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Abstract 

 In this study, we approach the problem of quantifying the network sensor errors as a 

supervised learning problem and leverage deep neural networks to map observed traffic flow 

counts to the systematic errors in the sensors. We aim at building a model that could reconstruct 

the erroneous flow irrespective of the level of random noise in the sensors, which is unknown in 

the real-world. By reconstructing the erroneous flow with high accuracy, the transportation 

planners could gauge the true traffic flow demand in the network and can make informed 

infrastructure related decisions. 

We begin by simulating the traffic network under dynamic flow assignment settings to generate 

the base flow that we treat as the ground truth. We then introduce measurement errors to the base 

flow to generate the observed flow which is transformed into a multi-dimensional time-series 

tensor data, where each time step has dimension equal to the number of sensors in the network. 

Next, we introduce deep neural network comprising of 1-Dimensional Convolutional Neural 

Networks (1-D CNNs) to extract high-level spatial-temporal features from the observed flow time 

series data. To understand the generalization capability of the deep learning model, we deploy it 

against numerous test cases with varied levels of random errors and proportion of malfunctioning 

sensors in the network. Results indicate that the flow reconstructed using the deep learning model 

is very close to the ground truth flow and that the model predicts the systematic errors in the test 

cases with high accuracy.  

The major advantages of this study are that, firstly, our model is robust to the flow imbalance 

in the network unlike most of the network sensor health studies in the past. Secondly, our approach 

escapes dealing with complicated flow-density relations one might encounter while modeling 

dynamic flow using traditional analytical statistical approaches. 
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1. Introduction 

In 21st century, where data is revolutionizing every other sector, field of transportation 

engineering is no way behind. Traffic sensors have been widely installed on urban roads to capture 

real-time traffic data which is extensively used in academic research and applications. For 

example, In California, Caltrans (California Department of Transportation) PeMS stores traffic 

data captured by loop detectors which consists of 30 seconds and 5 minutes vehicle count or 

volume, vehicle occupancy and average speeds. This data can be used in monitoring traffic 

congestion, effective traffic management such as signal timing optimization, pollutant emission 

control, and support decision making for transportation agencies.   

Although, there are numerous applications of traffic data, in reality, the sensors are prone 

to errors which causes reliability issues. These errors could be attributed to a number of factors 

such as double counting of lane-changing vehicles, weather conditions, pavement failures or just 

random fluctuations while transmitting data (Coifman, 2006). It is reported that out of total 

freeway sensors in PeMS, only two-thirds of the loop detectors installed on California freeways 

are properly working (Rajagopal and Varaiya, 2007). This quantifies the problem at hand and the 

need to put a system in place that not only detects malfunctioning sensors (partially or fully), but 

also corrects the erroneous data.  

In order to quantify the sensor health, it is important to classify measurement error in a 

sensor into systematic and random errors. The magnitude of data corruption in a sensor could be 

attributed to the degree of systematic error it possesses inherently. Random errors exists in any 

system and pertains to the random fluctuations in the data such as white noise, hence should not 

be considered when quantifying the health of the sensor. Once the magnitude of systematic errors 

are estimated, one can prioritize efforts to scrutinize the most unfit sensors first. In addition to this, 
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systematic errors could help recover the erroneous flow from the partially-malfunctioning sensors 

that will practically help researchers and practitioners to use the data, which most of the current 

studies discard. 

In order to estimate the systematic errors, it is not sufficient to study an individual sensor 

at a time, rather one must study the traffic flow at the network and temporal level to incorporate 

for spatial and temporal correlations among sensors. As the network becomes larger, the number 

of sensors to be considered grows significantly. Given the amount of data that is readily available 

to us, we need algorithms that can exploit the spatial and temporal characteristics of the network 

and learn trends in the historical data. Traditional formal statistical methods could be complex, 

time consuming and could suffer with complicated assumptions. To overcome this and automate 

the process of knowledge acquisition, there is a need to consider machine learning algorithms. 

Deep Learning, a subset of machine learning has provided state-of-the-art results in various 

domains, such as image recognition, natural language processing, and time-series forecasting 

where data is usually multi-dimensional. Since, the traffic data can be treated as multi-dimensional 

time-series data, deep learning can prove to be very effective in estimating sensor errors.  

Researchers have used convolutional neural networks (CNNs), which is a special kind of 

deep learning architecture to extract important local non-linear feature information from multi-

dimensional time-series data. Depending on the task at hand such as forecasting, regression or 

classification, these features are then fed into other deep learning architectures like fully connected 

neural networks for further processing. Given the capability of CNNs, the idea is to extract high-

level features from traffic data and learn a non-parametric mapping to predict systematic errors in 

network sensors. In this work, we focus on:  
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1) Developing a methodology to estimate network sensor errors using deep learning in dynamic 

traffic assignment settings and reconstruct erroneous traffic flow 

2) Understanding how well a deep learning model can learn the spatial and temporal correlations 

in the traffic data without explicitly using any information about the network structure  

The rest of the thesis is organized as follows. The second section dives deep into literature 

review where we discuss previous work in the domain of sensor health problem and their 

limitations. In additions to that, we also briefly look at the applications of deep learning in the field 

of transportation engineering to gauge its potential in this domain. In third section, we discuss the 

sensor error model formulation, our approach to represent traffic data as multi-dimensional time-

series tensor and the theory of deep learning. Fourth section discusses the methodology in a 

detailed step-by-step fashion. In the fifth section, we highlight the results of our work and analyze 

the generalization capability of our model. In the sixth section, we finally discuss the conclusions 

of this study and the potential future work. 
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2. Literature Review    

2.1 Traffic sensor quality 

Research endeavors related to assessing traffic sensor quality can be broadly classified into two 

categories:  

1) Identifying the malfunctioning sensors 

2) Reconstructing the missing or erroneous traffic data 

Identifying the malfunctioning sensors in a network is usually referred to as sensor health 

problem. Most of the work under this category is focused on filtering completely malfunctioning 

data by designing various validation criteria, for example threshold on the maxima of occupancy 

and volume, the numbers of samples with non-zero volume but zero speed, and the average 

effective vehicle lengths (Turochy and Smith, 2000). Other studies such as Hu et al. (2001); Chen 

et al. (2003), and Turner et al. (2004) are based upon the same idea with more complex validation 

criteria. These studies are local in nature, i.e., they consider one sensor at a time. These methods 

are easy to use in practice but suffer with two major limitations. Firstly, the threshold could depend 

on the location and factors like weather or traffic incidents, hence determining the range could be 

challenging. Secondly, these methods do not exploit spatial correlations on the network level. 

Other works in this area utilize the flow from adjacent sensors for identifying bad sensors in the 

network. Vanajakshi and Rilett (2004) adopted a generalized reduced gradient method following 

the flow conservation principle. Kwon et al. (2004) proposed semiautomatic and automatic 

methods for detecting sensor errors on the basis of strong correlations between measurements 

made by spatially close sensors.   

Later, Sun et al. (2016), proposed a method to study sensor health problem at the network 

level where the basic idea was to check for consistency among traffic flow sensors based on flow 
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conservation. They define the health index for a sensor on a scale of 0 to 1, where sensors with 

low health index are more likely to be erroneous. The major drawback of this study including the 

previously mentioned studies is that they do not quantify the magnitude of data corruption, for 

example, the degree by which a sensor over-estimates or under-estimates the traffic counts.  

There has been a lot of focus on imputing the missing or corrupted data by utilizing 

potential temporal and spatial relationships in the data. The research in this area could be classified 

into 3 categories: prediction, interpolation and statistical learning (Li et al., 2014). Traditional 

prediction methods such as time-series forecasting using ARIMA have been used to map historical 

data to missing future data (Nihan, 1997). The drawback of prediction methods would be inability 

to use data succeeding to missing data occurrences, thus leading to discarding the useful data. For 

interpolation, Allison (2001) used a history model that used historical data from a site to estimate 

missing or corrupted data at the same site at the same time interval. Other approaches for 

interpolation have used methods such as weighted average of neighboring sensors (Chen et al., 

2003) and K-Nearest Neighbors (Liu et al., 2008). Major drawback with interpolation is that 

forcing the data to be close to neighboring sensor data could lead to unaccountability in local traffic 

variations. Lastly, researchers have proposed statistical learning methods such as Probabilistic 

Principal Component Analysis (Qu et al., 2009), Markov Chain Monte Carlo multiple imputation 

method (Farhan and Fwa, 2013), Neural Networks (Lv et al., 2015) and Deep Learning (Duan et 

al., 2016). Basically, statistical learning methods use the observed data to learn the trend and then 

infer the missing or corrupted traffic data.  

For the above mentioned sensor health problem and imputation studies, there are three major 

challenges: 
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1) All the aforementioned studies based on diagnosing sensor health do not quantify the 

magnitude of sensor data corruption nor do they differentiate systematic errors from the 

random errors. Sensors could be systematically corrupted due to any reason (double 

counting long vehicles, counting adjacent lane vehicles and so on), but the data they 

provide still carries useful information 

2) In most of the cases, imputation studies use the uncorrupted sensors to reconstruct the 

missing or corrupt data, hence discarding useful information from partially malfunctioning 

sensors               

Yang et al. (2019) attempted to address these problems by proposing a novel method based on 

Generalized Method of Moments (GMM) to quantify the magnitude of systematic error in data 

and identify partially malfunctioning sensors. They differentiate random errors from systematic 

errors, and only use systematic errors to mark the health of a sensor. This is of great practical value 

because this method enables utilization of information from partially malfunctioning sensors for 

reconstructing corrupt data from other sensors in the network. However, this study suffers from 

following drawbacks: 

1) They have applied GMM method in static flow setting, whereas, in real-world, flow is 

usually dynamic. Solving additional microscopic flow-density constraints, for instance, in 

the form of partial differential equations, could be tedious and sometimes even impossible 

in case of analytical models 

2) GMM method suffers if there is congestion in the network, i.e., if the network flow is 

imbalanced. To deal with this, the authors aggregate the flow over a suitable time interval, 

such as 24 hours. This results in smoothing the flow, hence not exploiting the inherent 

variations in the temporal dimension 
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3) GMM method behaves well only if there are a few calibrated sensors in the network 

In this study, we adopt a similar framework as Yang et al. (2019). Though, rather than using 

traditional statistical methods, we adopt a deep learning approach to deal with the above 

limitations. In the following section, we dive into the various applications of deep learning in 

transportation engineering so as to explain why deep learning approach for learning the static and 

temporal correlations in the traffic data is really promising.   

2.2 Deep Learning in transportation engineering 

Similar to many domains, transportation has also entered the world of big data due to 

significant amount of information collected by CCTV cameras, GPS, loop inductors, probe, and 

so on. Nguyen et al. (2018) in their review highlighted the application of various deep learning 

algorithms in processing traffic data for popular topics such as transportation network 

representation, traffic flow forecasting, traffic signal control, automatic vehicle detection, traffic 

incident processing, travel demand prediction, autonomous driving and driver behavior.  

