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ABSTRACT
Analytical models are provided that describe how the elastic compliance, electrical
conductivity, and fluid-flow permeability of rocks depend on stress and fluid pressure.
In order to explain published laboratory data on how seismic velocities and electrical
conductivity vary in sandstones and granites, the models require a population of
cracks to be present in a possibly porous host phase. The central objective is to
obtain a consistent mean-field analytical model that shows how each modeled rock
property depends on the nature of the crack population. The crack populations are
described by a crack density, a probability distribution for the crack apertures and
radii, and the averaged orientation of the cracks. The possibly anisotropic nature of
the elasticity, conductivity, and permeability tensors is allowed for; however, only
the isotropic limit is used when comparing to laboratory data. For the transport
properties of conductivity and permeability, the percolation effect of the crack pop-
ulation linking up to form a connected path across a sample is modeled. However,
this effect is important only in crystalline rock where the host phase has very small
conductivity and permeability. In general, the importance of the crack population to
the transport properties increases as the host phase becomes less conductive and less
permeable.

Key words: Seismic velocities, Electrical conductivity, Permeability, Effective stress,
Fluid flow, Anisotropy.

1 INTRODUCTION

Fluid injected into the subsurface from a borehole alters the
physical and chemical state of the Earth. As part of an ongoing
research project, we are interested in developing methods to
monitor such alterations using time-lapse geophysical data
such as seismic and electromagnetic measurements. This paper
is concerned with the development of analytical models for
use in the inverse problem that describe how the pertinent
geophysical properties change as a result of fluid injection.

The injected fluid mass compresses the surrounding rock
and causes the stress tensor to change, falling off as r−2 with

∗E-mail: srpride@lbl.gov

distance r from the injection point in the borehole. As the fluid
diffuses out into the formation, additional changes in the pore
pressure take place once the injected-fluid front arrives at a
given voxel under consideration. The induced stress and fluid-
pressure changes near the borehole will likely not exceed the
10 MPa level in most industrial applications (which is the
order of the tensile strength of sandstones). Fluid injection
alters the physical properties of a given voxel through four
mechanisms: (i) the injected fluid has different physical prop-
erties than the in situ fluid (so-called “fluid substitution”);
(ii) the changing pore pressure and stress fields cause already
existing cracks and fractures to further open (elastically
soften) or close (elastically stiffen); (iii) the changing pore pres-
sure and stress fields cause new cracks and fractures to arrive
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2 S.R. Pride et al.

once effective-stress thresholds (or criteria) are met; and (iv)
over longer timescales, the altered chemical equilibrium can
provoke precipitation or dissolution of minerals. The main fo-
cus of this study is on the effect of stress and pore pressure on
the physical properties; however, we also address fluid sub-
stitution effects for the specific case of a brine of one salinity
replacing a brine of a different salinity.

We specifically want to obtain explicit analytical models
for how the seismic velocities, porosity, electrical conductiv-
ity, and fluid-flow permeability vary with effective stress us-
ing the same rock description for all the geophysical prop-
erties. The proposed models allow for how stress-induced
damage in the form of evolving crack populations alter the
geophysical properties, but they do not address the stress
thresholds for when such new damage enters a voxel in the
Earth.

There is a wealth of models in the literature (e.g., Wyble
1958; Cheng and Toksöz 1979; Zimmerman, Sommerton,
and King 1986; Kaselow and Shapiro 2004; Daley et al. 2006;
Liu, Rutqvist, and Berryman 2009; Zhang, Sayer, and Adachi
2009; Liu, Wei, and Rutqvist 2013) designed to describe the
effective-stress dependence of rock properties. Like most au-
thors before us, in order to account for the rather large vari-
ations of the elastic moduli of rocks observed in laboratory
effective-stress experiments, we find it necessary to introduce
a population of compliant cracks into a possibly porous host
material. Of the many theories available for the elastic moduli
of dry cracked rocks, the simplest approach is that of Sayers
and Kachanov (1995) in which the interaction between cracks
is entirely neglected and the effective rock compliance is linear
in crack density, i.e., the stress is taken to be uniform through-
out a rock sample, and the total strain produced by each crack
and the host phase is simply added up. This is the approach
adopted here as well. Grechka and Kachanov (2006a, b) have
demonstrated numerically that when cracks are closely spaced
and even intersecting, the non-interaction approximation still
works well. This is due to the cancelling stress fields emanat-
ing from randomly oriented cracks. The equivalent mean-field
theory for how cracks influence permeability was developed
by Oda (1985). In the present work, we develop a unified
treatment of elastic moduli, electrical conductivity, and per-
meability using the non-interacting crack approximation and
using the same parameters to describe the crack population
for each property. For the transport properties (permeability
and electrical conductivity), we further allow for the crack-
phase percolation that takes place at sufficiently large crack
densities. In the case of an impermeable and insulating host
material, allowing for such crack percolation is important. In

the case of cracks embedded into a permeable and conduct-
ing host material, the crack percolation effect is shown here
to be much less important and often negligible. We show that
the models developed here are capable of predicting published
laboratory data. In the comparisons to lab data, we restrict
ourselves to determining isotropic properties. However, in the
model development, we allow the crack populations to create
anisotropy.

In Section 2, we review poroelasticity and give the
famous fluid substitution result of Gassmann (1951) for
how the undrained stiffness tensor depends on the drained
stiffness tensor in a material with an anisotropic porespace.
We then obtain effective-stress models for the drained elastic
moduli (Section 3), the porosity, the formation factor,
and permeability (Section 4). In Section 5, the geophysical
properties of seismic velocities and electrical conductivity,
as well as the permeability and porosity, are compared
with published laboratory data as a function of effective
stress.

2 POROELASTICITY

Poroelasticity (e.g., Biot 1956; Biot and Willis 1957) pro-
vides a general context for understanding how evolving fluid
pressure and/or fluid substitution influences the geophysical
properties.

Isotropic poroelastic constitutive laws relate the total
time derivatives of the stress tensor τ and fluid pressure P
to the strain rate of a sample ∇v (where v is the average
velocity of the solid grains in a voxel of porous material) and
rate of fluid accumulation ∇ · q (where q is the Darcy velocity
across the voxel) as

∂τ

∂t
= [Ku∇ · v + αM∇ · q] I + µ

[
∇v + (∇v)T − 2

3
∇ · v I

]
,

(1)

− ∂ P
∂t

= M [α∇ · v + ∇ · q] , (2)

where I is the identity tensor. Formally, there should be an
advective derivative on the left-hand side of these laws, but it
can be shown to be completely negligible for all of our appli-
cations. These differential laws allow for non-linear elasticity
in that the elastic moduli may be varying in time. One of our
primary goals for this paper is to provide rules and formulas
for how the elastic moduli vary.

The elastic moduli in the above are defined as follows:

Ku = Kd + α2 M, (3)
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Geophysical changes in porous rocks 3

α = 1 − Kd/Ku

B
, (4)

M = BKu

α
, (5)

where Ku is the undrained bulk modulus (bulk modulus of
a sealed sample), B the Skempton’s coefficient (ratio of fluid
pressure to confining pressure for a sealed sampled), Kd the
drained (or dry) bulk modulus that is independent of the fluid
type in the pores, and µ the drained (or dry) shear modulus.
These moduli will vary with time due to the deformation of
the pore space as modelled herein and due to fluid substitution
effects (with the exception of µ, which is independent of the
fluid’s presence).

The Gassmann (1951) fluid substitution relations hold
whenever the solid grains are well modelled as being
isotropic and homogeneous throughout each sample, and are
given by

B = 1 − Kd/Ks

1 − Kd/Ks + φ(Kd/K f − Kd/Ks)
. (6)

Ku = Kd

1 − B(1 − Kd/Ks)
. (7)

Using (7) in (4) yields α = 1 − Kd/Ks . The Gassmann rela-
tions tell us how Ku and B depend on the drained bulk mod-
ulus Kd(τ , P), the fluid bulk modulus K f (P), the solid bulk
modulus Ks , and porosity φ(τ , P). When fluid substitution
is occuring at constant stress, only the fluid bulk modulus
is changing, and this is why the Gassmann relations are re-
ferred to as fluid substitution relations. What is needed next
are specific models that allow both Kd and µ (the bulk and
shear moduli of drained/dry samples) to vary in time either
explicitly with effective stress or as porosity changes.

Before addressing this question, we pause to recall
the more general result of Gassmann (1951) for how the
undrained elastic stiffness tensor Cu

i jkl depends on the drained
elastic stiffness tensor Cd

i jkl of an anisotropic porous material.
In this model, it is again assumed that the solid framework
of grains is made of an isotropic mineral of stiffness Ks and
that all anisotropy is due to the shape and orientation of the
connected pores and/or cracks. The result is

Cu
i jkl = Cd

i jkl +
Ks αi jαkl

αpp/3 − φ(1 − Ks/K f )

when i = j and k = l, (8)

Cu
i jkl = Cd

i jkl when i ̸= j or k ̸= l, (9)

where the dimensionless parameters αi j are defined as
follows:

αi j = 1 −
(Cd

11i j + Cd
22i j + Cd

33i j )

3Ks
. (10)

For an isotropic material (C1111 = C2222 = C3333 = K + 4µ/3
and C1122 = C1133 = C2233 = K − 2µ/3), equation (8), along
with µu = µd = µ (shear does not create compression in
isotropic media), directly reduces to

Ku = Kd + Ks(1 − Kd/Ks)2

1 − Kd/Ks − φ(1 − Ks/K f )
, (11)

which a bit of algebra shows is equivalent to equations (6)
and (7) combined.

When calculating anisotropic seismic velocities at seismic
frequencies in saturated anisotropic porous material, equa-
tions (8) and (9) for Cu

i jkl can be used along with models for
how Cd

i jkl vary with effective stress and crack density as given
in the analysis that follows.

3 MODELS FOR HOW THE DRAINED
M O D U L I C H A N G E W I T H S T R E S S

In choosing an analytical model for how the drained moduli of
rocks change with stress, one is guided not only by the ability
of the model to fit laboratory data but by the physical ba-
sis of the model, i.e., enough physics must go into the model
that it can be predictive and not just purely empirical. Fur-
ther, since the ultimate goal is to perform the inverse problem
and obtain material parameters from time-varying geophysi-
cal signals, the number of free parameters that are adjusted
to fit laboratory should be kept to a bare minimum, and any
such fit parameters should have a clear physical definition so
that they can, in principle, be independently measured. Like
most researchers before us, to explain the measured stress de-
pendence, we find it necessary to work with a model that has
a crack population embedded into a background porous host
material, which necessarily adds at least two additional pa-
rameters (crack density and crack aspect ratio) to the analysis
along with assumptions about the crack orientations. Further,
to achieve efficient numerical forward modelling of coupled
flow and deformation problems, another objective is to obtain
explicit analytical models for how the evolving rock proper-
ties depend on stress (as opposed to implicit models or other
models that require numerical computation other than func-
tion evaluation).

As stated in Section 1, the level of stress and pore-pressure
change during industrial applications is likely never more
than 10 MPa. We will expand this to consider effective stress

C⃝ 2016 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–25
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changes over the range of 0–30 MPa. When the isotropic ef-
fective pressure (confining pressure minus fluid pressure) ex-
ceeds roughly 30 MPa in sandstones, stress concentration at
the grain contacts cause some grains to begin to shatter (e.g.,
Fortin et al. 2009), which causes a local collapse in poros-
ity. This is an effect we are not allowing for in this paper. In
more crystalline rock, such as granite, purely isotropic stress
changes do not result in grain damage until a much larger
threshold (hundreds of MPa) is exceeded (e.g., Paterson and
Wong 2005).

One class of porous materials that have drained moduli
that vary considerably over 0–30 MPa are unconsolidated
materials (uncemented grain packs). The reader is referred
to Pride (2005) or Pride and Berryman (2009) for analytical
models capable of explaining laboratory measurements on
grain packs.

3.1 Changes of drained moduli due to changes in porosity

One conceivable approach to modelling how the drained elas-
tic moduli Kd and µ change with applied stress is to focus on
how the porosity is changing with stress and to include such
porosity variation within any favorite effective medium the-
ory for the drained framework of grains. However, it will be
shown here that this approach by itself is not able to explain
the pressure dependence of elastic moduli measured on rocks.

