
UC San Diego
Technical Reports

Title
The hardness of k-means clustering

Permalink
https://escholarship.org/uc/item/2qm3k10c

Author
Dasgupta, Sanjoy

Publication Date
2008-01-17

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2qm3k10c
https://escholarship.org
http://www.cdlib.org/

Technical Report CS2007-0890 Department of Computer Science and Engineering
University of California, San Diego

The hardness of k-means clustering

Sanjoy Dasgupta1

Abstract

We show that k-means clustering is an NP-hard optimization problem, even if k is fixed to 2.

1 Introduction

In this brief note, we establish the hardness of the following optimization problem.

k-means clustering

Input: A set of points x1, . . . , xn ∈ R
d; an integer k.

Output: A partition of the points into clusters C1, . . . , Ck, along with a center µj for each cluster,
so as to minimize

k
∑

j=1

∑

i∈Cj

‖xi − µj‖
2.

(Here ‖ · ‖ is Euclidean distance.) It can be checked that in any optimal solution, µj is the mean of the
points in Cj . Thus the {µj} can be removed entirely from the formulation of the problem. To this end, let
X, Y be i.i.d. random draws from Cj . Simple algebra shows E‖X − Y ‖2 = 2E‖X − EX‖2, which implies

∑

i∈Cj

‖xi − µj‖
2 =

1

2|Cj |

∑

i,i′∈Cj

‖xi − xi′‖
2.

Therefore, the k-means cost function can equivalently be rewritten as

k
∑

j=1

1

2|Cj |

∑

i,i′∈Cj

‖xi − xi′‖
2.

We consider the specific case when k is fixed to 2.

Theorem 1 2-means clustering is an NP-hard optimization problem.

This was recently asserted in [1], but the proof was flawed. Here, we use a sequence of reductions involving
three problems, the first of which is a standard restriction of 3Sat, well known to be NP-complete.

3Sat

Input: A Boolean formula in 3CNF, where each clause has exactly three literals and each variable
appears at least twice.

Output: true if formula is satisfiable, false if not.

1Email: dasgupta@cs.ucsd.edu. The author acknowledges the support of the National Science Foundation, under grants

IIS-0347646 and IIS-0713540.

1

The second problem is a special case of not-all-equal 3Sat, which can be shown to be hard by a straight-
forward variant of the usual reduction from 3Sat. For completeness, we lay out the details in the next
section.

NaeSat*

Input: A Boolean formula φ(x1, . . . , xn) in 3CNF, such that (i) every clause contains exactly
three literals, and (ii) each pair of variables xi, xj appears together in at most two clauses, once
as either {xi, xj} or {xi, xj}, and once as either {xi, xj} or {xi, xj}.

Output: true if there exists an assignment in which each clause contains exactly one or two
satisfied literals; false otherwise.

The final problem we consider is a generalization of 2-means.

Generalized 2-means

Input: An n × n matrix of interpoint distances Dij .

Output: A partition of the points into two clusters C1 and C2, so as to minimize

2
∑

j=1

1

2|Cj |

∑

i,i′∈Cj

Dii′ .

Theorem 1 is shown by reduction from NaeSat*. For any input φ to NaeSat*, we show how to efficiently
produce a distance matrix D(φ) and a threshold c(φ) such that φ satisfies NaeSat* if and only if D(φ)
admits a generalized 2-means clustering of cost ≤ c(φ).

Thus Generalized 2-means clustering is hard. To get back to 2-means, we prove that the distance
matrix D(φ) can in fact be realized by squared Euclidean distances. This existential fact is also constructive,
because in such cases, the embedding can be obtained in cubic time by classical multidimensional scaling [2].

2 Hardness of NaeSat*

Given an input φ(x1, . . . , xn) to 3Sat, we first construct an intermediate formula φ′ that is satisfiable if and
only if φ is, and additionally has exactly three occurrences of each variable: one in a clause of size three,
and two in clauses of size two. This φ′ is then used to produce an input φ′′ to NaeSat*.

1. Constructing φ′.

Suppose variable xi appears k ≥ 2 times in φ. Create k variables xi1, . . . , xik for use in φ′: use the
same clauses, but replace each occurrence of xi by one of the xij . To enforce agreement between the
different copies xij , add k additional clauses (xi1 ∨ xi2), (xi2 ∨ xi3), . . . , (xik, xi1). These correspond to
the implications x1 ⇒ x2, x2 ⇒ x3, . . . , xk ⇒ x1.

By design, φ is satisfiable if and only if φ′ is satisfiable.

