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Incorporating Metabolic and Physiologic Imaging into Radiation 

Therapy Treatment Planning of Patients with Glioblastoma 

Guanzhong Su 

 

Abstract 

 

Glioblastoma (GBM) remains the most aggressive cancer of the brain. Typical survival 

in patients with GBM is around 12-18 months, due to local or distant recurrence that occurs even 

after treatment with radiation and chemotherapy. Although there have been improvements in 

modern imaging, the radiation planning protocols are still based purely on a 2 cm geometric 

expansion of conventional post-contrast T1-weighted and T2-weighted FLAIR anatomic 

sequences. As a result, about 60% of tissue within the high dose treatment field can be normal 

brain tissue, which can damage to healthy brain function, while microscopic disease farther from 

the primary tumor bed is untreated. The main goal of this project was to develop a pipeline for the 

integration of probability maps derived from metabolic and diffusion-weighted MRI into the clinical 

workflow for radiation treatment planning. 24 patients with newly-diagnosed glioblastoma, who 

had undergone RT and chemotherapy consisting of an anti-angiogenic agent, were scanned at 

baseline prior to therapy and had serial follow-up imaging every 2 months until progression. Four 

patients were excluded because of either a poor initial model fit that resulted in inaccurate 

probability maps or poor image quality at the time of progression, leaving a total of 20 patients for 

evaluating our automatic contouring algorithm. First, we determined the optimal threshold for each 
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patient’s probability map based on ROC analysis of the overlap of probability map with the 

progressed lesion. This value was then projected back on the histogram to automatically calculate 

each patient’s threshold based on the individual patient’s histogram and a maximum distance 

cutoff of 5 cm based on standard clinical procedures of high dose delivery during RT planning. 

Our results show that we were able to develop an automated contouring routine for integration of 

metabolic and physiology imaging into clinical workflow for radiation treatment planning. 

Incorporating a maximum distance from the original lesion allowed the automatic selection of a 

threshold from a consistent position on the histogram of the probability maps that optimized the 

overlap with the progressed lesion. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Radiation Therapy and the Treatment of Glioblastoma 

Despite advances in radiation therapy that have improved survival in patients with 

malignant brain tumors, glioblastoma (GBM) remains the second most common brain tumor, after 

meningioma, and the most aggressive cancer that originates within the brain [1] [2]. Typical survival 

in patients with GBM is around 12-18 months [3], due to local or distant recurrence that occurs 

despite surgical resection followed by treatment with radiation and chemotherapy with 

temozolomide (TMZ) which has become the standard of care. 

Although there have been improvements in modern imaging, and RT delivery systems 

that can now precisely deliver high dose radiation to a highly complex-shaped tumor region, 

radiation planning protocols (Figure 1.) are still based purely on a 2 cm uniform geometric 

expansion of lesions defined on conventional anatomical images, which includes post-contrast 

T1-weighted and T2-weighted FLAIR anatomic sequences. This is because approximately 90% 

of GBMs treated with standard-of-care therapy have been found to progress within 2cm away 

from the original tumor bed [11]. 

As a result, about 60% of tissue within the high dose treatment field can be normal brain 

tissue [8], which can damage healthy brain function, while microscopic infiltrating disease farther 

from the original tumor bed can go untreated in treatment planning. In other words, the current 

standard RT planning approach can both miss treating with the maximum dose of radiation areas 
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that are more likely to recur, as well as over-treated uninvolved normal tissue.  

  

 
 

Figure 1. Original dosimetry radiation planning protocol for GBM patients. 

