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ABSTRACT OF THE DISSERTATION

Multiplicative Lattice Versions of Some Results
From Noetherian Commutative Rings

by

Daniel Joseph Majcherek

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, August 2014

Professor David E. Rush, Chairperson

The goal of this paper is to continue building lattice theory by generalizing known

results from commutative rings. Our focus will be results concerning strong Mori

lattices as Mori lattices have been rather developed already in [7], [22], and others

sources.

Our first main objective will be to obtain more results concerning quotient field

lattices, which have been significantly developed in [6], [7], and [22]. Most notably,

the quotient field lattice version of the Nagata Theorem will be proven, following

the approach of Chang Hwan Park and Mi Hee Park in [23]. This result had

not yet been generalized to quotient field lattices. Also, some results concerning

composition series will receive lattice versions, generalizing results from [23] as

well as [15].

Some concepts from commutative ring theory that have not yet been applied

to lattices will be introduced, such as certain star operations, particularly the

w-operation. This will allow us to develop strong Mori lattices and begin to
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characterize them, working toward achieving lattice versions of results from [27]

and [28]. We will also introduce a lattice version of w-invertibility and obtain

lattice versions of basic results. This will give a brief characterization of strong

Mori lattices and lay the groundwork for further, more detailed characterizations

as discussed in the final section.
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Preface

Consider the ideals of a commutative ring R with identity. It is well known

that this set of ideals forms what is known as a complete lattice monoid. Many

familiar algebraic structures are also complete lattice monoids, such as certain

sets of submodules, graded submodules, and graded ideals.

Although the development of lattice theory as an abstract version of the ideal

theory of commutative rings began with the 1924 paper [16] of W. Krull, this

development received little notice until M. Ward and D.P. Dilworth gave lattice

analogues of several of Noether’s theorems on primary decomposition in Noethe-

rian commutative rings in [29], [30], and [31]. However, the definitions given at

that time were not adequate to prove lattice versions of more advanced results

in commutative ring theory, such as Krull’s principal ideal theorem. The main

difficulty was the need to find a more suitable lattice analogue of a principal ideal.

In [8], Dilworth gave such a definition and defined a Noether lattice L to be a

complete modular lattice satisfying ACC with a commutative, associative multi-

plication that distributes over arbitrary joins, with the largest element I ∈ L as

the multiplicative identity and such that each element of L is a join of principal

elements. By, proving important results such as the principal element theorem
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(the lattice analogue of Krull’s principal theorem), he paved the way for further

development in complete lattice monoids (Among the early contributors to the

development of multiplicative lattices were the authors of the UCR desertations

[6, 7, 11, 14, 18, 19, 32] written under the direction of Louis J. Rattliff Jr.).

In recent years, there has been a surge of interest in lattice theory and new

lattice structures have been defined and developed, including lattices of fractions

of a multiplicative lattice. In 2005, Rush, Okon, and Wallace further developed

what are known as quotient field lattices, obtaining the Krull Akizuki Theorem

for quotient field lattices as well as the Mori-Nagata Theorem. This development

had begun with W.P. Brithinee in [7] several decades earlier around 1971 as well

as D.D. Anderson, a student of Irving Kaplansky, in his thesis in 1974 (see [1]).

My goal is to continue this extension of results in commutative algebra to

lattice theory. Of course there is a rapidly expanding supply of theorems in

commutative algebra that might seem like good candidates to extend from lattices

of ideals of commutative rings to multiplicative lattices. So the question arises

as to how to choose such theorems in commutative algebra. The definition of

multiplicative lattices is broad enough to contain four different classes of examples:

the set of ideals of a commutative ring, the set of homogeneous ideals of a graded

ring, the set of ideals of a commutative multiplicative monoid with a zero element

and certain multiplicative lattices which arise from having a star operation as we

will show in Chapter 4. There is a growing trend of researchers trying to find

graded ring analogues of known theorems on commutative rings. This is generally

not a routine exercise because many such theorems do not carry over. We focus our

x



attention on the recent papers [23], [24] which extend several important results

from rings to graded rings, and on [27], [28] for lattices which arise from star

operations.
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In the introduction, we define core concepts, the structures of interest of this

paper, and give some simple examples. We will also give the definition of a

quotient field lattice as well as some examples, which will help us prove some

deeper results.

In the second section we will start generalizing results from [23]. For this

we will state results from [22] that are relevant. This section mainly concerns

quotient field lattices. We will introduce lattice versions of familiar concepts such

as valuation rings, Krull rings, and integral closure, to name a few. The reader is

referred to [6] and [7] for additional results concerning many of these topics.

In section three we turn our attention to structures known as lattice modules

and use them to extend Nagata’s Theorem on two-dimensional Noetherian do-

mains to quotient field lattices. Many theorems from [24] are also generalized in

this section. We restate the Principal Element Theorem of Dilworth and prove a

general form of the Eakin-Nagata Theorem. These results rely on the version of

the Krull Akizuki Theorem proven in [22] and the author strongly recommends

referring to this source.

Section four is the bulk of our work. We will investigate strong Mori lattices

and special types of lattice modules in an attempt to generalize results concerning

strong Mori domains and strong Mori modules to lattices and lattice modules. Star

operations and w-elements are defined and developed for lattices. This section

spans many works, including [24], [27], [28], and others.

The final section investigates basic results considering w-invertibility in prepa-

ration for future endeavors. It would be valuable to obtain lattice versions of both

xii



[27, Theorem 5.4] and [28, Theorem 2.8], which would be a significant character-

ization of strong Mori lattices. However, to complete these results, we need to

obtain lattice versions of results from [21].
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Chapter 1

Preliminaries

We begin by defining a cl-monoid, a basic form of our structures of interest,

and giving classic examples of cl-monoids, relating them to familiar structures

from commutative algebra. After defining basic terms, we will introduce quotient

field lattices, along with examples. The section finishes with the introduction of

localization in quotient field lattices.

Definition 1.0.1. A complete lattice monoid (or simply a cl-monoid) is a

complete lattice-ordered (multiplicative) monoid L that satisfies the following:

1. If 0 is the smallest element of L, then 0A = 0 for every A ∈ L.

2. For any family {Bλ ∈ L | λ ∈ Λ} and A ∈ L, A(
∨
Bλ) = (

∨
ABλ) (the

multiplication distributes over arbitrary joins).

Denote by R the multiplicative identity of the cl-monoid L. A cl-monoid L is

said to be integral if R is the largest element in L. Note that {A ∈ L | A ≤ R}

is a sub-cl-monoid of L, which we shall denote I.
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Definition 1.0.2. Let L be a cl-monoid. An element A ∈ L is said to be a ring

element if R ≤ A and AA ≤ A.

Example 1.0.3. [22, Example 2.1]

The following are examples of cl-monoids the reader should keep in mind.

1. Let R be a subring of a commutative ring R
′
. The set of R-submodules of

R
′

is a cl-monoid.

2. Let M be a cancellative torsion-free abelian monoid and R be a graded sub-

ring of the M-graded commutative ring R
′
. The set of graded R-submodules

of R
′

is a cl-monoid.

3. Let M be a multiplicative cancellative monoid with quotient group G. With

the symbol 0, define a multiplication on G ∪ {0} = G0 as follows: g0 = 0g

= 0 for every g ∈ G. Note that M ∪ {0} = M0 is a subsemigroup of G0.

Now, if we let L(M0, G0) = {A ⊆ G0 | M0A ⊆ A} and order L(M0, G0) by

inclusion with a multiplication defined by AB = {ab | a ∈ A, b ∈ B}, then

L(M0, G0) is a cl-monoid.

These examples demonstrate that many familiar structures in commutative

ring theory are cl-monoids. More sources of examples will be developed in Chapter

4.

Some familiar concepts and definitions also appear in this context, which we

now introduce. The next definitions will be used very frequently.

Definition 1.0.4. Let L be a cl-monoid. Residuation is defined for A, B ∈ L

2



as (A : B) =
∨
{C ∈ L | CB ≤ A}. When needed, we will add a subscript such

as (A :I B) to represent
∨
{C ∈ I | CB ≤ A}.

Definition 1.0.5. Let L be a cl-monoid. An element M ∈ L is meet principal

(respectively, join principal) if (B∧ (A : M))M ≥ A∧MB (respectively, (AM ∨

B) : M ≤ A ∨ (B : M)) for all A,B ∈ L (note the reverse inequalities always

hold). If M is both meet principal and join principal, it is a principal element

of L and if every element of L is a join of principal elements, L is principally

generated.

The term “principal” is indeed a reference to the concept of a principal ideal

of a ring, as a principal ideal in a ring will satisfy the conditions of the preceding

definition when viewed in the context of a cl-monoid. The following is a weaker

version of principality.

Definition 1.0.6. Let L be a cl-monoid. An element M ∈ L is weak meet

principal (respectively, weak join principal) if for all A ∈ L, A ∧M = M(A :

M) (respectively, A ∨ (0 : M) = (AM : M)). If M is both weak meet principal

and weak join principal, it is a weak principal element of L.

We define a few more basic terms that we will use frequently.

Definition 1.0.7. Let L be a cl-monoid. An element A ∈ L is invertible if

AB = R for some B ∈ L. If this is the case, B = (R : A), denoted B = A−1.

Definition 1.0.8. Let L be a cl-monoid. An element M ∈ L is compact if

A ≤
∨
i∈I Ai, Ai ∈ L implies that A ≤

∨
i∈I′ Ai, for some finite subset I

′
of I. If

every element of L is a join of compact elements, L is compactly generated.
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Definition 1.0.9. Let L be a cl-monoid and let A, B, and C ∈ L. We say that

L is modular if A ≤ B implies that B ∧ (A ∨ C) ≤ A ∨ (B ∧ C).

The above examples of a cl-monoid demonstrate that any results we prove for

cl-monoids can be applied to the cases given in Example 1.6 and more to obtain

results without having to prove them in each case. Also, the proofs are often more

eloquent when dealing with cl-monoids.

Our goal is to generalize results from commutative rings to cl-monoids. Since

many results we will be dealing with concern quotient fields, localizations, and

many other concepts already familiar to the reader, we will need cl-monoid versions

corresponding to these ideas. We begin by defining a quotient field lattice.

Definition 1.0.10. Let L be a cl-monoid. L is a quotient field lattice (abbre-

viated q.f. lattice) if the following hold:

1. AK = K for every nonzero A ∈ L, where K = ∨L is the largest element of

L.

2. L is principally generated.

3. There exists a compact, invertible element in L.

4. For every A ∈ L \ {0}, A ∧R 6= 0.

To see some examples, we only need make some slight modifications to the

examples of cl-monoids.

Example 1.0.11. [22, Example 2.4]
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1. Let R be an integral domain and R
′
= K the quotient field of R. The set of

R-submodules of R
′
= K is a q. f. lattice.

2. With M as in the previous example, let R = ⊕m∈MRm be an M-graded

integral domain and let R
′
= RS where S is the set of nonzero homogeneous

elements of R. The set of graded R-submodules of R
′
= RS is a q. f. lattice.

3. Number 3 from the previous example is also a q. f. lattice.

In [7, Proposition 1.21] it was shown that principality, invertibility, and meet

principality of an element are equivalent in a q. f. lattice (invertibility implies

principality in any cl-monoid by [7, Corollary 1.20]).

Definition 1.0.12. [22, Definition 3] Let L be a q. f. lattice and let S ⊆ I. If

each s ∈ S is L-principal, R ∈ S and ss
′ ∈ S for each s, s

′ ∈ S, then S is said

to be a multiplicative subset for R. If P is a prime element of I, denote

S(P ) = {s ∈ I | s is L-principal and s 6≤ P}.

Definition 1.0.13. [22, Definition 4] Let L be a cl-monoid and let S be a multi-

plicative subset for R. If A ∈ L, the localization of A at S is AS = ∨{A : s |

s ∈ S}. If S is S(P ) for a prime element P of I, we denote AS(P ) by AP .

Localization of lattice elements satisfies properties similar to those of localiza-

tion in rings and modules. See [22].
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Chapter 2

Some Results on Quotient Field

Lattices

In this chapter we will recall important results already proven for quotient

field lattices, such as a version of the Krull Akizuki Theorem and the Mori Na-

gata Theorem. First, we will state results from [7] regarding integral and almost

integral elements in a quotient field lattice and Noetherian lattices, which are sim-

ply lattices that satisfy the ascending chain condition on elements of the lattice.

2.1 Basic results and integral elements

We begin this section by stating some definitions and results from [7] and [22],

including b-dependent and f -dependent elements, the lattice counterparts of being

integral or almost integral over a ring. We will need them to obtain further results

generalizing [23]. First, we prove a few basic lemmas we will use later as well as
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state essential definitions.

Definition 2.1.1. Let A be an element of L. We define the radical of A to be

√
A =

∨
{X ∈ L | X is principal and Xn ≤ A for some positive integer n}. If

A =
√
A, A is a radical element of L.

Definition 2.1.2. Let L be a cl-monoid. An element A ∈ I is maximal in I if

for any B ∈ I such that A ≤ B, it follows that either B = R or B = A.

The following is a generalization of [15, Theorem 87] and the proof given there

has been adapted to obtain the lattice version.

Lemma 2.1.3. Let L be a cl-monoid such that I satisfies the ACC on radical

elements. Then any radical element of I is a finite meet of prime elements of I.

