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ABSTRACT 

 

The Influence of the Montecito Debris Flows on Landcover in Carpinteria Salt Marsh 

 

by 

 

Germán David Silva  

 

The Montecito debris flows of 9 January 2018 deposited sediment along many 

portions of the Santa Barbara coast, including Carpinteria Salt Marsh Reserve. Since 

disturbances have the potential to impact the ecosystem services and functions that wetlands 

provide, an understanding of how the ecosystem at Carpinteria Salt Marsh Reserve 

responded to this disturbance is important to its ongoing management. However, a lack of 

opportunity to collect field data around the time of disturbance makes this task difficult to 

complete by field methods. To address this gap, Sentinel-2 imagery from four dates 

(November 2017, January 2018, November 2018, November 2020) was used to calculate 

landcover fractions, normalized difference vegetation index (NDVI), and modified 

anthocyanin reflectance index (mARI) and used in tandem with random forest classification 

to produce maps of landcover before, during, and after the debris flow. Post-classification 

change detection was then performed on the classified maps to track changes in landcover 

through time. Results from the random forest classification showed that NDVI and green 

vegetation fractions were the most important variables in classifying landcover, though this 

varied on a date-by-date basis; error matrices indicated that the model had high accuracy 

with values of 0.994, 0.920, 0.956. and 0.963 for the respective dates. Change detection 
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shows a pattern of returning to pre-debris flow vegetation extent in the marsh. While total 

vegetated area experienced little change (0.12% increase), there was a change in the extent 

of vegetation type with high marsh vegetation shifting to mid marsh vegetation in regions 

near where increases in bare soil landcover occurred. These results show that disturbance 

due to debris flow can cause vegetation changes which may affect ecosystem function, such 

as decrease primary productivity and marsh resilience to further disturbance, that will need 

to be taken into consideration when managing depositional event prone wetlands.    
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I. Introduction 

In December 2017, the Thomas Fire burned an area of 1140 km2 in the Santa Ynez 

Mountains, making it the largest fire in California’s history at the time (Andone 2018; Kean 

et al. 2019). The burned areas experienced an increased risk of debris flows from the 

catchments in the Santa Barbara, CA area; and, a month later, a heavy rain event mobilized 

soils from the burn area and triggered a depositional event known as the Montecito debris 

flows (Kean et al. 2019). The debris flows resulted in approximately 680,000 m3 of 

sediment being deposited across urban and natural areas along the Santa Barbara Coast 

(Kean et al. 2019). Among the areas impacted was one University of California Natural 

Reserve System site, the Carpinteria Salt Marsh Reserve. 

Coastal salt marshes, like Carpinteria Salt Marsh, are dynamic ecosystems found at the 

interface between marine and terrestrial environments. These productive ecosystems play 

important roles in coastal resilience via a variety of ecosystem services, such as accreting 

sediments, sequestering carbon, and providing habitat for a rich range of biota (Callaway et 

al. 2012; Gibbs 2001). However, as little as 10% of California’s historical wetland cover 

remains today (California Department of Fish and Wildlife 2001). This historic decrease in 

wetland cover is likely to worsen with the potential increased frequency of disturbances that 

further reduce and degrade wetland cover, especially continued sea level rise, coastal 

erosion, deposition, and anthropogenic marine debris (Doughty and Cavanaugh 2019; Tweel 

and Turner 2012; Uhrin and Schellinger 2011). To mitigate the impacts of disturbance, 

management should include the effects of disturbances in the understanding of healthy 

marsh form and function. For instance, sediment deposition is a common and important 

process in many marshes, with hurricane deposition being often studied and found to deliver 



 

 2 

sediment important for nutrient delivery and the ability to offset sea level rise (Tweel and 

Turner 2012; Callaway et al. 2012). In contrast, anthropogenic marine debris, such as 

fishing gear and wooden poles, has been found to be detrimental to marshes by damaging 

plant structures if it  remain for a length of time (Uhrin and Schellinger 2011), and oiling 

temporarily increases shoreline loss of effected wetlands (Beland et al. 2017).     

The Montecito debris flows are a unique situation in the scope of prior literature. Debris 

flows are an episodic disturbance event; however, they are not one commonly studied, in 

which most research has focused on oiling, hurricanes deposition, or anthropogenic marine 

debris (Beland et al. 2017; Tweel and Turner 2012; Callaway et al. 2012; Uhrin and 

Schellinger 2011). Furthermore, many studies examining disturbance events in salt marshes 

have focused on the Gulf of Mexico and the east coast of the U.S. (Klemas 2013a, Klemas 

2013b, Uhrin and Schellinger 2011, Beland et al. 2017, Tweel and Turner 2012; Peterson et 

al. 2015). However, the disturbances that are common in those regions, such as hurricanes, 

are not common on the west coast of the U.S., and the findings of these studies may not be 

fully applicable to debris flows. Thus, the question of how the Montecito debris flow 

impacted the marsh becomes of interest. However, addressing this question with field 

methods is complicated by the fact that the debris flow could not be predicted and that 

Carpinteria Salt Marsh Reserve is a highly managed system. The unpredictability of the 

event meant that there was not ample time to collect field observational data to assess 

conditions prior to the event. Furthermore, a combination of manager intervention and 

inundation by king tides— exceptionally high tides—removed sediment from the marsh and 

limited the ability to collect field data following the event. Remotely sensed data, however, 
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was collected before and following the event and could be used to assess impacts of the 

debris flow on the marsh.  