 

1.2 The Role of Advanced Physiologic and Metabolic MR Imaging 

        MRI is an effective tool for visualization, diagnosis, and making treatment planning for 

GBM patients. Advanced physiologic and metabolic MRI are able to visualize cellular-level tumor 

involvement [5] [6]. Increased Apparent Diffusion Coefficient (ADC) represents more edema while 

decreases reflect areas that are more cellular. Decreased Fractional Anisotropy (FA) reflects 

subclinical invasion that results and decreased directionality along white matter. Dynamic 

Susceptibility-Contrast (DSC) perfusion-weighted imaging (PWI) is a good method for probing the 

brain’s vascularity, through measurements of relative cerebral blood volume (rCBV) and vessel 

leakiness. 1H MR spectroscopic imaging (MRSI) provides metabolic information through the 

Choline to NAA index (CNI) and levels of lactate and lipid, which can identify differences of cellular 
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metabolism, hypoxia, and necrosis between normal and tumor cells [4]. Incorporating these 

advanced MR techniques may provide more information on the spatial characterization of high-

grade gliomas and aid in the planning of subsequent treatments [7] [8], with the goal of ultimately 

improving overall survival [9]. 

 

1.3 Prior results for Incorporating Advanced Imaging into Dosimetry Planning 

        Several studies have explored how to incorporate advanced imaging modalities into RT 

planning for patients with GBM. In a previous study, our group has shown that incorporating 

parameters derived from metabolic and diffusion MRI at the time of radiation therapy can be used 

to predict regions of subsequent recurrence [4]. Figure 2 shows the equation of the model that 

provided a likelihood of recurrence probability score per voxel based on the diffusion (ADC, FA), 

spectroscopy (CNI), distance from the edge of the baseline tumor volume and radiation dose. 

Figure 3 shows an example of a likelihood of recurrence or probability map. 

 

 
 

Figure 2. Continuous model for calculating the probability of recurrence 
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Figure 3. Example slice of a probability map for an example patient 

 

1.4 Receiver Operating Characteristic (ROC) curves 

        The Receiver Operating Characteristic (ROC) curve is a plot of sensitivity vs. false 

positive rate (1-specificity), for a range of diagnostic test results [10] (Figure 4). It graphically 

represents the compromise between sensitivity and specificity in tests which produce results on 

a numerical scale. It therefore allows a graphical representation of a test's accuracy and may be 

used to generate decision thresholds or “cut off” values. This means we can use this approach to 

determine optimal thresholds that can be applied to future cohorts. Here, we define terms 

consisting of four outcomes, which come from true progression and probability prediction. The 

four outcomes are described by a 2×2 contingency table (Table 1.) and the figure shown below: 
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Table 1. Definition of four outcomes 
 

True 
Predict 

Progression Mask (TRUTH) 
√ × 

Probability 
M

ask (TEST) 

√ √ Progression  
√ Probability  
True Positive (TP)  

× Progression  
√ Probability  
False Positive (FP)  

× √ Progression  
× Probability  
False Negative (FN)  

× Progression  
× Probability  
True Negative (TN) 

 

 

Figure 4. Simple example of ROC curve with moving cutoff point 

 

1.5 Motivation 

Although there are several studies that explore the feasibility and utility of incorporation 

of advanced imaging modalities into RT planning for patients with GBM, clinical radiation planning 

target volumes are still defined by a 2 cm geometric expansion of the T2-hyperintensity lesion 

Volume 1 Volume 2 

Volume 4 Volume 3 
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from a T2-weighted FLAIR anatomic imaging sequence that is not specific to tumor. Our group 

and others have shown that metabolic and/or diffusion MRI techniques before radiation therapy 

can be used to predict regions of subsequent recurrence and should thus be integrated with 

current RT planning strategies. 

 

1.6 Objective 

The main goal of this project was to develop a pipeline for integration of  probability 

maps derived from metabolic and diffusion-weighted MRI into the clinical workflow for radiation 

treatment planning by: 1) automatically calculating appropriate thresholds of likelihood of 

recurrence (probability) maps for contouring in treatment planning system; 2) removing low risk 

regions, which should be spared, while keeping all areas at high risk which need to be treated; 3) 

maintaining the accuracy of the processed probability map to predict regions of tumor progression. 
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CHAPTER 2 

MATERIALS AND METHODS 

 