By combining the laws of isotropic poroelasticity as given
above with the Gassmann relations (6) and (7), Pride (2005)
derives the following relation for how porosity changes with
stress:

dφ = −
[

(1 − φ)
Kd

− 1
Ks

]
dPe, (12)

where Pe = Pc − P is the effective pressure. Equation (12)
tells us that porosity will only change appreciably if dPe is
on the order of Kd. Since we are not considering effective
pressure changes larger than, e.g., Pe ≈ 30 MPa, this means
that porosity change will only be important in materials with
a very small drained modulus Kd on the order of 0.1 GPa or
smaller. Even weak sandstones tend to be much stiffer than
this with drained elastic moduli always larger than 1 GPa
and more typically on the order of 10 GPa (see Table 2 in
this paper). From this alone, we can conclude that modeling
the stress dependence of the elastic moduli by allowing for
porosity to change in an effective medium theory will not be
able to explain the rather large (e.g., 20%) changes in the
elastic moduli of consolidated sandstones that is measured in

the laboratory over the range 0 < Pe < 30 MPa (e.g., Han,
Nur and Morgan 1986).

We can make this conclusion even more explicit if we
write down an effective medium theory for how Kd (and µ) de-
pend on porosity. One convenient form is (e.g., Pride 2005)

Kd = Ks(1 − φ)
1 + svφ

, (13)

where sv is a dimensionless time-independent “softness” pa-
rameter and Ks is the solid mineral’s bulk modulus. The shear
modulus has a similar expression with different parameters
ss, µs in place of sv, Ks . One can think of this explicit form
as the simplest Padé approximant that ties the low-porosity
limit (Kd → Ks) to the high-porosity limit (Kd → 0) and
that, through the parameter sv > 1, lies within the Hashin–
Shtrickman bounds. Further, when the drained rock consists
of a single (isotropic) solid mineral having empty same-shaped
ellipsoidal pores randomly embedded into it, the Mori and
Tanaka (1973) mean-stress approximation predicts effective
moduli of exactly the form (13) with sv having complicated
dependence on the aspect ratio of the embedded ellipses and
on the Poisson’s ratio of the host mineral. When sv is mod-
elled according to the Mori and Tanaka theory, Benveniste
(1987) has shown that equation (13) lies within the Hashin–
Shtrickman bounds (see also Berryman and Berge 1996).

Substituting equation (13) into the law for porosity
change gives

dφ = − svφ

Ks
dPe, (14)

which upon integration yields

φ(τ , P) = φ(0)e−sv Pe/Ks . (15)

Therefore, the porosity of a rock will only change appreciably
if Pe approaches Ks/sv in amplitude. For a consolidated sand-
stone, as stated above, Kd might typically be 10 GPa, φ = 0.2,
and Ks = 40 GPa (quartz), which means that sv needs to be
on the order of 10. As such, equation (15) requires Pe ap-
proaching 103 MPa for there to be a significant change to the
porosity through poroelastic strain. In a sandstone, the grains
would be shattering, and the porosity irreversibly collapsing
at such high effective pressure. As such, additional consider-
ations, namely the inclusion of a crack population, will be
needed in order to explain how the drained elastic moduli
depend on stress.

C⃝ 2016 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–25
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3.2 Cracked rocks

In order to have a model that is consistent with laboratory
measurements of how the drained moduli vary with stress,
the model we adopt here is one based on there being cracks
present in a porous host. The crack porosity is in addition to
the porosity between the detrital grains of the host material
(sometimes called “equant porosity”) that was the only source
of porosity before the cracks arrived. New cracks arriving
will not be modelled here; only how an already existing crack
population influences the elastic properties of a consolidated
porous rock. Although the crack porosity is tiny compared
with the host porosity for most sedimentary rocks, each crack
is far more compliant than an equant pore of the host, and it
is the cracks that largely control the stress dependence of the
elastic moduli.

There are many possible models available for how cracks
influence the elastic properties (e.g., Berryman (2016) pro-
vides a review). We will use the approach of Sayers and
Kachanov (1995) that is based on the linear-slip crack model
describing the normal and tangential displacement disconti-
nuity across crack faces due to tractions imposed on cracks
having normal n. The linear-slip laws can be written com-
pactly in vector form as

[u] = B · τ e · n, (16)

where [u] is the displacement discontinuity between the crack
faces, τ e is the effective stress tensor acting on the crack de-
fined as τ e = τ + PI (note that the principal components of
the stress tensor τ sum to be positive in tension, whereas the
fluid pressure P is positive in compression), and the crack
compliance tensor is

B = Bnnn + Bt(I − nn). (17)

The key stress dependence of a rock’s elastic modulus is con-
tained in how Bn (normal crack compliance) and Bt (tangen-
tial crack compliance) vary with stress, which we consider
first.

3.2.1 Exponential stress dependence of Bn and Bt

For penny-shaped cracks of radius a embedded in a host ma-
terial having drained elastic moduli of Kdo and µo, the crack
compliances prior to stress being applied are finite and given
by (e.g., Sayers and Kachanov 1995)

π Bn(0)
a

= 4
3

(3Kdo + 4µo)
µo(3Kdo + µo)

= 16
3

(
1 − ν2

o

)

Eo
, (18)

π Bt(0)
a

= 16
9

(3Kdo + 4µo)
(3Kdo + 2µo)

= 32
3

(
1 − ν2

o

)

Eo(2 − νo)
. (19)

A model for how Kdo and µo depend on the host porosity φo

can be proposed if desired. In the second form of each ex-
pression, we have replaced the drained bulk and shear mod-
ulus of the host material with the drained Young’s modulus
Eo and Poisson’s ratio νo, where Kdo = Eo/[3(1 − 2νo)] and
µo = Eo/[2(1 + νo)].

Once compressive stress is added, the cracks will begin
to close and strengthen causing the crack compliances to de-
crease from the above values and the rock to stiffen. If τ e is
not purely isotropic so that τ e = −PeI + τ D

e where τ D
e is the

deviatoric portion, then even if the cracks are isotropically
oriented in space at zero stress, once τ D

e is applied to a sam-
ple, cracks in different orientations will strengthen differently
resulting in the rock sample becoming elastically anisotropic.
Although in the comparison to data, we will, for convenience,
take τ e

n = −Pe (normal component of the effective traction)
and τ e

t = 0 (transverse component of the effective traction) in
modelling the stress interaction with a crack population so
that a sample remains isotropic with increasing stress; in the
development that follows, we will retain the general defini-
tions of equation (16) that allows for deviatoric stress and
thus allows for emergent anisotropy.

In order to obtain the stress dependence of the crack
compliances, we focus on the fracture aperture w, which is
the effective width of the gap present between the crack faces.
A change in the crack aperture dw brought on by a change
in the normal effective traction component dτ e

n = n · dτ e · n is
assumed governed by a Hooke’s law:

dτ e
n = σn

dw

w
, (20)

where the effective elastic modulus of the crack σn will be
determined shortly. We assume linear elasticity so that the
modulus σn is independent of stress. Integrating this equation
gives an expression for how the crack aperture varies with
stress:

w(τ e
n ) = w(0)eτ e

n/σn , (21)

where w(0) is the aperture at zero stress. Then, by definition
of the normal crack compliance, we have

Bn(τ e
n ) = dw(τ e

n )
dτ e

n
= w(0)

σn
eτ e

n/σn . (22)

By requiring Bn(0) to be given by equation (18), the crack
modulus is identified as

σn = πw(0)
a

3Eo

16
(
1 − ν2

o

) . (23)
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To make explicit the dependence on the aspect ratio

ϵ = w(0)
2a

, (24)

we write the crack-compliance stress dependence as

Bn(τ e
n ) = Bn(0) eτ e

n/(ϵCn), (25)

where the stiffness property of the host phase Cn is defined
from equation (23) as

Cn = 3π Eo

8
(
1 − ν2

o

) . (26)

The modulus σn = ϵCn can be interpreted as setting the stress
scale required for closing the cracks.

To obtain how Bt varies with stress, let dh represent a
tangential displacement of one crack face relative to the other
brought on by the application of the shear-stress increment
dτ e

t =
√

|n · dτ e|2 − (n · dτ e · n)2. A Hooke’s law is then given
as follows:

dτ e
t = σt

dh
w

, (27)

which directly gives from the definition of the tangential crack
compliance:

Bt(τ
e
n ) = dh

dτ e
t

= w(0)
σt

eτ e
n/(ϵCn). (28)

We can then use this expression at τ e
n = 0 to identify the elas-

tic shear modulus of the crack σt from equation (19), which
gives

Bt(τ
e
n ) = Bt(0)eτ e

n/(ϵCn). (29)

We will show later that this stress dependence can explain how
seismic velocities in sandstones vary with stress. Schoenberg
(2002) assumes the above exponential model for Bn and Bt

without discussion or derivation as have Zhang et al. (2009)
and Sayers and den Boer (2011).

We have also modelled the crack compliances Bn and Bt

using the “bed-of-nails” model of Gangi (1978) that allows
for a range of asperity heights in the gap of the crack; with
increasing applied stress, more asperities come into contact
and the crack stiffens. Due to the specific assumptions that
must be made to obtain analytical final results, the Gangi
bed-of-nails model does not do as good a job matching data
on sandstones (e.g., Han et al. 1986) and involves more un-
constrained parameters compared with the simple exponential
model that only involves the aspect ratio of a crack and the
elastic moduli of the host material. As such, we have elected
to use the above exponential-stress model for Bn and Bt in
this work.

3.2.2 The elastic moduli of a porous rock hosting a crack
population

We follow the approach of Sayers and Kachanov (1995),
which is equivalent to Schoenberg and Sayers (1995) and
Schoenberg (2002), in their modelling of how a population
of cracks influences the elastic compliances (not stiffnesses)
Si jkl of a dry porous rock. Since the derivation of this ef-
fective medium theory is straightforward and because we
perform the averaging over the crack population differently
than Sayers and Kachanov (1995), we present a self-contained
development.

The average strain tensor ei j in a sample ) of volume V
is defined:

ei j = 1
2V

∫

)

(∂i u j + ∂ j ui ) dV, (30)

where ui are the displacements throughout the sample and ∂i

is the gradient operator. Lets decompose the sample into host
(o) and crack (2) regions ) = )o + )2 with V = Vo + V2. We
then write

ei j = 1
2V

[∫

)o

(∂i u j + ∂ j ui ) dV +
∫

∂)2

(ni u j + nj ui ) dS

]

, (31)

where ∂)2 is the surface surrounding all the cracks. If we
assume the cracks are thin and symmetric about their minor
axis (e.g., penny shaped), a plane surface Sc can be made to
pass down the centre of each crack with a normal n that is in
the direction of the minor axis. We can then write

ei j = (1 − φ2)eo
i j + 1

2V

∑

c

∫

Sc

(ni [uj ] + nj [ui ]) dS, (32)

where eo
i j is the average strain throughout the host, φ2 the

porosity of all the cracks, and [ui ] the jump discontinuity in
displacement from one face of a penny-shaped crack to the
other.

Making a mean-field approximation that a uniform stress
tensor τi j acts throughout the host phase and on each crack,
we can write eo

i j = So
i jklτkl , where So

i jkl is the effective com-
pliance tensor of the host and [ui ] = Bikτklnl = Bilτlknk =
(Biknl + Bilnk)τkl/2 from equation (16). If we further intro-
duce the crack-compliance tensor of equation (17) and assume
that such discontinuity is uniform across each crack of surface
area Sc, we have

ei j = (1 − φ2)So
i jklτkl + *ei j , (33)

where *ei j is the strain contribution coming from the cracks
and given by

C⃝ 2016 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–25
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*ei j = 1
V

∑

c

Sc

[
(Bn − Bt)ni n j nknl

+ Bt

4
(
δiknln j + δ jknlni + δilnkn j + δ jlni nk

)]
τkl .