Proof. Assume the assertion fails. Let A be the set of radical elements of I that

are not a finite meet of prime elements of I. Since I satisfies ACC on radical

elements, A contains a maximal element, call it I, which cannot be a prime

element. Let A,B ∈ I be principal such that AB ≤ I and A 6≤ I, B 6≤ I. Define

J =
√

(I ∨ A) and K =
√

(I ∨B). Since I is maximal, J and K can be written

as a finite meet of prime elements of I.

Now, let X ≤ J ∧K be principal. Then Xm ≤ (I ∨ A) and Xn ≤ (I ∨ B) for

positive integers m and n and Xm+n ≤ (I ∨ A)(I ∨ B) ≤ I so that X ∈
√
I = I.

We have just shown that J ∧K ≤ I and it is clear that I ≤ J ∧K, so I = J ∧K,

contradicting our hypothesis.

Now we can obtain the following corollary which generalizes both [15, Theorem

88] and [23, Corollary 1.2] from commutative rings to cl-monoids.
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Corollary 2.1.4. Let L be a cl-monoid such that I satisfies the ACC on radical

elements. For any I ∈ I, there are only a finite number of prime ideals minimal

over I.

Proof. By [7, Lemma 3.5], if A ∈ L such that A ≤ P for a prime element P ∈ L,

then there is a minimal prime element Q ∈ L such that A ≤ Q ≤ P . The

previous lemma can then be restricted to such minimal prime elements. Since a

prime element contains A iff it contains Rad(A), the result follows.

The following lemma generalizes both [15, Theorem 53] and [23, Lemma 2.1]

from integral domains to q. f. lattices.

Lemma 2.1.5. Let L be a q. f. lattice with identity element R and let S be

a multiplicative subset for R. Then R =
∧
{RP | P is a maximal prime of a

principle element in I}.

Proof. It is known that RP is a ring element of L, hence we have R ≤ RP for

each prime element P of I. So R ≤
∧
{RP | P is a maximal prime of a principal

element in I}.

To show that
∧
{RP | P is a maximal prime of a principal element in I} ≤ R,

let U ∈ L be principal with U ≤
∧
{RP | P is a maximal prime of a principal

element in I}. Then, U = (A :I B) = AB−1 for some L-principal elements

A,B ∈ I, i.e UB = A ≤ R [22, Lemma 2.5(7)].

Let I = (B :I A). If I = R, then A ≤ B in I. So BU = A ≤ B, and thus

U ≤ (B :I B) = R. If I < R, then I ≤ P for some maximal element P ∈ I. Then

U ≤ RP implies that SU ≤ R some L-principal S ∈ I with S 6≤ P .
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So (SU)B ≤ B implies SA ≤ B. So S ≤ (B :I A) ≤ P , a contradiction,

meaning the proof is complete.

In order to proceed, we require the definitions of b-dependent and f-dependent

elements, as well as some basic facts and characterizations.

Definition 2.1.6. Let L be a q. f. lattice. An element A ∈ L is b-dependent on

R if and only if there exists a finite join B of L-principal elements and a positive

integer n such that (R ∨ A)n ≤ B and AB ≤ B.

Definition 2.1.7. Let L be a q. f. lattice. The element of L, Rb = ∨{Bi | Bi

is b-dependent on R is called the b-closure of R in L. Brithinee [6, Definition

3.38] defined an element A ∈ L to be integral over R if it is a join of elements

in L that are b-dependent on R. Hence Rb is also called the integral closure of

R in L. I is integrally closed if R = Rb.

Definition 2.1.8. Let L be a q. f. lattice. An element A ∈ L is fractionary if

there is a nonzero D ∈ I such that DA ∈ I.

We have seen the q. f. lattice version of integral closure. The following theorem

introduces the q. f. lattice version of complete integral closure.

Theorem 2.1.9. [7, Lemma 4.6] The following conditions are equivalent:

1. R[A] is fractionary, where R[A] = R ∨ A ∨ A2 ∨ A3 · · · .

2. There exists a non-zero D ∈ I such that DA ≤ D.

3. There exists a compact element F ∈ L such that R[A] ≤ F .

9



Definition 2.1.10. Let L be a q. f. lattice. An element A ∈ L is f-dependent

on R if it satisfies one of the above equivalent conditions.

Definition 2.1.11. Let L be a q. f. lattice. The element of L, Rf = ∨{Bi | Bi is

f-dependent on R} is called the complete integral closure of R in L. We say

that I is completely integrally closed if R = Rf .

The following is an extremely useful characterization of b-dependent elements.

Proposition 2.1.12. [6, Proposition 3.26] Let L be a q. f. lattice with an element

A ∈ L. Then A is b-dependent on R if and only if there exists a compact element

B ∈ L such that B ≥ R and AB ≤ B. Also, if A is b-dependent on R, then A is

f-dependent on R.

Proof. ( ⇒ ) This is clear from the definition of b-dependence. For the converse,

assume there is a compact element B ∈ L with B ≥ R and AB ≤ B. Then

A ≤ AB ≤ B and Ak ≤ B for any positive integer k by mathematical induction,

which implies that R[A] ≤ B. Of course, this means that (R ∨ A)n ≤ B for any

positive integer n and AB ≤ B, hence A is b-dependent on R. The inequality

R[A] ≤ B implies that A is f-dependent on R.

In [23, Lemma 2.2], it is shown that if R is a graded domain and S is the set of

nonzero homogeneous elements of R, then the complete integral closure R∗ of R

in the quotient field of R is a subring of RS. Since the set of graded submodules

of RS is a q. f. lattice L by [22, Example 2.4], this follows from [7, Lemma 4.8]

which states that Rf is a ring element of L.

10



Note that we have just shown that Rb ≤ Rf in the last proposition. In the

case that L is as in Example 1.0.11, the following gives the counterpart for b-

dependence. We include the proof for the convenience of the reader.

Lemma 2.1.13. [6, Proposition 3.33] Rb is a ring element.

Proof. Since R satisfies the definition of b-dependence (take B = R in the def-

inition), we have R ≤ Rb and we need only to show that Rb is subidempotent.

Consider, then, arbitrary elements A and B that are b-dependent on R. Using our

characterization above, there exist C and D compact with C ≥ R, AC ≤ C and

D ≥ R, BD ≤ D. Consider the element E = CD. We have R = R2 ≤ CD = E,

showing that E ≥ R and since products of compact elements are compact in q. f.

lattices, E is compact as well. Since ABE = ABCD = ACBD ≤ CD = E, we

have ABE ≤ E so that AB is b-dependent on R. We have just shown an element

in R2
b is in Rb, so R2

b ≤ Rb and the proof is complete.

The next corollary, proven in [6, 3.36], follows easily. It generalizes [23, Lemma

2.3] to q. f. lattices.

Corollary 2.1.14. If I satisfies ACC, then Rb = Rf .

Proof. It remains to show that Rf ≤ Rb. Assume that I satisfies ACC. Then,

each fractionary element of L is compact. Hence for an element A ∈ L with A f-

dependent on R we have R[A] is fractionary, and hence compact. Since R[A] ≥ R,

AR[A] ≤ R[A] and R[A] is compact, it follows that A is b-dependent on R.

11



2.2 The global transform and Krull lattices

Now we will define more advanced lattice structures, such as a valuation lattice

and Krull lattice. We will introduce the lattice version of a global transform as

well, so that we may list important results in Noetherian lattices, as well as add

a few more to the roster as we continue to work through [23]. We will end the

section by listing the version of the Krull-Akizuki Theorem and the Mori Nagata

Theorem proven in [22].

We will soon begin obtaining q. f. lattice versions of results involving strong

Mori domains. We will need to use results concerning Mori lattices to reach that

point, as well as a lattice version of the v-operation, which we define first.

Definition 2.2.1. Let L be a cl-monoid and F the set of fractionary elements of

L. For an I ∈ F , denote (R : I) by I−1 and (I−1)−1 by Iv. If I = Iv, then I is

called a divisorial element of L or a v-element of L.

A q.f. lattice that satisfies ACC on integral divisorial elements is a Mori

Lattice.

The map v : F → F defined by I 7→ Iv is called the v-operation.

The map t : F → F defined by I 7→ It =
∨
{Jv | J ≤ I and J is finitely

generated} is the t-operation and if I = It, then I is called a t-element of L.

The following lemma contains the result [23, Lemma 2.4].

Lemma 2.2.2. Let L be a q. f. lattice such that I satisfies ACC with multiplicative

identity R and let Rb be the integral closure of R in L. Let A1, A2, · · · , Ar ∈ I(Rb)

be principal in L. Then (R : (R : ∨ri=1Ai)) ≤ (Rb : (Rb : ∨ri=1RbAi)).
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Proof. Recall that since I is Noetherian, each element of I is compact, hence

finitely generated since L is a q. f. lattice. Write (R : (R : ∨ri=1Ai) as ((∨ri=1Ai)
−1)−1 =

(∨ri=1Ai)v.

Since Ai ∈ I(Rb), there is an element B ∈ I such that AiB ≤ B for all

i = 1, . . . , r. So, (∨ri=1Ai)B ≤ B. Applying the v-operation, we have (∨iAi)vBv ≤

((∨iAi)B)v ≤ Bv. So (∨iAi)v ≤ (Bv : Bv). We know Bv ∈ I and hence is finitely

generated so that (Bv : Bv) ≤ Rb. Hence (∨ri=1Ai)v ≤ Rb.

Let X ≤ (Rb : ∨iRbAi) be principal, so that XAi ≤ Rb. If we replace Ai with

XAi in the previous paragraph, we have (∨iXAi)v = X(∨iAi)v ≤ Rb. Therefore

(Rb : ∨iRbAi)(∨iAi)v ≤ Rb. Thus (R : (R : ∨iAi) = (∨Ai)v ≤ (Rb : (Rb : ∨RbAi)),

completing the proof.

We will need the following generalization of the global transform of a ring R.

Definition 2.2.3. If A is a ring element of a q. f. lattice L, the global transform

of A is T (A) = ∨{B ∈ L | B is L-principal and (A : B) is greater than some

product of maximal members of I(A)}.

The following theorems are proved in [22]. We will need them for the next

generalization. First, we define the dimension of a lattice.

Definition 2.2.4. The dimension of a multiplicative lattice L, denoted dim(L),

is the supremum of the lengths of chains of prime elements of L. The height

of a prime element P of L is the supremum of the lengths of all chains of prime

elements ≤ P .
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Theorem 2.2.5. [22, Theorem 7.4] If L is a q. f. lattice and A is a ring element

of L with I(A) Noetherian, then

(1) For each maximal element M of I(A), T (A) : M = T (A);

(2) For each ring element B of L(A) with B ≤ T (A), I(B) is Noetherian; and

(3) If dim(I) = 1, then T (A) = K, where K = ∨L as above.

Corollary 2.2.6. [22, Corollary 7.5] (The Krull-Akizuki Theorem for q.f. lattices)

Let L be a q. f. lattice with I Noetherian. If dim(I) = 1, then for each ring element

A of L, I(A) is Noetherian.

Lemma 2.2.7. [22, Lemma 8.1] Let L be a q. f. lattice with global transform T

= T (R) and assume I is Noetherian. Let B = T ∧Rb. If P is a maximal element

of I(B) and P = [b : a]I(B) for some principal elements a, b ∈ I(B), then P is

an invertible element of L(B).

Lemma 2.2.8. Let P ∈ L be an associated prime of a principal element of R.

Then P is a t-element of L.

Proof. We wish to show that P =
∨
{(J−1)−1 | J ≤ P and J is finitely generated

}. The ≤ portion is clear, since C ≤ (R : (R : C)) = (R : C−1) = (C−1)−1 for all

C ∈ L.

To show the ≥ direction, let C be finitely generated with C ≤
∨
{(J−1)−1 | J ≤

P and J is finitely generated }. So, C ≤ (J−1)−1 for some J ≤ P = (A : B) for

A,B ∈ L with A principal since P is a prime associated with a principal element

of L. Hence C(R : J) ≤ R and C(R : (A : B)) ≤ R. Since BA−1 ≤ (R : (A : B)),

we have C(BA−1) ≤ R, meaning CB ≤ A and C ≤ (A : B), i.e. C ≤ P .
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The following is a generalization of [23, Lemma 2.6].

Lemma 2.2.9. Let L be a q. f. lattice with I Noetherian. Let Rb be the integral

closure of R in L. Then the set of associated prime elements of nonzero principal

elements of I(Rb) is equal to the set of height-one prime elements of I(Rb).

Proof. Obviously any height-one prime element is an associated prime of a prin-

cipal element. (See for example [26, Theorems 4.11 and 4.12].)

For the converse, let Q = (A : C) be an associated prime of a principal element

A ∈ I(Rb), let P = Q∧R, let D = T (RP )∧ (Rb)R\P and let M = Q(Rb)R\P ∧D.

Since Q is an associated prime in I(Rb) of a principal ideal a, Q is a t-element

of I(Rb). Since RP ≤ D ≤ (Rb)R\P and I(D) is Noetherian by Theorem 2.2.5(2),

then M is finitely generated.

We seek to show M is maximal in I(D). We know that Q(Rb)R\P is an

associated prime of a principal element of I((Rb)R\P . So Q(Rb)R\P is a t-element

of I((Rb)R\P ).