Deep learning networks can extract important features from multi-dimensional data and 

hence are capable to modeling spatial and temporal relationships in the traffic networks. Ma et al. 

(2015) used a combination of recurrent neural networks (RNN) and deep restricted boltzmann 

machines (RBM) to predict congestion evolution in a high-dimensional transportation network 

based on GPS data from taxi. Further, Fouladgar et al. (2015) used convolutional neural networks 

(CNN) and long short term memory (LSTM) to predict congestion. They claimed that short term 

future traffic conditions on a road segment can be predicted reliably on the basis of traffic patterns 

of the neighboring road segments, without even using historical data for the particular road 

segment.  
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Traffic flow prediction is a very basic problem for transportation planners and several 

attempts have been made to leverage statistical methods for predicting number of vehicles on a 

road segment for future time intervals. Jia et al. (2017) introduced deep belief network (DBN) and 

LSTM for urban traffic flow prediction considering the impact of rainfall. They concluded that 

with the consideration of additional rainfall factor, the deep learning predictors outperformed the 

existing predictors and were an improvement over the original deep learning models without 

rainfall input. Zhao et al. (2017) proposed a LSTM network for traffic flow prediction and claimed 

that the LSTM model outperformed not only traditional machine learning models such as ARIMA 

and support vector machines (SVM) but also RNNs, especially in long term prediction. 

Deep learning has also been combined with reinforcement learning to create deep 

reinforcement learning (DRL) method which has been used in traffic signal control to help 

planners prevent congestion. Genders and Razavi (2016) proposed DRL based on CNNs to reduce 

cumulative delay by 82%, queue length by 66% and travel time by 20%. Van Der Pol, and Li et 

al. (2016) also applied DRL method and concluded that the results obtained using deep learning 

were remarkably better than traditional methods for deciding appropriate signal timings. 

  CNNs have produced state-of-the-art results for travel mode detection based on their 

adaptability to image recognition or signal processing tasks. Deep learning is making technologies 

like unmanned aerial vehicle detection or camera-based vehicle recognition viable. Liang and 

Wang (2017) used 1-dimensional CNNs to classify 7 transportation modes using accelerometer 

readings from smartphone platform with an accuracy of 94.48%, which they claim to be highest 

among existing studies. Ma et al. (2017) used CNNs to convert traffic speeds data to images to 

predict large-scale, network-wide traffic speeds. They claimed that CNNs outperformed traditional 

statistical algorithms namely, ordinary least squares, k-nearest neighbors, artificial neural network, 
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and random forest by an average accuracy improvement of 27.96% within acceptable execution 

time. Adu-Gyamfi et al. (2017) also proposed CNN to detect and classify vehicles into seven 

classes, and achieved average recall rates between 89% and 99% for seven classes of vehicles. 

Travel demand forecasting is another fundamental problem in transportation engineering 

that basically deals with predicting the number of users of transportation infrastructure in future. 

As mentioned above, data from GPS, CCTV cameras, probe, sensors is enormous and complicated. 

Exploiting these data sources using deep learning has made short term demand prediction accurate 

as it has claimed to learn the spatial and temporal correlations in the travel demand. Ke et al. (2017) 

proposed a fusion convolutional long short term memory network to predict short term travel 

demand to simultaneously consider the spatial, temporal and exogenous dependencies for an on-

demand transport service. Yao et al. (2018) used deep multi-view spatial temporal network to 

predict taxi demand. Xu et al. (2017) also predicted traffic demand using RNN using recent 

demand and other variables such as weather, drop-offs, etc. Liu and Chen (2017), and Baek and 

Sohn (2016) predicted public transit demands using deep neural networks.  

Predicting driver behavior is a very essential aspect in autonomous driving and accident 

prevention. Dwivedi and Biswaranjan (2014) used CNNs to detect drowsy driver behavior. CNNs 

have set benchmark accuracies on computer vision tasks, and in this study CNNs were utilized to 

extract complex facial features and non-linear feature interactions, resulting in an accuracy of 92% 

in detecting drowsy behavior. Similarly, due to computer vision applications, CNNs have also 

been used extensively in autonomous vehicle research (Grigorescu et al., 2019).  

Given all this research, it is clear that deep neural networks have been successful in learning 

spatial and temporal correlations in traffic data. Also, given the complexity and volume of the data 
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readily available today, deep neural networks are very promising in producing state-of-the-art 

results for various transportation tasks.    
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3. Theory 

3.1. Framework for modeling errors 

Here we employ a similar framework for modeling errors as Yang et al. (2019), the nuances 

of which are described in this section. Suppose that a road network has sensors installed that 

continuously report flow variables such as vehicle count and occupancy at constant time intervals. 

Let the count recorded when the 𝑠𝑡ℎ vehicle passes over sensor 𝑎 be 1 + 𝜀𝑎
𝑠, in which case, the 

total flow count over sensor 𝑎 for a particular time period is given as     

𝑉𝑎 = 𝑍𝑎 +∑(𝜀𝑎
𝑠)

𝑍𝑎

𝑠=1

 

where, 𝑍𝑎 is the actual flow count and 𝑉𝑎 is the observed vehicle count. Note that 𝜀𝑎
𝑠 is discrete in 

nature as a vehicle passing over the sensor should be reported as a discrete number. The total error 

in the measurement time interval for sensor 𝑎 can then be broken into systematic and random error 

components. 

  

∑(𝜀𝑎
𝑠)

𝑍𝑎

𝑠=1

= 𝑉𝑎 − 𝑍𝑎 = (𝐸(𝑉𝑎|𝑍𝑎) − 𝑍𝑎) + (𝑉𝑎 − 𝐸(𝑉𝑎|𝑍𝑎)) 

where, the prior component on right hand side is the systematic error, and later one is the random 

error. The assumption here is that the error generating mechanism is invariant across different time 

intervals and the parameters that control the measurement error are constant over a suitable time 

interval, for example, 24 hours. Thus, let µ and σ be the time independent vectors related to 

systematic and random error, respectively.  



12 
 

Thus, one could write the first two moments of the observed traffic counts conditioned on 

Z as a deterministic function of Z, such as, 

𝐸(𝑉𝑎|𝑍𝑎) = 𝑓(𝑍𝑎; µ𝑎)  𝑎𝑛𝑑 𝑉𝑎𝑟(𝑉𝑎|𝑍𝑎) = 𝛷(𝑍𝑎; 𝜎𝑎
2) 

Exact forms of 𝑓 and 𝛷 would depend upon the nature of distribution of measurement errors, but 

we assume additional assumptions to narrow down our focus to a simplified model, where, 

𝐸(𝑉𝑎|𝑍𝑎) = 𝑍𝑎 + µ𝑎𝑍𝑎  𝑎𝑛𝑑 𝑉𝑎𝑟(𝑉𝑎|𝑍𝑎) = 𝜎𝑎
2𝑍𝑎 

Here, µ𝑎𝑍𝑎 is the systematic error of the traffic counts, µ𝑎 is the systematic error ratio, and 𝜎𝑎 is 

the random error ratio. Further, we can define  

𝛽𝑎 =  1/(1 + µ𝑎) 

𝐸(𝑉𝑎|𝑍𝑎) = 𝑍𝑎/𝛽𝑎 

Now, one can see that  µ𝑎 is the magnitude with which the sensor could over-estimate or 

under-estimate the traffic flow counts. When the flow aggregation window is small, say 10 

minutes, the systematic error could end up being a non-integer value. Since, the observed traffic 

counts could only be integers, we modify the observed traffic count function as   

𝐸(𝑉𝑎|𝑍𝑎) = [𝑍𝑎 + µ𝑎𝑍𝑎] = [𝑍𝑎 𝜌𝑎⁄ ] 

where,  [. ] is the nearest integer function that rounds the non-integer values to the nearest integer.  

In this model framework, we consider that a road segment has one sensor to capture traffic 

in one direction. Hence, the transportation network should be abstracted to meet the above 

mentioned topology by using the algorithm provided in section 4.1.  
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3.2. Multi-dimensional time-series tensor representation 

Consider a traffic network abstracted in the form of a directed graph, 𝐺 =  {𝑁, 𝐴}, where 

𝑁 and 𝐴 are the set of nodes and links in the graph, respectively. Let 𝑛 =  |𝐼| and 𝑠 =  |𝐴|, where 

𝐼 is the set of intermediate nodes and |.| represents cardinality of the set. Let 𝐴(𝑖)
+  and  𝐴(𝑖)

−  be the 

set of links that enter or exit an intermediate node 𝑖. Let 𝑃 be the node-link adjacency matrix of 

size 𝑛 𝑏𝑦 𝑠, where 𝑃𝑖𝑎 = 1 if 𝑎 ∊ 𝐴(𝑖)
+ , -1 if 𝑎 ∊ 𝐴(𝑖)

− , 0 otherwise. Now, since every link contains 

a sensor recording the flow variables, 𝑠 is also the number of total sensor in the graph 𝐺. 

As mentioned above, it is safe to assume that measurement error parameters are constant over a 

suitable time range 𝑡. Typically, sensors report the traffic flow variables such as counts, occupancy 

and average speed at constant time intervals 𝑐. For example, in case of PeMS, 𝑐 is 30 seconds and 

5 minutes. Thus, total number of time steps for which 𝜇𝑎 and 𝜎𝑎 can be assumed constant is 𝑚 =

𝑡/𝑐. For example, if we consider 𝑡 = 24 hours and 𝑐 = 10 mins, then the length of vector of 

observations for a particular sensor where µ𝑎 and 𝜎𝑎 can be assumed constant would be 𝑚 =  𝑡/𝑐 

= 144. Since we have 𝑛 sensors in the network 𝐺, consider a matrix of dimension 𝑠 𝑏𝑦 𝑚. We 

define this matrix as a time-series of length m with s features or an s-dimensional time series 

with m steps. Now, depending on our estimation horizon, we could have varying number of time-

series samples, denoted by 𝑞. Thus, we consider the flow observations as a 3-D tensor of 

dimension 𝑞 𝑏𝑦 𝑠 𝑏𝑦 𝑚. In figure 1, f123 represents the flow variable for 2nd sensor at 3rd time step 

of the 1st time-series sample.  
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 Figure 1. Time-series representation of observed data 

    For a sample 𝑞𝑖, we define a 𝛽𝑖, a vector of length 𝑠 representing sensor systematic ratios. 

In practice, 𝛽𝑖 is a vector containing 1/(1 + µ𝑎) values corresponding to the network sensors.  

 Thus, we define the problem as mapping the flow observations to the corresponding vector 𝛽.  

 

Here, 𝐷 is a mapping that takes time-series samples as input and returns vectors of the 

corresponding 𝛽 values. Now, goal is to learn this mapping 𝐷 from the observed flow data. In this 

study, we will be using a deep neural network as this mapping D. 