(34)

The effective compliance tensor of the cracked sample is then
written:

Si jkl = (1 − φ2)So
i jkl + *Si jkl , (35)

with the crack perturbations *Si jkl given by

*Si jkl = N
V

{
1
N

∑

c

Sc

[
(Bn − Bt)ni n j nknl

+ Bt

4
(
δiknln j + δ jknlni + δilnkn j + δ jlni nk

)]}
. (36)

Here, N is the total number of cracks in the system,
and the curly brackets contain an average over the crack
population.

The above formalism due to Sayers and Kachanov (1995)
allows one or more larger deterministic fractures to be present
in each sample ) or many smaller randomly oriented cracks or
some combination of the two. The central approximation in
this theory is using the mean stress to determine the linear-slip
discontinuities, and this approximation improves when the
cracks have some randomness to their orientations. Assuming
penny-shaped cracks for which Sc = πa2, the compliances Bn

and Bt were shown earlier to depend on the aspect ratio ϵ =
w(0)/(2a) = b(0)/a where b(0) is the minor semi-axis length
of the crack when τ e

n = 0 (c.f., Fig. 1).
Using pϵ|a(ϵ|a)pa(a)da dϵ to represent the probability that

any one crack has a radius within the range [a, a + da] and
an aspect ratio within [ϵ, ϵ + dϵ], we rewrite the average over
the cracks to obtain

*Si jkl = N
V

βt

∫ ∫
da dϵ pϵ|a(ϵ|a)pa(a)a3

×
(

δikg jl + δ jkgil + δil gkj + δ jl gik

2
− νohi jkl

)
, (37)

where the compliance βt is defined from equation (19) as

βt = π Bt

2a
= 16

3

(
1 − ν2

o

)

Eo(2 − νo)
= 2π

Cn(2 − νo)
. (38)

The crack orientation tensors (gi j and hi jkl ) are obtained as
averages over a specified range of crack-normal orientations

2

x3

x1

θ

n( φ ),θ

x

φ

a

a

a

b

Figure 1 Coordinates used to define the orientation of the crack nor-
mal n(θ, φa). A crack is modelled here as an oblate spheroid (or penny-
shaped crack) having a major radius a and a minor semi-axis length
b. The aspect ratio is ϵ = b/a.

ni (θ, φa) using solid angles:

gi j (a, ϵ) = 1
A(a, ϵ)

∫ θ+(a,ϵ)

θ−(a,ϵ)
sin θ dθ

∫ φa+(a,ϵ)

φa−(a,ϵ)
dφa

× ni (θ, φa)nj (θ,φa) exp
[

np(θ,φa)nq(θ, φa)τ e
pq

ϵCn

]
,

(39)

hi jkl (a, ϵ) = 1
A(a, ϵ)

∫ θ+(a,ϵ)

θ−(a,ϵ)
sin θ dθ

∫ φa+(a,ϵ)

φa−(a,ϵ)
dφa

× ni (θ,φa)nj (θ, φa)nk(θ,φa)nl (θ, φa)

× exp
[

np(θ, φa)nq(θ,φa)τ e
pq

ϵCn

]
. (40)

The angles θ and φa that define the crack orientations are given
in relation to the coordinate directions x̂i in Fig. 1. The total
solid angle A being integrated over in the average depends on
the range of angles [θ−, θ+] and [φa−, φa+], over which each
crack type (a, ϵ) has random orientations and is given by

A =
∫ θ+

θ−

sin θ dθ

∫ φa+

φa−

dφa =
(
φa+ − φa−

) (
cos θ− − cos θ+

)
.

(41)

As shown in Fig. 1, the crack normal n is given by

n(θ,φa) = sin θ (cos φa x̂1 + sin φa x̂2) + cos θ x̂3. (42)

By choosing the ranges [θ−, θ+] and [φa−, φa+] for each type
of crack (a, ϵ), various types of anisotropy can be allowed
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for. Even if the cracks are isotropically oriented over all pos-
sible angles, so long as τ e has a deviatoric component, there
will emerge a stress-induced anisotropy as deviatoric stress
increases from zero.

In the case of isotropic stress τ e = −Pe I and isotropic
crack orientations θ− = 0, θ+ = π , φa− = 0, φa+ = 2π , and
A = 4π , the integrals (39) and (40) can be performed analyt-
ically to give

gi j =
δi j

3
e−Pe/(Cnϵ), (43)

and

hi jkl = 1
15
(
δi jδkl + δikδ jl + δilδ jk

)
e−Pe/(Cnϵ). (44)

These are indeed seen to be isotropic second-order and fourth-
order tensors.

In all that follows, we assume that the probability of
observing a crack to have an aspect ratio ϵ is statistically inde-
pendent from the crack’s radius a so that pϵ|a(ϵ|a) = pϵ(ϵ). We
can then perform the integral over a to define a crack-density
parameter ρc as

ρc = N
V

∫
da pa(a)a3 = N

V
⟨a3⟩. (45)

In the case of isotropic stress τ e
pq = −Peδpq and isotropic crack

orientations, the perturbation of the compliances is

*Si jkl = ρcβt

15
[
(5 − νo)

(
δikδ jl + δ jkδil

)
− νoδi jδkl

]
f (Pe), (46)

where the effective stress function is:

f (Pe) =
∫

dϵ pϵ(ϵ)e−Pe/(Cnϵ). (47)

When the host material is isotropic, we also have

So
i jkl = (1 + νo)

2Eo

(
δikδ jl + δ jkδil

)
− νo

Eo
δi jδkl , (48)

so that the non-zero compliances of the fractured rock in the
fully isotropic case are given by

S1111 = S2222 = S3333 = 1
Eo

+ ρcβt

(
2
3

− νo

5

)
f (Pe), (49)

S1122 = S1133 = S2233 = − νo

Eo
− ρcβt

νo

15
f (Pe), (50)

S1212 = S1313 = S2323 = (1 + νo)
Eo

+ ρcβt

(
1
3

− νo

15

)
f (Pe).

(51)

We see that S1212 = (S1111 − S1122)/2, which is a general re-
quirement of any isotropic elastic material and is a consistency
check. Equations (49)–(51) and (47) determine how the elastic

constants depend on crack density ρc and effective stress Pe in
an isotropic cracked porous material.

Finally, by inverting the isotropic compliance tensor, we
obtain the bulk and shear moduli of the isotropic cracked rock
as

Kd(Pe) = 1
3(S1111 + 2S1122)

, (52)

µ(Pe) = 1
2(S1111 − S1122)

= 1
4S1212

. (53)

At high effective pressure, where cracks are mainly closed,
these moduli are set by the moduli Kdo (or Eo) and νo of the
non-cracked host rock. At low effective pressure, where the
cracks are open, the associated decrease in the moduli is con-
trolled by the crack density ρc, which is independent of Pe.
The transition of the moduli from low to high pressures is set
by the functional nature of the aspect-ratio probability distri-
bution pϵ and the range of aspect ratios present as equation
(47) for f (Pe) makes clear.

In cases of a general stress tensor with deviatoric stress
present and where the cracks are grouped into subsets s within
which all cracks in the subset have the same orientation θs

and φas and a crack density ρ
(s)
c = Ns⟨a3⟩/V such that ρc =

∑M
s=1 ρ

(s)
c for all M subsets, we obtain the anisotropic form of

the above

Si jkl = So
i jkl + βt

M∑

s=1

ρ(s)
c

(
δikg(s)

jl + δ jkg(s)
il + δ jkg(s)

il + δ jl g
(s)
ik

2

− νoh(s)
i jkl

)

fs(τ
e
pq). (54)

The crack normals of subset s are defined

n(s)
1 = sin θs cos φas, (55)

n(s)
2 = sin θs sin φas, (56)

n(s)
3 = cos θs, (57)

where θs and φas are the orientation angles for all cracks in this
subset of all cracks. The crack orientation tensors for subset
s are then simply read off from equations (39) and (40) as

g(s)
i j = n(s)

i n(s)
j exp

(
n(s)

p n(s)
q τ e

pq

Cnϵ

)

, (58)

and

h(s)
i jkl = n(s)

i n(s)
j n(s)

k n(s)
l exp

(
n(s)

p n(s)
q τ e

pq

Cnϵ

)

. (59)
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These expressions are independent of each crack’s radius a.
All stress dependence of each subset is defined by the function

fs

(
τ e

pq

)
=
∫

dϵ pϵ(ϵ) exp

(
n(s)

p n(s)
q τ e

pq

Cnϵ

)

, (60)

with crack normals again given by equations (55) – (57). These
expressions work even if M = 1 (the entire crack population
having one orientation).

3.3 Porosity change when cracks are present

We can translate the crack density ρc into a crack porosity
φ2 and thus obtain an expression for how the porosity of the
entire rock is changing with stress. Assuming penny-shaped
cracks with each crack having volume 4πa2b/3 and with the
total volume of all cracks being V2, one obtains

φ2(Pe) = V2

V
= 4π

3
⟨ϵ(Pe)⟩ρc, (61)

where the average aspect ratio as a function of Pe is

⟨ϵ(Pe)⟩ =
∫

pϵ(ϵ) ϵ e−Pe/(Cnϵ) dϵ. (62)

This expression for φ2 formally assumes that the cracks do
not overlap. For overlapping cracks of a single-aspect ratio,
one replaces φ2 on the left-hand side of equation (61) with
− ln(1 − φ2) (e.g., Garboczi et al. 1991) which reduces to φ2

in the common case where φ2 ≪ 1, i.e., even if cracks are
overlapping, the volume of their intersection is negligible when
the aspect ratios are small.

The total porosity of the rock is then given as follows:

φ(Pe) = (V − V2)φo + V2

V
= φo + (1 − φo)ρc

4π

3
⟨ϵ(Pe)⟩, (63)

where we are using that the host porosity φo is the fraction
of the non-cracked volume V − V2 that is occupied by pores.
Although the crack porosity V2/V is varying strongly with Pe,
there simply may not be much crack porosity contributing to
the total porosity, especially in sandstones.

Taking a derivative of equation (63) gives

dφ =
(

1 − ρc
4π

3
⟨ϵ(Pe)⟩

)
dφo − (1 − φo)ρc

4π

3Cn
f (Pe) dPe.

(64)

In this expression, f (Pe) is given by equation (47) and ⟨ϵ(Pe)⟩
by equation (62). Earlier, we showed that when no cracks
are present, the change dφo of the background host phase is
negligible. However, with cracks being present, the change of
the background host porosity can be more important.

The earlier expression (12) for the total change in con-
nected porosity, which is an exact result of poroelasticity for
monomineral Gassmann materials, is still valid once cracks
are present; however, we must use the expression for Kd(Pe)
given by equation (52) that allows for the crack population,
i.e.,

dφ = −
(

(1 − φ)
Kd(Pe)

− 1
Ks

)
dPe. (65)

This expression is the one we will use to compare to data on
how porosity varies with Pe.

To know how the background host porosity φo is chang-
ing with Pe, equations (64) and (65) are equated. For sand-
stones or other porous rocks with porosity on the order of a
few percent or more, it is justified to take φ ≈ φo in equation
(65) when doing so. The result is

dφo

dPe
= (1 − φo)ρc f (Pe)4π/(3Cn) − (1 − φo)/Kd(Pe) + 1/Ks

1 − ρc⟨ϵ(Pe)⟩4π/3
.

(66)

This non-linear differential equation determines φo(Pe) start-
ing from an initial condition. With φo(Pe) known, the drained
moduli of the background host will vary with Pe according to
equation (13).

We earlier showed in Section 3.1 that the porosity of the
background host material does not vary significantly with Pe

(at least over the 0–30 MPa range of interest) in the absence
of a crack population. However, with a crack population,
equation (66) allows φo(Pe) to vary more significantly with
effective stress, and accordingly, Kdo(Pe) and µo(Pe) can be
considered to vary using a favorite effective medium theory
such as given earlier by equation (13).