By Lemma 2.2.8, M = Q(RP )b∧D is a t-element of I(D) (since Db = (RP )b)).

It is also compact since I(D) is Noetherian, and it is finitely generated since it is

in a q. f. lattice. Because D is integral over RP and PRP is a maximal element

of I(RP ), M is a maximal element of I(D). By Lemma 2.2.7, M is invertible.

Assume that Q is not a minimal prime element of I(Rb) and let Q0 be a prime

element of I(Rb) such that 0 < Q0 < Q. So, Q0(Rb)R\P∧D < Q(Rb)R\P∧D = M .
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We also have Q0(Rb)R\P ∧D < Mn for all n ≥ 1 because M is invertible. Let

X be a nonzero element with X ≤ Q0(Rb)R\P ∧ D. Then we have the infinite

strictly increasing chain XM−1 < XM−2 < · · · < B, contradicting the fact that

I(D) is Noetherian. Therefore Q has height one.

We state some more definitions before we can state the generalization of the

Mori-Nagata Theorem for q. f. lattices.

Definition 2.2.10. [7, Definition 4.1] Let L be a q. f. lattice. If, for every pair

of L-principal elements A, B ∈ I, either A ≤ B or B ≤ A, then I is called a

valuation lattice.

Definition 2.2.11. Let L be a q. f. lattice. If I is a Noetherian valuation lattice

then I is called a discrete valuation lattice.

Definition 2.2.12. Let L be a q.f. lattice. If for a family {Cλ | λ ∈ Λ} of ring

elements of L and each X ∈ L principal, XCλ = Cλ for all but finitely many

λ ∈ Λ, then the family is locally finite.

Definition 2.2.13. [22, Definition 15] Let L be a q.f. lattice and let P denote

the set of prime elements of I of height one. I is a Krull lattice if the following

hold:

1. If P ∈ P , then I(RP ) is a Noetherian valuation lattice.

2. If M ∈ I is L-principal, then there are only finitely many P ∈ P such that

M ≤ P .

3. R =
∧
{RP | P ∈ P}.
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The following result contains the graded Mori-Nagata theorem. See [22, The-

orems 9.1, 9.2 and Corollary 9.3], [23, Theorem 2.10], and [24, Theorem 5.3].

Theorem 2.2.14. [22, Theorem 8.4] (Mori-Nagata Theorem for q.f. lattices) If

L is a q.f. lattice with I Noetherian, then I(Rb) is a Krull Lattice.
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Chapter 3

Nagata’s Theorem on

two-dimensional Noetherian

domains

A well-known result of Nagata states that the integral closure of a two-dimensional

Noetherian domain is Noetherian [25, Theorem 33.12]. In this section, we give a

generalization of this theorem to multiplicative lattics. This result also contains

the generalization on Nagata’s theorem given in [24, Theorem 6.8] for graded

domains.

3.1 Lattice modules and composition series

In order to generalize results about modules over a commutative ring, lattice

modules were defined. This section shall introduce the definition and basic prop-
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erties of lattice modules as well as define a composition series of a lattice module

to generalize results in [24] to lattice modules.

Definition 3.1.1. Let L be a multiplicative lattice. A complete lattice M

equipped with a multiplication L × M → M is a left lattice module over

L (or simply an L-module) if for a, b ∈ L, {aλ | λ ∈ Λ} ⊂ L, A ∈ M,

{Bγ | γ ∈ Γ} ⊂ M:

1. (ab)A = a(bA);

2. (∨λaλ)(∨γBγ) = ∨λ,γaλBγ;

3. RA = A; and

4. 0LA = 0M, where 0M denotes the smallest element of M.

We will denote M to be the greatest element of M (M = ∨M).

We will adopt the following convention. If, for example, M is finitely generated,

we often say that M is a finitely generated L-module.

Many definitions and notations carry over to lattice modules, such as residu-

ation, compact elements, etc.

LetM be an L-module with a, b ∈ L and A,B ∈M. Denote a : b (respectively

A : b, A : B) to be the largest element c ∈ L (respectively C ∈ M, c ∈ L) such

that bc ≤ a (respectively bC ≤ A, cB ≤ A).

Definition 3.1.2. An element A of an L-module M is compact if whenever

A ≤ ∨{Bλ | λ ∈ Λ} for some family {Bλ | λ ∈ Λ} of elements of M, there is a

finite subset Γ ⊆ Λ such that A ≤ ∨{Bλ | λ ∈ Γ}. We say that M is compactly
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generated (or a CG-module) if each element ofM is a join of compact elements

of M.

Definition 3.1.3. With M as above, an element A ∈ M is meet principal

(respectively join principal) if for all b ∈ L and B ∈M, we have

(b ∧ (B : A))A ≥ bA ∧B (respectively (bA ∨B) : A ≤ b ∨ (B : A) ).

The reverse inequalities always hold. If A is meet principal and join principal,

it is principal andM is principally generated if every element ofM is a join

of principal elements of M.

We will now generalize the results of Park and Park [24] concerning the com-

position series of an R-module, M to lattice modules. They used their results

to prove the Krull-Akizuki Theorem for graded Noetherian integral domains [24,

Theorem 4.2]. Rush, Okon, and Wallace have previously generalized the weaker

version of the Krull-Akizuki Theorem [15, Theorem 93] to the case of q.f. lattices

[22, Corollary 7.5], as has already been pointed out in the previous chapter.

Definition 3.1.4. Let M be an L-module. We define M to be irreducible if

A ≤M implies A = 0M or A = M .

Definition 3.1.5. Let M be an L-module. A chain M = M0 > M1 > · · · >

Mr−1 > Mr = (0) of elements ofM is called a composition series of M if each

[Mi+1,Mi] is irreducible. Then r is the length of the composition series, which we

denote as le(M) = r.

The reader should note that notation will be slightly abused for convenience.

When we say that le(M) = r, we mean le([0,M ]) = r, but of course [0,M ] is
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just M. As an example, for A ∈ M, we will write le(A) = r, but we mean

le([0, A]) = r. Likewise, by a composition series of M , we mean a composition

series of [0,M ] =M, and so forth.

The following generalizes [24, Theorem 3.1] from graded modules to lattice

modules.
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Theorem 3.1.6. Let M be a lattice module with a composition series of length

r. Then any composition series of M has length r and any chain of elements of

M can be refined to a composition series.

Proof. We will use mathematical induction on r, the length of the composition

series of M ∈M. The theorem is obviously true for r = 1. So, assume r > 1 and

that the theorem holds for all lattice modules with a composition series of length

less than r.

So, let M = M0 > M1 > · · · > Mr−1 > Mr = (0) be a composition series of

length r. By the induction hypothesis M has no composition series of length less

than r. We must show that any chain of elements of M has length less than or

equal to r.

Let M = N0 > N1 > · · · > Ns = (0) be a distinct chain of length s of elements

of M . We proceed by cases. Assume N1 = M1. Then, M1 has a composition

series M1 > · · · > Mr = (0) of length r − 1. From the induction hypothesis, we

have s− 1 ≤ r − 1 and s ≤ r.

Now, assume N1 < M1. We can form a chain M1 > N1 > N2 > · · · > Ns = (0)

of length s. By the induction hypothesis, we have s ≤ r − 1 so that s ≤ r.

Lastly, assume that N1 6≤ M1. Then, as lattice elements of M, we have M =

M1 ∨ N1. Applying the second isomorphism theorem gives us the isomorphism

[M1,M ] = [M1,M1 ∨N1] ∼= [M1 ∧N1, N1], which is also irreducible.

Note that M1 has a composition series of length r−1. Also, M1∧N1 < M1, so

M1 ∧N1 has a composition series of length ≤ r − 2 by the induction hypothesis.

From our chains, there are no elements ≤M between N1 and M1 ∧N1 so that N1
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has a composition series of length ≤ r − 1. So, we have s− 1 ≤ r − 1 and s ≤ r,

again from the induction hypothesis.
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The following generalizes [24, Lemma 3.2] from graded integral domains to q.

f. lattices.

Lemma 3.1.7. Let L be a q.f. lattice with dim I = 0. Then, for a finitely

generated I-module M and for any A ∈ M, A has a finite length composition

series.

Proof. Since dim I = 0, R is irreducible in L which is a L-module. Let A ∈ M

be finitely generated and write A = X1 ∨ · · · ∨ Xn where each Xi is a principal

element of A. We proceed using induction on n. For n = 1, we have A = X1
∼=

[(0 : X1), R]. However, (0 : X1) = 0 since L is irreducible, meaning A is as well,

so the le(A) = 1. Now assume n > 1 and define B ∈ M as B = X2 ∨ · · · ∨ Xn.

Note that 0 ≤ B ≤ A and that [B,A] ∼= X1, either it is 0 or it is irreducible. Thus

le(A) = le([B,A]) + le(B) ≤ 1 + le(B) <∞.

The following lemma generalizes [24, Lemma 3.3] from graded rings to multi-

plicative lattices.

Lemma 3.1.8. Let L be a multiplicative lattice with I Noetherian such that

dim I = 0. Then, for an L-module M such that M is finitely generated, M

has finite length.

Proof. Note that Min(I) = Spec(I) = Max(I) because dim I = 0. By Corol-

lary 2.1.4 there are a finite number of minimal prime elements of I, call them

P1, · · · , Pn. Note that P1 · · ·Pn ≤ P1 ∧ · · · ∧ Pn = Rad(0), which is finitely gen-

erated since Rad(0) ∈ I. Since this implies (Rad(0))k = 0 for some k, we have
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(P1 · · ·Pn)k = 0. Let A ∈ M be finitely generated and consider the following

chain of elements of M:

M ≥ P1M ≥ P 2
1M ≥ · · · ≥ P k

1 M ≥ P k
1 P2M ≥ P k

1 P
2
2M ≥

· · · ≥ P k
1 P

k
2 M ≥ P k

1 P
k
2 P3M ≥ · · · ≥ P k

1 P
k
2 · · ·P k

nM = 0.

Now let B and PiB be any two consecutive elements in this chain. Since each

Pi is finitely generated and M is finitely generated, [PiB,B] is a finitely generated

element of M′
, where M′

is a I/Pi-module. Since I/Pi is a q.f. lattice with

dim(I/Pi) = 0, le([PiB,B]) ≤ ∞ from the previous lemma. Since le(M) is the

sum of the lengths of all these chains, which have finite length, le(M) is finite

also.

Park and Park proved a generalization of the Principal Ideal Theorem for

the graded Noetherian case [24, Theorem 3.5]. An even more general theorem

had already been proven by R.P. Dilworth, however [8, Theorem 6.4]. We state it

here; the reader may refer to the source for the proof, which resembles Kaplansky’s

proof of the Principal Ideal Theorem but makes use of congruence classes of prime

elements of a Noether lattice. For reference, we also state the definition of an r-

lattice from [2], which is a generalization of a Noether lattice.

Definition 3.1.9. A multiplicative lattice L is an r-lattice if it satisfies the

following:

1. L is modular

2. L is principally generated

25



3. L is compactly generated

4. R is compact

If, in addition, L satisfies the ascending chain condition, L is a Noether lattice.

Theorem 3.1.10 (Principal Element Theorem). Let L be a Noether lattice and

let M ∈ L be principal. If P ∈ L is minimal among the prime elements of L with

M ≤ P , then ht(P ) ≤ 1.

We state a few more definitions in order to proceed. For the rest of this

chapter, L represents a multiplicative lattice unless otherwise stated.

Definition 3.1.11. Let M be an L-module with maximal element M . Then M

(or M) is torsion-free if (0 :M X) = 0 for every non-zero X ∈ L.

Definition 3.1.12. LetM be a lattice module over a multiplicative lattice L and

let M ∈M be torsion-free. We define the rank of M to be the cardinality of any

subset of principal elements Ai ≤M ofM that is maximally linearly independent

over I. We assume that any two such subsets have the same cardinality (examples

where this holds include the set of R-submodules of an R-module or if R and M

are graded, the set of graded submodules of M).

The following is a lattice module version of [20, Lemma, p. 84] and [24, Lemma

4.1].

Lemma 3.1.13. Let L be a multiplicative lattice with I Noetherian and dim I = 1.

Let M be an L-module such that M is torsion-free and has finite rank r. Then

for a principal element A ∈ L we have le([AM,M ]) ≤ r · le([A,R]).
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Proof. First we will prove the case when M is finitely generated. Select principal

elements X1, · · · , Xn ∈ M for i − 1, .., n with each Xi linearly independent over

I. Let B = X1 ∨ · · · ∨Xn. For any principal element X ≤M , there is a principal

element D ∈ I such that DX ≤ B. Let C = M/B, which is a finitely generated

element ofM with DC = 0. We know that I/D is Noetherian with dim I/D = 0

and that C is a finitely generated element of the lattice module over I/D. By

Lemma 3.1.8, le(C) <∞. Let A ∈ I be principal and consider the exact sequence

of homomorphisms of the following L-modules:

[AnB,B]→ [AnM,M ]→ [AnC,C].

From this we know that le([AnM,M ]) ≤ le([AnB,B])+le([AnC,C]) ≤ le([AnB,B])+

le(C) for all n > 0.