 3.3. 1-D Convolutional Neural Networks 

Convolutional Neural Networks (CNN) are special kind of deep learning models that are 

usually used for computer vision tasks. Some of the advantages of using CNNs are as follows: 
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1) They are capable of extracting features straight from the raw data, whereas in traditional 

statistical models, features are usually engineered manually 

2) CNNs enable weight sharing over different parts of input that reduces the number of 

parameters effectively, making it computationally feasible to train on large set of data as 

compared to traditional deep fully connected networks 

3) CNNs are immune to small transformations in the data such as scaling, translating, skewing 

and distorting 

Usually for 3-D data such as images, conventional 2-D CNNs are used. For this study, since 

we treat our data as a multi-dimensional time-series data, we essentially need convolutions in 

temporal dimension only. Hence, we adopt 1-D CNNs for our research that are a modified version 

of 2-D CNNs. Recent studies have shown that 1-D CNNs with shallow depths have demonstrated 

a superior performance on applications which have a limited data and high signal variations (i.e., 

patient ECG, civil, mechanical or aerospace structures, high-power circuitry, power engines or 

motors, etc.) (Kiranyaz et al., 2019). Another advantage of using 1-D CNNs over 2-D CNNs is 

that 1-D CNNs require simple array operations rather than matrix operations (in case of 2-D 

CNNs), due to which 1-D CNNs are computationally less expensive and do not require special 

hardware setup like GPU farms.  

 As mentioned above, we are going to use 1-D CNNs to extract features from the traffic 

data. These features are then passed to another algorithm or deep learning architecture for further 

processing. Figure 2 illustrates the flow we use in this study.  
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Figure 2. Model Flow 

Consider a set of time-series samples 𝑋 =  [𝑥1, 𝑥2, … , 𝑥𝑞]
′
, where 𝑥𝑖 is a time-series with 

𝑚 steps in 𝑠-dimensional space. Let each time-series be associated with 𝑌 =  [𝑦1, 𝑦2, … , 𝑦𝑞]
′
, 

where 𝑦𝑖 is an 𝑠-dimensional vector containing the sensor systematic error ratios. A 1-D CNN 

constitutes of 𝐿 convolutional layers, where each layer 𝑙 is composed of 𝑐𝑙 sub-layers or channels. 

Each layer 𝑙 performs convolutions using appropriate filters, the cumulated output of which is then 

passed through a batch-normalization layer, followed by an activation function and finally 

subsampling (pooling). The output of this layer is then provided to the next layer as input. In this 

section, we will be discussing all of the above mentioned layers in detail.   

 Each layer 𝑙 has a set of filters, where each filter has the same number of channels as the 

input to layer 𝑙, i.e. 𝑐𝑙−1. After convolution with one filter, one channel of output is formed. Thus, 

𝑐𝑙 filters produce an output with 𝑐𝑙 channels. This process of convolutions and accumulating the 

output of each filter to produce cumulative output is called forward-propagation.  

3.3.1 Forward Propagation in CNNs 

During the forward propagation, the channels of each layer 𝑙 are the result of accumulation 

of the final output (after back-propagation and pooling) of the previous layer 𝑙 − 1.    

𝑜𝑖
𝑙 = 𝑏𝑖𝑎𝑠𝑖

𝑙 + ∑ 𝑐𝑜𝑛𝑣1𝐷(𝑤𝑖𝑗
𝑙 ,  𝑠𝑗

𝑙−1)

𝑐𝑙−1

𝑗=1

, 𝑖 = (1,2, … , 𝑐𝑙) 

𝑠𝑖
𝑙 = 𝑓_𝑎𝑐𝑡(𝑜𝑖

𝑙) 
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where,  𝑜𝑖
𝑙 is the channel 𝑖 of layer 𝑙 after convolution, 𝑏𝑖𝑎𝑠𝑖

𝑙 is the bias that is added to the 

convolved output for channel 𝑖 of layer 𝑙,  𝑤𝑖𝑗
𝑙  is the weight of the filter that maps the channel 𝑗 of 

the layer 𝑙 − 1 to channel 𝑖 of the layer 𝑙,  𝑠𝑗
𝑙−1 are the activations of channel 𝑗 of layer 𝑙 − 1, and 

𝑓_𝑎𝑐𝑡(. ) is the non-linear activation function. Following are the common choices for activation 

function 𝑓_𝑎𝑐𝑡(. ): 

 

 Activation 

function  

 𝑓_𝑎𝑐𝑡 = 𝑓𝑎𝑐𝑡
′ = 

 

 

i) 

 

 

Linear 

 

 

 

𝑥 

 

 

1 

 

 

ii) 

 

 

Sigmoid 

 

 

 

1

1 + 𝑒−𝑥
 

 

 

𝑓_𝑎𝑐𝑡(𝑥)(1

− 𝑓_𝑎𝑐𝑡(𝑥)) 
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iii) 

 

 

tanh 

 

 

 

2

1 + 𝑒−2𝑥
− 1 

 

 

1

1 + 𝑥2
 

 

 

iv) 

 

 

ReLU 

 

 

 

{
0, 𝑥 < 0
𝑥, 𝑥 ≥ 0

 

 

 

{
0, 𝑥 < 0
1, 𝑥 ≥ 0

 

 

 

v) 

 

 

Leaky 

ReLU 

 

 

 

{
𝑎𝑥, 𝑥 < 0
𝑥, 𝑥 ≥ 0
𝑎 > 0

 

 

 

{
𝑎, 𝑥 < 0
1, 𝑥 ≥ 0

𝑎 > 0
 

Table 1. Commonly used activation functions for deep learning 

Usually, the dimension of a channel in layer 𝑙 is lesser than the dimension of a channel in 

the preceding layer 𝑙 − 1 because of convolutions. In order to keep the dimensions of the channels 

in the current layer same as the preceding layer, we can pad the channels with zero, also known as 

zero-padding.  
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3.3.2 Batch-normalization 

After performing the convolution operation and before applying the activation function, 

the output 𝑜𝑖 of channel 𝑖 is normalized with the mean µ𝑖 and standard deviation 𝜎𝑖 that are 

computed for the channel 𝑖 across the batch of input samples (𝑏) and dimension of the channel(𝑑). 

After normalization, a channel-wise affine transformation parameterized through 𝛾𝑐 and 𝛽𝑐 is 

performed, which are learnable parameters of the model. 

𝑜𝑖
𝑛𝑜𝑟𝑚 = 𝛾𝑐 ∗

𝑜𝑖 − µ𝑖

√𝜎𝑖
2 + 𝜀

+ 𝛽𝑐,  

µ𝑖 =
1

|𝐵|
∗ ∑ 𝑜𝑖 𝑏,𝑑 and σi

2 =
1

|B|
∑ (𝑜𝑖 − µ𝑖)

2
𝑏,𝑑    

where, 𝐵 contains all the activations in channel 𝑖 across all the samples 𝑏. It is observed that batch-

normalization accelerates training, enables higher learning rates, and improves generalization 

accuracy. 

3.3.3 Subsampling (Pooling) 

Pooling layer is usually inserted after the convolutions are performed with an objective to 

reduce the computation in the network. Its function is to progressively reduce the temporal 

dimension of the channels to reduce the number of parameters and avoid overfitting. The pooling 

layer acts independently on each channel of the input layer and resizes it using a specific operation. 

The most common types of operations for pooling are Max Pooling and Average Pooling. Let us 

assume that the dimension of the pooling filters is 𝑑𝑝𝑜𝑜𝑙 𝑏𝑦 1. The pooling layer moves the filter 

over the input and does the appropriate operation on 𝑑𝑝𝑜𝑜𝑙 numbers at a time. Max operation retains 

the maximum number out of the 𝑑𝑝𝑜𝑜𝑙 numbers, whereas Average operation returns the average 

of the 𝑑𝑝𝑜𝑜𝑙 numbers. The number of channels before and after the operation remain the same. The 
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pooling filter can also be shifted over the input with a stride of length 𝑠𝑝𝑜𝑜𝑙. For example, if 𝑠𝑝𝑜𝑜𝑙 

is 2, then the filter skips a number while shifting to a new set of numbers. An illustration of max 

pooling is provided in the figure 3 where the input has 2 channels with 10 dimensions each. Figure 

4 depicts 𝑙𝑡ℎ convolutional layer in a network of 1-D CNNs. 

 

Figure 3. Max Pooling 

 

 

Figure 4. 𝑙𝑡ℎ Layer of a 1-D CNN 
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3.3.4 Fully Connected Network 

We pass the output of the 1-D CNN to the fully connected network that predicts the 

systematic error ratios. A fully connected network is a regular artificial neural network where a 

neuron is connected to all activations in the previous layer. Let 𝑧 be the features outputted by the 

1-D CNN. Since 𝑧 is the output of the last layer L, it consists of 𝑐𝐿 channels, where each channel 

is of 𝑑𝐿 dimension. We concatenate all the channels together to create a long output of 

dimension 𝑑𝐿 ∗ 𝑚𝐿 𝑏𝑦 1. Then, these activations are passed on to a fully connected neural 

network. The output of the fully connected layer is given by 

𝑦 = 𝑠𝐿+1 = 𝑓𝑎𝑐𝑡 (𝑏𝑖𝑎𝑠
𝐿+1  +  𝑤𝐿+1 × 𝑧)  

where, × is the matrix multiplication, 𝑤𝐿+1 is the weight matrix of dimension 𝑠 𝑏𝑦 𝑑𝐿 ∗ 𝑚𝐿, and 

𝑦 is the 𝑠 dimensional vector representing systematic error ratios. In case of regression function, 

𝑓_𝑎𝑐𝑡 for the ultimate layer is usually the linear activation function. 

3.3.5 Loss function for model optimization 

Let 𝑦̂ be the output of the last layer of deep learning model and 𝑦 be the target systematic 

error ratio vector. We define a loss function 𝐿(𝑦, 𝑦̂) that computes the error between predicted and 

target values. While training the neural network model, we aim at minimizing the loss function 

value by optimizing the model parameters such as weights and biases of the layers. Choice of the 

loss function depends on the nature of problem we are dealing with, for example, classification or 

regression. In this case, as we are mapping traffic flow observations to systematic error ratio, it is 

a regression problem by nature. Table 2 summarizes some of the common loss functions adapted 

to train a deep neural network for a regression problem. For example, Wu et al. (2018) used MSE 

as the loss function for traffic flow prediction task.  Yu et al. (2017) used both MAPE and MSE as 
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the loss function for traffic forecasting task with different deep learning models. Li and Wang 

(2019) used both MSE and MAE as the loss functions for short term traffic flow prediction.  

Table 2. Loss functions for a regression problem 

In this table, 𝑛 is the total number of time-series samples and 𝑠 is the total number of 

sensors in the network. Next, we update the model parameters by optimizing the loss function 

using gradient descent, the process of which is called back propagation.  