2.1 Patient population 

24 patients with newly-diagnosed glioblastoma, who had undergone RT and 

chemotherapy consisting of temozolomide and an anti-angiogenic agent (enzaustaurin or avastin) 

were included in this IRB approved study. The median age of the patients was 52 years old, range 

= 25 to 70 years old. Only patients with a Karnofsky performance score equal or greater than 60 

could be enrolled in this study, and patients who discontinued therapy were excluded [4]. All 

patients had serial follow-up imaging every 2 months until progression. Figure 5 shows anatomical 

images and corresponding contrast enhancing lesion (CEL) and T2-hyperintensity lesion (T2L) 

ROIs for a representative patient before RT and at the time of progression, as well as the likelihood 

of recurrence or “probability” map. Four patients were excluded due to either poor model accuracy 

when generating the probability maps or extremely poor image quality at the time of progression, 

leaving a total of 20 patients for developing a method for automatic contouring of probability maps. 

 

2.2 Images utilized 

T1-weighted spoiled gradient echo (SPGR) images post-injection of a gadolinium (Gd) 

based contrast agent and T2-weighted fluid attenuated inversion recovery (FLAIR) images that 

were acquired pre-RT and at the time of progression, were used in conjunction with probability 

maps that were created using diffusion and metabolic imaging parameters. Two types of lesions 
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were drawn on these images [4]. The first region of interest (ROI) was the contrast enhancing 

lesion (CEL), which was manually defined on the co-registered post-Gd T1 SPGR images, 

excluding enhancement that was also present on the pre-Gd T1 images. The second was the T2-

hyperintense lesion (T2L), which was segmented based on the hyperintense signal on FLAIR 

images using a semiautomatic method [12] developed in our laboratory. 

 

 
 

Figure 5. An example of a) anatomical images of the original tumor, b) at the time of 
progression and c) probability of progression map. 

 

c) Probability Map 

a) Original Tumor Maps  

T2L   CEL   

b) Progression Maps 

CEL   T2L   
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Figure 6. Data processing pipeline 
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lesion 

New progression 
area on FLAIR 
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subtract 

All new progression 

lesions 
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T1-weighted 
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area on CEL 
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Final probability 
masks 
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thresholds 

Probability 
Maps 

Probability mask 
after thresholding 

Retain 2 
largest region 

After connected 
masks 
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operation masks 
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lesion 

All original 
lesions 

CEL Original 
lesion 

Dilate to clinically maximum 

distance of high dose RT  

(5cm from original lesion boundary) 

Probability masks 
within 5cm 

Top 2 Probability masks 
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Volume 1 
Volume 2 
Volume 3 
Volume 4 
Sensitivity 
Specificity 

Determine Optimal 
threshold for each patient 

Automatic Selection of Threshold 
from Histogram & Distance 
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2.3 Determining the Optimal Threshold for Each Patient  

As illustrated in Figure 6, preliminary postprocessing of probability maps can be 

separated to two steps. The first step was implemented to determine each patient’s optimal 

threshold based on ROC analysis of the overlap of the thresholded probability map using a range 

of thresholds, with the progressed lesion. The reason to threshold the probability maps is that 

there is a mass of zero points and a lot of low risk regions, which should be spared, while keeping 

all areas of high risk which should be treated. In branch A, we use MATLAB (version of 2017a) to 

find multiple potential thresholds for the probability map of each patient by creating a histogram 

of intensity values of each patient’s probability map. This histogram is divided into 100 blocks and 

the most significant changes between mean values of adjacent blocks were quantified (Figure 

7a.). The 14 most significant of the 100 change points, which correspond to the 100th, 99th, 98th, 

97th, 96th, 90th, 80th, 70th, 60th, 50th, 40th, 30th, 20th, 10th percentiles as our threshold value 

and make binary masks for probability maps (Figure 7b.).  