Since B and M are both torsion-free elements of M, we have [Ai+1E,AiE] ∼=

[AE,E] as L-modules, likewise [Ai+1M,AiM ] ∼= [AM,M ]. Using this fact with

the above inequality, it follows that n · le([AM,M ]) ≤ n · le([AB,B]) + le(C) for

all n > 0. Once again invoking Lemma 3.1.8 we know that le([AM,M ]) and

le([AB,B]) are finite and this combined with the previous inequality implies that

le([AM,M ]) ≤ le([AB,B]).

Recall that B = X1 ∨ · · · ∨Xr with X1, · · · , Xr principal elements of M that

are linearly independent over I, which gives us le([AB,B]) = r · le([AR,R]) =

r · le([A,R]), implying that le([AM,M ]) ≤ r · le([A,R]). The proof is complete for

M finitely generated.

For the case when M is not finitely generated, consider the L-submodule
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[AM,M ] and let Y
′

1 , · · · , Y
′
s be principal elements of [AM,M ]. Let N = Y

′
1 ∨

· · · ∨ Y ′
s be a finitely generated element of [AM,M ]. For each Y

′
i , select a an

inverse image Yi ∈ M and define M1 = Y1 ∨ · · · ∨ Yn. Since we know that

N ∼= [AM,AM ∨M1] ∼= [AM ∧M1,M1] as elements of M, it follows that

le(N) = le([AM ∧M1,M1]) ≤ le([AM1,M1]) ≤ r
′ · le([A,R]) ≤ r · le([A,R])

where r
′

is the rank of M1. Note that this inequality depends on M1, not N , so

that le([AM,M ]) ≤ r · le([A,R]) as desired.

3.2 Lattice modules and the ascending chain con-

dition

This section contains many results concerning Noetherian lattice modules as

well as lattice modules over Noetherian lattices. These results will be instrumental

in obtaining the Nagata Theorem for quotient field lattices.

The following lemma generalizes [24, Lemma 6.1] from graded modules to

lattice modules.

Lemma 3.2.1. Let M be an L-module such that M is finitely generated. If I is

Noetherian, then M is Noetherian.

Proof. We proceed by induction on n, the number of generators of M . Obviously,

the assertion is true for n = 0, so let M = X1 ∨ · · · ∨ Xn where each Xi is

a principal element of M. Let M
′

= X2 ∨ · · · ∨ Xn. Note that [0M,M
′
] is

Noetherian by the induction hypothesis. Let N ∈M with N ≤M . We will show
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N is finitely generated. Let I be the set of all principal elements of I such that

I = (N∨M ′
:L X1). Since I ∈ I which is Noetherian, I is finitely generated, so let

I = A1 ∨ · · · ∨ Am. For each i = 1, · · · ,m, let Yi ≤ N such that Yi ∈M
′ ∨ AiX1.

If N
′

= Y1 ∨ · · · ∨ Ym ≤ N , we have N = N
′ ∨ (N ∧ M ′

). Since [0M,M
′
] is

Noetherian and N ∧M ′ ≤ M
′
, N ∧M ′

is finitely generated so that N is also

finitely generated, which implies that M is Noetherian.

The following lemma is a version of [24, Lemma 6.2] for q. f. lattices.

Lemma 3.2.2. Let L be a q. f. lattice such that A ∈ L is a ring element with A

integral over R. Then dim I = dim I(A).

Proof. Note that lattice versions of the “going up” and “incomparable” conditions

were proven in [6, Proposition 3.5.1 and Theorem 3.59] and we will use them in

this proof. For a chain P1 < P2 < · · · < Pn of prime elements of I, there exists a

chain of prime elements Q1 < Q2 < · · · < Qn of I(A) such that Qi∧R = Pi by the

GU condition. So, dim I ≤ dim I(A). For the converse, let Q1 < Q2 < · · · < Qn

be a chain of distinct prime elements of I(A). By the INC condition, we can

construct a chain Q1 ∧ R < Q2 ∧ R < · · · < Qn ∧ R of distinct prime elements of

R, each an element of I. Hence dim I(A) ≤ dim I.

The following lemma generalizes [24, Lemma 6.3] from graded rings to multi-

plicative lattices.

Lemma 3.2.3. Let L be a multiplicative lattice and let I1, · · · , In be elements

of I such that
∧n
i=1 Ii = 0 and each I/Ii = [Ii, R] is Noetherian. Then, I is

Noetherian.
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Proof. It is sufficient to prove the lemma for n = 2. Since (I1 ∨ I2) ∈ I/I2, a

Noetherian multiplicative lattice, there are a finite number of principal elements,

A1, · · ·Ar with each A1 ≤ I1 such that I1∨I2 = A1∨· · ·∨Ar∨I2. Since I1∧I2 = 0,

I1 = A1 ∨ · · · ∨An and I1 is finitely generated. A similar argument shows that I2

is finitely generated. Let P be a prime element of I. We have I1 ∧ I2 = 0 ≤ P

and so I1 ≤ P or I2 ≤ P . Assume that I1 ≤ P . We have I1 and P ∨ I1 (as an

element of I/I1) are finitely generated, so P is finitely generated as well and I is

Noetherian.

Before we continue, we need the following definition.

Definition 3.2.4. Let M be an L-module with maximal element M . Then M

(or M) is faithful if (0 :L M) = 0.

The following generalizes [24, Lemma 6.4] from graded modules to lattice mod-

ules.

Lemma 3.2.5. Let L be a multiplicative lattice and M an L-module. If M ∈M

is faithful and M is Noetherian, then I is Noetherian.

Proof. By assumption, M is finitely generated, so write M = X1 ∨ · · · ∨ Xn for

principal elements Xi ≤ M for i = 1, · · · , n. Hence each [0, Xi] is Noetherian

and since Xi
∼= I/(0 :L Xi) = [(0 :L Xi), R] as elements of M, [(0 :L Xi), R] is

Noetherian. We have
∧n
i=1(0 :L Xi) = (0 :L M) = 0 from the hypothesis that M

is faithful. The result now follows from the previous lemma.

The following lemma extends [24, Lemma 6.5] to lattice modules.
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Lemma 3.2.6. Let M be an L-module such that M is finitely generated and

faithful over I. If the subset of elements of M of the form IM for I ∈ I satisfies

ACC, then I is Noetherian.

Proof. If we can show that M is Noetherian then we obtain the result from the

previous lemma. Suppose to the contrary that M is not Noetherian. Let S be

the set of elements of M of the form IM for I ∈ I such that [IM,M ] is not

Noetherian. We know that S is not empty since it contains 0M and that it must

contain a maximal element since it satisfies ACC. We will simply call the maximal

element IM . If we pass from M to [IM,M ] and from I to [(0 : [IM,M ]), we can

further assume that even thoughM is not Noetherian, [IM,M ] is Noetherian for

any I ∈ I.

Now we define T to be the set of elements N of M such that any element of

[N,M ] is faithful over I. Again, 0M ∈ T . Give T the partial order of M. Let

{Nλ}λ∈Λ be a chain in T such that N
′

=
∨
λ∈ΛNλ. We will show that [N

′
,M ] is

faithful over I implying that N
′ ∈ T . Suppose it is not, which means there is a

nonzero principal element A ∈ I such that AM ≤ N
′
. Since we assumed M is

finitely generated, it follows that AM ≤ Nλ for some λ ∈ Λ, but this contradicts

[Nλ,M ] being faithful over I.

Using Zorn’s Lemma, let N0 be the maximal element of T so that [N0,M ] is

faithful. If it is Noetherian, it follows from Lemma 3.2.5 that I is Noetherian

and then M is Noetherian from Lemma 3.2.1, so assume that [N0,M ] is not

Noetherian.

Now, if we consider [N0,M ] instead ofM, we can further assume that [N,M ]
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is not faithful for any N ∈ M, i.e. (0 :I [N,M ]) 6= 0. Hence we have a principal

B ∈ I with BM ≤ N . Also, since [BM,M ] is Noetherian, every element of

[BM,N ] is finitely generated. Since M is finitely generated, so is AM , hence N

as well.

The next theorem generalizes the Eakin-Nagata Theorem and [24, Lemma 6.6]

to multiplicative lattices.

Theorem 3.2.7. (Eakin-Nagata Theorem for Multiplicative Lattices) Let L be a

q.f. lattice and assume I(A) is Noetherian for some ring element A ∈ L such that

A is finite over I. Then I is also Noetherian.

Proof. Since A is a ring element of L, it is a faithful I-module. Therefore the

result follows by Lemma 3.2.6.

We use the following result which generalizes a well-known result of I. S. Cohen.

Lemma 3.2.8. [2, Theorem 2.5] If I is an integral multiplicative lattice and

I ∈ I is maximal among elements A < R which are not finitely generated, then I

is prime.

The following definition is the lattice version of a primary ideal.

Definition 3.2.9. [7, Definition 3.8] Let L be a c.l. monoid. An element Q ∈ I

is primary if for every A and B in I, AB ≤ Q implies that A ≤ Q or Bk ≤ Q

for some positive integer k. If Q is primary, then let P (Q) = ∨{C ∈ I | Ck ≤ Q},

which is the unique minimal prime greater than or equal to Q and is called the

prime associated with Q. We then say that Q is P (Q)-primary.
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The next theorem generalizes the Approximation Theorem for Krull rings [20,

Theorem 12.6] which is needed to generalize the Nagata Theorem.

Theorem 3.2.10. [20, Theorem 12.6] Let L be a q. f. lattice such that I is a

Krull Lattice. Let P be the set of prime elements of I of height one. For any

P1, ..., Pr ∈ P and n1, ..., nr ∈ Z, there exists an X ∈ L such that:

1. vi(X) = ni for 1 ≤ i ≤ r

2. vP (X) ≥ 0 for all P ∈ P \ {P1, ..., Pr}

where vi and vP are the additive valuations of L corresponding to Pi and P .

Proof. The proof is readily adapted from Matsumura’s proof. Let Y1 ∈ I be such

that Y1 ≤ P1 but Y2 6∈ P
(2)
1 ∨ P2 ∨ · · · ∨ Pr. Then, vi(Y1) = δ1i for 1 ≤ i ≤ r.

Likewise, let principal elements Y2, · · · , Yr ∈ I be such that vi(Yj) = δij. Now, set

Y =
r∏
i=1

Y ei
i

and let P
′
1, · · · , P

′
s be all the prime elements of P\{P1, · · · , Pr} such that vp(Y ) <

0. For each j = 1, · · · , s choose an element Tj ≤ P
′
j with Tj 6≤ P1 ∨ · · · ∨ Pr. If k

is sufficiently large, the element X = Y (T1 · · ·Ts)k is the element we seek.

The next theorem generalizes a classical result [20, Theorem 12.7], and [24,

Lemma 6.7] to multiplicative lattices.

Theorem 3.2.11. Let L be a q. f. lattice such that I is a Krull lattice and let

P denote the set of prime elements of I of height one. If I/P is Noetherian for

each P ∈ P, then I is Noetherian.
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Proof. By 3.2.8, it suffices to show that each nonzero prime element Q is finitely

generated. Let a ≤ Q be a nonzero principal element of I. By [7, Lemma 4.22.2],

a = P
(r1)
1 ∩ · · · ∩ P (rn)

n for some P1, . . . , Pn ∈ P , where the Pi and ri are uniquely

determined up to order. If each R/P
(ri)
i is Noetherian by Lemma 3.2.3, so that

Q/aR is is finitely generated. But then Q is finitely generated. Therefore it

suffices to show that R/P (n) is Noetherian for each P ∈ P and positive integer n.

Choose a principal element a ≤ P with a 6≤ P (2). Then a= P∩P (n2)
2 ∩· · ·∩P (nr)

r

for distinct Pi ∈ P and n2, . . . , nr ∈ IN. For i= 2, . . . , n, choose a principal element

bi ≤ Pi with bi 6≤ P for i = 2, . . . , r.

If a = P , let x = a. Otherwise let x = ab−n2
2 · · · b−nr

r . Then x ∈ RS , where S

is the set of nonzero principal elements of R. By [7, Lemma 4.25.2], RQ ∈ L is

a Noetherian valuation ring element for each Q ∈ P . Let vQ be the normalized

additive valuation determined by RQ.

Since bi ≤ Pi with bi 6≤ P , then vP (bi) = 0 for i = 2, . . . , r. Thus since vP (a)

= 1, then vP (x) = 1.

If Q = Pi, i ∈ {2, . . . , r}, then vPi
(x) = vPi

(a)−vPi
(bn2

2 · · · bnr
r ) ≤ 0 since vPi

(a)

= ni ≤ vPi
(bni
i ) and vPi

(b
nj

j ) ≥ 0 if j ∈ {2, . . . , r} \ {i}. If Q ∈ P \{P, P2, . . . , Pr},

then vQ(x) = vQ(a)− vQ(bn2
2 · · · bnr

r ) ≤ 0 since vQ(a) = 0 in this case. Thus vP (x)

= 1 and vQ(x) ≤ 0 for all Q ∈ P \{P}. Let A = R[x] = R∨x∨x2 ∨ · · · . Claim:

A/xA ∼= R/P .

Since vP (x) = 1, xA ≤ xRP = PRP and thus (xA ∧ R) ≤ (PRP ∧ R) = P .