4 MODELS FOR HOW PERMEABIL ITY AND
FORMATION FACTOR CHANGE WITH
S T R E S S

Here, we allow for how the porespace properties of perme-
ability k and formation factor F are varying with stress as
influenced by the crack population. As discussed in the later
Section 5.2, the formation factor is the key geometric property
of the porespace controlling the overall electrical conductivity
of the rock. In what follows, a subscript o always refers to the
background host phase.
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4.1 Permeability of the host material as a function of stress

To allow for how the permeability of the host phase is evolving
with stress, we assume the permeability of the host obeys a law
of the form ko = c ℓ2

o/Fo (e.g., Johnson, Koplik, and Schwartz
1986; Thompson, Katz, and Krohn 1987), where Fo is the
formation factor of the host, ℓo is an appropriate pore size,
and c is a time-independent constant that depends on the
precise definition of ℓo and will not be of importance. Taking
the derivative one has

dko

ko
= 2

dℓo

ℓo
− dFo

Fo
. (67)

The host’s pore volume goes as Vφo = Nφℓ3
o where Nφ is a

time-independent constant; this form is appropriate for the
equant pores of the host phase. Taking the derivative gives
dℓo/ℓo = dVφo

/(3Vφ), where from the definition φo = Vφo/Vo

gives dVφo = Vodφo − φodVo with dφo given by equation (12)
and dVo/Vo = −(dPc − αodP)/Kdo by one of the isotropic
poroelasticity laws. If we further assume the formation factor
of the host to be given by Archie’s (1942) law Fo = φ−m

o , where
m is another time-independent constant, the earlier poroe-
lasticity laws of Section 3.1 give the permeability evolution
equation of the host as follows (e.g., Pride 2005):

dko

ko
= −Ck(dPc − αkdP), (68)

where the permeability compliance of the host is defined as

Ck = 2αo/3 + m(αo − φo)
φoKdo

, (69)

and where the permeability effective-stress coefficient of the
host is

αk = φoαom − (2/3 + m)(αo/Bo − φo)
φom − (2/3 + m)αo

. (70)

In these coefficients, αo = 1 − Kdo/Ks , Bo, and Kdo are the
poroelastic moduli of the host phase. Both Ck and αk de-
pend on Pe through φo(Pe) and Kdo(Pe) [e.g., equation (13)].
The permeability has a different effective-stress coefficient (αk)
compared with that of the porosity and drained moduli of the
host (unity) because, although the porosity and the drained
moduli are scale invariant (their values do not change if the
porous host is uniformly expanded or contracted in size), the
permeability is not scale invariant.

If in a first approximation the porosity and elastic moduli
of the host are assumed to vary negligibly with stress over the
stress range 0–30 MPa, equation (68) can then be integrated
analytically to obtain the explicit form as follows:

ko(τ , P) = ko(0)e−Ck(Pc−αkP). (71)

However, in the comparison to laboratory data, we find in
Section 5 that it is somewhat better to allow for the coefficients
Ck and αk to vary with stress and to determine the associated
change of host permeability at each stress increment using
equation (68).

In what follows, we assume that the formation factor
of the host material follows Archie’s law Fo = φ−m

o with φo

determined from equation (66).

4.2 The permeability and formation factor of a porous rock
hosting a crack population

To treat how a crack population influences the permeability,
Oda (1985) adopts a mean-field approach in which a uniform
pressure gradient is driving flow both through the background
porous-host phase and through the crack population. The
Oda (1985) approach is directly analogous to the Sayers and
Kachanov (1995) treatment of how the average stress creates
strain in both the host and crack phases. Here, we use the
Oda (1985) approach to obtain the effective permeability of
a cracked rock as well as the formation factor (a problem
not considered by Oda, (1985)) and do so using the same
formalism (e.g., the definition of the crack density) as used
in the elastic moduli modeling, which is distinct from Oda’s
(1985) presentation.

To obtain an expression for the effective permeability,
focus is placed on the mean Darcy flux q through a sample
that is again divided into a host phase )o and crack phase )2

(with V = Vo + V2). We have

q = 1
V

[∫

)o

qo dV +
∫

)2

v f dV

]

(72)

= 1
V

[

Voq̄o + 4π

3

∑

c

v̄ f c bc a2
c

]

(73)

= (1 − φ2)q̄o + 4π

3
N
V

{
1
N

∑

c

v̄ f c bc a2
c

}

. (74)

Here, qo is the local Darcy flux in the host phase and q̄o is the
average Darcy flux in the host phase. Similarly, v f is the local
fluid velocity in the cracks, and v̄ f c is the average fluid velocity
in a particular crack c. The mean-field approximation assumes
that −∇ P is the mean force density driving flow throughout
the entire sample so that q̄o = −ko · ∇ P/η, where η is the fluid
viscosity and ko is the permeability tensor of the host. After
averaging the Poisseuile flow in a crack having minor axis bc,
we obtain

v̄ f c = −b2
c

νk
(I − nn) · ∇ P

η
, (75)
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where the prefactor νk is equal to 3 if the crack is modelled as
a planar gap of infinite extent and, as noted by Oda (1985),
will be larger than 3 for cracks of finite extent (such as penny-
shaped cracks). For the time being, we retain νk as a fitting
term to be determined, while expecting νk ≥ 3, but will more
thoroughly model νk in the percolation model of Section 4.4.
In the above, we are following Oda (1985) and Kachanov
(1980) in assuming that only the component of the macro-
scopic pressure gradient that is parallel with the crack con-
tributes to flow in the crack. The cracks are so thin that the
fluid flow perpendicular to a crack is controlled entirely by
the flow in the host and need not be separately allowed for.

Thus, in the overall effective Darcy law for the sample
qi = −ki j∂ j P/η, the effective permeability tensor is given by

ki j = (1 − φ2)ko
i j + 4π

3νk

N
V

{
1
N

∑

c

b3
c a2

c (δi j − ni n j )

}

, (76)

= (1 − φ2)ko
i j + 4π

3νk

N
V

∫ ∫
dϵ da pϵ|a(ϵ)pa(a)ϵ3a5ci j (a, ϵ),

(77)

where the aspect ratio ϵ = bc(0)/ac is again defined at zero
effective stress and the tensor ci j is defined as

ci j (a, ϵ) = 1
A

∫ θ+

θ−

dθ

∫ φa+

φa−

dφa

[
δi j − ni (θ,φa)nj (θ, φa)

]

× exp
(

3np(θ, φa)nq(θ,φa)τ e
pq

Cnϵ

)
. (78)

The factor of 3 in the exponential is from the cubic dependence
on aperture. The solid angle A being integrated over is given
by equation (41) and the crack normal ni (θ,φa) by equation
(42).

For the special case of all cracks having the same orienta-
tion with a normal given by equations (55)–(57), the averaging
over the angles can be dispensed with to obtain

ci j =
(
δi j − ni n j

)
exp
(

3np(θ,φa)nq(θ, φa)τ e
pq

Cnϵ

)
, (79)

which has no dependence on a and an ϵ dependence confined
to the exponential.

If we now specialise to the case of isotropy so that τ e =
−Pe I, ci j = 2δi j/3 and ko

i j = koδi j and if the aspect ratios of
the cracks are uncorrelated to crack radius, then the effective
isotropic permeability k is

k = (1 − φ2)ko + 8π

9νk
ρc

⟨a5⟩
⟨a3⟩

∫
dϵ pϵ(ϵ)ϵ3 e−3Pe/(Cnϵ). (80)

Here, ρc = N⟨a3⟩/V is the crack density and angle brack-
ets denote averaging using the probability density pa(a). If

we introduce the crack porosity φ2 through the relation
ρc = 3φ2/(4π⟨ϵ(Pe)⟩ of equation (61) and use the fact that
φ2 ≪ 1 in all applications to rocks, we can rewrite equation
(80) as

k = ko + 2φ2

3νk

⟨a5⟩
⟨a3⟩

⟨ϵ(Pe)3⟩
⟨ϵ(Pe)⟩

, (81)

where we introduced the notation ⟨ϵ(Pe)n⟩ =∫
dϵ pϵ(ϵ)ϵn exp[−nPe/(Cnϵ)] for any power n.

To obtain the equivalent mean-field approximation for
the inverse formation factor tensor Gi j = F −1

i j , we retain the
above formalism but replace b2

c /νk with 1/νG in the expression
for the mean flux through each crack, where νG = 1 for cracks
modelled as infinite planar gaps and νG > 1 for cracks of finite
extent. We obtain

Gi j = F −1
i j = (1 − φ2)Go

i j + 4π

3νG

N
V

{
1
N

∑

c

bca
2
c (δi j − ni n j )

}

,

(82)

= (1 − φ2)Go
i j + 4π

3νG

N
V

∫∫
dϵ da pϵ|a(ϵ)pa(a)ϵa3di j (a, ϵ),

(83)

where the tensor di j is defined as

di j (a, ϵ) = 1
A

∫ θ+

θ−

dθ

∫ φa+

φa−

dφa

[
δi j − ni (θ, φa)nj (θ,φa)

]

× exp
[

np(θ, φa)nq(θ, φa)τ e
pq

Cnϵ

]
. (84)

The difference between di j and ci j is the factor of 3 in the
exponential. The inverse formation factor of the host can
be modelled as being isotropic Go

i j = Goδi j , where Go can be
modeled using Archie’s (1942) law Go = φm

o or any favorite
model. In this case, all electrical anisotropy is due to the crack
population alone.

If we specialise to the case of isotropic stress and crack
orientations, we take τ e = −Pe I to obtain

G = 1
F

= (1 − φ2)Go + 8π

9νG
ρc

∫
dϵ pϵ(ϵ)ϵ e−Pe/(Cnϵ). (85)

This will be the model of inverse formation factor to be
compared with data. From equation (61), we again have
ρc = 3φ2/(4π⟨ϵ(Pe)⟩, which along with the fact that φ2 ≪ 1,
allows equation (85) to be rewritten in the compact form:

G = Go + 2φ2

3νG
. (86)

In the following section, we will see that when the background
host phase is sufficiently conductive and when the aspect ratio
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of the cracks is sufficiently small, then νG = 1 is an excellent
approximation. Under these same conditions, we will also see
that taking νk = 3 is equivalently good in the permeability
model.

Similar to the model for the overall rock compliance,
the above non-interacting-crack mean-field model has both
permeability and inverse formation factor linear in the crack
density ρc. This is likely adequate for most applications in
which the host is both permeable and conductive. However,
when the host is not permeable or conductive, this model
clearly runs into problems for populations at low crack den-
sities where the cracks do not percolate across the sample and
yet the model predicts a finite permeability or conductivity for
the rock sample. A percolation extension of the above model
is therefore explored next.

4.3 Percolation model for electrical conduction

We develop an alternative model that says once the randomly
positioned crack population reaches a critical crack density
ρ̃c, the cracks will overlap with one another sufficiently to
allow a continuous transport path through the crack phase.
It will be convenient to first develop the model in terms of
the crack porosity φ2 and then convert the problem back to
crack density at the end if desired. The central limitation of
the percolation model presented here is that what is known
at present about percolation of penny-shaped cracks involves
crack populations of a single aspect ratio and crack radius
[pϵ = δ(ϵ − ϵ1) and pa = δ(a − a1)]. Our approach for dealing
with this is to interpret the ϵ and a in what follows as their
mean values ⟨ϵ⟩ and ⟨a⟩ if there is a range of ϵ and a present
in our samples. Finally, for convenience, we will limit this
percolation model to isotropic crack distributions.

A schematic of the model is shown in Fig. 2. Mathemati-
cally, our model for the overall isotropic rock conductivity σR

in the absence of surface conduction (c.f., Section 5.2) takes
the following form:

σR(φ2) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σlow(φ2) when 0 ≤ φ2 < φ̃2

σcr(φ2) = σlow(φ2) + σ f γp

(
φ2 − φ̃2

)t

when φ̃2 ≤ φ2 < φ∗
2

σhi(φ2) when φ2 ≥ φ∗
2.