After the initial threshold process, a total of 14 masks were obtained for every patient 

(Figure 8a.). The second step was then to search for 3D regions in the thresholded probability 

maps obtained from the previous step and remove all unconnected regions that had fewer than 

__ voxels. Connectedness was defined as sharing a face, edge, or corner, with a neighboring 

voxel. where all single voxels would be removed from masks. Finally, only the 2 largest regions 

in each probability map were retained as shown in Figure 8b. 
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Figure 7. Histogram and thresholds. An example of one patient’s (patient # b2167) probability 
map histogram with 100 significant change points showed in green line (7a), and 14 thresholds 

show in red line on histogram (7b). 

 

 
 

Figure 8. Pipeline for thresholding. A representative slice of a probability map after thresholding 
by 3 thresholds (#3, #7, #10) and displaying the contours on the original probability map, shown 
in green (8a); The same slice of final probability map with 2 largest regions shown in red (8b). 

7b. 7a. 

Threshold #3 Threshold #7 Threshold #10 

8a. After 
thresholding 

8b. Retain 2 
largest region 
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As shown in branch B of Figure 6, a new progression region is first obtained by 

subtracting the original lesion region from the new lesion on each of the T2L and CEL masks (Fig. 

9). The new progression region on the T2L and CEL masks are then combined (Fig. 9c). These 

steps make sure that we only include any new regions of tumor in our analyses.  

 

 
 
Figure 9. Pipeline for generation of new progression region. Slice 37 of patient b2167 of all new 

progression lesion on T2L mask showing in green contour line (9a); The same slice of new 
progression lesion on CEL mask display in green line (9b); And the total new progression region 

with green boundary (9c) by combining 9a and 9b. 

 

2.4 ROC analysis of the overlap of probability maps with progressed lesions 

In order to qualitatively and quantitatively evaluate the accuracy of our 14 thresholded 

probability masks in predicting the region of progression, we needed to calculate the volume of 

true progression that is correctly covered (or predicted) by the thresholded probability map 

(Volume 1, Fig 10), and the volume of true progression that does not overlap with the thresholded 

9c. Total New 
Progression 9a. T2L 

9b. CEL 

Progression maps 
(After RT) 

Original Tumor 
Maps 

All New 
progression 

region 
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probability map (Volume 3, Fig 10). Because new progression masks (FOV = 180mm * 240mm * 

150mm, Matrix Size = 192 * 256 * 50) and probability maps (FOV = 180mm * 240mm * 150mm; 

Matrix Size = 36 * 48 * 50) were created at different resolutions, we up-sampled the thresholded 

probability masks to the size of the progression masks using nearest neighbor interpolation to 

retain the binary information. Otsu's method was then used to choose the threshold value that 

minimized the intraclass variance of the thresholded black and white pixels [13]. The up sampled 

probability masks were then used to calculate different volumes, sensitivity and specificity values 

for 14 unique thresholds for each patient as described in Figure 10. 

Volume 1 = New progression mask ∩ thresholded probability map 

(Mean volume both of progression mask and thresholded probability map) 

Volume 2 = Probability mask – Volume 1 

(Mean volume of the thresholded probability map that is not within the progression mask.) 

Volume 3 = New progression mask – Volume 1 

(Mean volume of the progression mask that is not within the thresholded probability map) 

Volume 4 = Brain volume – [New progression mask ∪ Probability mask] 

(Mean volume that is neither in the progression mask nor the thresholded probability map) 

 

The sensitivity and specificity are given by the following equation: 

Sensitivity = 
𝑽𝒐𝒍𝒖𝒎𝒆 𝟏

𝑽𝒐𝒍𝒖𝒎𝒆 𝟏+𝑽𝒐𝒍𝒖𝒎𝒆 𝟑
; 

 

Specificity = 
𝑽𝒐𝒍𝒖𝒎𝒆 𝟒

𝑽𝒐𝒍𝒖𝒎𝒆 𝟒+𝑽𝒐𝒍𝒖𝒎𝒆 𝟐
; 
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Figure 10. Brief illustration of different volumes. (Image from patient b2167, slice 35) 

 

Figure 11 shows ROC curves for 20 patients generated by 14 different thresholds for 

each patient. Each color represents one patient, and the last point of each curve represents the 

entire non-thresholded probability map. 
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Figure 11. The ROC curve for 20 patients, where x-axis is false positive rate (1-specificity), and 
y-axis is sensitivity value. 

