The accumulation at the center directly

corresponds to the topologically trapped defect states existing within the continuum of the

(reciprocal) topological bandgap. Hence, we are able to observe the topology of the material

arising from both real and reciprocal space effects, even in systems of dramatically reduced

symmetry.

7.3 Measurements

To show that the previous simulation results are physically accurate, we have fabricated

and measured a set of samples corresponding to the semi-uniform defect models shown in Fig.

7.4. The 5-sided defect model is shown in Fig. 7.6(a), and for the 7-sided is shown in Fig.

7.6(c). As expected, we observe trapped states for both, with the 7-sided modes clearly showing

quadrupolar modes. The 5-sided should show dipolar modes, but this is made difficult to observe

owing to the size of the same and the resolution of the near-field scanner. In the 5-sided model

we also show the corner states, which are near enough to the source excitation to be visible for
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Figure 7.5: Amorphous combined topology states. (a) A 5-sided defect lattice, where the shapes
of all unit cells is made semi-amorphous, breaking all long and short range periodicity. (b)
The eigenspectra of the supercell, which includes a more continuous spectrum of eigenstates
within the bulk bandgap. (c) The spatially resolved Kitaev sum for an upper eigenlimit E f below
the center states. The bulk region only displays the bulk (reciprocal) topology. (d) The spatial
Kitaev sum with E f including the center states. Here the center region contains a large build up,
corresponding to the real space topology of the defect.
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Figure 7.6: Measured defect states. (a) and (b) show the fabricated models for the 5 and 7-sided
defect models, respectively. Note that only the top surface is shown, and the bottom layer is the
geometric dual. (b) and (d) show the measured magnitude of the z component of the electric field
Ez 1 mm above the top surface. In both cases the excitation probe was placed near the center
defect. The 7-sided defect clearly shows the expected quadropole modes, while the smaller
5-sided model shows the dipolar modes (smeared together due to the spatial resolution), as well
as the corner states.

this measurement. In the 7-sided case, the bulk size is large enough for these to be too weak to

observe.

7.4 Tomographic Retrieval of Chern Numbers

A powerful feature of the Kitaev sum is that it permits a formulation that is measurable

on an experimental platform. This is significant, since the experimental retrieval of topological

invariants is very challenging. This process uses a tomographic technique as detailed in Ref.
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[107] and [108], and is an area for future work.

7.5 Discussion

This chapter has demonstrated an electromagnetic system with dual topologies, both real

and reciprocal, and shown their behavior via the Kitaev sum. This has revealed a number of

interrelated phenomena, all in the same platform:

1. The base unit cell, the EM duality cell of Ref. [38], naturally possesses a pseudospin degree

of freedom, for which we find a nontrivial reciprocal space topology of its bandstructure.

2. Placing this into a finite lattice, we can observe the bulk behavior via the Kitaev sum, which

can be localized in space and is insensitive to boundary conditions.

3. Inducing a real space defect via a Volterra process results in trapped modes of real origin.

Such states cannot be removed unless annihilated by a paired defect of one dimension

higher or lower (e.g., a 5 sided defect merging with a 7 sided defect).

4. Such real space modes are required to have greater than monopolar charge. As such, we

see bipolar and above, always in paired values.

5. The application of the Kitaev sum allows us to see how the dual topologies interact, with a

large nonreciprocal build up occurring at the center of the defect.

6. Such effects are robust to a wide range of deformation, even in nearly amorphous settings.

One possible consequence of the build up of the Kitaev sum for the real space defect is in

3D stacking: if the 2D sheets of Fig. 7.4 are stacked along the out-of-plane z axis, strong coupling

may result in a unidirectional mode propagating chirally along the defect. This is similar to the 3D

phononic lattice examined in Chapter 6, but here the chirality is induced by the electromagnetic

spin DOF, and constrained by the real space defect.
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Another possibility is in examining the behavior of other finite systems. It is known that

inducing 5 and 7 sided defects on the same finite lattice creates robust propagation channels, but

the mechanism causing them has so-far been not fully studied. This is an ideal candidate for the

spatially resolvable Kitaev sum, where the relative strength of nonreciprocal effects throughout

the system can be plotted directly in real space.

A final option for this system and related analysis tools is in the area of quantum quench

dynamics [109]. As the Kitaev sum can be measured experimentally [107], it is possible to

construct a physical system using a suitably modified copy of the model in Fig. 7.4 (e.g., using

diodes to ground different patches) which can be modulated in time to study the effects of dynamic

changes in topology. These are ordinarily very challenging to see outside of simple toy models,

which makes the platform here enticing.

7.6 Appendix: Example of the Kitaev Sum for a Chern Insula-

tor PTI Model

To observe the computational aspects of the Kitaev sum as used on continuously defined

models, like the electromagnetic ones shown in the main text, in this section we explore the

celebrated Chern insulator model based on the work of Ref [110]. In Fig. 7.7 is shown the unit

cell, which is a circular rod of YIG with period a = 20 mm, radius r = 0.3 mm, with the rest of

the material made of vacuum. The top and bottom surfaces are set to perfect magnetic boundary

conditions, to emulate an infinite 2D lattice. The corresponding band structure is shown in Fig.