3.3.6 Back propagation in CNNs 

As any other non-constrained optimization, we need to compute 𝐿(𝑦, 𝑦̂) and its gradient 

𝑑𝐿/𝑑𝑦̂ for training the 1-D CNN. Ultimately we would need to calculate 𝑑𝐿/𝑑𝑤𝑖𝑗
𝑙  and 𝑑𝐿/𝑑𝑏𝑖𝑎𝑠𝑖

𝑙 

to iteratively update weights and biases, and minimize the loss 𝐿(𝑦, 𝑦̂). Here a high level idea of 

back propagation is provided. Using the chain rule, 

𝑑𝐿

𝑑𝑤𝑖𝑗
𝑙 = (

𝑑𝐿

𝑑𝑜𝑖
𝑙)(

𝑑𝑜𝑖
𝑙

𝑑𝑤𝑖𝑗
𝑙 ) 

From forward propagation, we can see that 

𝑑𝑜𝑖
𝑙

𝑑𝑤𝑖𝑗
𝑙 = 𝑠𝑗

𝑙−1 

Hence, the above equation becomes 

 Loss function 𝐿(𝑦, 𝑦̂) = 

i) Mean Square Error (MSE) 1

𝑛𝑠
∑∑(𝑦𝑖𝑗 − 𝑦̂𝑖𝑗  )

2
𝑠

𝑗=1

𝑛

𝑖=1

 

iii) Mean Absolute Error (MAE) 1

𝑛𝑠
∑∑|𝑦𝑖𝑗 − 𝑦̂𝑖𝑗| 

𝑠

𝑗=1

𝑛

𝑖=1

 

iv) Mean Absolute Percentage Error (MAPE) 1

𝑛𝑠
∑∑

|𝑦𝑖𝑗 − 𝑦̂𝑖𝑗|

𝑦𝑖𝑗
∗ 100%

𝑠

𝑗=1

𝑛

𝑖=1
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𝑑𝐿

𝑑𝑤𝑖𝑗
𝑙 = (

𝑑𝐿

𝑑𝑜𝑖
𝑙) 𝑠𝑗

𝑙−1 = (
𝑑𝐿

𝑑𝑜𝑖
𝑙)𝑓(𝑜𝑖

𝑙−1)  

Due to forward propagation we already know the values of 𝑠𝑗
𝑙−1. Hence, we now need to 

compute (
𝑑𝐿

𝑑𝑜𝑖
𝑙). Again, we can use the chain rule as 

𝑑𝐿

𝑑𝑜𝑖
𝑙 = (

𝑑𝐿

𝑑𝑠𝑖
𝑙)(

𝑑𝑠𝑖
𝑙

𝑑𝑜𝑖
𝑙) =  (

𝑑𝐿

𝑑𝑠𝑖
𝑙)(

𝑑𝑓(𝑜𝑖
𝑙)

𝑑𝑜𝑖
𝑙 ) =  (

𝑑𝐿

𝑑𝑠𝑖
𝑙)𝑓

′(𝑜𝑖
𝑙) 

Now, depending on the activation function, the derivative 𝑓′ can be evaluated at 𝑜𝑖
𝑙, which we 

know from forward propagation. Calculation of (
𝑑𝐿

𝑑𝑠𝑖
𝑙) is performed again by the chain rule as we 

propagate the errors to the previous layers. For example 

𝑑𝐿

𝑑𝑠𝑖
𝑙−1 = (

𝑑𝐿

𝑑𝑜𝑖
𝑙)(

𝑑𝑜𝑖
𝑙

𝑑𝑠𝑖
𝑙−1) 

Thus, starting from the last layer, calculation of 
𝑑𝐿

𝑑𝑠𝑖
𝐿 is used for calculating the derivative of 𝐿 w.r.t 

previous layer activations. Now, completing the cycle, we can write  

𝑑𝑜𝑖
𝑙

𝑑𝑠𝑖
𝑙−1 = 𝑤𝑖𝑗

𝑙  

Hence, now we have everything to compute 
𝑑𝐿

𝑑𝑤𝑖𝑗
𝑙 , thus 𝑤𝑖𝑗

𝑙  can be updated using the gradient 

descent algorithm as follows 

𝑤𝑖𝑗
𝑙∗ = 𝑤𝑖𝑗

𝑙 − 𝛼
𝑑𝐿

𝑑𝑤𝑖𝑗
𝑙  

where, 𝛼 is the learning rate and 𝑤𝑖𝑗
𝑙∗ is the updated weight. Same way, biases of the deep learning 

model are optimized.  
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3.3.7 Gradient descent and its variants 

As explained in the previous section, back propagation iteratively updates the parameters 

of the deep learning model till the loss function is minimized, i.e.,  

Repeat till convergence { 

𝑤𝑖𝑗
𝑙∗ = 𝑤𝑖𝑗

𝑙 − 𝛼
𝑑𝐿

𝑑𝑤𝑖𝑗
𝑙 , 

 𝑏𝑖𝑎𝑠𝑖
𝑙∗ = 𝑏𝑖𝑎𝑠𝑖

𝑙 − 𝛼
𝑑𝐿

𝑑𝑏𝑖𝑎𝑠𝑖
𝑙 

} 

This update is simultaneously done for all the parameters. But there are a few challenges to the 

above mentioned gradient descent algorithm: 

1) Local Minima or Saddle Points: Deep neural networks are complicated functions with 

numerous non-linear transformations. Thus, the loss function that depends on large number of 

parameters (usually > 1e6) is highly complex. An example of a typical loss landscape for a 

deep learning model is given in the figure 5. Thus, it is very easy to get stuck in a sub-optimal 

local minima or saddle point. 
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Figure 5. Loss landscape of ResNet-100 (Li et al. 2018) 

 

2) Sub-optimal learning rate: In the gradient descent algorithm mentioned above, all the 

parameters are updated simultaneously with the same learning rate. This could be a problem if 

our data is sparse, as we might want to update certain parameters with larger learning rate than 

others. Also, choosing a smaller learning rate could lead to very slow convergence, whereas a 

larger learning rate could make loss function diverge.    

In order to escape the sub-optimal local minima and to explore the parameter space 

exhaustively, the following updates to the conventional gradient descent algorithm are adopted: 

1) Stochastic and Mini-Batch gradient descent: So far, we have been using the traditional batch 

gradient descent algorithm where we sum across the loss over the entire training samples.  
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In stochastic gradient descent (SGD), gradient updates are performed using one training 

sample at a time, where the sample is chosen at random without replacement. The update rule 

is modified as: 

Repeat till convergence { 

for i in 1:𝑞 { 

𝑤𝑖𝑗
𝑙∗ = 𝑤𝑖𝑗

𝑙 − 𝛼
𝑑𝐿

𝑑𝑤𝑖𝑗
𝑙 , 

 𝑏𝑖𝑎𝑠𝑖
𝑙∗ = 𝑏𝑖𝑎𝑠𝑖

𝑙 − 𝛼
𝑑𝐿

𝑑𝑏𝑖𝑎𝑠𝑖
𝑙 

} 

}  

where, 𝑞 are the total training samples. Due to frequent updates, there is variance in parameter 

updates which makes search more exhaustive. Though, due to variance in parameter updates, 

the convergence in the parameters could be adversely affected.  

 This drawback of SGD is rectified using mini-batch gradient descent, where a random 

sample or mini-batch of training examples is used to update the parameters at a time. This 

version of gradient descent is more suitable as it reduces the variance in parameter updates and 

is computationally less expensive as compared to SGD. The size of the mini-batch, known as 

batch size is usually chosen as an exponent of 2, for example, 32, 64, 128, etc.    

2) Cyclical learning rate: Smith (2017) proposed scheduling the learning rate (𝛼), such that it 

oscillates between a designated upper and lower bound in a cyclical manner. The objective of 

cyclical learning rates is to increase the 𝛼 for certain batches and then decrease the learning 

rate while training the remaining batches in an epoch. An epoch is defined when all the training 
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samples are used for gradient update once. Increasing the 𝛼 helps escape sub-optimal local 

minima and saddle points, whereas decreasing the 𝛼 helps in convergence. Figure 6 shows a 

few commonly used cyclical learning rate patterns.  
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Figure 6. Various policies for cyclical learning rates 

3.3.8 Optimizing gradient descent 

SGD and mini-batch gradient descent introduced above, along with proper learning rates 

help escaping sub-optimal local minima and saddle points, but because of the highly complex loss 

landscape, parameter updates tend to be very noisy, which impedes convergence to optimal 

minima. Also, so far the learning rate for updating each parameter is same, which could be an 

issue, for example in the case of sparse data. Thus, in practice a further optimized version of 

gradient descent update rule is used, some of which are explained here. These update rules tend to 

accelerate parameter updates in a streamlined fashion. 

1) Momentum: In this technique, we replace the current gradient with exponential average of 

gradients. Hence, in addition to accounting for the current gradient, Momentum accumulates 

the gradients from past steps to determine the next gradient direction. The algorithm is as 

follows: 

Repeat till convergence { 

𝑣𝑖𝑗
𝑡 = 𝜂𝑣𝑖𝑗

𝑡−1 + (1 − 𝜂)
𝑑𝐿

𝑑𝑤𝑖𝑗
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𝑤𝑖𝑗
𝑡 = 𝑤𝑖𝑗

𝑡−1 − 𝛼𝑣𝑖𝑗
𝑡  

} 

where, 𝜂 is the coefficient of momentum, usually kept at 0.9 and t denotes the current iteration. 

𝑣𝑖𝑗
0  is initialized at 0 and 𝑣𝑖𝑗

𝑡  accounts for the previous gradients while determining current 

parameter update. Momentum dampens the oscillations in parameter search while speeding the 

training process. 

2) RMSProp: In addition to accumulating gradients, RMSProp adjusts the learning rates for 

individual parameters. The update steps in this technique are as follows: 

Repeat till convergence { 

𝑣𝑖𝑗
𝑡 =  𝜌𝑣𝑖𝑗

𝑡−1 + (1 − 𝜌) (
𝑑𝐿

𝑑𝑤𝑖𝑗
)

2

 

∆𝑤𝑖𝑗 = −
𝛼

√𝑣𝑖𝑗
𝑡 + 𝜀

(
𝑑𝐿

𝑑𝑤𝑖𝑗
) 

𝑤𝑖𝑗
𝑡+1 = 𝑤𝑖𝑗

𝑡 + ∆𝑤𝑖𝑗 

}  

where, the hyper-parameter 𝜌 is usually kept at 0.9, 𝑣𝑖𝑗
0  is initialized at 0 and t denotes the 

current iteration. 𝜀 is a small number to the order of 1e-10 to prevent division by zero. 

RMSProp automatically reduces the learning rate if the gradient step is large, hence tuning 

each parameter with different learning rates.  

3) Adam: Adam or Adaptive Moment Optimization combines the heuristics of Momentum and 

RMSProp. While Momentum accelerates the search in direction of minima and RMSProp 
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impedes the search in direction of oscillations, ADAM combines the benefit of both and 

usually performs very well in practice. The update equations are as follows: 

Repeat until convergence { 

𝑣𝑖𝑗
𝑡 = 𝛽1𝑣𝑖𝑗

𝑡−1 + (1 − 𝛽1)
𝑑𝐿

𝑑𝑤𝑖𝑗
 

𝑠𝑖𝑗
𝑡 = 𝛽2𝑠𝑖𝑗

𝑡−1 + (1 − 𝛽2) (
𝑑𝐿

𝑑𝑤𝑖𝑗
)

2

 

∆𝑤𝑖𝑗 = −𝛼
𝑣𝑖𝑗
𝑡

√𝑠𝑖𝑗
𝑡 + 𝜀

(
𝑑𝐿

𝑑𝑤𝑖𝑗
) 

𝑤𝑖𝑗
𝑡+1 = 𝑤𝑖𝑗

𝑡 + ∆𝑤𝑖𝑗 

} 

where,  𝛽1 and 𝛽2 are hyper-parameters, whose values are usually 0.9 and 0.99. 