For the opposite inclusion, let y ≤ P be a principal element. Then vP (y) ≥ vP (x)

= 1. So vP (yx−1) = vP (y) − vP (x) ≥ 0. If Q ∈ P \ {P}, then vQ(x) = 0. So
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again vQ(yx−1) = vQ(y)− vQ(x) ≥ 0. Thus yx−1 ≤ ∧{RQ | Q ∈ P} = R. So for

any principal y ≤ P , we have y ≤ xR ≤ xA. Thus P ≤ xA ∧ R. Therefore P =

xA ∧ R. Further since A = R + xA, then A/xA = (R + xA)/xA ∼= R/(xA ∧ R)

= R/P .

Now since any prime element containing xnA contains xA, it follows by Cohen’s

theorem that A/xnA is Noetherian for any n ≥ 1. Since A/xnA ∼= [xnA,A] is a

lattice module over I with (xnA ∧ R)) ≤ (0 :I A/x
nA), then A/xnA is a lattice

module over R/(xnA∧A) = [xnA∧R,R]. Further since A/xnA is generated over

I by 1, x, . . . , xn−1, it is also generated over R/(xnA ∧A) by 1, x, . . . , xn−1. Thus

it follows from Eakin’s theorem that that R/(xnA ∧ R) is Noetherian. Further

since xnA ∧R ≤ xnRP ∧R = P nRP ∧R = P (n), then R/P (n) is Noetherian.
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At last, we are ready to prove the Nagata Theorem for q. f. lattices.

Theorem 3.2.12. (Nagata Theorem for q. f. Lattices) Let L be a q.f. lattice

such that I is Noetherian and dim I ≤ 2. Then I(Rb) is also Noetherian with

dim I(Rb) ≤ 2.

Proof. By the Krull-Akizuki Theorem for q. f. lattices, Lemma 2.1.13, and Corol-

lary 2.1.14, the theorem holds if dim I ≤ 1 and so we may assume that dim I = 2.

Hence I(Rb) is a Krull lattice and dim I(Rb) = 2 by the Mori Nagata Theorem for

q. f. lattices and Lemma 3.2.2. According to the previous theorem, it is sufficient

to show that I(Rb)/P
′ ∼= [P

′
, Rb] is Noetherian for every P

′ ∈ P ′
, where P ′

is the

set of all prime elements of I(Rb) of height one.

We know that [P ′, Rb] is trivially Noetherian if P
′

is a maximal element of

I(Rb) because [P
′
, Rb] would have no nontrivial elements. So, we assume that

P
′

is not a maximal element of I(Rb). Let P = P
′ ∧ R, which is not a maximal

element of I because Rb is integral over R. We know that the height of P = 1

because dim(I) = 2, and each prime element of I(Rb) lying over P has height 1.

Since I(Rb) is a Krull lattice, there are only a finite number of prime elements

of I(Rb) lying over P ; call them P
′
, P

′
2, · · · , P

′
r . Now choose a principal element

Xi ≤ P
′ \ P ′

i for each i = 2, · · · , r. Note that I(R[X2, · · · , Xr]) = I(R ∨ X2 ∨

X2
2 ∨· · ·∨Xi∨X2

i ∨· · ·∨Xr∨X2
r ∨· · · ) is a sublattice of I(Rb) which is finite over

I, I(R[X2, · · · , Xr]) is Noetherian with dimension 2 by Lemma 3.2.1 and Lemma

3.2.2.

By using I(R[X2, · · · , Xr]) instead of I, it is safe to assume that P
′

is the

unique prime element of I(Rb) lying over P .
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Since I(RP ) is Noetherian with dimension 1, The Krull-Akizuki Theorem

for q.f. lattices states that I((RP )b)/A(RP )b = I((Rb)P )/A(Rb)P is a finite

I(RP )-module for every nonzero principal element A ∈ I(RP ). More specifically,

I((RP )b)/P
′
(Rb)P is a finite I(RP )/PRP -module, and since I/P is Noetherian

with dimension 1, I(Rb)/P
′

is Noetherian as well by the Krull-Akizuki Theorem

for q.f. lattices and we are done.
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Chapter 4

Strong Mori lattices and lattice

modules

In this section we will generalize results in [27] and [28] concerning strong Mori

domains and results in [23] concerning graded strong Mori domains to lattices as

well as obtain results concerning lattice modules. Of particular interest will be w-

elements of lattices and lattice modules, which are the lattice versions of w-ideals

and w-submodules.

4.1 The w-operation on a q. f. lattice

To give lattice versions of some of these results, we first define the lattice

version of a star operation and the w-operation. Star operations were first defined

and studied by Krull in [16] and are now ubiquitous in commutative ideal theory.

It is interesting that star operations also furnish a good class of models for the
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abstract ideal theory that he first advocated in [17] as we shall see.

The following definition is a lattice version of a Glaz-Vasconcelos ideal.
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Definition 4.1.1. Let L be a q. f. lattice and let J ∈ I. We will call J a Glaz-

Vasconcelos element (denoted J ∈ GV(L)) if J is finitely generated and Jv = R

(so that J−1 = R).

It is well-known that a product of Glaz-Vasconcelos ideals is also a Glaz-

Vasconcelos ideal [27, Lemma 1.1]. This is also true for Glaz-Vasconcelos elements,

as we quickly prove.

Lemma 4.1.2. If J1, J2 ∈ GV(L), then J1J2 ∈ GV(L).

Proof. It is obvious that J1J2 is finitely generated and we need only show that

(J1J2)−1 ≤ R. Consider a principal element X ∈ L such that X ≤ (J1J2)−1. So

X(J1J2) ≤ R, implying that XJ1 ≤ J−1
2 = R. Hence X ≤ J−1

1 = R.

Now we will introduce the lattice version of a star-operation.

Definition 4.1.3. Let L be a q. f. lattice and let F denote the set of nonzero

fractional elements of L. A map ∗ : F → F is a star operation if for all A,B ∈ F

and all nonzero principal elements a ∈ L, the following hold:

1. a∗ = a and (aA)∗ = aA∗,

2. A ≤ A∗ and A ≤ B ⇒ A∗ ≤ B∗, and

3. (A∗)∗ = A∗.

The v-operation mentioned in Definition 2.2.1 is a classic example of a star

operation in ring theory.

40



Definition 4.1.4. Let L be a q. f. lattice and define a map w : F → F by I 7→ Iw

where Iw =
∨
{X ∈ L | X is L-principal and JX ≤ I for some J ∈ GV(L)}. This

map is called the w-operation. If I = Iw, I is called a w-element of L.

The following lemma generalizes [23, Lemma 3.3].

Lemma 4.1.5. Let L be a q. f. lattice. If I ∈ L is fractionary, then Iw is also

fractionary.

Proof. Note that J ∈ GV(L) implies J is integral since J ≤ Jv ≤ R. So, since

I is fractionary, there is a D ∈ I \ {0} such that DI ∈ I. Hence if A ≤ Iw,

that is, JA ≤ I for some J ∈ GV(L), then we have DJA ≤ DI ≤ R ∈ I.

So DA ≤ (DI)w ≤ Rw = R for each A ∈ Iw. So DIw ≤ R, and thus Iw is

fractionary.

The w-operation is one of the most important examples of a star operation on

fractional ideals of an integral domain. We will show it also gives a star operation

on fractional elements of a q. f. lattice.

Proposition 4.1.6. The map w defined above is a star operation on F .

Proof. First, note that for any I ∈ F , I ≤ Iw by letting J = R. Now let a be a

nonzero principal element of L and let X ≤ aw. Then there is a J ∈ GV(L) such

that JX ≤ a. Since a is principal, a is invertible by [7, Proposition 1.21] or [22,

Proposition 2.3]. So JXa−1 ≤ R, and thus Xa−1 ∈ J−1 = R. So X ≤ aR = a.

Hence aw = a.

To show that (aA)w = aAw, first we show that (aA)w ≤ aAw. Suppose X ∈

L is principal and X ≤ (aA)w. Then for some J ∈ GV(L), JX ≤ aA. So
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J(Xa−1) ≤ A. So (Xa−1) ≤ Aw and thus X ≤ aAw. So (aA)w ≤ aAw. The

opposite inequality is similar. Thus property (1) of star-operations holds.

For property (2), assume A ≤ B for A, B ∈ F and that X ≤ Aw. Then there

is a J ∈ GV(L) such that JX ≤ A ≤ B, implying that X ≤ Bw. So Aw ≤ Bw.

Finally, let X ≤ (Aw)w for A ∈ F . Then there is a J ∈ GV(L) such that

JX ≤ Aw and there is a J1 ∈ GV(L) such that J1JX ≤ A. Since J1J ∈ GV(L)

it follows that X ≤ Aw.

With this, we may define a strong Mori lattice, the lattice version of a strong

Mori domain.

Definition 4.1.7. A q.f. lattice L is a strong Mori lattice if it has ACC on

integral w-elements.

4.2 The r-lattice Lw

It is known that the set Lw(R) of w-ideals of a commutative ring R is an

r-lattice [3, Theorem 3.5], and thus Lw(R) is a Noether lattice if and only if R is

a strong Mori domain. Hence many of the known results on strong Mori domains

follow from results on Noether lattices. For example, if L is a Noether lattice,

then the principal element theorem of Krull and many other results on Noetherian

commutative rings carry over to Lw(R) [8].

In this subsection, we will show that if L is a strong Mori lattice, then the

sublattice Lw of w-elements of L is a Noether lattice. Thus we will automatically

have the Principal Element Theorem for the sublattice Lw of w-elements of L and
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many other results from Noetherain commutative ring theory will carry over to

Lw. To see this we follow the approach used in [3, Section 3].

Theorem 4.2.1. (cf. [3, Theorem 3.1].) Let ∗ : F → F be a star operation on

the

q. f. lattice L with I modular. and let L∗ denote the set of integral ∗-elements

of F together with {0}. We partial order L∗ by the partial order on L and define

the meet of a family {Aλ | λ ∈ Λ} to be the meet in L and define the join of the

family {Aλ | λ ∈ Λ} to be (∨{Aλ | λ ∈ Λ})∗. We define multiplication on L∗ by

A ◦B = (AB)∗. Then L∗ is a multiplicative lattice.
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Proof. It is immediate that L∗ is a complete lattice. To see that multiplication

distributes over joins, observe that A ◦ (∨{Bλ | λ ∈ Λ})∗ = (A(∨{Bλ | λ ∈ Λ})∗)∗

= (A(∨{Bλ | λ ∈ Λ}))∗ = (∨{ABλ | λ ∈ Λ})∗.

Before we continue, we must define a useful property of a star operation.

Definition 4.2.2. A star operation ∗ : F → F , where F is the set of fractional

elements of a q.f. lattice L is said to distribute over (finite) meets if (A∧B)∗ =

A∗ ∧B∗ for all A,B ∈ F .

The following generalizes [27, Proposition 2.5] to q. f. lattices. The proof works

in the lattice module case as well and we will investigate w-elements of a lattice

module soon enough.

Proposition 4.2.3. Let L be a q. f. lattice such that A,B ∈ L. Then (A∧B)w =

Aw ∧Bw, i.e. w distributes over (finite) meets.

Proof. It is clear that (A ∧ B)w ≤ Aw ∧ Bw. Let X ∈ Aw ∧ Bw be principal.

Then there exist J1, J2 ∈ GV(L) such that J1X ≤ A and J2X ≤ B. Hence

J1J2X ≤ A ∧B. We know that J1J2 ∈ GV(L) and so X ∈ (A ∧B)w.

Now we are ready to continue working with Lw. We proceed to prove [3,

Theorem 3.2] for our case.

Theorem 4.2.4. (cf. [3, Theorem 3.2].) If ∗ : F → F be a star operation on F

that distributes over (finite) meets. Then L∗ is a modular lattice.

Proof. Let A, B and C ∈ L∗ and suppose A ≤ B. Recall that the join of A

and C in L∗ is defined as (A ∨ C)∗. We have B ∧ (A ∨ C)∗ = B∗ ∧ (A ∨ C)∗ =

(B ∧ (A ∨ C))∗ = (A ∨ (B ∧ C))∗, which is the join of A and (B ∧ C) in L∗.
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The following generalizes [3, Theorem 3.3] to Lw.

Theorem 4.2.5. (cf. [3, Theorem 3.3].) If ∗ : F → F be a star operation on F

that distributes over (finite) meets. Then each principal A ∈ L is principal in L∗.

Thus L∗ is principally generated.

Proof. Since L∗ is modular, it suffices by [2, Proposition 1.1] to show that each

principal element A ∈ L is weak principal in L∗. To see that A is weak meet

principal, it suffices by [4, Lemma 1(a)] to show that if B ∈ L∗ and B ≤ A,

then B = AQ for some Q ∈ Lw. But if we take Q = (B : A), then (B : A) =

BA−1 ∧R ∈ L∗.

To show each each principal element A ∈ L is weak join principal in L∗, it

suffices by [4, Lemma 1(d)] to show that BA = CA implies that B ≤ C ∨ (0 : A).

But this is clear since L is a q. f. lattice, and thus has no nonzero zero-divisors

and each principal A ∈ L is invertible.

An important characteristic of a star operation is being of finite character,

which we proceed to define for lattices.

Definition 4.2.6. Let L be a q. f. lattice and ∗ : F → F be a star operation on

F . We say that ∗ has finite character if for every A ∈ F , A∗ =
∨
{B∗ | B ∈ F

is finitely generated and B ≤ A}.

We will show that w has finite character for elements in F , which is a special

case of the lattice version of [3, Theorem 2.7].