7.7(c), with bandgaps denoted by the horizontal lines.

Fig. 7.7(b) shows a finite lattice of size 20×20. Here the boundary conditions on the x−y

planes are set to perfect electric BCs, but we note here that this is arbitrary, and the calculation

will work for any BC provided enough unit cells are included. The corresponding eigenspectra

for the full lattice is shown in 7.7(d). Note that the first bandgap does not have any states, while
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Figure 7.7: A Chern-type PTI model. (a) The periodic unit cell of YIG rods in a 2D lattice.
(b) The finite lattice model. (c) The periodic band structure for the unit cell in (a). The second
bandgap has (gap) Chern number of 1. (d) The eigenspectra of the finite model. Note that
there are no states within the (trivial) first bandgap, while a continuum appears in the second
(nontrivial) bandgap.

the second, topological bandgap has a continuum. These upper bandgap states represent the edge

modes caused by the Chern insulator topology.

Using the field data of the finite lattice, we can calculate the Kitaev sum using a single

point centered on a rod in the middle of the lattice. Knowing that we expect the (periodic) Chern

number to be nonzero for the upper bands, we can initially set the upper eigenlimit E f to a value

within the second bandgap. We are free to choose any so long as it contains the lower bands (see

later sections for a discussion on this), and as such we will initially select the eigenvalue halfway

into the bandgap.
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Figure 7.8: The convergence behavior of the Kitaev sum for the Chern-type model as a function
of the size of the included bulk, using a fixed upper eigenlimit E f within the second bandgap.
The characteristic behavior shows a gradual rise, followed by a leveling out once sufficient sites
are included within the computational domain. Here the calculation is performed for a region
centered on a unit cell in the middle of the finite lattice.

The result of running the Kitaev sum calculation for increasing sizes of included bulk

fraction is shown in Fig. 7.8. We see that the value initially rises, eventually saturating to the

expected value of 1. There is overshoot, causes by the non-monotonic nature of the continuous

calculation and discretized process. To see how this value manifests vs the eigenmode data being

included (e.g., how E f influences the computation), we can fix the fractional size of the bulk

contained to a stable value of 40% and sweep E f . The result is shown in Fig. 7.9

This chapter is based on the following paper: R. J. Davis, S. Singh, D. J. Bisharat, and

D. F. Sievenpiper, “Topological Defects with Both Real and Reciprocal Space Signatures,” In

preparation, 2023. The dissertation author was the primary author of this material.
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Figure 7.9: The convergence behavior of the Kitaev sum as a function of the upper eigenlimit
E f , assuming a fixed included bulk size of 30%. Note the value does not change significantly
until the upper bands are reached, at which point the value plateaus upon reaching the nontrivial
second bandgap.
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Chapter 8

Summary and Discussion

8.1 Summary of Major Results

The unifying theme of this dissertation has been on the relationship between topological

features in real and reciprocal space, and how we can use them to understand systems in practical

settings. Much of the work presented here has made use of engineered crystals in classical wave

systems, like photonics and phononics. Many of the tools, however, are general, and are explored

here to illustrate the ease to which we can investigate features using these platforms.

The first chapters dealt with how we can use electromagnetic duality-based platforms to

construct robust waveguides. Chapter 3 focused on a specific coupler design, which required an

understanding of the inhomogeneous field behavior that topological structures give rise to. By

carefully engineering the interface between the two domains, a highly efficient mode conversion

was achieved. This naturally led to the work in Chapter 4, which dealt with lowering the crystal

symmetry of the previous hexagonal model down to a rhombus. Doing so leads to a more useful

design, having straight edges that can be more easily interfaced to other systems, but proved to

have a far richer topology than initially expected. This was analyzed via reciprocal space tools,

showing the behavior in Berry curvature, as well as via modifying the underlying Hamiltonian.
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Crystal symmetries were used further in Chapter 5, where rotational eigenvalues and the

gauge freedom of unit cell choice led to robust states in triangular lattices. This was shown using

the modern tool set of symmetry indicators, which consider various symmetry-allowable states.

Those same methods, suitably generalized, were then used again in Chapter 6, which covered an

analysis of a hexagonal close packed structure with an induced screw discontinuity. Using the

full space-group analysis of the bulk crystal, along with careful consideration of the preserved

symmetries of the screw dislocation, we showed how the structure gives rise to robust edge states

not readily explained by the standard theories.

All previous chapters worked with symmetries in both real and reciprocal space, but in

Chapter 7 we show examples where such tool breakdown completely. Amorphous and defect

states preclude any periodic explanation, even a perturbed one, and as such a different method,

the Kitaev sum, was employed to probe their topology. It was shown that a rich set of topological

signatures can be found via this method, where features with both fully real and fully reciprocal

origins can be clearly probed. Such methods are even applicable to experimental platforms, which

is rare for topological invariant calculations.

A major conclusion of this body of work is the both the value in using a wide range

of topological analysis tools, as well as to point out the possibilities that classical wave and

bosonic-based systems can have for demonstration. Practical applications generally stem from a

clearer connection between pure theory (often worked out in the realm of electronic systems first)

and the more concrete models employed here. Being able to calculate and utilize these theories to

verify the topological origin, as well as gives clues to future designs.
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