 

Since the goal was to use the ROC curves shown in Figure 11 to find the optimal 

threshold for each patient, we used a method that gives equal weight to sensitivity and specificity 

as showing in Figure 12, where Sn and Sp represent sensitivity and specificity, respectively, and 

the distance (d) between the point (0, 1) and any point on the ROC curve is: 

 

d = √ [(1 – Sn)2 + (1 – Sp)2] 
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To get the optimal cutoff point on ROC curves that can best discriminate the high-risk 

recurrence voxels with low-risk recurrence or no risk recurrence voxels, d was calculated for 15 

observed cut-off points in order to locate the point where the distance to the top left corner (0,1) 

in ROC space is minimized.  

 

 
 

Figure 12. Finding the optimal threshold from an ROC curve [20]. 

 

        Table 2 and Table 3 summarize the optimal threshold # and threshold value for each 

patient, and Figure 13a shows where we initially expected the optimal threshold to be on the 

histogram, while Figure 13b and 13c show two other common optimal threshold positions: Right 

FWHM (Full Weight at Half Maximum) (Figure 13b), and Peak (Figure 13c).  
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Table 2. Optimal threshold summary 
 

 

 

Table 3. Number of optimal threshold positions 
 

Threshold Position Amount 

Right FWHM 7 

Peak 6 

Expected 7 

Total 20 
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Figure 13. Summary of optimal thresholds (yellow line) showing on histogram, a. expected 
position; b, Right FWHM position; c, Peak position. 

 

        Figure 14 shows one slice of three different patients T2 FLAIR images overlaid with true 

progression region (red contour line) and probability map (green contour line) from 3 different 

values obtained from histogram analysis: expected, Right FWHM and Peak position thresholds. 

For the first patient (b2167), if we used the expected and Right FWHM thresholds, we would have 

underestimated the region of progression (green contour). However, if we used the Peak 

threshold the region of progression will be overestimated. Similarly, for the other patients, the 

expected threshold will underestimate the recurrence region, while the Right FWHM and Peak 

thresholds will greatly overestimate the region of progression. From these examples, we realized 

that some measure of distance from the lesion must be incorporated to be able to automatically 

select an appropriate threshold value based on a patient’s histogram. 

 

13c. Peak 13b. Right FWHM 13a. Expected 
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Figure 14. Three examples of the overlap of the thresholded probability map with the 
progressed lesion. Background is T2 FLAIR image after RT, green contour line is probability 

mask, and red contour line is the region of true progression map. 

 

2.5 Automatic Selection of Threshold from Histogram & Distance 

        The second goal of this project was to automatically calculate thresholds based on an 

individual patient’s histogram and the maximum clinically allowable distance of high dose RT. As 

shown in Figure 5 branch C, we first combine the original T2L and CEL lesions, followed by 

another operation that dilates the binary lesion masks by 50 voxels in every direction out to 5cm. 

The final thresholded probability map is obtained by masking the processed probability map with 

the dilated T2L mask an overlaid as a contour (Figure 15).  

 

Expected 
Underestimated 

Right FWHM 
Underestimated 

Peak 
Overestimated 

b2167 

33 33 33 

Expected 
Underestimated 

Right FWHM 
Overestimated 

Peak 
Overestimated 

b2323 

27 27 27 

b2558 

27 27 27 

Expected 
Underestimated 

Right FWHM 
Overestimated 

Peak 
Overestimate

d 
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Figure 15. Combination of CEL and T2L original lesions to obtain original lesion (green contour 
line) that is overlaid on the T2 FLAIR image at the time of progression. The original lesion is 

then dilated out to 5cm (red contour), which is used to constrain the final contoured probability 
maps (on right). 