2. Constructing φ′′.

Now we construct an input φ′′ for NaeSat*. Suppose φ′ has m clauses with three literals and m′

clauses with two literals. Create 2m + m′ + 1 new variables: s1, . . . , sm and f1, . . . , fm+m′ and f .

If the jth three-literal clause in φ′ is (α ∨ β ∨ γ), replace it with two clauses in φ′′: (α ∨ β ∨ sj) and
(sj∨γ∨fj). If the jth two-literal clause in φ′ is (α∨β), replace it with (α∨β∨fm+j) in φ′′. Finally, add
m +m′ clauses that enforce agreement among the fi: (f1 ∨ f2 ∨ f), (f2 ∨ f3 ∨ f), . . . , (fm+m′ ∨ f1 ∨ f).

All clauses in φ′′ have exactly three literals. Moreover, the only pairs of variables that occur together
(in clauses) more than once are {fi, f} pairs. Each such pair occurs twice, as {fi, f} and {f i, f}.

2

Lemma 2 φ′ is satisfiable if and only if φ′′ is not-all-equal satisfiable.

Proof. First suppose that φ′ is satisfiable. Use the same settings of the variables for φ′′. Set f = f1 = · · · =
fm+m′ = false. For the jth three-literal clause (α ∨ β ∨ γ) of φ′, if α = β = false then set sj to true,
otherwise set sj to false. The resulting assignment satisfies exactly one or two literals of each clause in φ′′.

Conversely, suppose φ′′ is not-all-equal satisfiable. Without loss of generality, the satisfying assignment
has f set to false (otherwise flip all assignments). The clauses of the form (f i ∨ fi+1 ∨ f) then enforce
agreement among all the fi variables. We can assume they are all false (otherwise, once again, flip all
assignments). This means the two-literal clauses of φ′ must be satisfied. Finally, consider any three-literal
clause (α∨β ∨γ) of φ′. This was replaced by (α∨β ∨sj) and (sj ∨γ ∨fj) in φ′′. Since fj is false, it follows
that one of the literals α, β, γ must be satisfied. Thus φ′ is satisfied.

3 Hardness of Generalized 2-means

Given an instance φ(x1, . . . , xn) of NaeSat*, we construct a 2n × 2n distance matrix D = D(φ) where
the (implicit) 2n points correspond to literals. Entries of this matrix will be indexed as Dα,β , for α, β ∈
{x1, . . . , xn, x1, . . . , xn}. Another bit of notation: we write α ∼ β to mean that either α and β occur together
in a clause or α and β occur together in a clause. For instance, the clause (x ∨ y ∨ z) allows one to assert
x ∼ y but not x ∼ y. The input restrictions on NaeSat* ensure that every relationship α ∼ β is generated
by a unique clause; it is not possible to have two different clauses that both contain either {α, β} or {α, β}.

Define

Dα,β =















0 if α = β

1 + ∆ if α = β
1 + δ if α ∼ β
1 otherwise

Here 0 < δ < ∆ < 1 are constants such that 4δm < ∆ ≤ 1 − 2δn, where m is the number of clauses of φ.
One valid setting is δ = 1/(5m + 2n) and ∆ = 5δm.

Lemma 3 If φ is a satisfiable instance of NaeSat*, then D(φ) admits a generalized 2-means clustering of

cost c(φ) = n − 1 + 2δm/n, where m is the number of clauses of φ.

Proof. The obvious clustering is to make one cluster (say C1) consist of the positive literals in the satisfying
not-all-equal assignment and the other cluster (C2) the negative literals. Each cluster has n points, and the
distance between any two distinct points α, β within a cluster is either 1 or, if α ∼ β, 1 + δ. Each clause of
φ has at least one literal in C1 and at least one literal in C2, since it is a not-all-equal assignment. Hence
it contributes exactly one ∼ pair to C1 and one ∼ pair to C2. The figure below shows an example with a
clause (x ∨ y ∨ z) and assignment x = true, y = z = false.

3

C1
C2

z

x

x

y

z

y

Thus the clustering cost is

1

2n

∑

i,i′∈C1

Dii′ +
1

2n

∑

i,i′∈C2

Dii′ = 2 ·
1

n

((

n

2

)

+ mδ

)

= n − 1 +
2δm

n
.

Lemma 4 Let C1, C2 be any 2-clustering of D(φ). If C1 contains both a variable and its negation, then the

cost of this clustering is at least n − 1 + ∆/(2n) > c(φ).