(87)

At low-enough crack concentrations, the cracks are isolated in
the porous host material. Any of the three standard effective
medium theories (Maxwell, self-consistent, and differential
embedding) give identical results for the overall conductiv-
ity σlow(φ2) to leading (linear) order in φ2. At a critical crack

σ

~φ φ2
* φ2

concentration
region

concentration
high

regionregion
critical

low

2

Figure 2 Schematic of the conductivity model. In the low-
concentration region, the cracks do not overlap, and the conductivity
varies linearly with crack porosity φ2. Any of the standard effective
medium theories give identical results in this region. At a critical crack
porosity φ̃2, the cracks form a connected path across the sample, and
percolation theory applies. In the high-concentration region, an ef-
fective medium theory is used to model the conductivity in the range
φ2 ≥ φ∗

2.

porosity φ̃2, the randomly placed cracks will form a connected
path through the system, and percolation theory is used to
model the conductivity through a so-called “critical region”
where the conductivity exponent t is a universal constant for
all cracked rocks. The dimensionless proportionality constant
γp is expected to be close to one. Finally, at still higher crack
concentrations φ2 > φ∗

2, the clusters have sufficiently merged
with the backbone and deadends that we can use any of
the three effective medium theories to add cracks by writ-
ing φ2 = φ∗

2 + δφ2 and developing a dilute model σ (δφ2) for a
volume fraction δφ2 of cracks embedded into a background
of conductivity σlow(φ∗

2) + σ f γp(φ∗
2 − φ̃2)t. The transitional

crack porosity φ∗
2 is obtained from the continuity condition

that

dσlow

dφ2

∣∣∣∣
φ2=φ∗

2

+ tσ f γp(φ∗
2 − φ̃2)t−1 = dσhi

dδφ2

∣∣∣∣
δφ2=0

. (88)

This condition assures a smooth transition from the critical
region to the high-concentration region.

In the ideal way of developing a percolation model that is
valid across the entire range φ2 (e.g., Kirkpatrick 1973), one
would use an effective medium theory to define σhi in the high
embedded-volume-fraction limit φ2 → 1, which corresponds
to the host “o” becoming the small volume-fraction embedded
phase and the embedded phase “2” becoming the host phase.
This would give σhi(φ2) valid as φ2 → 1. One would then find
the two constants γp and φ∗

2 from the condition (88) and from
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the additional constraint that when φ2 = φ∗
2, one has

σlow(φ∗
2) + σ f γp(φ∗

2 − φ̃2)t = σhi(φ
∗
2). (89)

However, the φ2 → 1 limit is difficult to define or even imag-
ine (cracks occupying the entire sample); thus, we prefer to
take γp = 1 in what follows and use only equation (88) to
determine φ∗

2.
It is convenient to normalise the electrical conductivity

by the fluid conductivity σR = σ f G and determine the inverse
formation factor G = 1/F .

At low concentrations, we model Glow(φ2) using the
coherent-potential approximation (e.g., Torquato 2002) for
the effective conductivity of a porous host material having
Go = φm

o ≪ 1 with oblate ellipsoids having G2 = 1 dilutely
embedded in it. The coherent potential approximation for in-
verse formation factor Glow yields

(1 − φ2)(Glow − Go) + φ2(Glow − 1)R(2o) = 0. (90)

Throughout what follows, we will need the so-called concen-
tration parameter R(2h) for an embedded phase 2 placed in a
host phase h.

For a uniform electric field Eo applied at infinity to a
host (phase h) containing a single embedded ellipsoid (phase
2) with axis of revolution in the Eo direction, the electric field
E inside the ellipsoid is uniform and given by E = R(2h) · Eo,
where (e.g., Stratton 1941)

R(2h) =

⎡

⎢⎣

⎛

⎜⎝
1 0 0
0 1 0
0 0 1

⎞

⎟⎠+ (G2 − Gh)
Gh

⎛

⎜⎝
Q 0 0
0 Q 0
0 0 1 − 2Q

⎞

⎟⎠

⎤

⎥⎦

−1

.

(91)

For oblate ellipsoids having minor axis b = w/2 (where w is
the crack aperture) and major axis a (where a is crack radius)
and b/a < 1, the shape factor Q is given by

Q = 1
2

[

1 + 1
(b/a)2 − 1

(

1 − tan−1
√

(a/b)2 − 1
√

(a/b)2 − 1

)]

, (92)

which for b/a ≪ 1 (penny-shaped cracks) reduces to

Q = π

4
b
a

. (93)

For the isotropic rock models we are developing in this paper,
we then have that the concentration parameter R(2h) is

R(2h) = tr(R(2h))
3

= 1
3

[
2Gh

(1 − Q)Gh + QG2
+ Gh

2QGh + (1 − 2Q)G2

]
.

(94)

In this expression for R(2h), no assumptions have been made
about the relative sizes of Glow and Gh as compared with the
crack phase G2 = 1 or to Q.

Returning to the low-concentration limit, we then have
that with G2 = 1 and Gh = Go = φm

o ≪ 1, the leading order
result in φ2 becomes

Glow(φ2) = Go + (1 − Go)
2
3

[1 + (Go + Q)/2]
(1 + Q/Go)

φ2, (95)

where we used the result

R(2o) = 1
3

[
2Go

(1 − Q)Go + Q
+ Go

2QGo + 1 − 2Q

]
(96)

= 2
3(1 + Q/Go)

(
1 + (Go + Q)

2
[1 + O(Q)]

)

× [1 + O(QGo)] (97)

≈ 2
3(1 + Q/Go)

(
1 + (Go + Q)

2

)
. (98)

Here, we are assuming that Go ≪ 1 and Q ≪ 1. Typically, for
most materials of interest, we will have Q < Go but not hugely
so. Note that it is through Q = πb/(4a) = π⟨ϵ(Pe)⟩/4 that the
effective pressure dependence of the electrical conductivity
(formation factor) is modelled.

Comparing equations (95) and (86), we can identify the
parameter νG more precisely as

νG = 1 + Q/Go

(1 − Go)[1 + (Go + Q)/2]
. (99)

Whenever Q ≪ Go ≪ 1, which is commonly the case, we have
νG → 1 from above. Because the dilute limit of equation (95) is
independent of the type of effective medium theory employed,
equation (99) for the parameter νG can be considered generally
valid for penny-shaped cracks.

The inverse formation factor in the critical region
φ̃2 < φ2 < φ∗

2 is given by (with γp = 1)

Gcr = Go + (1 − Go)
2
3

[1 + (Go + Q)/2]
(1 + Q/Go)

φ2 +
(
φ2 − φ̃2

)t
.

(100)

To obtain the percolation threshold φ̃2, Garboczi et al. (1995)
place oblate spheroids at random positions inside an insulating
host (allowing for cracks to intersect) and numerically find
that when b/a < 10−3 (which is our “penny-shaped” regime
of interest), the percolation threshold is

φ̃2 = 1.27
b
a

. (101)

In a more recent study, Yi and Tawerghi (2009) perform a
similar numerical study and find the percolation threshold
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to be φ̃2 = (0.9614 ± 0.0005)b/a. No reason for the discrep-
ancy between the 1.27 and 0.96 factors has been suggested
in the literature; however, for our purposes, simply taking
the percolation threshold to be φ̃2 ≈ b/a makes no discernible
difference in the final modeled results.

The total volume fraction η2 of all embedded objects is

η2 = v2
N
V

, (102)

where v2 is the volume of each inclusion and N is the total
number of inclusions embedded in a volume V. The actual
embedded porosity φ2 allows for the randomly placed inclu-
sions to overlap. The relation between the two is (Garboczi
et al. 1991)

φ2 = 1 − e−η2 . (103)

The relation between crack density ρc and crack porosity φ2

when cracks can overlap is then (note that v2 = 4πba2/3 so
that η2 = 4πbρc/(3a))

ρc = − 3a
4πb

ln(1 − φ2), (104)

which reduces to the earlier statement (61) when φ2 ≪ 1
(which is always the case). We thus find that the critical crack
density for the percolation of penny-shaped cracks is

ρ̃c = − 3a
4πb

ln (1 − b/a) ≈ 3
4π

= 0.24, (105)

although we continue to formulate the inverse formation fac-
tor in terms of crack porosity.

In the high-concentration regime, we are embedding
cracks into a background host having inverse formation
factor Gcr(φ∗

2). The total crack porosity in this regime is
φ2 = φ∗

2 + δφ2. Any of the three effective medium theories will
give the same result for Ghi(δφ2) in the limit as δφ2 → 0. In
this limit, we have that

Ghi(δφ2) = Gcr(φ
∗
2) + sm δφ2, (106)

where

Gcr(φ
∗
2) = Go + soφ

∗
2 +
(
φ∗

2 − φ̃2

)t
, (107)

and

so = [1 − Go]
2
3

[1 + (Go + Q)/2]
[1 + Q/Go]

, (108)

sm = [1 − Gcr(φ
∗
2)]

2
3

[1 + (Gcr(φ∗
2) + Q)/2][

1 + Q/Gcr(φ∗
2)
] . (109)

The transition probability φ∗
2 physically corresponds to when

enough crack clusters have linked to the initial backbone and
dead-end clusters that connected cracks are rather uniformly

spaced throughout the volume and effective-medium theory
is again appropriate. This transition threshold is defined from
the condition:

dGhi

dδφ2

∣∣∣∣
δφ2=0

= dGcr

dφ2

∣∣∣∣
φ2=φ∗

s

, (110)

which yields the implicit equation

so − sm + t
(
φ∗

2 − φ̃2

)t−1 = 0. (111)

Due to the complicated dependence sm = sm(φ∗
2) given by equa-

tions (109) and (107), equation (111) is best solved numeri-
cally for φ∗

2. From the functional nature of sm(φ∗
2), it is guar-

anteed that the solution of equation (111) always satisfies
φ∗

2 > φ̃2. Finally, if φ∗
2 is just slightly larger than the percolation

threshold φ̃2, it may be of interest to define the high-crack-
porosity limit using any one of the three standard effective
medium theories (i.e., the Maxwell (or Mori-Tanaka), self-
consistent (or coherent potential), and differential-embedding
approximations) over larger ranges of the crack porosity
where the conductivity is not just linear in the additional-
crack porosity as assumed above. Torquato (2002) provides
a convenient summary of the three effective medium theories
for conductivity.

Bringing the model together, the rock conductivity is
given by σR = σ f G = σ f /F , where the inverse formation fac-
tor G = 1/F is given by

G(φ2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Go + soφ2 when 0 ≤ φ2 < φ̃2

Go + soφ2 +
(
φ2 − φ̃2

)t when φ̃2 ≤ φ2 < φ∗
2

Go + soφ
∗
2 +
(
φ∗

2 − φ̃2

)t + sm(φ2 − φ∗
2)

when φ2 ≥ φ∗
2, (112)

where so and sm are given by equations (108) and (109), φ∗
2

the solution of equation (111), φ̃2 = b/a, and Go can be esti-
mated from Archie’s law to be Go = φm

o (or from some other
preferred means). To express these results in terms of the crack
density ρc instead of the crack porosity φ2, we use

φ2(Pe) = 1 − exp
(

−4πb(Pe)ρc

3a

)
≈ 4π

3
b(Pe)

a
ρc. (113)

Finally, the half-aperture b varies with stress as b(Pe) =
w(Pe)/2 = b(0) exp[−Pe/(ϵCn)], where Cn is given by equa-
tion (26), and ϵ = b(0)/a is the aspect ratio at zero stress.

The earlier model for G of equation (86) is entirely equiv-
alent to the low-crack porosity limit given by G = Go + soφ2.
For the non-linear percolation term in equation (112) to
be negligible even at crack porosities above threshold, we
need Go ≫ (b/a)2, where we used φ̃2 = b/a and t = 2. If
b/a = 10−3, then so long as Go ≫ 10−6 (i.e., F ≪ 106), which
it most commonly will be, the earlier model of equation (86)
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Figure 3 Inverse formation factor G = 1/F as a function of crack
density ρc for both a modelled crystalline rock with embedded cracks
(upper panel) and a sandstone with embedded cracks (lower panel).
The results called “mean-field model” correspond to equation (86),
whereas those called “percolation model” correspond to equation
(112). For the case of sandstones with large background (or host)
conductivities, the percolating backbone of cracks has little influence
on the overall conductivity. The thresholds ρ̃c and ρ∗

c are given in
Table 1.

will be accurate even post percolation. This is simply saying
that because the cracks are thin and because the crack-porosity
backbone at percolation occupies such a small volume frac-
tion and is rather tortuous, there is simply not enough current
going through cracks compared with the conductive host for
it to matter whether the cracks are connected or not.