3.3.9 Parameter initialization  

As seen in the forward propagation, the activations in the subsequent layers depend on the 

product of weights from the previous layers. Thus, initializing the weights with very small or very 

large values could result in vanishing or exploding gradients, respectively. Also, initializing 

weights with a constant number or zeros does not result in any learning as all the activations and 

gradients during back propagation undergo same updates and there is no source of asymmetry 

between the neurons.   

  To avoid exploding or vanishing gradients, and help neural network converge faster, the 

following initialization methods are commonly used: 

1) Xavier Initialization: This initialization method is usually used in case of symmetric-around-

zero activation functions such as tanh. This initialization sets weights from a uniform 
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distribution with bounds ±√
6

𝑛𝑖+𝑛𝑖+1
.  𝑛𝑖 and 𝑛𝑖+1 are the number of input and output units in 

the weight tensor, also known as fan in and fan out, respectively. Biases are initialized at zero. 

This makes sure that the variance of activations and back propagated gradients throughout the 

neural network in maintained.  

2) Kaiming Initialization: As mentioned above, Xavier’s initialization is valid when a 

symmetrical about zero activation function is used. In case of other activation functions such 

as ReLU or Leaky ReLU, weights are usually initialized using Kaiming initialization. The 

weight are initialized using a normal distribution centered at 0 with variance 2/𝑛𝑖, where 𝑛𝑖 is 

the number of input units in the weight tensor. Biases are initialized at zero.  

The aim of using these initializations is to make sure that activations and gradients in deep neural 

networks are maintained to avoid vanishing and exploding gradient problem and help network 

converge faster.  

3.3.10 Regularization 

A deep learning network contains millions of parameters that could result in overfitting the 

training data resulting in lack of generalization. In order to control the capacity of neural networks 

to prevent overfitting, the following methods are used in general: 

1) L2 regularization: In this technique, we add the Frobenius norm of the weight parameters in 

the loss function, pushing weights close to zero. The updated loss function is: 

𝐿(𝑦, 𝑦̂, 𝑤) = 𝐿(𝑦, 𝑦̂) + 𝜆𝐹||𝑤||𝐹
2
 

This regularization is also called weight decay as the weights are decayed linearly with a factor 

of 𝜆𝐹𝑤 during backpropagation. 
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2) L1 regularization: In this regularization, for each weight 𝑤𝑖𝑗, we add the 𝜆𝑚|𝑤_𝑖𝑗| term to the 

loss function, called 1-norm. Thus, the updated loss function becomes: 

𝐿(𝑦, 𝑦̂, 𝑤) = 𝐿(𝑦, 𝑦̂) + 𝜆𝑚||𝑤||1 

This technique makes the weight matrix sparse during optimization. Thus, it leads to a subset 

of most important weight parameters.  

3) Elastic net regularization: This regularization lets us combine L1 and L2 regularizations and 

add the following penalty to the loss function: 

𝐿(𝑦, 𝑦̂, 𝑤) = 𝐿(𝑦, 𝑦̂) + 𝜆𝑚||𝑤||1 + 𝜆𝐹||𝑤||𝐹
2

 

4) Dropout: This is an extremely efficient, effective and simple way that complements the above 

mentioned regularization methods. In Dropout, we only keep a subset of neurons (chosen with 

a probability 𝑝𝑑𝑟𝑜𝑝) active during a cycle of forward propagation. This is like sampling a neural 

network from a full neural network and only updating the parameters of the sampled neural 

network based on the input data. Figure 7 which is taken from Srivastava et al. (2014), 

describes Dropout pictorially.  

 

Figure 7. Dropout regularization 
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3.3.11 Bias-Variance tradeoff, Overfitting and Underfitting, and model generalization 

A model is said to be having high bias if it is too simple to capture the underlying 

distribution in the data, whereas, model is said to have high variance when it fits too well to the 

training data. In the case of high variance, the model is not generalizable and performs poorly on 

the unseen data. Usually linear algorithms such as linear regression suffer from high bias, whereas 

algorithms such as neural networks suffer from high variance due to a large number of parameters 

in the model. When a model is too sensitive and fits very flexibly to the training data, it is said to 

overfit the training data. On the other hand, when a model is not able to capture important signals 

from the training data and is not flexible enough to generalize, then it is said to underfit the training 

data. A model with high bias or high variance is not generalizable enough and is liable to perform 

poorly on the unseen dataset. Figure 8 depicts the case of underfitting and overfitting.  

 

Figure 8. (a) Overfitting or high variance, (b) Underfitting or high bias 

For a statistical algorithm, as model complexity increases, bias decreases and variance 

increases. In other words, for a predictive model, lower bias in parameter estimation tends to have 
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a higher variance, and vice versa. This is called Bias-Variance tradeoff. One can show that loss 

function such as mean-squared error can be described as a function of bias and variance, i.e.,  

𝑦 = 𝑓 + 𝜖,  

𝐸[(𝑓 − 𝑦̂)2] = (𝑓 − 𝐸(𝑦̂))
2
+ 𝐸 [(𝑦̂ − 𝐸(𝑦̂))

2
] + 𝜎2, 

𝐸[(𝑓 − 𝑦̂)2] = [𝐵𝑖𝑎𝑠(𝑦̂)]2 + 𝑉𝑎𝑟(𝑦̂) + 𝜎2  

where, 𝑓 is the target function and 𝜖 is noise (unavoidable error) such that 𝐸(𝜖) =  0 and 𝑉𝑎𝑟(𝜖) =

𝜎2. Thus, the loss function is minimized when Bias-Variance tradeoff is balanced. 

3.3.12 Tuning important hyper-parameters  

As any other statistical learning algorithm, there are important hyper-parameters that we should 

tune in order to maintain bias and variance tradeoff. Thus, to find the sweet spot for Bias-Variance 

tradeoff and to help model converge better, we need to tune important hyper-parameters as 

mentioned below: 

1) Learning rate (𝛼): This is the most important hyper-parameter to be tuned for successful neural 

network convergence. In practice, different parameters need different learning rates. Also, 

smaller learning rates help in convergence but larger learning rates help avoiding sub-optimal 

minima or saddle points. Adaptive learning rate methods such as Adam provide parameter 

specific learning rates. In addition to that, cyclical learning rates makes the learning rate 

oscillate between bounds at regular intervals. Hence, once we set appropriate bounds for the 

learning rate, rest is taken care of.   

2) Number of epochs (𝑛𝑒𝑝𝑜𝑐ℎ𝑠): One epoch is when all the training samples are used for gradient 

update once. Using a large number of epochs can lead to overfitting, but a lower number may 

result in insufficient training. In practice, we use a technique called Early Stopping, in which 

the training stops when the desired loss does not improve after a certain number of consecutive 
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training epochs. Thus, we need to set the number of epochs for early stopping, after which 

training stops if the loss does not improve. Once the training stops, the parameter 

corresponding to the best loss value are returned.   

3) Batch size (𝑛𝑏𝑎𝑡𝑐ℎ): This refers to the number of samples fed into the model at once for training 

while using mini-batch gradient descent. It is recommended to use a larger batch size as much 

could be supported by system’s memory. Batch size also affects the computational time, lower 

batch size results in higher training time per epoch.  

4) Dropout probability (𝑝𝑑𝑟𝑜𝑝): Dropout is used to control overfitting, though using a higher than 

required probability can cause lead to insufficient learning.  

5) L1 (𝜆𝑚) and L2 (𝜆𝑓) regularization penalties: Higher L1 penalty leads to sparser parameter 

space and higher L2 penalty pushes weights closer to zero, hence controlling overfitting    

6) Number of layers (𝑙) and filter size (𝑓𝑐𝑜𝑛 ): Increasing the number of layers leads to a more 

complex network that results in increase in number of parameters. This in turn results in 

increased computational time and also potential overfitting. On the other hand, using lower 

number of layers could lead to a very simple network. Large filter size has a larger receptive 

field, hence captures more generic feature from the data and results in lower dimensional 

output, whereas a smaller filter size extracts more local information.    

3.3.13 Training-Validation-Test sets and learning curves 

Typically in machine learning, the data is divided into 3 parts: Training, Validation and 

Testing. The idea is to use training data for learning the parameters of the neural network, use the 

validation data to tune the hyper-parameters and finally use the test data to gauge the unbiased 

performance of the final model to achieve a benchmark for the performance the model will have 

on the real world data. In order to tune the hyper-parameters, for example learning rate, we use 
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validation loss as a criteria for early-stopping. Theoretically, it is possible to achieve a zero training 

loss by increasing the network complexity and training for longer period of time, but the validation 

loss serves as an indicator for overfitting. A few important points to keep in mind while creating 

the Training-Validation-Test sets are as follows: 

1) Most of the data should be used for training as deep learning models thrive on the quantity of 

data available. Typically, over 70% of data serves as training that could go above 90% 

depending upon the problem at hand. 

2) Testing data should be a sample from the real world data that our model is likely to encounter 

in practice. In case the test data does not represent the true data distribution, the accuracy on 

the test set would not be a good indicator for the model performance. 

3) Validation and test sets should have a similar distribution. This will make sure that the hyper-

parameters are tuned with respect to the true data distribution. 

A learning curve is the plot of model leaning performance over time. As a model trains, one 

can study the learning curves to understand model behavior such as overfitting/underfitting or 

unrepresentative training/validation datasets by observing the learning curve. A learning curve 

basically demonstrates training loss and validation loss in the same plot against training epochs. 

Figure 9 shows an example of the learning curve.   
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Figure 9. Learning curve 

3.4. Sensor error estimation algorithm  

 In this section, we introduce the algorithm that has been implemented to quantify sensor 

errors and reconstruct erroneous flow. Firstly, we begin by abstracting the concerned road 

network to a graph 𝐺 such that road segments containing multi-link level sensor sets are divided 

into multiple links where a link contains only one sensor, links with no sensors are eliminated and 

origin-destination nodes that connect more than one node are divided into multiple nodes. Next, 

we simulate traffic flow in the network using the O-D demand. Flow could be simulated assuming 

static or dynamic assignment, but the dynamic flow distribution would be closer to the true traffic 

distribution. We consider the generated flow as the ground truth and introduce measurement 

errors to generate observed flow samples as explained in section 3.1. Next, we divide observed 

flow samples to training, validation and test sets, where neural network model is trained on the 
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training set and hyper-parameters are tuned using the validation set. Once trained, the 

performance on the test set serves as the benchmark for the accuracy of the model. Lastly, the 

predicted systematic errors are used to reconstruct the flow. Figure 10 depicts the algorithm as 

a flow chart.    