Proof. Suppose C1 has n′ points while C2 has 2n − n′ points. Since all distances are at least 1, and since
C1 contains a pair of points at distance 1 + ∆, the total clustering cost is at least

1

n′

((

n′

2

)

+ ∆

)

+
1

2n− n′

(

2n− n′

2

)

= n − 1 +
∆

n′
≥ n − 1 +

∆

2n
.

Since ∆ > 4δm, this is always more than c(φ).

Lemma 5 If D(φ) admits a 2-clustering of cost ≤ c(φ), then φ is a satisfiable instance of NaeSat*.

Proof. Let C1, C2 be a 2-clustering of cost ≤ c(φ). By the previous lemma, neither C1 nor C2 contain both
a variable and its negation. Thus |C1| = |C2| = n. The cost of the clustering can be written as

2

n





(

n

2

)

+ δ
∑

clauses

(1 if clause is split between C1, C2; 3 otherwise)



 .

Since the cost is ≤ c(φ), it follows that all clauses are split between C1 and C2, that is, every clause has at
least one literal in C1 and one literal in C2. Therefore, the assignment that sets all of C1 to true and all of
C2 to false is a valid NaeSat* assignment for φ.

4 Embeddability of D(φ)

We now show that D(φ) can be embedded into l22, in the sense that there exist points xα ∈ R
2n such that

Dα,β = ‖xα − xβ‖
2 for all α, β. We rely upon the following classical result [3].

Theorem 6 (Schoenberg) Let H denote the matrix I − (1/N)11T . An N × N symmetric matrix D can

be embedded into l22 if and only if −HDH is positive semidefinite.

4

The following corollary is immediate.

Corollary 7 An N×N symmetric matrix D can be embedded into l22 if and only if uT Du ≤ 0 for all u ∈ R
N

with u · 1 = 0.

Proof. Since the range of the map v 7→ Hv is precisely {u ∈ R
N : u · 1 = 0}, we have

−HDH is positive semidefinite ⇔ vT HDHv ≤ 0 for all v ∈ R
N

⇔ uT Du ≤ 0 for all u ∈ R
N with u · 1 = 0.

Lemma 8 D(φ) can be embedded into l22.

Proof. If φ is a formula with variables x1, . . . , xn, then D = D(φ) is a 2n × 2n matrix whose first n
rows/columns correspond to x1, . . . , xn and remaining rows/columns correspond to x1, . . . , xn. The entry
for literals (α, β) is

Dαβ = 1 − 1(α = β) + ∆ · 1(α = β) + δ · 1(α ∼ β),

where 1(·) denotes the indicator function.
Now, pick any u ∈ R

2n with u · 1 = 0. Let u+ denote the first n coordinates of u and u− the last n
coordinates.

uT Du =
∑

α,β

Dαβuαuβ

=
∑

α,β

uαuβ

(

1 − 1(α = β) + ∆ · 1(α = β) + δ · 1(α ∼ β)
)

=
∑

α,β

uαuβ −
∑

α

u2
α + ∆

∑

α

uαuα + δ
∑

α,β

uαuβ1(α ∼ β)

≤

(

∑

α

uα

)2

− ‖u‖2 + 2∆(u+ · u−) + δ
∑

α,β

|uα||uβ |

≤ −‖u‖2 + ∆(‖u+‖2 + ‖u−‖2) + δ

(

∑

α

|uα|

)2

≤ −(1 − ∆)‖u‖2 + 2δ‖u‖2n

where the last step uses the Cauchy-Schwarz inequality. Since 2δn ≤ 1 − ∆, this quantity is always ≤ 0.

5 Open problems

Our reduction constructs instances of 2-means with n points in d = 2n dimensions. To what extent can the
dependence of the dimensionality on n be reduced? Since d-dimensional 2-means can always be solved in
O(nd+1) time by enumerating all possible hyperplane separators between the two clusters, we would certainly
expect a hardness result to have d = ω(poly log(n)).

Can the hardness of k-means, for general k, be established in low dimension? For d = 1 an efficient
dynamic programming solution can be given; what about d = 2?

And finally, what about hardness of approximation?

5

References

[1] P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay. Clustering large graphs via the singular value
decomposition. Machine Learning, 56:9–33, 2004.

[2] J.B. Kruskal and M. Wish. Multidimensional Scaling. Sage University Paper series on Quantitative Application
in the Social Sciences, 07-011, 1978.

[3] I.J. Schoenberg. Metric spaces and positive definite functions. Transactions of the American Mathematical Society,
44:522–553, 1938.

6