Theorem 4.2.7. Let L be a q. f. lattice. Then w has finite character on F .
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Proof. Let I ∈ F and suppose there is a principal element X ≤ Iw. Then there

is a J ∈ GV(L) such that JX ≤ I. Write XJ = (XJ1 ∨ · · · ∨ XJn) since

J is finitely generated, thus so is XJ . Now X ≤ (XJ1 ∨ · · · ∨ XJn)w so that

X ≤
∨
{Bw | B ∈ F is finitely generated and B ≤ I. The reverse containment

always holds and so w has finite character.

We are now fully equipped to complete our objective for Lw. We proceed to

obtain part of [3, Theorem 3.4] for Lw.

Theorem 4.2.8. The following hold for Lw:

1. For each nonzero, principal X ∈ L, X is compact in Lw.

2. Lw is compactly generated with R compact.

Proof. Suppose that there is a principal X ∈ L such that X ≤
∨
A for some

subset A = {Aλ}λ∈Λ of Lw. Then X ≤ (
∨
Aλ)w ≤

∨
{Bw | B ∈ F is finitely

generated and B ≤
∨
Aλ} since w has finite character. This means that X ≤ Bw

for some B ∈ F . Since B is finitely generated, we may write B ≤ Aλ1 ∨ · · · ∨Aλn

for some λ1, · · · , λn ∈ Λ. Hence X ≤ Bw ≤ Aλ1 ∨ · · · ∨Aλn so that X is compact.

Finally, since Lw is principally generated and R is principal, the second portion

follows.

The next theorem follows from our previous results. See [3, Theorem 3.5 and

Theorem 3.6].

Theorem 4.2.9. Lw is an r-lattice. Further, L is strong Mori if and only if Lw

is a Noether lattice.
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Proof. Since by Lemma 4.2.7, w has finite character, then by Theorem 4.2.8, each

principal element of Lw is compact in Lw. Thus Lw is an r-lattice.

4.3 Strong Mori lattices

Now that we have sufficiently established the w-elements we are ready to begin

our investigation of strong Mori lattices.

Let wMax(I) = {M ∈ I |M is a maximal proper w-element of I}.

The following lemma generalizes [23, Theorem 3.5].

Lemma 4.3.1. Let L be a q. f. lattice. Then R =
∧
{RP | P ∈ wMax(I)} and

Iw =
∧
{IRP | P ∈ wMax(I)} for each I ∈ L.

Proof. According to Lemma 2.1.5, R =
∧
{RP | P is a maximal prime of a

principal element in I}. Again, we know that any P that is an associated prime

of a principal element of L is a t-prime element, hence a w-element as well. Also,

P ≤ M for some M ∈ wMax(I), which means that RM ≤ RP , proving the first

part of the lemma.

To prove the second part, let I ∈ I and let X ≤ Iw be principal. Then

XJ ≤ I for some J ∈ GV(L). Since Jw = R, J 6≤ P for any P ∈ wMax(I) so

that X ≤ IRP for all P ∈ wMax(I).

Conversely, let X ≤
∧
{IRP | P ∈ wMax(I)} be principal. It follows that

(I : X) 6≤ A for any A ∈ wMax(I) so that (I : X)w = R. Hence there exists a

J ∈ GV(L) such that J ≤ (I : X), meaning XJ ≤ I and X ≤ Iw.
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We will need the following definition to proceed. We define finite type for

lattice modules now for later use.

Definition 4.3.2. Let M be an L-module such that A is a w-element. We say

that A is of finite type if A = Bw for some finitely generated element B ≤ A.

If M is of finite type, then M is a finite type lattice module.

The following Theorem generalizes [28, Theorem 1.9] from integral domains to

q.f. lattices.

Theorem 4.3.3. Let L be a q. f. lattice. Then L is a strong Mori lattice if and

only if I(RP ) is Noetherian for all P ∈ wMax(I) and {RP | P ∈ wMax(I)} is

locally finite.

Proof. ( ⇒ ) Let A ∈ I(RP ), P ∈ wMax(I). We know A = IRP for some

nonzero I ∈ I. From the previous lemma, we have IwRP = (
∧
{IRP | P ∈

wMax(I)})RP = IRP . Since L is a strong Mori lattice, there is a finitely generated

J ≤ I such that Iw = Jw. Hence A = IRP = IwRP = JwRP = JRP , which is

finitely generated, so every element of I(RP ) is finitely generated so that I(RP )

is Noetherian.

Claim: Every P ∈ wMax(I) is divisorial. Assume to the contrary so that

P 6= Pv. Then P ≤ Pv and since Pv is also a w-element, P ∈ wMax(I) implies

that Pv = R. Again, L is a strong Mori lattice so that P = Jw for a finitely

generated J ∈ I. Hence we have R = Pv = (Jw)v = Jv, meaning J ∈ GV(L).

Then P = Jw = R, a contradiction.

Let X be a principal element of L and assume that XRP 6= RP for infinitely
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many prime elements P1, P2, · · · ∈ wMax(I), meaning X ≤ P for those primes.

We can construct an increasing chain of v-elements of L: XP−1
1 ≤ X(P1∧P2)−1 ≤

X(P1 ∧P2 ∧P3)−1 ≤ · · · We have that L is a strong Mori lattice and so the chain

must stabilize for some positive integer n, i.e. X(P1 ∧ · · · ∧ Pn)−1 = X(P1 ∧ · · · ∧

Pm)−1 for all m ≥ n. So, P1 ∧ · · · ∧ Pm = (P1 ∧ · · · ∧ Pm)v = (P1 ∧ · · · ∧ Pn)v =

(P1 ∧ · · · ∧ Pn), a contradiction. Hence {RP | P ∈ wMax(I)} is locally finite.

(⇐ ) Let I ∈ I be a nonzero w-ideal and let X ≤ I be nonzero and principal.

Let P1, · · · , Pn be the elements of wMax(I) such that X ≤ Pi for i = 1, · · · , n.

By assumption, I(RPi
) is Noetherian, so IRPi

is finitely generated. Let IRPi
=

{X1, · · · , Xm} with each Xj principal and Xj ≤ I for j = 1, · · · ,m. Now, let

J be the element of I generated by X and the Xj’s. If P ∈ wMax(I), we have

JRP = IRP and hence Jw = Iw = I. So, every w-element is of finite type and L

is a strong Mori lattice.
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The following Theorem generalizes [28, Theorem 3.5] from integral domains to

q. f. lattices.

Theorem 4.3.4. Let L be a strong Mori lattice. Then I(Rf ) is a Krull lattice.

Proof. From the previous lemma, we know that {RP | P ∈ wMax(I)} is locally

finite and each I(RP ) is Noetherian. Thus Rf =
∧
{(RP )f | P ∈ wMax(I)} by

[22, Lemma 6.14] with {(RP )f | P ∈ wMax(I)} locally finite. The Mori Nagata

Theorem for lattices, Theorem 4.3.3, says that each (RP )b is a Krull lattice. But

since each I(RP ) is Noetherian, (RP )b = (RP )f for each P ∈ wMax(R).

By [23, Example 3.8], the above theorem does not hold for rings if Rf is

replaced by Rb.

We state this useful result from [7].

Theorem 4.3.5. [7, Theorem 4.27] Let L be a q. f. lattice. Then I is a Krull

lattice if and only if I is completely integrally closed and L is a Mori lattice.

The following corollary generalizes part of [28, Theorem 2.8] from integral

domains to q. f. lattices.

Corollary 4.3.6. Let L be a q. f. lattice. Then I is a Krull lattice if and only if

I is integrally closed and L is a strong Mori lattice.

Proof. ( ⇒ ) Since I is a Krull lattice, it is completely integrally closed and L is

Mori, i.e. it satisfies the ACC on integral v-elements. Hence we only need show

that every integral w-element is also a v-element. Let I be a w-element of I.
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Claim: (II−1)v = R. It is sufficient to show that (II−1)−1 = R. Obviously,

(II−1)(II−1)−1 ≤ R and II−1 ≤ R. Since I is completely integrally closed,

R = Rf , (II−1)(II−1)−1 ≤ Rf , and II−1 ≤ Rf . Hence from [22, Proposition

4.1] we have DII−1 ≤ D for some nonzero D ∈ I. Since D(II−1)(II−1)−1 ≤

DR = D and D(II−1) ∈ I, we have shown that (II−1)−1 is f -dependent on R,

i.e. (II−1)−1 ≤ Rf = R.

We have shown that II−1 is a v-element of the Krull lattice I so that there

exists a finitely generated element J ∈ I such that J ≤ II−1 and Jv = (II−1)v,

so J ∈ GV(L). Since JIv ≤ (II−1)Iv = I(I−1Iv) ≤ IR = I, Iv ≤ Iw = I.

( ⇐ ) Once we show R is completely integrally closed, we are done. Let I

be integrally closed. Write R =
∧
{RP | P ∈ M}. By Theorem 4.3.3, I(RP ) is

Noetherian for each P ∈M and hence (RP )f = (RP )b = RP with the last equality

following from the fact that I is integrally closed. Hence each RP is completely

integrally closed, as well as their meet.

4.4 w-elements of a lattice module

We now return to our discussion of lattice modules. The main goal of this

portion is to generalize results from [27] and [28].

For convenience, we restate the definition of a w-element H where H is an

element of a lattice moduleM rather than an element of a q. f. lattice. As above,

S denotes the multiplicative subset of nonzero principal elements of L and M is

the largest element of M.
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Definition 4.4.1. LetM be an L-module and let H be a torsion-free element of

M. Let Hw =
∨
{X ≤MS | X is L-principal and JX ≤ H for some J ∈ GV(L)}.

If H = Hw, H is a w-element of M. If M is a w-element, we say that M is a

w-L-module.
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Note that it is easy to see from the definition that for a family {Aλ | λ ∈ Λ} of

w-elements ofM,
∧
λ∈ΛAλ is also a w-element ofM. It follows as in Proposition

4.2.3 that the w-operation distributes over finite meets of elements in M.

In [27], Hw was defined as the w-envelope of H. The next theorem generalizes

[27, Theorem 2.1] to lattice modules.

Theorem 4.4.2. Let M be a torsion-free L-module. Then

1. Mw is a w-element of M

2. If F is a w-element of M with M ≤ F , then Mw ≤ F .

Proof. (1) Assume that JX ≤Mw for some J ∈ GV(L) and principal X ≤ (Mw)S .

Write J = I1 ∨ · · · ∨ In for principal elements I1, · · · , In ∈ I and so IiX ≤ Mw

for i = 1, · · · , n. Hence there exist J1, · · · , Jn ∈ GV(L) such that JiIiX ≤ M

for i = 1, · · · , n. It follows that (J1 · · · JnJ)X ≤ M , but (J1 · · · JnJ) ∈ GV(L) so

that X ∈Mw.

(2) If there is a principal X ≤Mw, then X ≤MS ≤ FS and JX ≤M ≤ F for

some J ∈ GV(L). Since F is a w-element, X ≤ F .

The following generalizes [27, Lemma 1.2] to lattice modules.

Lemma 4.4.3. Let A be an element of a torsion-free L-module M. If A is a

w-element, then I = (A : M) is a w-element of I.

Proof. Let JX ≤ I for some J ∈ GV(L) and a principal element X ∈ L. Then

JXM ≤ A, meaning that XM ≤ (XM)S = (JXM)S ≤ AS , and hence XM ≤ A.

Furthermore, JX ≤ I ≤ R, so X ≤ J−1 = R, so that X ≤ I.
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The following generalizes [27, Lemma 1.3] to lattice modules.

Theorem 4.4.4. Let M be a torsion-free L-module and let A ∈ M. If A is a

w-element, then J 6≤ (A : M) for any J ∈ GV(L).

Proof. If there is a J ∈ GV(L) such that J ≤ (A : M), then JM ≤ A, implying

that M ≤ A so that M = A contrary to hypothesis.

The following generalizes [27, Proposition 1.5] to lattice modules.

Proposition 4.4.5. Let M be a torsion-free L-module. If MP is a w-element of

the I(RP )-module I(MP ) for all maximal elements P ∈ I, then M is a w-element.

Proof. Suppose JX ≤M for some J ∈ GV(L) and a principal element X ≤MS .

Let I = (M :I X). Assume that I < R. Then I ≤ P for some P maximal in I,

so that IP < RP in I(RP ). It follows that X 6≤MP in I(MP ). However, we know

that JP ≤ GV(I(RP )) and JPX ≤MP in I(RP ), a contradiction. So, I 6< R and

hence X ≤M .

The following generalizes [27, Lemma 1.6] to lattice modules.

Proposition 4.4.6. For a q. f. L, let I be a w-element of I. Then
√
I is also a

w-element of I.

Proof. Suppose that JX ≤
√
I for some J ∈ GV(L) and a principal element

X ∈ L. Hence there is a positive integer n such that (JX)n ≤ I and X ∈ I as

in the proof of 4.4.3. Since a product of elements in GV(L) is also in GV(L) and

(JX)n = JnXn ≤ I, we have Xn ≤ I from the assumption that I is a w-element,

hence X ∈
√
I.
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The following generalizes [27, Proposition 2.3] from integral domains to q. f.

lattices.

Proposition 4.4.7. Let L be a q. f. and let I ∈ I. Then Iw = R iff there exists

a J ∈ GV(L) such that J ≤ I.

Proof. If Iw = R, then there is an J ∈ GV(L) such that JR ≤ I, meaning J ≤ I.