 

 

Figure 10. Sensor error estimation algorithm 
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4. Methodology 

4.1. Network in consideration and graph abstraction 

 In this study, we consider a network in which there are no multi-link level sensor sets and 

every link has one sensor. In the real-world road networks, this is hardly the case. Usually, the 

freeways consist of multiple lanes, hence a segment has multiple sensors. Thus, before we apply 

our algorithm, we need to perform graph abstraction as introduced by Yang et al. (2017). The 

nuances of the algorithm are explained here.  

As described in section 3.2, 𝐺 =  {𝑁, 𝐴}, where 𝑁 and 𝐴 are the set of nodes and links in 

the graph, respectively. Let 𝐼 be the set of intermediate nodes, 𝑛 =  |𝐼| and 𝑠 =  |𝐴|, where |.| 

represents cardinality of the set. Let 𝐴(𝑖)
+  and  𝐴(𝑖)

−  be the set of links that enter or exit a node 𝑖. 

Let 𝑃 be the node-link adjacency matrix of size 𝑛 𝑏𝑦 𝑠, where 𝑃𝑖𝑎 = 1 if 𝑎 ∊ 𝐴(𝑖)
+ , -1 if 𝑎 ∊ 𝐴(𝑖)

− , 

0 otherwise. Let 𝐺̃ be the graph obtained after contraction, and 𝑃̃ be the node-link adjacency matrix 

for graph 𝐺̃. Let 𝐾̃ be a vector that stores the number of link level sensor sets on an edge and 𝑁̃ be 

the vector that designates whether a node is intermediate or not by 𝑛𝑖 = 1, if a node is intermediate. 

The graph contraction algorithm is provided below.  
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Algorithm for Graph Contraction 

 

   

Next, we consider the modified Nguyen-Dupuis network that is shown in figure 11. This 

network consists of 6 origin-destination (OD) pairs, 19 intermediate nodes, and 50 directed links 

and is already abstracted. All the links in this network are bi-directional with asymmetric flows. 

In the next section, we will be simulating flow in this network to generate flow count data.  
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Figure 11. Modified Nguyen-Dupuis network 

4.2. Generating data by flow simulation 

We generated the simulated traffic flow data via the dynamic traffic assignment using 

Sumo. Sumo (Simulation of Urban MObility) is an open source microscopic traffic simulation 

package, with the capability of performing dynamic traffic assignment. A bidirectional modified 

Nguyen-Dupuis network is constructed within Sumo environment. The network consists of 6 

origin/destination, 13 intermediate nodes and 50 directed links. Each of the intermediate node is 

considered to be a signal-controlled intersection. One inductive loop sensor is embedded 

underneath each link adjacent to its downstream intersection. 

In total we carried out 365 independent simulations. Each simulation simulated the traffic 

flow for a 24-hour time period, among which the total 24-hour OD was split into each hour, based 

on some randomized daily traffic timelines, the average hourly ratio of which is shown in Figure 

12. The 24-hour OD pairs for each of the simulations was generated by adding normal randomness 

onto an OD matrix, which is deterministic throughout the 365 simulations. Since the OD and the 

traffic signal controls themselves were not of interests, they were tuned only to enable non-fixed 

routing choices, i.e., the traffic flow of some OD pairs will have more than one routing option so 
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that the OD-to-traffic flow does not follow solely linear mapping. Figure 13 shows the average 

daily traffic profiles for 3 specific links, where the different traffic flow patterns indicate the 

existence of the non-linear mapping. In addition to this, the settings allowed network to have 

congestion which results in an imbalanced traffic flow conservation as shown in Figure 14. This 

also shows that in reality, the effect of shockwaves caused by queuing and dequeuing between 

links may still cause a significant violation of the flow conservation at the intersection.   

Traffic data (traffic counts and speeds) were collected from each of the inductive loop 

sensor at a 10-minute aggregation level. Therefore, for each sensor, we obtained 365*24*6=52560 

samples for both traffic counts and speeds. 

 

Figure 12. Average hourly flow ratio in network 
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Figure 13. Average daily traffic profiles for specific sensors 

 

 Figure 14. Average 24 hour node flow imbalance 
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4.3. Generating observed flow 

 After simulating the network to generate the base flow, we introduce measurement errors 

to obtain the observed flow. Here we explain how to generate measurement errors for a sample, 

then we can repeat these steps to generate measurement errors for multiple samples: 

1. Firstly, we generate two s-dimensional vector representing mean systematic error 

ratios, 𝜇𝑖~ 𝑈
𝑠(−0.5, 0.5) and random error coefficient, 𝜎𝑖

′~ 𝑈𝑠(0, 𝜎𝑎) for a group 𝑖 where 𝑈𝑠 

is a 𝑠-dimensional uniform distribution. 𝜎𝑎 is the random error ratio as defined in section 3.1 

that dictates the magnitude of unexplained measurement error and places an upper bound on 

the accuracy of reconstructed flow with respect to the base flow. Each value in the vector 𝜇𝑖 

and 𝜎𝑖
′ correspond to a sensor in the network. We limit the systematic error ratios between -0.5 

and 0.5, where the extreme values are a representative of the worst sensor condition.  

2. Next, we demarcate sensors as calibrated with a probability 𝑝𝑐𝑎𝑙𝑖𝑏, i.e., a sensor is marked fit 

with a probability 𝑝𝑐𝑎𝑙𝑖𝑏. This helps in creating real-world like scenario where a few sensors 

are likely to be fit. In addition to this, it also adds slight randomness in the training data that 

helps in robust training.  

3. Now, we generate systematic error ratio for a sample 𝑑 of group 𝑖, 𝜇𝑖,𝑑  ~ 𝑁(𝜇𝑖, 𝜎𝜇𝜇𝑖). Here a 

reasonable assumption is made that the mean systematic error ratio, 𝜇𝑖 remains constant for 

over a group of samples (for example, a group could be a year with each day as a sample, so 𝑑 

would be from 1 to 365) and systematic error ratios for a sample are random fluctuations from 

the 𝜇𝑖. For our study we assume 𝜎𝜇 to be 0.3. The idea is to generate enough randomness in 

the error ratios such that our model learns robust features and can perform well during the 

testing phase.  
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4. Next, we introduce random errors for sample d, 𝑟𝑑~𝑁(0, 𝜎𝑖
′𝑍𝑑

0.5) for all the sensors for group 𝑖, 

where 𝑍𝑑 is the base flow for the sample 𝑑. Finally, we update the base flow for a sample 𝑑 

using 𝜇𝑖,𝑑 and 𝑟𝑑 to generate the observed flow 𝑉𝑖,𝑑.  

We repeat these steps to generate systematic error ratio for D samples in the group 𝑖 and then to 

generate observed flow for multiple groups. The algorithm for generating observed flow for 𝑦 

groups is summarized below.  

Algorithm for generating observed flow  

 

Thus, we generate 𝐷 ∗ 𝑌 number of time-series samples with the corresponding systematic error 

ratios. Figure 15 compares the base flow with the generated observed flow for different levels of 

random error ratio, 𝜎𝑎 . 
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(a) Sensor = 4, 𝜇𝑖,𝑑 = −0.5 

 

(b) Sensor = 49, 𝜇𝑖,𝑑 = 0.5 

Figure 15. Base vs Observed Flow with varying 𝜎 levels  
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4.4. Deep neural network training 

 In the previous section, we generated the observed flow data (X) with corresponding 

systematic error ratio vectors (y). Thus, we have a supervised learning problem at hand, where we 

use the X to predict y by training a deep neural network. The idea is to start with an initial model, 

and then update the hyper-parameters such that our model learns the important high-level spatial-

temporal features without losing the generalization ability. In this section, after necessary data 

manipulations we introduce the initial neural network along with the initial hyper-parameter 

setting. 

 

Figure 16. Typical training flow for supervised learning 

4.4.1. Data generation and manipulation 

We begin by generating 140 groups (𝑌 = 140), where each group has 365 samples (𝐷 = 

365). The total data is then split in training and validation sets. The random error ratio 𝜎𝑎 and 

probability of calibrated sensors 𝑝𝑐𝑎𝑙𝑖𝑏 both are set to 0.2. The dimensions of the total flow data is 

therefore (51100, 144, 50) that is mapped to systematic error ratio of dimension (51100, 50), where 

there are 140*365 (=51100) time-series samples, where each sample has 144 time-steps (temporal 

dimension) and each time-step has 50 sensor readings (spatial dimension).  In this study, we use 

10% data as validation data, hence we have 120 groups of data for training and 20 groups of data 
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for validation. Thus, the resulting dimensions of the training flow data and validation flow data 

are (43800, 144, 50) and (7300, 144, 50), respectively with corresponding systematic error ratios 

of dimension (43800, 50) and (7300, 50).  

Next, we center and scale our training and validation datasets. This process, called 

standardization has proved to be vital for successful neural network training. We compute mean 

and variance using the training data and standardize the total dataset using these parameters. The 

mean and variance are computed for each spatial-temporal location. 

𝜇𝑡𝑟𝑎𝑖𝑛 =
1

𝑞𝑡𝑟𝑎𝑖𝑛
∑ 𝑋𝑡𝑟𝑎𝑖𝑛

𝑞𝑡𝑟𝑎𝑖𝑛

𝑖=1

  

𝜎𝑡𝑟𝑎𝑖𝑛
2 =

1

𝑞𝑡𝑟𝑎𝑖𝑛
∑ (𝑋𝑡𝑟𝑎𝑖𝑛 − 𝜇𝑡𝑟𝑎𝑖𝑛)

2

𝑞𝑡𝑟𝑎𝑖𝑛

𝑖=1

 

𝑋 − 𝜇𝑡𝑟𝑎𝑖𝑛
𝜎𝑡𝑟𝑎𝑖𝑛

 → 𝑋 

In our case, 𝑞𝑡𝑟𝑎𝑖𝑛 = 43800. The dimensions of 𝜇𝑡𝑟𝑎𝑖𝑛 and 𝜎𝑡𝑟𝑎𝑖𝑛 is (144, 50).   

4.4.2. Why CNNs? 

As per our knowledge, this is the first time when deep learning is being used for estimating 

sensor errors, hence, a natural question arises: why CNNs? Although first time for studying sensor 

health, CNNs have been used for a variety of transportation research that involves traffic data. The 

reason being the capability of CNNs to leverage the convolutions to exploit the multi-dimensional 

traffic data to obtain high-level spatial-temporal features. The beauty of CNNs is that there is no 

need for manual feature generation as in the case of other statistical algorithms, rather passing raw 

data (in the structured format, for example, time-series tensor in this case) as input is sufficient. 
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With the tensor representation of traffic count data in this study, where time and space are 

represented with separate dimensions, CNNs work with both the dimensions together. Due to these 

advantages, CNNs have been used on traffic data previously in studies related to predicting 

congestion (Fouladgar et al. 2015), passenger demand forecasting (Ke et al. 2017) and traffic flow 

prediction (Wu et al. 2018). But we should not limit ourselves to transportation literatures and 

should also draw motivation from other sectors where data is in the form of multi-dimensional 

time series. CNNs were used to study patient Electrocardiogram (ECG) signals to identify patient-

specific cardiovascular problem and solution (Kiranyaz et al. 2014).  There are many more 

examples like these, but the idea is clear that CNNs are a natural choice for extracting high-level 

features from multi-dimensional time-series data.         