 
 
 

 

 

 

 

 

 

 

 

Combined Original 
Lesion 

FLAIR Original lesion 

CEL Original lesion 

After dilating Final Probability 
Masks within 5cm 
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CHAPTER 3 

RESULTS 

 

3.1 New ROC curves 

After obtaining our final thresholded new probability maps for each patient, we 

constructed new ROC curves as shown in Figure 16. The total area under the ROC curve (AUC) 

is a single index for measuring the performance of a test. The larger the AUC, the better the 

overall performance of the thresholded probability map to correctly predict future recurrent tumor 

and unaffected voxels. Figure 17 shows an original ROC curve compared to one obtained from 

the new optimized thresholding method for a representative patient (b2167). The new ROC curve 

(yellow line) has a larger AUC than the original one in blue. Incorporating a clinically defined 

maximum distance for the threshold contour improved the AUC for all patients. 

 

3.2 New optimal thresholds for each patient 

        The results of the recalculated optimal threshold for each patient, and optimal threshold 

value and location on histogram are listed in Table 4. Table 5 shows the total number of patients 

exhibiting each threshold type. This time, there are 12 patients that have the Right FWHM location 

on the histogram as their optimal threshold, while 6 patients have the expected position, and only 

2 patients have their optimum threshold located at the peak. As a result, Right FWHM was 

selected as the uniform threshold location for all the patients in this study, from which to threshold 

each patient’s probability map. 
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Figure 16. New ROC curves for 20 patients, where the x-axis is the false positive rate (1-
specificity), and y-axis is sensitivity 

 

 
 

Figure 17. Comparison of old and new ROC curves for one patient 
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Table 4. New optimal threshold summary 
 

 

 

Table 5. New number of each optimal threshold position 
 

Threshold Position Amount 

Right FWHM 12 

Peak 6 

Expected 2 

Total 20 
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3.3 Examples of new probability masks and improvements of sensitivity & specificity 

        Figure 18 shows two different patients with true progression region (red contour 

line) overlaid with the probability map generated by the original method (green contour 

line) compared to the new probability map (blue contour line). The new contours more 

accurately cover the entire region of tumor progression while simultaneously removing 

the isolated green regions of presumed normal brain tissue that are far away from the 

original tumor bed (considered a false positive). 

 

 

 
 

Figure 18. Two examples of the overlap of new probability contours with the progressed lesion. 
Background is the T2 FLAIR image at the time of progression while the green contour line used 
the original method, blue contour line is the result of the new method, and the red contour line is 

region of true progression. 

b2680, Right FWHM  

22 23 24 

b2718, Right FWHM 

27 28 29 
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Figure 19 shows the original thresholded sensitivity and specificity (blue columns) 

compared to the new optimal threshold sensitivity and specificity (orange columns) using 

the new probability maps masked to within 5cm of the original tumor boundary. The new 

method had significantly higher sensitivity (p=0.00465, Wilcoxon signed rank test) and 

specificity values (p=0.0139, Wilcoxon signed rank test) compared to the original method. 

However, the range of sensitivities and specificities varied substantially among patients 

(i.e. from 0.79 (b2167) to 0.41 (b2307) and 0.94 (b2851) to 0.55 (b2258), respectively), 

suggesting that the original prediction model could be improved. 

 

 

 
 

Figure 19. Comparison of original sensitivity and specificity (blue columns) with new sensitivity 
and specificity (orange columns). 



 26 

CHAPTER 4 

DISCUSSION 

 

        EBRT in conjunction with TMZ is a standard therapeutic regimen for extending survival 

of highly infiltrative, high-grade gliomas. Despite advances in modern imaging and accuracy of 

RT delivery systems, RT planning protocols are still based on a purely 2 cm uniform geometric 

expansion conventional anatomical images including post-contrast T1-weighted and T2-weighted 

FLAIR anatomic sequences. This kind of treatment planning can cause damage to healthy brain 

tissue and decrease quality of life in patients with GBM [14], while at same time miss unrecognized 

high-risk recurrence voxels that are outside of 2cm boundary. Taking these reasons into 

consideration, it is necessary to more precisely deliver RT to voxels that are most at risk for 

recurrence. 