In Fig. 3, we compare the estimates of G produced by
equations (112) and (86). In the top panel of Fig. 3, we
choose a very low level of background porosity φo = 10−3,
which gives a background inverse formation factor of
Go = 1/Fo = 10−6 (e.g., crystalline rock). One sees that,
once the cracks percolate, the backbone makes a noticeable
contribution to the rock conductivity. However, as seen in the
lower panel, for a background porosity of φo = 10−1, which
gives a background inverse formation factor of Go = 10−2

Table 1 Thresholds in the percolation conductivity models of Fig. 3

φo = 10−1 and Go = 10−2 (lower panel of Figure 3)

b/a = 5 × 10−3 b/a = 1 × 10−3

φ̃2 6.375×10−3 1.275×10−3

ρ̃c 0.3054 0.3046
φ∗

2 6.820×10−2 8.193×10−3

ρ∗
c 3.372 1.964

φo = 10−3 and Go = 10−6 (upper panel of Figure 3)

b/a = 5 × 10−3 b/a = 1 × 10−3 b/a = 5 × 10−4

φ̃2 6.375×10−3 1.275×10−3 6.375×10−4

ρ̃c 0.3054 0.3046 0.3045
φ∗

2 0.3105 0.3139 0.3139
ρ∗

c 17.75 89.93 179.9

(sandstone), whether the cracks percolate or not makes little
change compared with the background conductivity and
background (non-percolating) embedded cracks. The perti-
nent thresholds in the percolation model are given in Table 1.

4.4 Percolation model for permeability

To make a percolation model for the permeability, it is suffi-
cient to use the conductivity model above and insert Gh = ko

for the conductivity of the host phase and G2 = b2/3 = w2/12
for the conductivity of the embedded cracks. If we identify a
dimensionless permeability

κo = 3ko/b2 ≪ 1, (114)

we can simply substitute κo for Go in the conductivity model
to obtain the permeability model

k(φ2) = b2

3

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

κo + roφ2 when 0 ≤ φ2 < φ̃2

κo + roφ2 +
(
φ2 − φ̃2

)t when φ̃2 ≤ φ2 < φ∗
2k

κo + roφ
∗
2k +
(
φ∗

2k − φ̃2

)t + rm(φ2 − φ∗
2k)

when φ2 ≥ φ∗
2k, (115)

where ro and rm are obtained from equations (108) and (109)
as

ro = [1 − κo]
2
3

[1 + (κo + Q)/2]
[1 + Q/κo]

, (116)

rm =
[
1 − κcr(φ

∗
2k)
] 2

3
[1 + (κcr(φ∗

2k) + Q)/2][
1 + Q/κcr(φ∗

2k)
] , (117)

with

κcr(φ
∗
2k) = κo + roφ

∗
2k +
(
φ∗

2k − φ̃2

)t
. (118)
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The transition probability φ∗
2k is numerically distinct from

the conductivity threshold φ∗
2 but again corresponds to

when enough cracks have linked up to the backbone that
a high-concentration limit can be defined using effective
medium theory. It is obtained as the solution of the implicit
equations

ro − rm + t
(
φ∗

2k − φ̃2

)t−1 = 0, (119)

which, due to the complicated dependence rm = rm(φ∗
2k) given

by equations (117) and (118), is best solved numerically. From
the functional nature of rm(φ∗

2), it is guaranteed that the so-
lution of equation (119) always satisfies φ∗

2k > φ̃2. To express
these results in terms of the crack density ρc instead of the
crack porosity φ2, we again use equation (113).

For situations in which there is only a single value of
ϵ and a throughout the crack population, the earlier model
of equation (80) becomes k = ko + (2φ2b2)/(3νk), which can
be compared with the dilute limit of the percolation model
klow = ko + roφ2b2/3 to yield

νk = 3(1 + Q/κo)
(1 − κo)(1 + (κo + Q)/2

. (120)

Under the common conditions where Q ≪ κo ≪ 1, we have
νk = 3 as anticipated.

The results of Fig. 3 directly translate to permeability if
we identify the dimensionless parameter κo with Go. As ear-
lier, the percolation term is negligible in the percolation model
whenever κo ≫ (b/a)2. For a low-permeability host having
ko = 10−16 m2 and if b =

√
3 × 10−5 m, then κo = 10−6 and

the percolation results in the upper panel of Fig. 3 hold (ex-
actly) after multiply by b2/3. For a high-permeability host hav-
ing ko = 10−12 m2 and with b =

√
3 × 10−5 m, then κo = 10−2

and the results of the lower panel of Fig. 3 hold (exactly) after
multiplying by b2/3.

5 COMPARISON OF MODELLED
GE O PHY S I CAL PROPERTIES TO
P UBLI S HE D DA TA

The geophysical properties change during a brine injection ex-
periment not only because the physical properties of the pore
fluid are changing as a function of concentration C (mass of
salt per mass of solution) and fluid pressure P but also be-
cause the pore space is deforming due to the applied stress
τ and fluid pressure P, as modelled above and primarily
due to the presence of a crack population. Empirical corre-
lations for the density and bulk modulus of a NaCl brine
have been given by Batzle and Wang (1992), and we provide

the needed formulas for the electrical conductivity of brine in
Appendix.

Here, we summarise and use the models of the previous
sections to predict how the P-wave velocity, S-wave veloc-
ity, electrical conductivity, porosity, and permeability are all
changing due to either changing stress or fluid substitution.
Unfortunately, there is no single published data set collected
in a single laboratory where all of these properties have been
measured on the same rock samples. In choosing published
data to compare with, we choose datasets where more than
one of these geophysical properties are being measured as a
function of applied stress.

5.1 Seismic velocities

As a seismic wave propagates through the subsurface, it in-
duces relative motion between the fluid and solid. The dimen-
sionless number controlling whether viscous forces or inertial
forces are resisting the relative flow is ωρ f ko/η f where ω is the
circular frequency of the wave. Pride (2005) shows that, when
ωρ f ko/η f ≪ 1, the poroelastic equations controlling P-wave
propagation only involve undrained elastic moduli, and the
response is, effectively, undrained (there is not enough time
in each wave period for fluid to diffuse significantly from a
compression toward a dilation due to the large wavelength).
Therefore, when the wave frequency satisfies the inequality
f (= ω/2π ) ≪ η f /(2πkoρ f ) ≈ 105 Hz (assuming a 1 Darcy
permeability which can be considered a large if not maxi-
mum value for consolidated rocks), the seismic response is
undrained. Specialising to the case of isotropic rocks, the seis-
mic velocities are thus given by

vp(C, P, Pe) =

√
Ku(K f (C, P), Pe) + 4µ(Pe)/3

ρR(C, P)
, (121)

vs(C, P, Pe) =

√
µ(Pe)

ρR(C, P)
, (122)

where

ρR(C, P) = φoρ f (C, P) + (1 − φo)ρs . (123)

Using these expressions for vp and vs , along with equations
(52)–(53) and (6)–(7) that give Ku(Pe) and µ(Pe), we can
compare the modelled velocities as a function of Pe to those
measured by Han et al. (1986). Four fitting parameters are
required in the modelling: the elastic moduli of the host mate-
rial Kdo and µo, the aspect ratio of the cracks at zero effective
stress b(0)/a that is taken to be the same for all cracks in the
fit, and the crack density ρc. In the data fitting, we did not
allow Kdo and µo to vary with stress.
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Figure 4 Solid lines are the theoretical predictions of this paper as-
suming a single aspect ratio is present, and symbols are the ultrasonic
lab measurements of Han et al. (1986) on the five sandstone samples
given in the legend. The four parameters used to obtain these fits for
each rock sample are given in Table 2.

The results are shown in Fig. 4 with the parameters used
to obtain the fits given in Table 2. The fits were done by
eye and not optimised through least squares but are sufficient
to demonstrate that the exponential stress dependence of a
crack population, even with just a single aspect ratio present,
can adequately explain the effective stress dependence of lab-
oratory measured seismic velocities. Note that the high pres-
sure results, where cracks are effectively closed, directly yield

Table 2 Parameters used to fit vP (Pe) and vs (Pe) sandstone data of
Han et al. (1986). The values of porosity φo and percentage clay
content were measured by Han et al. (1986). To the right of the
vertical lines are the fit parameters used in the modelling of Fig. 4

Sample φo clay b(0)/a ρc Kdo (GPa) µo (GPa)

Han06 0.24 0.10 4.8 × 10−4 0.45 9.6 11.8
Han11 0.23 0.04 2.7 × 10−4 0.85 13.4 12.8
Han23 0.19 0.05 2.4 × 10−4 0.80 15.5 13.3
Han29 0.22 0.06 2.0 × 10−4 0.80 15.5 13.3
Han66 0.27 0.06 3.5 × 10−4 1.20 11.1 10.0
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Figure 5 Variations of the undrained P-wave velocity (left axis, black
curves) and S-wave velocity (right axis, red curves) for a simulated
sandstone (Kdo = µo = 30 MPa, ρc = 1 and b(0)/a = 5 × 10−4) as a
function of Pc, P, and C (mass of salt per mass of brine). In the top
panel, the fluid pressure is kept constant at P = 0.1 MPa, and the salt
concentration at C = 0.05 as the confining pressure Pc varies. In the
middle panel, the effective pressure is kept constant at Pe = 0 MPa,
and the salt concentration at C = 0.05 as the fluid pressure P varies.
In the bottom panel, both the confining pressure and fluid pressure
are kept constant at Pc = P = 30 MPa (so that Pe = 0), whereas salt
concentration varies.

the elastic moduli of the host. The values of the host mod-
uli as observed in the Han et al. (1986) sandstone data are
entirely consistent with other measurements on sandstones
(e.g., Castagna, Batzle, and Eastwood 1985). More perfect
fits could have been obtained by introducing a broader range
of aspect ratios, but Fig. 4 shows that a single aspect ratio
captures most of the effective-pressure dependence of these
consolidated sandstones.

In Fig. 5, we simulate what happens to the seismic veloc-
ities of a simulated sandstone (Kdo = µo = 10 GPa with crack
density ρc = 1 and single aspect ratio b(0)/a = 5 × 10−4) in
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the following three scenarios: (i) the confining pressure Pc

changes from 0.1 to 30 MPa, whereas fluid pressure P = 0.1
MPa and concentration C = 0.05 remain constant (upper
panel); (ii) the fluid pressure P increases from 0.1 to 30 MPa,
whereas the effective pressure Pe = 0 MPa and concentra-
tion C = 0.05 remain constant (middle panel); and (iii) the
salt concentration increases from 0 to 0.3 (note that 0.3 is
roughly the solubility limit of NaCl in water), whereas Pc =
P = 30 MPa remain constant so that Pe = 0 (lower panel).

In the upper panel of Fig. 5, vp(Pc) and vs(Pc) are increas-
ing for the sole reason that increasing Pe = Pc − P is causing
the crack compliance to decrease and the rock to stiffen. For
this simulated rock, vp increased by roughly 12% and vs in-
creased by 30% as Pe increased from 0 to 30 MPa.

In the middle panel, Pe = 0 is kept constant so that
changes in crack compliance are not occurring. As the fluid
pressure increases, the fluid bulk modulus increases and that
is largely responsible for the observed 1.5% increase in vp(P)
as P increases from 0.1 to 30 MPa. For vs(P), the only source
of variation is the fluid density increasing with increasing P,
and this effect is seen to be negligible over 0 to 30 MPa.

In the lower panel, we keep Pe = 0 (with Pc = P = 30
MPa) so that no changes to the crack compliances are oc-
curring, and there are no fluid pressure variations of the fluid
properties. The roughly 10% increase in vp as C increase from
0 to 0.3 is due to how the bulk modulus of the fluid is increas-
ing with C. The roughly 0.5% decrease in vs with increasing
C is due to how the fluid density is changing with C, and this
effect can be considered negligible in a first approximation.