4.4.3. Initial neural network setup and training 

We begin by defining our baseline architecture that consists of 1 convolutional layer (CNN) 

followed by 2 fully connected layers. A CNN layer as defined in figure 4 contains a convolutional 

layer, followed by a batch-normalization layer and a max pooling layer, the output of which is 

passed to a ReLU activation function. The output of the CNN layer is passed onto the 2 fully 

connected layers (with batch norm and ReLU), which are the last 2 layers in our architecture. 

Figure 17 depicts our baseline architecture.  

 

 

Figure 17. Baseline neural network architecture 

CONV
( , 12 )

Batch-
Norm

Max 
Pool
(2,2)

Fully 
Connected 1

(12 )

Fully 
Connected 2

(50)
ReLU

Batch-
Norm

ReLU

1 CNN layer, 𝑙 = 1

X



50 
 

The hyper-parameters for our baseline architecture are set as follows: 

1. Learning rate and number of epochs: As explained in section 3.1.12, we use learning rate 

scheduler such that the learning rate jumps between the bounds cyclically. In the section 4.4.3 

we explain how to set these bounds. We use triangular learning rate scheduler for this study as 

it results in a stable learning curve. Number of epochs (𝑛𝑒𝑝𝑜𝑐ℎ𝑠) are regulated using early-

stopping with patience parameter 20 as explained in section 3.1.12. Although, to limit the 

training time, we set the maximum 𝑛𝑒𝑝𝑜𝑐ℎ𝑠 to 500.   

2. Batch size: Batch sizes are typically set as an exponent of 2 (16, 32, 64,128, and so on). For 

the initial model, we keep the batch size at 128. Using a higher batch size can risk memory 

overflow and hence, might not be suitable for training.  

3. Regularization: In our initial model, we have no regularization. We observe the learning curve 

obtained after training and then regularize the model to avoid overfitting. 

4. Number of channels (𝑐𝑙) and filter size (𝑓𝑐𝑜𝑛 ): As our initial baseline model only has 1 CNN 

layer, we need to set the number of channels and filter size for the weight kernel of only this 

layer. We set the number of channels to 128. Hence, after convolution, our 50-channel data in 

transformed to a 128 channel output. This is a reasonable number of channels to begin with as 

it maintains tradeoff between computational complexity and amount of features extracted from 

the data. We set the filter width (also known as kernel width) to 6. Choosing a larger filter 

results in extracting more general temporal information, whereas a smaller filter extracts more 

local information.   

5. Pooling: We use max pooling with both filter width 𝑑𝑝𝑜𝑜𝑙 and stride 𝑠𝑝𝑜𝑜𝑙 set at 2. Thus, the 

shape of the output will be reduced by half in the temporal dimension, keeping the 

computational complexity in check. 
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6. Fully connected layer neurons: In our base network, we pass the output of CNN layer to 2 fully 

connected layers. The number of neurons for the first fully connected layer is set to 128, while 

for the second layer is set to be 50 (equal to the length of systematic error ratio vector, 𝑦). 

7. Performance metric and loss function: In this study, we use Mean absolute flow reconstruction 

error (MAFRE) as the performance metric. MAFRE is calculated by reconstructing hourly 

flow by using the predicted systematic errors and then comparing it with the ground truth flow. 

Basically, MAFRE quantifies the accuracy of reconstructed flow, which resonates with our 

ultimate goal of correcting the erroneous flow as best as possible. The formula for evaluating 

MAFRE is given below: 

𝑀𝐴𝐹𝑅𝐸% =
1

𝑛
∑|

𝑓𝑙𝑜𝑤_𝑟𝑒𝑖 − 𝑓𝑙𝑜𝑤_𝑡𝑟𝑢𝑒𝑖
𝑓𝑙𝑜𝑤_𝑡𝑟𝑢𝑒𝑖

|

𝑛

𝑖=1

∗ 100%   

where, 𝑓𝑙𝑜𝑤_𝑟𝑒𝑖 is the reconstructed hourly flow, 𝑓𝑙𝑜𝑤_𝑡𝑟𝑢𝑒𝑖 is the actual hourly flow and 𝑛 

are the total number of samples that are used to evaluate model performance. Mean absolute 

percentage error (MAPE) criteria defined in table 2 is the natural candidate for the loss function 

because minimizing the MAPE in predicted systematic ratio reflects directly towards 

minimizing MAFRE. Hence, during back propagation, the parameter updates will be 

performed using MAPE loss. The difference between loss metric and performance metric is 

that, the loss metric is used to back propagate errors to train neural network, whereas 

performance metric is an easily interpretable measure that is used to quantify the model 

performance.  

One important point to be noted here is that the loss function does not contain any physical 

aspects related to the network topology as is the case in usual statistical analytical models. The 

data itself abides by all the constraints and model learns those patterns during training. Thus, 
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the loss function is only dependent on predicted (function of model parameters) and true 

systematic error ratios.   

8. Optimizer and parameter initialization: We use Adam optimizer that is an adaptive learning 

rate optimization method as discussed in section 3.1.8. As we are using ReLU as the activation 

function, we use Kaiming Initialization to initialize the kernel weights. Biases are initialized 

with 0. 

We use the deep learning library Keras for our neural network computations and leverage the 

NVIDIA CUDA 10.1 GPU provided by the cloud platform Google Colaboratory to fasten the 

training. After data manipulation and defining the model architecture with the above mentioned 

hyper-parameters, the following steps explain the training process: 

1. Learning rate bounds: We train our model for a few epochs by varying the learning rate. Figure 

18 depicts the loss vs learning rate (lr) plot which helps us to choose the learning rate bounds 

for cyclical learning rate scheduler. From the plot we choose the learning rates corresponding 

to the steepest slope or maximum decrease in the loss. In this case, we choose the learning rate 

bounds to be (1e-3, 2e-3). 
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Figure 18. Loss vs learning rate curve 

2. Next, we fit the deep learning model with the above learning rate bounds. Since we are using 

early-stopping with patience criteria set as 20, the learning will stop automatically once the 

validation loss does not improve for 20 successive epochs. Figure 19 depicts the architecture 

of our baseline deep learning model with the total number of parameters.  
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Figure 19. Baseline model architecture 

3. After the training stops, we compute the MAFRE on the validation set and plot the learning 

curve as shown in Figure 20. From the learning curve one can observe that the training 

terminated around 56th epoch, and so the validation loss cease to improve after the 36th epoch 

hinting insufficient learning and potential overfitting. The MAFRE on validation set is 5.24% 

that means our baseline model reconstructs the validation flow counts with an accuracy of 

94.76%.  
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Figure 20. Learning curve for baseline model 

The MAFRE value on the validation set serves as our baseline and in the next section we 

tune our hyper-parameters to improve the performance metric. The combination of hyper-

parameters that results in the best performance is chosen as our final architecture.  

4.4.4. Hyper-parameter tuning 

In this section, we tune the baseline model to achieve better performance metric. The most 

important hyper-parameters that should be tuned are dropout, number of layers and filter width. 

Lastly, a few other architectures are also trained and compared to the tuned model. Following is 

the description of the process used to tune hyper-parameters:  

1. Dropout (𝑝𝑑𝑟𝑜𝑝): Dropout is one of the most effective measures for controlling the complexity 

of the model and avoiding overfitting. We try 3 different values of 𝑝𝑑𝑟𝑜𝑝 and train the baseline 
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model with a dropout layer after the batch-norm layer of 1st fully connected layer as shown in 

figure 21.   

 

Figure 21. Baseline model with Dropout 

Figure 22 shows the MAFRE with different values of dropout, from which we can infer that 

the network with 𝑝𝑑𝑟𝑜𝑝 = 0.05 performs best and the MAFRE metric improves from 5.24% 

(Baseline) to 4.21%. For further hyper-parameter tuning we fix the 𝑝𝑑𝑟𝑜𝑝 to 0.05 and our 

baseline performance metric to 4.21%. 

 

Figure 22. Effect of different Dropout probabilities on MAFRE(%) 

2. Filter size (𝑓𝑐𝑜𝑛 ): We choose different filter widths and train the baseline model for each, 

keeping dropout probability at 0.05. Figure 23 shows the effect of filter width on the 
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performance metric. Choosing filter width as 1 implies that highly local features are extracted, 

not taking into account the temporal relationship in the traffic data, whereas choosing a higher 

filter width extracts more generic features. As can be seen from figure 23, filter width of 24 

(corresponding to 4 hours) results in the best performance metric of 4.18%. Hence, we treat 

this as our new baseline.  

 

Figure 23. Effect of filter width on MAFRE (%) 

3. Number of channels (𝑐𝑙): For the baseline model with (𝑓𝑐𝑜𝑛 , 𝑝𝑑𝑟𝑜𝑝) = (24, 0.05), we evaluate 

performance for different number of channels for the CNN layer. As it can be seen from figure 

24, 128 channels results in the best MAFRE value of 4.18% (current baseline).  
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Figure 24. Effect of number of channels on MAFRE (%) 

4. Different architectures: After tuning the dropout, filter width and number of channels for our 

baseline model, we have achieved the performance metric MAFRE at 4.18%. Next, we try 

other promising architectures to improve the performance metric further. Figure 25 shows 

other candidate architectures. In figure 25 (a), the model has an added CNN layer, thus 

increasing the complexity of the model and extracting even higher-level features from the 

traffic data. In figure 25 (b), we introduce a skip connection with a CNN layer with 𝑓𝑐𝑜𝑛 = 1. 

The skip connections have proved to improve learning in deep CNN architectures, and are 

worth trying in this study. Table 3 shows the performance metric for various architectures 

corresponding to different hyper-parameter values.   
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(a) 

 

(b) 

Figure 25. Architecture with (a) 2 CNN layers, (b) skip connection 

 

Model MAFRE (%) 

Baseline 5.24 

Baseline (tuned) 4.18 

2 layer CNN (with 𝑝𝑑𝑟𝑜𝑝 = 0.05) 4.62 

2 layer CNN-2 (with 𝑝𝑑𝑟𝑜𝑝 = 0.1) 4.82 

Skip CNN-1 (with 𝑝𝑑𝑟𝑜𝑝 = 0.05) 4.48 

Skip CNN-2 (with 𝑝𝑑𝑟𝑜𝑝 = 0.1) 5.02 

Table 3. MAFRE(%) values corresponding to different architectures 
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Thus, after hyper-parameter tuning the best MAFRE value achieved is 4.18%. Figure 26 shows 

the learning curve for the final model. 

 

Figure 26. Learning curve for final model 

From the learning curve, we can see that the validation loss approaches the training loss, 

which implies that the model had sufficient learning and is not overfitting in nature. Finally, we 

will train the model with appropriate hyper-parameters on the full data set (training + validation) 

and use it for further inferences. In the next section, we use the trained model for analyzing its 

performance and inferring errors on various test case scenarios.  
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5. Results 

So far, we trained a deep learning model on traffic count data to predict systematic error ratios. 