        Although there are some improvements in modern imaging, and our group has shown 

that incorporating metabolic and diffusion MRI techniques at the time of radiation therapy can be 

used to predict regions of subsequent recurrence, the accuracy of the likelihood of recurrence 

maps can still be improved and the process needs to be fully integrated with clinical RT planning 

work station. The automatic calculation of appropriate thresholds for automated contouring that 

has been demonstrated in this study can enable future for integration of metabolic and physiology 

imaging into the clinical workflow for radiation treatment planning potentially decreasing normal 

tissue toxicity and prolonging survival in patients with GBM.  

        While traditional standard RT treatment planning has an isotropic 2cm expansion of the 



 27 

T2 hyperintensity lesion on the surgical resection cavity and residual tumor base on CEL and T2L 

maps, we find regions that were likely to progress as far as 5cm way from the anatomical lesion 

boundary. Although some voxels beyond this distance were also implicated, 5 cm is the maximum 

distance from which our clinicians felt comfortable with treating with high dose. We successfully 

incorporated this maximum distance (5cm) from the original lesion into our automated threshold 

routine, which allowed for the automatic selection of a threshold from a consistent position on the 

histogram of the probability maps from each patient that optimized the overlap probability maps 

with the progressed lesion.  

        Because this patient cohort experienced a unique therapeutic strategy with concomitant 

anti-angiogenic therapy at the time of RT, [15] [16] our thresholding procedure will need to be re-

optimized for GBM patients who received standard of care treatment [17] using the same 

optimization approach.  We expect that patients who did not receive anti-angiogenic therapy 

would recur much closer to the original lesion and therefore not require such a large distance 

threshold. The optimal histogram position is also likely to be shifted further to the right in patients 

receiving standard of care therapy. New prediction models will also need to be generated for 

different therapeutic regimes to determine whether the same imaging parameters are still relevant.  

        Although the preliminary results and framework demonstrate that the integration of 

metabolic and physiology imaging into clinical workflow for radiation treatment planning is 

encouraging, there are several potential limitations to this study. First, the sensitivity and 

specificity of the optimal threshold for each patient varies among patients, with some patients 

having relatively low sensitivity in part due to the accuracy of the original model and not precise 
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our automatic contouring method which works on the resulting probability maps. Automatic 

thresholding worked best when a good background to foreground contrast ratio existed, however, 

the often-gradual gradation in voxel intensity of the probability maps made it difficult to determine 

an obvious cutoff based on the probability map on its own. As a result, we used ROC curve 

analysis to help find optimal threshold by calculating the point on ROC curve that minimizes the 

Euclidean distance between the top left point (0,1) in ROC space [18] and the ROC curve [19]. This 

method is gives equal weight to sensitivity and specificity. Although we attempted to develop a 

strategy that worked best for the majority of the patients, an individual’s contour may still need to 

be tweaked by the physicist or treating physician at the time of treatment planning. 
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CHAPTER 5 

CONCLUSION 

 

The preliminary results and images show that our pipeline for integration of metabolic 

and physiology imaging into clinical workflow for radiation treatment planning is encouraging. We 

were able to successfully develop an automated contouring routine that allowed the automatic 

selection of a threshold from a consistent position on the histogram of the probability maps that 

optimized the overlap with the progressed lesion and included a maximum distance from the 

original lesion. Although this patient cohort experienced a unique therapeutic strategy with anti-

angiogenic therapy at the time of RT, the framework can be easily extended for RT planning of 

any patients with glioma treated with different therapeutic regimens. Future work will incorporate 

our results into the clinical RT treatment software and comparing with originally planned contours 

as shown in Figure 20. The original model used to generate a voxel-by-voxel risk of recurrence 

will also be improved by using deep learning to generate spatial maps that can more accurately 

predict the probability of recurrence in GBMs. 

 

 

Figure 20. Incorporating a thresholded probability map into RT planning software 
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