For the converse, if J ≤ I, then JR ≤ I so that R ≤ I. Hence I = R and

Iw = R.

The following generalizes [27, Proposition 2.4] from integral domains to q. f.

lattices.

Proposition 4.4.8. Let L be a q. f. lattice with I ∈ I. Then (
√
I)w =

√
Iw

Proof. Since I ≤ Iw,
√
I ≤
√
Iw so that (

√
I)w ≤ (

√
Iw)w =

√
Iw because

√
Iw is a

w-element by the previous proposition. For the reverse inclusion, let X ∈
√
Iw be

principal. Hence there is a positive integer n and a J ∈ GV(L) such that JXn ≤ I.

As in the previous proposition, (JX)n = JnXn ≤ I, meaning X ∈ (
√
I)w.

The following generalizes [27, Proposition 2.7] to lattice modules.

Proposition 4.4.9. Let M be a torsion-free L-module and let J ∈ GV(L). Then

(JM)w = Mw.

Proof. Let X ≤ (JM)w be principal. Then there is a J1 ∈ GV(L) such that

J1X ≤ JM ≤M , meaning X ∈Mw.

Conversely, if X ∈Mw, then J1X ≤M for some J1 ∈ GV(L). Hence JJ1X ≤

JM , of course implying that X ≤ (JM)w.
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The following generalizes [27, Proposition 2.8] to lattice modules.

Proposition 4.4.10. Let I ∈ I and let M be a torsion-free L-module. Then

(IM)w = (IwMw)w.

Proof. The ≤ direction is clear. Let X ≤ (IwMw)w. Then there is a J ∈ GV(L)

such that JX ≤ IwMw ≤ Mw. It follows that there is a J1 ∈ GV(L) such that

J1JX ≤ M . Similarly, there is a J2 ∈ GV(L) such that J2JX ≤ I. Hence

J2J1J
2X2 ≤ J2J1J

2X ≤ IM . Since a product of elements in GV(L) is in GV(L),

X ≤ (IM)w.

4.5 Prime and primary w-elements

We turn our attention once again to primary elements, but first we define a

primary element of lattice module, which is of course similar the the definition of

a primary element of a cl-monoid.

Definition 4.5.1. Let M be an L-module. An element Q ∈ M with Q < M is

primary if for any elements A ∈ I, B ∈ M, AB ≤ Q implies that B ≤ Q or

AkM ≤ Q for some positive integer k. In this case, P (Q) = ∨{C ∈ M | CkM ≤

Q} is the prime associated with Q and Q is P (Q)-primary.

The following generalizes [27, Theorem 3.1] to lattice modules.

Theorem 4.5.2. Let M be a w-L-module and let P be a prime w-element of I

such that A ∈M is P -primary. Then A is a w-element of M.
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Proof. Let JX ≤ A for some J ∈ GV(L) and a principal element X ≤ AS in

I(MS). Since M is a w-element and A ≤M , we know that X ≤M . By Theorem

4.4.4, J 6≤ P since P is a w-element, meaning X ≤ A.

The following generalizes [27, Proposition 3.2] to lattice modules.

Proposition 4.5.3. Let M be a w-L-module such that A ∈M is P -primary for

a prime element P ∈ I. If AP is a w-element of the I(RP )-module I(MP ), then

A is a w-element.

Proof. Let JX ≤ A for some J ∈ GV(L) and assume without loss of generality

that X is a principal element of M. We have JPX = (JX)P ≤ AP . thus

X ≤ AP ∧M = A.

The next proposition is a variation of 4.3.1.
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Proposition 4.5.4. LetM be a w-L-module. Then M =
∧
{MP | P ∈ wMax(I)}.

Proof. The ≤ direction is clear. Let X ∈
∧
{MP | P ∈ wMax(I)} be principal.

Note that I = ∨{B ∈ I | BX ∈M} is a w-element of I. Since I is not contained

in a maximal w-element of I, we have I = R which means X ∈M.

It is clear from the definition of a w-element that if M is a torsion-free L-

module and X is a principal element of I, then if M and N ≤M are w-elements,

then (N :M X) is also a w-element.

The next lemma is a generalization of a simple, well-known fact and is listed

for convenience [27, Lemma 3.5].

Lemma 4.5.5. 1. Let P ≤ R in I. Then P is prime iff (P :I X) = P for

every principal X ∈ I, X 6≤ P .

2. Let M be an L-module with N ≤ M and P = (N : M). Then N is prime

iff (N :M X) = N for every principal X ∈ I, X 6≤ P .

Proof. The “if” portion of (1) is obvious. For the converse, let A,B ∈ I such that

AB ≤ P . Assume that B 6≤ P . Then AB = P by hypothesis so that B ≤ P . The

proof of 2 is similar.

The following generalizes [27, Proposition 3.6] to lattice modules.

Proposition 4.5.6. Let M be a w-L-module and let P be a prime element of I.

If N is a w-element of M which is maximal among the w-elements B of M with

(B : M) = P , then N is prime.
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Proof. For any A ∈ I with A 6≤ P , we have ((N :M A) : M) = P since P is prime.

Now, N ≤ (N :M A), the maximality of N gives us N = (N :M A). Applying the

previous lemma completes the proof.

The following is a variation of Lemma 4.4.4.

Theorem 4.5.7. LetM be a w-L-module with N a primary element ofM. Then

N is a w-element iff J 6≤ (N : M) for any J ∈ GV(L).

Proof. Suppose that JX ≤ N for some J ∈ GV(L) and a principal element

X ∈M. If we assume J ≤
√

(N : M) then there is a positive integer k such that

Jk ≤ (N : M) because J is finitely generated, but this contradicts our hypothesis.

Then, we have X ≤ N because N is primary.

We will generalize [27, Theorem 4.2] to lattice modules by making use of the

following lemma.

Lemma 4.5.8. Let L be a multiplicative lattice and M an L-module. If for some

N ∈ M and a principal element I ∈ I, both N ∨ IM and (N :M I) are finitely

generated, then N is finitely generated.

Proof. Note that I(N :M I) = N ∧ IM . Hence if (N :M I) is finitely generated,

so is N ∧ IM .

Since [IM,N ∨ IM ] ∼= [N ∧ IM,N ] and N ∨ IM is finitely generated, then

[N ∧ IM,N ] is finitely generated with N ∧ IM also finitely generated. Hence N

is finitely generated.

We will prove a lattice module version of Cohen’s Theorem using the above

lemma.
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Theorem 4.5.9 (Cohen’s Theorem for Lattice Modules). Let L be a multiplicative

lattice and M an L-module and let N ∈ M, N < M be maximal among all

elements of M which are not finitely generated. Then N is a prime element of

M.

Proof. Suppose that N is not prime. Then there exits principal elements I ∈ I

and A ∈M such that IA ≤ N but A 6≤ N and IM 6≤ N . Then N 6≤ (N :M I) and

N 6≤ (N∨IM). By the choice of N , (N :M I) and (N∨IM) are finitely generated.

Thus N is finitely generated by the above lemma, contrary to hypothesis.

The lattice version of [27, Theorem 4.2] now follows as a special case from the

previous theorem and the fact that Lw is an r-lattice.

Theorem 4.5.10. Let L be a multiplicative lattice. If P ∈ I such that P is

maximal in the set of all non-finite type w-elements of L, then P is prime.

The following generalizes [27, Theorem 4.3] from integral domains to q. f.

lattices.

Theorem 4.5.11. For a q. f. lattice L, TFAE.

1. L is a strong Mori lattice.

2. Each w-element of L is of finite type.

3. Each prime w-element of L is of finite type.

Proof. (1) ⇒ (2) Let A ∈ L be a w-element and define A be the set of all w-

elements of L that are w-finite with Ai ≤ A for every Ai ∈ A. Since A contains
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0, it is non-empty and hence contains a maximal element B since L satisfies ACC

on w-elements. Hence B = Cw for a finitely generated C = C1 ∨ · · · ∨ Cn ∈ L

where each Ci for i = 1, · · · , n is principal and C ≤ B = Cw ≤ A. For each

principal element a ≤ A, define Da = a∨C1∨· · ·∨Cn. Note that (Da)w ∈ A with

Cw ≤ (Da)w. Since B = Cw is maximal in A, Cw = (Da)w for every principal

a ≤ A so that a ≤ Da ≤ (Da)w = Cw and A ≤ Cw (since L is principally

generated). This means that A = Cw.

(2) ⇒ (1) Let A1 ≤ A2 ≤ · · · be a chain of w-elments in L, which are of

finite-type by hypothesis. We know
∨
i≥aAi ∈ L is also a w-element, hence of

finite-type. Let
∨
i≥aAi = Bw where B = B1 ∨ · · · ∨ Bn ≤

∨
i≥aAi where each

Bj for j = 1, · · · , n is a principal element of L. Each Bj must be an element of

some Ak and so there is an index m such that Bj ≤ Am for i = 1, · · · , n. Hence

Bw ≤
∨
i≥aAi ≤ Am so that Ai = Am for i ≥ m.

(2)⇒ (3) This is obvious.

(3)⇒ (2) If the collection of all non-finite type w-elements of L is non-empty,

it contains a maximal element by Zorn’s Lemma. This maximal element must be

prime by Theorem 4.5.10 which is of finite type by our hypothesis, a contradiction.

The following generalizes [27, Proposition 4.7] from integral domains to q. f.

lattices.

Proposition 4.5.12. For a strong Mori lattice L, I(RS) is a strong Mori lattice

for every localization RS .
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Proof. By [7, Proposition 2.13], we have A ∧ R = ∨{(A : S) ∧ R | S ∈ S} and

(A ∧ R)S = A for any A ∈ I(RS) and any S ∈ S. Note that (A ∧ R)w =

Aw ∧ Rw = Aw ∧ R by Proposition 4.2.3. Hence, the above equalities become

Aw ∧ R = ∨{(Aw : S) ∧ R | S ∈ S} and (Aw ∧ R)S = Aw for any A ∈ I(RS) and

S ∈ S. So, if A is a w-element, by taking its meet with R, we may contract it

to a w-element of I. Hence any strictly increasing chain of w-elements of I(RS)

contracts to a strictly increasing chain of w-elements of I and this chain must

stabilize, so much the chain in I(RS) so that I(RS) is a strong Mori lattice.

Next we generalize [27, Theorem 4.8] and [27, Theorem 4.9] from strong Mori

domains to strong Mori lattices. For this, let L be a q. f. lattice with I ∈ I.

We define a lattice version of Kaplansky’s Z(I), adopting his notation [15]. Let

Z(I) denote the set of all principal elements A ∈ I such that AB ≤ I for some

principal element B ∈ I with B 6≤ I. We will let MaxIZ(I) represent the set of

elements of I that are maximal among elements contained in Z(I).

To obtain these two results, we use the following lattice module version of

Herstein’s result ([15, Theorem 6]).

Lemma 4.5.13. Let L be a multiplicative lattice and M an L-module with maxi-

mal element M . Let I ∈ I be maximal among elements in I of the form (0 :L X)

for nonzero principal elements X ≤ A. Then I is prime.

Proof. Assume that CD ≤ I and that C 6≤ I. Then CX 6= 0. Then D ≤ (0 :L

CX) ≥ (0 :L X). By hypothesis, (0 :L CX) = (0 :L X). Thus D ≤ I = (0 :L X).

So I is prime.
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The following theorem generalizes [27, Theorem 4.8] from strong Mori domains

to strong Mori lattices. For this we use the following definition from [13, page

106].

Definition 4.5.14. A multiplicative lattice L is said to satisfy the union con-

dition on primes if given prime elements P1, . . . , Pk ∈ L and an element A ∈ L

such that for each i = 1, . . . , k, A 6≤ Pi, then there exists a principal element

E ≤ A such that E 6≤ Pi for i = 1, . . . , k.

It is known that the lattice of ideals in a semigroup and the lattice of graded

ideals of a graded ring generally do not satisfy the union condition on primes. See

[5, pp. 140-141] and [24, Section 7] respectively.
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Theorem 4.5.15. Let L be a strong Mori lattice which satisfies the union condi-

tion on primes and let I ∈ I be a w-element. Then every element of MaxIZ(I)

is of the form (I :I X) for a principal element X ∈ I, X 6≤ I.

Proof. Let Γ = {(I :I X) | X ∈ I, X 6≤ I}. Since L is a strong Mori lattice,

every member of Γ is contained in a maximal element of Γ. Index these maximal

elements by the set Λ and let Pλ = (I :I Xλ) for each λ ∈ Λ. Then each Pλ is a

prime w-element of L.

Let A =
∨
{Xλ | λ ∈ Λ} ∈ I. Since L is a strong Mori lattice, there is a finite

subset Λ′ = {λ1, . . . , λn} of Λ such that Aw = Bw, where B = Xλ1 ∨ · · · ∨ Xλn .

Let α ∈ Λ \ Λ′.

We claim that Pλ1∧. . .∧Pλn ≤ Pα. That is (I : Xλ1)∧. . .∧(I : Xλn) ≤ (I : Xα).

Let h ∈ (I : Xλ1)∧. . .∧(I : Xλn). We have Xα ≤ Aw = Bw = (Xλ1∨· · ·∨Xλn)w.

So there is a J ∈ GV(L) such that JXα ≤ B.