5.2 Electrical conductivity

Restricting attention to isotropic crack distributions, the gen-
eral form for the isotropic electrical conductivity of rock σR is
(e.g., Pride 1994)

σR(C, P, Pe) = G(Pe)
[
σ f (C, P) + 2Cs(C)

4

]
. (124)

The first term corresponds to conduction through the pores
of the host phase and cracks of the rock, whereas the second
term corresponds to conduction over the solid surfaces in the
rocks (so-called surface conduction).

In the surface conduction contribution, 4 is a length orig-
inally introduced by Johnson et al. (1986) that is a weighted
pore volume to pore surface area ratio with the weight (the
square of the dimensionless electric field in the porespace) em-
phasising constricted portions of the pore space, whereas the
surface conductance Cs can have many contributing mecha-

nisms, two of which are related to the presence of a diffuse
double layer of excess ionic charge at the solid surfaces as de-
fined and modeled by Pride (1994). Revil and Glover (1998)
find that to fit shaly sandstone data, they need to allow for
ionic conduction between the diffuse-double layer and the
crystalline substrate in the so-called “Stern layer” of adsorbed
water molecules and counter ions. They do not propose a
physical model for why the adsorbed ions of the Stern layer
are mobile and contributing to conduction, but such conduc-
tion, if it is occurring, makes a third contribution to the Cs

term. In general, it is when significant amounts of secondary
clay minerals are present on the detrital grains in sandstones,
such that pore surface area is large and 4 small, that surface
conduction becomes an important contributing factor to elec-
trical conduction. This is the case in shaly sandstones. In the
cracks, the crack surfaces are relatively smooth, and double-
layer conduction is always negligible compared with conduc-
tion in the crack aperture (the width of the double layer is
always negligible compared with the width of crack opening).
Therefore, it is only in the host phase of shaly sandstones that
surface conduction can be important.

The datasets where rock conductivity is a strong function
of applied stress are those in which conduction is dominantly
occurring through a connected crack population such as in
crystalline rocks (e.g., granites). For such rocks, surface con-
duction can be neglected. We are not aware of a peer-reviewed
dataset showing how the electrical conductivity of shaly sand-
stones varies with applied stress. As such, we will ignore sur-
face conduction in this section and only focus on the first term
of equation (124) where G (the inverse formation factor) is
given by equation (85). However, if data warranted the inclu-
sion of surface conduction, equation (124) makes clear how
to do so.

The electrical conductivity of brine is given by (c.f.,
Appendix)

σ f (C, P) = 6.022 × 1026e2

6πµsalt

(
ν+z2

+

R+
+ ν−z2

−

R−

)
Cρ f (C, P)
η f (C, P)

.

(125)

Here, µsalt is the molecular mass of the salt measured in g/mol
(see Appendix). For a NaCl brine that is the focus of this
study, we then have

σ f (C, P) = 2.17 × 10−4 Cρ f (C, P)
η f (C, P)

, (126)

where the numerical prefactor and the fluid properties are all
in SI units and where C is, as throughout, the salt concentra-
tion measured as a mass ratio.
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Figure 6 Electrical conductivity and volumetric strain of Casco gran-
ite as measured by Brace et al. (1965). The two aspect-ratio fits use the
following parameters: ϵ1 = 1.2 × 10−4, ϵ2 = 7.8 × 10−4, w1 = 0.97,
φo = 3.2 × 10−3, φ2(0) = 3.0 × 10−3, C = 0.015, and Kdo = µo =
47 GPa.
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Figure 7 Electrical conductivity and volumetric strain of Stone-
Mountain granite as measured by Brace et al. (1965). The two aspect-
ratio fits use the following parameters: ϵ1 = 1.2 × 10−4, ϵ2 = 7.0 ×
10−4, w1 = 0.95, φo = 1.5 × 10−3, φ2(0) = 2.0 × 10−3, C = 0.05,
and Kdo = µo = 47 GPa.

In Figs. 6–8, the drained (constant fluid pressure) labo-
ratory data of Brace et al. (1965) show how both electrical
conductivity and volumetric strain of three different granite
samples are changing with effective pressure. We model these
data using equation (124) for the electrical conductivity and

*V
V

(Pe) = −
∫ Pe

0

dp
Kd(p)

, (127)

for the volumetric strain of the drained rock sample, where
the effective stress dependence of the drained bulk modulus
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Figure 8 Electrical conductivity and volumetric strain of West-
erly granite as measured by Brace et al. (1965). The two aspect-
ratio fits use the following parameters: ϵ1 = 1.2 × 10−4, ϵ2 = 7.7 ×
10−4, w1 = 0.9, φo = 3.8 × 10−3, φ2(0) = 1.2 × 10−3, C = 0.065
and Kdo = µo = 47 GPa.

of the cracked rock is modelled using equation (52). Due to
the stiff nature of the background host granite, we did not
model how the background host properties vary with Pe. For
the probability distribution of aspect ratios, we found it neces-
sary to use two aspect ratios in a three parameter distribution,
i.e., pϵ(ϵ) = w1δ(ϵ − ϵ1) + (1 − w1)δ(ϵ − ϵ2). Without using a
second larger aspect ratio, we could never match the electrical
conductivity measurement at 200 MPa. In the Westerly and
Stone-Mountain granites, we found it necessary to use larger
salt concentrations than the C = 0.015 solution that the sam-
ples were nominally saturated with. This might be due to these
samples having some residual salt in the porespace prior to sat-
uration. To eliminate fit parameters, we selected the drained
moduli of the host to be Kdo = 47 GPa and µo = 47 GPa for
all three granites.

5.3 Permeability and porosity

Finally, we consider the data of Zhu et al. (2002) where both
permeability and porosity are measured on three sandstones
(Berea, Adamswiller, and Rothbach) as confining pressure in-
creases at constant fluid pressure. These authors are interested
in the higher pressure regime where irreversible porespace col-
lapse is resulting in large reductions of permeability and poros-
ity; however, our interest is only in their lower pressure range
of e.g., Pe < 40 MPa, where grain shattering is not occurring
with increasing isotropic stress and prior to the application of
shear stress.
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To model isotropic permeability as a function of effective
pressure, we use equation (80) when the crack porosity φ2 is
small relative to 1, i.e.,

k(Pe) = ko(Pe) + 8π

9νk
ρc

⟨a5⟩
⟨a3⟩

∫
dϵ pϵ(ϵ)ϵ3e−3Pe/(Cnϵ). (128)

The total porosity is changing with increasing confining pres-
sure (note that, in the experiments, pore pressure is held con-
stant) as

dφ = −
(

(1 − φ)
Kd(Pe)

− 1
Ks

)
dPc. (129)

This is integrated numerically starting from the known values
at Pc = P. The host properties are allowed to change with
increasing confining pressure according to the earlier derived
results. The permeability and porosity of the host are deter-
mined from

dko

ko
= − [2αo/3 + m(αo − φo)]

φoKdo
dPc, (130)

and

dφo =
[
(1 − φo)ρc f (Pe)4π/(3Cn) − (1 − φo)/Kd(Pe) + 1/Ks

]

1 − ρc⟨ϵ(Pe)⟩4π/3
dPc,

(131)

again starting from the assumed known values at Pc = P. The
drained modulus of the host is determined at each pressure
increment from the model, i.e.,

Kdo = Ks(1 − φo)
1 + svφo

, (132)

which then sets the Biot–Willis constant of the host

αo = 1 − Kdo

Ks
. (133)

We take the Archie exponent to be m = 2 and the bulk mod-
ulus of the solid grains to be Ks = 40 GPa.

In the fits to the Zhu, Montesi, and Wong (2002) data,
we use only a single aspect ratio ϵ1 = b(0)/a for each rock
and a single crack radius a1. The fit terms are then the crack
density ρc, the aspect ratio ϵ1, the crack radius a1, the softness
parameter sv, and the permeability and porosity of the host
rock at zero effective pressure φo(0) and ko(0).

The non-optimised fits are shown in Figs. 9–11. For ef-
fective isotropic stress larger than 40 MPa for example, there
will be induced grain damage that is not being modeled in
this paper. As such, we did not put an emphasis on modeling
the data point at 60 MPa. If a second aspect ratio was used
in modelling the data, the fits would necessarily have been
better.
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Figure 9 Single aspect-ratio fits to the permeability and poros-
ity measurements of Zhu et al. (2002) for Berea sandstone. The
non-optimised fit parameters are: ρc = 4.2, ϵ1 = 8.6 × 10−4, a1 =
6.0 × 10−3 m, sv = 8.0, φo(0) = 0.2117, and ko(0) = 123 mD.
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Figure 10 Single aspect-ratio fits to the permeability and porosity
measurements of Zhu et al. (2002) for Adamswiller sandstone. The
non-optimised fit parameters are: ρc = 4.7, ϵ1 = 7.6 × 10−4, a1 =
5.9 × 10−3 m, sv = 11.0, φo(0) = 0.2327, and ko(0) = 18 mD.
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Figure 11 Single aspect-ratio fits to the permeability and porosity
measurements of Zhu et al. (2002) for Rothbach sandstone. The non-
optimised fit parameters are: ρc = 6.0, ϵ1 = 8.6 × 10−4, a1 = 5.7 ×
10−3 m, sv = 9.0, φo(0) = 0.2015 and ko(0) = 19 mD.

C⃝ 2016 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–25



Geophysical changes in porous rocks 21

6 CONCLUSIONS

In this paper, we provide models that describe how the elas-
tic moduli, electrical conductivity, and fluid-flow permeability
of rocks vary with effective stress. In order to fit laboratory-
measured stress dependences of seismic velocities, porosity
and permeability in sandstones, and volumetric strain and
electrical conductivity in granites, we find it necessary to as-
sume that a possibly porous host phase has a population of
cracks embedded into it. Allowing for the porosity of the
host phase alone to vary with stress without cracks present
cannot explain the laboratory measurements. One of the cen-
tral goals of this paper is to allow for the crack populations
consistently in the effective-medium theory used to describe
how the elastic moduli, electrical conductivity, porosity, and
fluid-flow permeability vary with stress. For each modelled
property, we first allow for the possibility that the crack pop-
ulation is anisotropic before specialising to the isotropic case
for comparison to data on the sandstones and granites.

One feature of the mean-field theory used to obtain the
explicit analytical forms for the elasticity, conductivity, and
permeability tensors is that it does not matter where precisely
the cracks reside inside a rock sample. All that matters is the
density of cracks, the probability distribution for the crack
aspect ratios and crack radii, and the averaged orientation
of the cracks. In the mean-field theory employed here, the
elastic compliance, conductivity, and permeability of a rock
with a crack population are all linear in the crack density;
their inverse, the elastic stiffness, electrical resistivity, and flow
resistivity, are therefore non-linear in the crack density. The
anisotropy of a rock with a crack population is controlled both
by the averaged orientation of the cracks and, independently,
by the presence or not of a deviatoric contribution to the stress
tensor acting on a rock sample.

With regard to the transport properties of conductivity
and permeability, the mean-field theory does not allow for
the percolation effect of the cracks forming a connected path
across the sample at sufficiently large crack density. We there-
fore provided a model for the transport properties that allows
for the crack population to percolate. Using this model, it was
demonstrated that for electrical conductivity, whenever the
inverse formation factor Go = 1/Fo of the background host
(where Fo is the formation factor of the host material) satisfies
Go ≫ (b/a)2, where b is a characteristic crack aperture and a
a characteristic crack radius, the percolation effect is entirely
negligible. Similarly, for permeability, when 3ko/b2 ≫ (b/a)2,
where ko is the permeability of the host phase, the percola-
tion effect is again negligible. Because the aspect ratios b/a

needed to explain laboratory-measured stress dependence are
typically on the order of 10−3 or less, the percolation effect is
usually negligible. The exception can be in crystalline rocks in
which the background host phase has very small conductivities
and the crack phase significantly contributes to the transport.
Even then, for the granites in the Brace et al. (1965) study
that we modelled here, the percolation effect was again negli-
gible due to the finite conductivity in the host phase. The host
has to be effectively insulating before the percolation effect is
important.