To generate the data, we used 0.2 random error ratio (𝜎𝑎) and 0.2 as the probability of calibrated 

sensors (𝑝𝑐𝑎𝑙𝑖𝑏). The logic behind using these values was to introduce randomness in the training 

data to make the learning more robust. In reality, our network can have sensors with any level of 

𝜎𝑎 and 𝑝𝑐𝑎𝑙𝑖𝑏. For example, in California, according to PeMS around 2/3rd of the sensors are 

functioning properly. Our final model should be robust enough to identify the calibrated sensors 

as well as quantify the actual degree of systematic error irrespective of the level of random errors. 

In this section, we use our model to predict systematic errors for various test scenarios and validate 

the generalization power of the final model.    

5.1. Effect of 𝝈𝒂 and 𝒑𝒄𝒂𝒍𝒊𝒃 on quality of flow reconstruction 

We generate test cases corresponding to various levels of 𝜎𝑎 and 𝑝𝑐𝑎𝑙𝑖𝑏. In total, 96 test 

cases are generated using combinations of 16 levels of 𝜎𝑎 (varying from 0 to 0.3) and 6 levels of 

𝑝𝑐𝑎𝑙𝑖𝑏 (0 to 1). Note that these combinations also represent extreme cases, for example, where all 

the sensors are calibrated and the model is expected to predict that. We also incorporate random 

error ratio levels that are greater than the one used while training the model (𝜎𝑎 = 0.2).  Figure 27 

shows the MAFRE metric values for these test cases before correction, after correction using 

predicted systematic error ratios and the unavoidable bias (error only due to random errors).    
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Figure 27. MAFRE (%) corresponding to various levels of 𝜎𝑎 and 𝑝𝑐𝑎𝑙𝑖𝑏 
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From this figure, we can observe that except for the case where 𝑝𝑐𝑎𝑙𝑖𝑏 = 0, the MAFRE 

value after correction is very close to the unavoidable bias. In all the cases, the MARFE value has 

significantly improved relative to the MAFRE value before reconstruction. Also, in the extreme 

case, our model actually predicts that all the sensors are calibrated and the reconstructed flow has 

error only due to the random error. Figure 28 shows the percentage improvement after the flow 

correction along with maximum possible improvement.  

𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 (%) =
𝑀𝐴𝐹𝑅𝐸𝑎𝑓𝑡𝑒𝑟 −  𝑀𝐴𝐹𝑅𝐸𝑏𝑒𝑓𝑜𝑟𝑒

𝑀𝐴𝐹𝑅𝐸𝑏𝑒𝑓𝑜𝑟𝑒
∗ 100%  

where, 𝑀𝐴𝐹𝑅𝐸𝑎𝑓𝑡𝑒𝑟 and 𝑀𝐴𝐹𝑅𝐸𝑏𝑒𝑓𝑜𝑟𝑒 are the MAFRE after and before flow reconstruction. 

From figure 28, one can observe that improvement (%) in all the cases is very close to the best 

improvement possible except when 𝑝𝑐𝑎𝑙𝑖𝑏 = 0. For the test case when 𝑝𝑐𝑎𝑙𝑖𝑏 = 1, as all the sensors 

are error free and there is nothing to improve and hence, the corresponding plot is not included. 

Overall, the average improvement in the flow reconstruction is 75.81%, where the average best 

possible improvement in flow reconstruction is 81.89%.   
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Figure 28. Improvement (%) after and before flow reconstruction 
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5.2. Error in predicted systematic error ratio     

 Next, we analyze the deviation in systematic error ratio prediction (𝜇̂ − 𝜇) for different 𝜎𝑎 

levels. Figure 29 depicts histograms of predicted and true systematic error ratios at different 𝑝𝑐𝑎𝑙𝑖𝑏 

levels. Note that for the case 𝑝𝑐𝑎𝑙𝑖𝑏 = 1, the x axis has a very small domain. As we can observe, 

for all the 𝑝𝑐𝑎𝑙𝑖𝑏 values except 0 (edge case), the predicted and true systematic error ratio 

frequencies are comparable. Figure 30 represents boxplots for  ∆ =  𝜇̂ − 𝜇 for different levels of 

𝜎𝑎 and 𝑝𝑐𝑎𝑙𝑖𝑏. As 𝑝𝑐𝑎𝑙𝑖𝑏 increases, the variance in ∆ seems to decrease. Variance in ∆ increases 

with increase in 𝜎𝑎. Nonetheless, for all the values of 𝜎𝑎 and 𝑝𝑐𝑎𝑙𝑖𝑏 except 0, the median is 

approximately around 0, with interquartile range is around 0.1, which implies that the model is 

able to predict the systematic error ratios with a reasonable degree of accuracy.     
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Figure 29. Histograms of predicted and true systematic error ratios  



67 
 

 

 

Figure 30. (𝜇̂ − 𝜇) for different levels of 𝜎𝑎 and 𝑝𝑐𝑎𝑙𝑖𝑏  
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5.3. Flow imbalance in reconstructed flow 

As mentioned in section 4.2, in real-world situation, dynamic flow can have flow imbalance 

due to the effect of shockwaves caused due to queuing and dequeuing between nodes. In this 

section, we analyze whether the reconstructed flow can minimize flow imbalance in the flow data. 

Figure 31 depicts hourly imbalance flow counts in the network at each of the 13 nodes before 

reconstructing and after reconstructing the erroneous flow, and the flow imbalance in the ideal 

case (perfect reconstruction). As one can observe, in all the cases, the reconstructed flow has the 

flow imbalance very close to the perfect reconstruction case.   
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Figure 31. Flow imbalance in the network for various 𝑝𝑐𝑎𝑙𝑖𝑏 levels 

5.4. Average daily flow in the network 

One of the major advantages of this study is to reconstruct the erroneous flow that provides us 

the correct flow demand the network might experience. Once the actual flow demand is known, 

engineers can design infrastructure with appropriate capacity to enable a properly functioning 

network. Figure 32 depicts bar plots showing the average daily flow in the network and it could 

be observed that the corrected flow count in the network are close to the true flow count values.  
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(a) 
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(b) 

Figure 32. Average Daily Flow in the Network for various 𝜎𝑎 and 𝑝𝑐𝑎𝑙𝑖𝑏 levels 
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6. Discussion of Results, Conclusions and Future Work 

We developed a methodology for estimating network sensor errors and reconstructing 

corrupted flow using deep learning. Deep learning model was able to capture the patterns in the 

dynamic flow without explicitly given any physical topological aspects. For training the model, 

the base flow was generated by fluctuating the OD demand over independent simulations, to which 

measurement errors were added to generate training data where a level of maximum random error 

coefficient (𝜎𝑎) and 𝑝𝑐𝑎𝑙𝑖𝑏 were maintained. To gauge the generalization ability, we tested the 

model on a variety of test cases generated by using combinations of different levels of 𝜎𝑎 and 

𝑝𝑐𝑎𝑙𝑖𝑏 where the results showed that the tuned deep learning model can successfully quantify 

network sensor errors.  

The model is able to achieve close to the best possible performance even for the flow data 

having 𝜎𝑎 greater than the maximum 𝜎𝑎 used for generating training data and is able to quantify 

sensor errors for all levels of sensor calibration in the network, despite keeping 𝑝𝑐𝑎𝑙𝑖𝑏 at 0.2 for all 

the training cases. For all the test cases, the improvement in MAFRE was comparable to the best 

possible improvement. This shows that the model is able to capture the temporal and spatial 

correlations in the data and predict the systematic error ratios irrespective of the level of 

randomness in the test data. Also, after flow reconstruction, the model could predict the total flow 

in the network with high precision, hence playing a vital role in prescribing the network capacity 

to the transportation planners for making infrastructure decisions. 

Unlike most of the work in this area, the deep learning model does not depend on flow 

conservation in the network. Model is never given physical topological aspects of the network 

rather we let the model learn all the patterns from the data during the training phase. As we showed, 

the base flow itself has flow imbalance, and adding measurement errors exaggerates the imbalance. 
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Irrespective of this deviation from flow conservation at intermediate nodes, the model is able to 

reconstruct the flow, where the reconstructed flow imbalance is very close to the true flow 

imbalance. 

Although the deep learning model successfully quantifies the systematic errors, compared to 

other test cases it struggles at the edge case when 𝑝𝑐𝑎𝑙𝑖𝑏 = 0. This brings to attention a very 

important concept of machine learning that the model is only as good as the data it is trained on 

and we need to manufacture the training data more thoughtfully. Incorporating more training cases 

with no calibrated sensors in this case for example will help boost the performance of the model 

for test cases when all the sensors suffer from systematic errors. By the same principle, the model 

can handle fluctuations in demand from time to time as the simulated flow was generated by 

varying OD demand over different independent simulations. Hence, the model is capable of 

estimating systematic error ratios with reasonable accuracy as long as the network topology is 

maintained. 

One of the drawbacks of this study is that for a larger network, flow simulation would require 

heavy computational resources. Also, with a larger network, in order for the model to exploit the 

underlying spatial and temporal relationship, one would have to generate a larger quantity of data 

samples and training the deep learning model can further get computationally expensive. 

Although, cloud computing services like Amazon Web Services (AWS) provide dependable 

computing resources (GPUs) required for deep learning, the cost of these services could compile 

up quickly if used extravagantly. Another drawback of using deep learning is that minor changes 

in topology can render the model useless. The reason being the training data was created using a 

certain network topology and the trained model expects the same while testing. This drawback 
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could be dealt by designing the training cases intelligently by incorporating the edge cases and 

probable future network failure scenarios. 

This brings us to the proposed future work: 

1) Designing the training cases to account for edge cases and potential network failures: As 

discussed above, the training data should incorporate all the possible edge cases to perform 

well during the testing phase. More importantly, we encounter lane closures on a day-to-day 

basis for construction purposes. These closures would render the model useless if the model 

does not learn to deal with the modified network topology. Thus, the training cases should also 

account for potential network failure scenarios. This could be achieved by incorporating lane 

capacities in the training data. These capacities could simply be changed to 0 or a certain 

threshold to help model identify the perturbed network scenario. 

2) Estimate random error ratios: As explained earlier, measurement errors have 2 components, 

systematic error and random error. Systematic error is what we focused in this study as it is the 

error that the system should not have intrinsically and can help identify sensors that need 

priority maintenance. But in order to reconstruct the flow, random error ratios are also 

important, as they add to the systematic errors to corrupt the traffic flow readings. Thus, 

identifying random error rations could help determine confidence bounds for the reconstructed 

traffic flow with higher accuracy. 

3) Understanding how deep learning works: In machine learning there is usually a trade-off 

between the complexity of the model and its explain-ability. Given that neural networks are 

highly complex models, explain-ability of deep learning models is still an open area for 

research. Various researchers have proposed visualizations of hidden layer activations for 

computer vision applications, but this is yet to be done for traffic data effectively.         
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