Also, JhXλi ≤ I for i = 1, . . . , k. But I is a w-element. So hXλi ≤ I for i =

1, . . . , n. So h ∈ (I : Xα) = Pα, proving the claim. Thus Pλi ≤ Pα for some i =

1, . . . , n. But these primes Pλ = (I : Xλ) are all maximal among ideals of that

form. So Pα = Pλi for some i.

It remains to see that if H ∈ MaxIZ(I), then H ≤ Pλi for some i = 1, . . . , n.

But if H 6≤ Pi for each i = 1, . . . , n, then by the union condition on primes,

there exists a principal E ≤ H with E 6≤ Pi for each i = 1, . . . , n. But this is a

contradiction since we have shown above that for each principal zero-divisor A on

[I, R], we have A ≤ Pλi for some i = 1, . . . , n.
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We will need the lattice version of [9, Proposition 1.1(5)] in order to prove [27,

Theorem 4.9]. We prove it for the case of the w-operation, though it certainly

holds for star operations in general satisfying the required characteristics.

Lemma 4.5.16. Let L be a q. f. lattice. Then if P is a prime element minimal

over a w-element I ∈ I of finite type, then P is a w-element.

Proof. Let J be a finitely generated element of I such that J ≤ P . We only need

to show that Jw ≤ P . Since P is minimal over I, PRP = Rad(IRP ) in I(RP )

which means there is a positive integer n such that JnRP ≤ IRP . Thus there is a

principal element S ∈ I, S 6≤ P such that SJn ≤ I. It follows from Proposition

4.4.10 that

S(Jw)n ≤ S((Jw)n)w = S(Jn)w = (SJn)w ≤ Iw = I ≤ P.

Since S 6≤ P , we have Jw ≤ P .

The following generalizes [27, Theorem 4.9] from strong Mori domains to strong

Mori lattices.

Theorem 4.5.17. Let L be a strong Mori lattice and let I ∈ I be a w-element.

Then there are only finitely many prime elements in I minimal to I and every

minimal prime element C ≤ I is of the form (I :I X) for some principal element

X ∈ I, X 6≤ I.

Proof. Let P be a prime element of I minimal over I. Then PP is the unique

prime element of I(RP ) that contains IP (see [7]) and P is a w-element of I by the

previous lemma. Hence P is of finite type and there is a finitely generated element
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N ∈ I such that N ≤ P and P = Nw. Select a Q ∈ wMax(I) with P ≤ Q. Then,

I(RQ) is Noetherian by Theorem 4.3.3 as well as I(RP ). Now PP = (IP :I(RP ) X)

for some principal element X ∈ I(PP ), X 6≤ IP so that XPP ≤ IP and since N

is finitely generated, there exists a principal element S ∈ I, S 6≤ P such that

SX ∈ I and SXN ≤ I. Hence SXP = SXNw = (SXN)w ≤ Iw = I, meaning

P = (I :I SX) with SX ∈ I, SX 6≤ I .

If there are infinitely many minimal prime elements to I, let S be the set of

w-elements of I that have infinitely minimal primes and I ≤ S
′

for each S
′ ∈ S.

Since S is nonempty and L is a strong Mori lattice, we may choose a maximal

element of S, call it T . We know that T is not prime, but T =
√
T by Proposition

4.4.6. There exist principal elements A,B ∈ I, A,B 6≤ T such that AB ∈ T .

Then (T ∨ A)w and (T ∨ B)w have only finitely minimal primes. We will show

T =
√

(T ∨ A)w ∧
√

(T ∨B)w to reach a contradiction. We only need to verify

“≥.”

Let X ≤
√

(T ∨ A)w ∧
√

(T ∨B)w be principal. Then there exists a positive

integer k such thatXk ≤ (T∨A)w∧(T∨B)w. Thus we have JXk ≤ (T∨A)∧(T∨B)

for some J ∈ GV(I). For each principal D ≤ J , write DXk = U ∨ I1A =

V ∨ I2B for principal elements U, V ≤ T and principal elements I1, I2 ∈ I. Then

V B ∨ I2B
2 = UB ∨ I1AB ≤ T , so that I2B

2 ≤ T . Since T is a radical element,

this shows that I2B ≤ T , whence it follows that JXk ≤ T . Again, since T is a

radical element, as well as a w-element, it follows that X ≤ T and the proof is

complete.
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Chapter 5

Future work: w-invertibility and

strong Mori lattice

characterization

The rest of section 4 in [27] deals with primary decomposition. Since primary

decomposition for elements of a multiplicative lattice or lattice module has already

been studied in substantial detail in [8], [26], and elsewhere, we proceed on to

consider w-invertibility of lattice elements.

5.1 Basic results

We will begin by proving basic properties of w-invertibility for quotient field

lattices. The ultimate goal of this chapter is to obtain a portion of the lattice

version of [28, Theorem 2.8], which we already have a small piece of.
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The following is a lattice version of w-invertibility. See [27, Definition 6].

Definition 5.1.1. Let L a q. f. lattice with A ∈ F . We say that A is w-invertible

if (AB)w = R for some B ∈ F .

The following generalizes [27, Proposition 5.1] from integral domains to q. f.

lattices.

Proposition 5.1.2. For a q. f. lattice L and an element A ∈ F , TFAE:

1. A is w-invertible.

2. (AA−1)w = R

3. J ≤ AA−1 for some J ∈ GV(L).

4. Aw is w-invertible.

Proof. (1)⇒ (2) If A is w-invertible, there is a B ∈ F such that AB ≤ (AB)w =

R, implying that B ≤ A−1 so that R = (AB)w ≤ (AA−1)w ≤ Rw = R.

(2) ⇒ (3) If (AA−1)w = R, then JR ≤ AA−1 for some J ∈ GV(L) and

J ≤ AA−1.

(3)⇒ (4) If J ≤ AA−1 ≤ AwA
−1 ≤ R for some J ∈ GV(L), then (AwA

−1)w =

R by Proposition 4.4.7 and hence Aw is w-invertible.

(4) ⇒ (1) If Aw is w-invertible, there is a B ∈ F such that R = (AwB)w =

(AwBw)w from Proposition 4.4.10.

If we define v-invertibility in a similar manner to Definition 5.1.1, the proof

of Proposition 5.1.2 works by replacing “w” with “v.” Combining this with the

definition of the v-operation, it can be reduced to the following:
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Definition 5.1.3. [7, Definition 4.1] Let L be a q. f. lattice such that A ∈ F with

A 6= 0. We define A to be v-invertible if (AA−1)−1 = R.

It is known that I ⊆ I∗ ⊆ Iv for a fractional ideal I in an integral domain, R

and a star operation on the fractional ideals of R. We also have I ≤ I∗ ≤ Iv in

a q. f. lattice for any I ∈ F and a star operation on F , which implies that any

w-invertible element is v-invertible. We will use this fact later.

The following generalizes [27, Proposition 5.2] from integral domains to q. f.

lattices.

Proposition 5.1.4. Let L be a q. f. lattice with A,B ∈ F . Then A and B are

w-invertible iff AB is.

Proof. (⇒) By hypothesis, there are C,D ∈ F such that (AC)w = R and

(BD)w = R. Obviously, CD ∈ F and (ABCD)w = (ACBD)w = ((AC)w(BD)w)w =

Rw = R by Proposition 4.4.10.

(⇐) By hypothesis, there is an E ∈ F such that (ABE)w = R. Then R =

(A(BE))w = (B(AE))w. So A and B are w-invertible.

If ∗ is a star operation and {Aλ | λ ∈ Λ} is a family in F such that
∧
λ∈Λ(Aλ)

∗ 6=

0, then it is easy to see that
∧
λ∈Λ(Aλ)

∗ = (
∧

((Aλ)
∗)∗. Now the v-operation is

defined by A 7→ Av =
∧
{a | a is L-principal and A ≤ a}, and if A ≤ a where a is

principal, then A∗ ≤ a∗ = a, and thus A∗ ≤
∧
{a | a is L-principal and A ≤ a} =

Av. That is, the v-operation is the largest star operation on F , where we define

∗1 ≤ ∗2 for star operations ∗1, ∗2 to mean A∗1 ≤ A∗2 for each A ∈ F . Also since

a ∈ (R :L A) = A−1 if and only if A ≤ a−1, it follows that A−1 = (A−1)v = (A∗)−1.
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Now suppose R = (AB)∗. Then multiplying by A−1 and applying the star

operation gives (A−1R)∗ = (A−1(AB))∗. So A−1 = (A−1)∗ = ((AB)∗A−1)∗ =

((AB)A−1)∗ = (AA−1B)∗ ≤ B∗. Also, from AB∗ ≤ (AB∗)∗ = (AB)∗ = R, we get

opposite inequality: B∗ ≤ A−1. So, we get that if (AB)∗ = R, then B∗ = A−1.

Since if A is ∗-invertible, so is A−1, then A∗ = Av. Since R = (AA−1)∗ ≤ (AA−1)v

≤ R, we get ∗-invertible implies v-invertible. In fact if ?1 ≤ ?2 are star operations

and if A is ∗1-invertible, then A is ∗2-invertible.

The following generalizes [27, Proposition 5.3] from integral domains to q. f.

lattices, preserving a useful property of w-invertible elements of q. f. lattices.

Proposition 5.1.5. Let L be a q. f. lattice with A ∈ F w-invertible. Then Aw is

of finite type.

Proof. Let A ∈ F be w-invertible. Since w is of finite character by Theorem 4.2.7,

R ≤ (AA−1)w = ∨{Fw | where F is finitely generated and F ⊆ AA−1}. That is

R ≤ Fw for some element Fw of finite type with F ≤ AA−1. So there are finitely

generated elements G ≤ A and H ≤ A−1 such that Gw = Aw and Hw = A−1. In

particular, Aw = Gw is of finite type.

5.2 Future objectives

With basic results concerning w-invertibility in hand, we have obtained a cru-

cial set of information needed to obtain lattice versions of [27, Theorem 5.4] and

[28, Theorem 2.8]. Unfortunately, the other required part has not yet been ob-

tained by the author. The purpose of this section is to inform the reader of
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immediate goals concerning further research.

First we obtain a few more results concerning w-elements of a lattice module,

beginning by generalizing [28, Lemma 1.5] from integral domains to q. f. lattices.

Lemma 5.2.1. Let M be a torsion-free L-module and let A,B ∈ M. Then

(A ∨B)w = (Aw ∨Bw)w.

Proof. The “≤” direction is clear. It is sufficient to show that Aw∨Bw ≤ (A∨B)w.

Let X ≤ Aw ∨Bw be principal so that X = U ∨ V for principal elements U ≤ Aw

and V ≤ Bw. Hence there exist J1, J2 ∈ GV(L) such that J1U ≤ A and J2V ≤ B.

thus J1J2X ≤ A ∨B and X ≤ (A ∨B)w.

The following generalizes part of [28, Lemma 2.5] from integral domains to q.

f. lattices.

Lemma 5.2.2. Let L be a q. f. lattice and let P be a w-invertible prime w-element

of I. Then P is a maximal w-element and P is also a v-element.

Proof. Suppose Q is an element of I with P < Q. Since P is w-invertible,

P is of finite type so that P = Bw for a finitely generated element B ∈ I.

Let J = B ∨ C, where C is principal such that C ≤ Q but C 6≤ P and let

X ≤ J−1 be principal. We have XCB ≤ B ≤ P , implying that XB ≤ P .

thus XP = XBw = (XB)w ≤ Pw = P , which means X(PP−1) ≤ PP−1 ≤ R.

Consequently, X ∈ (PP−1)−1 = ((PP−1)w)−1 = R−1 = R. We have shown that

J−1 = R, i.e. J ∈ GV(L). Since J ≤ Q, it follows that Qw = R by Proposition

4.4.7, completing the proof.
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The above lemma yields the following corollary, which generalizes [28, Corol-

lary 2.6] from integral domains to q. f. lattices.

Corollary 5.2.3. Let P be a w-invertible prime element of I. Then either Pw = R

or P is a maximal w-element.

Proof. If Pw 6= R then P is a w-element and the result follows from the previous

lemma.

The following theorem is a lattice version of a portion of [28, Theorem 2.8],

which is a significant characterization of Krull lattices. Although most of this

theorem has been obtained, a few crucial implications are missing which requires

lattice versions of the results of [21].

Theorem 5.2.4. TFAE for a q. f. lattice L:

1. I is a Krull lattice.

2. Every non-zero element of I is invertible.

3. Every non-zero prime w-element of I is w-invertible.

4. Every non-zero element I ∈ I with Iw 6= R can be written as a unique

w-product of a finite number of prime w-elements of I.

5. I is an integrally closed and L is a strong Mori lattice.

6. L is a strong Mori lattice and I(RP ) is a discrete valuation lattice for each

P ∈ wMaxR.

7. Every maximal w-element of I is w-invertible and has height one.
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8. L is a strong Mori lattice and every maximal w-element of I is w-invertible.

Some of these implications are trivial and others follow from some of our pre-

vious theorems, but there are several that are incomplete. Generalizing [21] would

complete this significant characterization of strong Mori lattices, as well as giving

a lattice version of [27, Theorem 5.4]. Also, many results concerning star opera-

tions in commutative rings have yet to be generalized to lattices. Furthermore,

one may also consider the lattice formed by a certain semistar operation and the

properties it would have, which up to this point has not yet been investigated.
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