The models provided here are an attempt to obtain a con-
sistent scheme for modelling how elasticity, conductivity, and
permeability all vary with effective stress and the parameters
describing a crack population. There are several “fit” param-
eters that can be adjusted to match laboratory data on the
stress dependence of these properties. These include the prop-
erties of the background host phase (which are distinct for
each modeled rock property) and the crack density, aspect-
ratio distribution, and averaged crack orientations (which are
common to all modelled rock properties). In looking at ac-
tual cracks and fractures in rocks, it is difficult to immediately
see penny-shaped cracks. Actual cracks and fractures have a
more bifurcated, jagged, and complex look to them compared
with a random population of penny-shaped cracks. It is pos-
sible that the contribution of an actual fracture to the rock
properties of a sample is equivalent to the sum of a bunch of
properly oriented penny-shaped cracks and that our proposed
models are doing a realistic job of representing the actual
physics inside a sample. It is also possible that our effective
medium theories simply provide a small number of tunable
crack parameters that can describe laboratory data and that
if actual crack densities and aspect ratios were determined for
a rock sample, they would be somewhat different than the
values required by our models to fit the data. However, even
if this is true, the general correlation of how compliances and
conductivity increase with increasing damage level in a sam-
ple would be properly represented by our models and that
a population of penny-shaped cracks is simply a convenient
proxy for representing the actual damage inside a sample. It
does seem incontrovertible that the only way to explain the
observed stress dependence measured on most consolidated
rock samples is for damage (compliant cracks and fractures)
to be present inside the rocks.

List of Symbols

α Biot–Willis coefficient [unitless]
αk permeability effective-stress coefficient [unitless]
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αi j auxilliary matrix in Gassmann relations [unitless]
βt tangential compliance parameter [Pa−1]
ℓ pore length [m]
ϵ crack aspect ratio [unitless]
η2 total volume fraction of all embedded cracks [unitless]
η f fluid/brine viscosity [Pa s]
γp prefactor in percolation conductivity model [unitless]
κo = 3ko/b2 dimensionless permeability of host [unitless]
4 surface conductance length parameter [m]
µ shear modulus [Pa]
µsalt molecular mass of salt [g mol−1]
ν Poisson’s ratio [unitless]
νG prefactor for inverse formation factor model [unitless]
νk prefactor in permeability model [unitless]
ν+,− ionic valances [unitless]
φ porosity [unitless]
φa azimuthal crack orientation [radian]
ρc crack density [unitless]
ρR saturated rock density [kg m−3]
σ f fluid/brine conductivity [S/m]
σn crack closure stress parameter [Pa]
σR rock conductivity [S/m]
θ longtitudinal crack orientation [radian]
A solid angle [radian]
a crack radius [m]
B Skempton’s coefficient [unitless]
b = w/2 crack half aperture [m]
b+,− ionic mobilities [m s−1 N−1]
Bn normal crack compliance [m Pa−1]
Bt tangential crack compliance [m Pa−1]
Bt tangential crack compliance [m Pa−1]
C salt concentration by mass [unitless]
Ck permeability compliance parameter [Pa−1]
Cn crack closure modulus [Pa]
Cs surface conductance [S]
Ci jkl stiffness tensor [Pa]
ci j crack orientation tensor for permeability [unitless]
di j crack orientation tensor for conductivity [unitless]
E Young’s modulus [Pa]
e fundamental charge of an electron [C]
F formation factor [unitless]
f effective stress function for compliances [unitless]
G = 1/F inverse formation factor [unitless]
Gi j inverse formation factor tensor [unitless]
gi j crack orientation tensor for compliances [unitless]
hi jkl crack orientation tensor for compliances [unitless]
k permeability [m2]

Kd drained bulk modulus [Pa]
K f fluid bulk modulus [Pa]
Ks solid bulk modulus [Pa]
Ku undrained bulk modulus [Pa]
ki j permeability tensor [m2]
M fluid storage coefficient [Pa]
m Archie’s exponent [unitless]
N number of cracks in a sample/voxel [unitless]
Nsalt number density of dissociated salt molecules [m−3]
P fluid pressure [Pa]
pa probability distribution for crack radius [m−1]
Pc = −tr{τ/3} confining pressure [Pa]
Pe = Pc − P effective pressure [Pa]
Q inclusion shape factor [unitless]
R inclusion concentration parameter [unitless]
ro and rs auxilliary parameters in permeability model [unit-
less]
R+,− effective ionic radii [m]
Sc surface area of a single crack c [m2]
so and sm auxilliary parameters in conductivity model [unit-
less]
ss softeness parameter in shear modulus model [unitless]
sv softness parameter in bulk modulus model [unitless]
Si jkl compliance tensor [Pa−1]
t conductivity percolation exponent [unitless]
V sample or voxel volume [m3]
V2 total crack volume in a voxel [m3]
Vφ pore-space volume [m3]
vp and vs P- and S-wave velocities [m s−1]
Vq net fluid exchange volume [m3]
w crack aperture [m]
B crack compliance tensor [m Pa−1]
I = δi j x̂i x̂ j identity tensor [unitless]
n = ni x̂i normal vector to crack [unitless]
q Darcy velocity [m s−1]
u solid displacement [m]
v solid velocity [m s−1]
v f local fluid velocity in a crack [m s−1]
τ stress tensor [Pa]
τ e = τ + PI effective stress tensor [Pa]
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APPENDIX

EL EC TR I CA L CONDUCTIVIT Y OF BRINES

The concentration measure of salinity that is most naturally
used in the physical modelling of solute transport is the mass
ratio C, which is defined:

C = mass of salt (solute)
mass of salt solution (solute + solvent)

. (A-1)

The mass ratio is the default concentration measure we use
throughout all of our work.

The basic formula for the electrical conductivity of an
electrolyte is

σ f = e2 (ν+z2
+b+ + ν−z2

−b−
)

Nsalt, (A-2)

where e = 1.602 × 10−19 C is the fundamental electric charge,
b± are the mobilities of the cations (+) and anions (-) defined
as the speed these ions move under the influence of a force
divided by the force amplitude acting on them, and Nsalt is
the salt number density defined as the number of dissociated
salt molecules in a m3 of solution. The number density Nsalt is
related to the molarity M (moles of salt per litre of solution)
as Nsalt = 1000NAM where NA = 6.022 × 1023 is Avogadro’s
number (the number of objects in a mole) and where the factor
of 1000 converts the liters in molarity to m3. We further have
that the molarity is related to C by M = ρ f C/µsalt where the
electrolyte mass density ρ f (C, P, T) is modelled by Batzle and
Wang (1992) using empirical correlations. Here, µsalt is the

Table A1 Effective ionic radii for a few common ions to be used in
the Einstein–Stokes model of equation (A-5)

Ion Effective Ionic Radius R±

H+ 0.23 × 10−10 m
Li+ 2.12 × 10−10 m
Na+ 1.63 × 10−10 m
K+ 1.12 × 10−10 m
Ag+ 1.33 × 10−10 m
Mg+2 3.08 × 10−10 m

OH− 4.14 × 10−10 m
Cl− 1.07 × 10−10 m
Br− 1.05 × 10−10 m
NO−

3 1.15 × 10−10 m

SO−2
4 2.59 × 10−10 m

total atomic mass of solute ions measured in grams per mole
and given by

µsalt = ν+µ+ + ν+µ+, (A-3)

where µ+ is the atomic mass of the cation in an undissolved
salt molecule and µ− is the atomic mass of the anion. These
numbers can be read from the periodic table. The numbers ν+

and ν− are the number of cations and anions in each undis-
solved salt molecule. The above formulas assume that all the
salt molecules are completely dissolved (a so-called strong
electrolyte). For a NaCl electrolyte, we have µsalt = 58.44
g/mol. At last, we can relate Nsalt to C as

Nsalt = 1000NA
ρ f

µsalt
C, (A-4)

for use in equation (A-2).
The mobilities can be related to the solvent through which

the ions electromigrate by the Einstein–Stokes model that
models each ion as a sphere of radius R± moving through
a continuum of the brine solution having viscosity η f

b± = 1
6πη f R±

. (A-5)

The effective ionic radii that give the measured mobilities of
various ions at 25 ◦C are given in Table A1. The usefulness
of equation (A-5) is that it allows salt concentration, tem-
perature, and pressure to influence the ionic mobilities and,
therefore, electrical conductivity of the solution, through the
solution’s shear viscosity η f .

The viscosity of a brine has a negligible linear dependence
on fluid pressure P but is a strong function of temperature T
and a moderate function of concentration C. The empirical
correlation for the viscosity of a NaCl brine over the
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range 0 < C < 0.24, 20◦C < T < 150◦C, and 105Pa < P <

3.5 × 107Pa is obtained to within 0.5% accuracy by Kestin
and Shankland (1984) as

η f (C, T, P) = ηo(C, T)
[
1 + β(C, T)P

1000

]
, (A-6)

where the hypothetical zero-pressure viscosity is given by

ηo(C, T) = ηW(20)10{A(C)+[1+B(C)]S(T)}, (A-7)

where ηW(20) = 1.002 × 10−3 Pa s is a constant. The concen-
tration functions A(C) and B(C) are defined as

A(C) =
3∑

i=1

ai m
i . (A-8)

B(C) =
3∑

i=1

bi m
i . (A-9)

with m being the molality (moles of salt per kg of pure solvent)
which for a NaCl solution is

m(C) = 1000
µsalt

C
(1 − C)

= 17.11
C

(1 − C)
. (A-10)

The temperature function S(T) is given by

S(T) =
∑4

i=1 αi (20 − T)i

(96 + T)
. (A-11)

Finally, the pressure coefficient β(C, T) is modelled as

β(C, T) = [ζo + ζ1T − βW(T)] β∗ (C) + βW(T) (A-12)

where the coefficient for pure water βW is given by

βW(T) =
4∑

i=0

βi T
i , (A-13)

and the coefficient controlling the salinity dependence β∗(C)
is given by

β∗(C) =
3∑

i=1

β∗
i

(
m

ms(T)

)i

, (A-14)

where the molal normalization factor ms(T) is given by

ms(T) =
2∑

i=0

mi T
i . (A-15)

The various coefficients in this correlation for the solu-
tion viscosity are given in Table A2. Note that the factor of

Table A2 The various coefficients for the viscosity correlations of
Kestin et al. (1981). First column contains the coefficients for the C
and T dependence, whereas the second column contains those for the
P dependence

α1 = +1.2378 β0 = −1.297
α2 = −1.303 × 10−3 β1 = +5.74 × 10−2

α3 = +3.06 × 10−6 β2 = −6.97 × 10−4

α4 = 2.55 × 10−8 β3 = +4.47 × 10−6

ηW(20) = 1.002 × 10−3 β4 = −1.05 × 10−8

a1 = +3.324 × 10−2 m0 = +6.044
a2 = +3.624 × 10−3 m1 = +2.8 × 10−3

a3 = −1.879 × 10−4 m2 = +3.6 × 10−5

b1 = −3.96 × 10−2 β∗
1 = +2.5

b2 = +1.02 × 10−2 β∗
2 = −2.0

b2 = −7.02 × 10−4 β∗
3 = +0.5

ζ0 = 0.545
ζ1 = 2.8 × 10−3

1000 in equation (A-6) is missing in the paper of Kestin, Khal-
ifa, and Correia (1981) but is needed in order for the pressure
dependence to be as given in their tables and to be consis-
tent with their experimentally observed pressure dependence.
Kestin et al. (1981) also have errors in their equations (4) and
(5) (their exponent “2” should in fact be an “i”) and in their
equation (10) (their “βi ” should in fact be “β∗

i ”).
The electrical conductivity of the brine solution σ f of

equation (A-2) can now be re-expressed as a function of C, P,
and T as

σ f (C, T, P) = co
ρ f (C, T, P)
η f (C, T)

C, (A-16)

where ρ f (C, T, P) is given by Batzle and Wang (2002),
η f (C, T) is given above by equation (A-6), and the constant
co is defined

co = e2

6π

1000NA

µsalt

(
ν+z2

+
R+

+ ν−z2
−

R−

)
. (A-17)

The weak pressure dependence is only coming through the
mass density. In addition to the dependence on C, the
brine conductivity σ f also has strong temperature dependence
through the brine viscosity but only weak (negligible) depen-
dence on fluid pressure.
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