Remote sensing, including change detection, biomass estimation, and land cover 

classification, is a common tool in the study of wetlands with a large range of uses and has 

often been used when ground data are scarce (Klemas 2013A; Rosso et al. 2005). Due to 

recent advancements in sensor design and data analysis, remote sensing is becoming more 

practical for monitoring natural and anthropogenic changes in coastal systems (Klemas 

2013B)  Prior studies have used a variety of sensors (e.g. Landsat, AVIRIS, LiDAR, 

Planetscope, and drone data), techniques (e.g. maximum likelihood classification, MESMA, 

reclassification, random forest, and post-classification change detection), and indices (e.g. 

normalized difference vegetation index) to monitor coastal wetland conditions—some of 

which made recommendations for best approaches to wetland remote sensing (Klemas 

2013A; Miller et al. 2019; Eastwood et al. 1997; Doughty and Cavanaugh 2019; Beland et 

al. 2017; Peterson et al. 2015; Wu et al. 2020; Nasser Mohamed Eid et al. 2020; Parihar et 

al. 2012). These sensor and index recommendations vary depending on the wetland type and 

the characteristics that are being assessed. Index recommendations are more dependent on 

the type of wetland being assessed. For example, one study recommended the use of the 

modified soil adjusted vegetation index (MSAVI) and global environmental monitoring 

index (GEMI) for intertidal marshes (Eastwood et al. 1997). However, another study 

recommended the normalized difference vegetation index (NDVI) and the green normalized 

difference vegetation index (GNDVI) for global wetland assessment and two others for 

woody forested wetlands specifically (Taddeo et al. 2019).  
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Unlike indices, techniques and sensors used to assess wetland cover and characteristics 

can often be built on each other. One study implemented the use of fractional cover of 

different endmembers obtained by spectral mixture analysis (SMA) and multiple 

endmember spectral mixture analysis (MESMA; Roberts et al. 1998) in the classification of 

a marsh in the southern San Francisco Bay (Rosso et al. 2005). While both approaches have 

challenges, MESMA was found to provide a more accurate representation of fractional 

cover, especially if 4- or 5-endmember models were used with more than one endmember 

per class (Rosso et al. 2005). Peterson et al. (2015) used MESMA on advance visual/infra-

red imaging spectrometer (AVIRIS) data to detect oil-impacted regions of coastal salt marsh 

with high accuracy (87.5% to 93.3%). Beland et al. (2017) was then able to use these oil 

maps and image change analysis to determine that oiling temporarily accelerated land loss in 

coastal marshes. These studies highlight the effectiveness of MESMA as a technique for 

classifying wetland landcover and detecting areas affected by disturbance.  

 Other classification methods have also been used for tracking change. For example, one 

study used NDVI to track vegetation colonization in Petaluma River Marsh after tidal 

restoration via post-classification change detection and concluded that NDVI can be used to 

differentiate vegetated and non-vegetated portions of marshes and is robust to human 

interpretations of NDVI (Tuxen et al. 2008). Another study used Breaks For Seasonal and 

Trend (BFAST) and random forest classification on monthly Landsat NDVI products to 

perform change detection in forested wetlands with a classification accuracy of 92.96% and 

change detection accuracy of 87.8% (Wu  et al. 2020). Parihar et al. (2012) used maximum 

likelihood classification on Landsat MSS and TM data sets to track changes in the East 

Kolkata Wetlands in the absence of ground data, though accuracy of this method was 
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between 73.80% and 79.33%. Im et al. (2008) also showed that high point density LiDAR 

data can be used for object-based land cover classification with high accuracies (> 90%) 

without the need for incorporating additional remote sensing data. Each of these papers 

highlights the effectiveness of different methods and data inputs on accurately classifying 

landcover.  

Based on the recommendations and results of other studies, the approach taken here is 

post-classification change detection on a short time series of remotely sensed images 

classified by a random forest classifier with the aim of identifying effects on marsh 

landcover following the Montecito debris flow. 

II. Methods 

A. Site Description 

 



 

 6 

The ecosystem of interest for this study is Carpinteria Salt Marsh Reserve (CSMR), 

located in Carpinteria, CA (34.4012° N, 119.5379° W) situated between California Highway 

101, downtown Carpinteria, and the Pacific Ocean (Figure 1). CSMR is divided into three 

sections, the largest of which is managed by University of California, Santa Barbara (UCSB) 

as part of the University of California (UC) Natural Reserve System (Brooks 2019, personal 

communication). The wetland is a heterogeneous landscape made up of 93 hectares of 

annual and perennial herbs and grasses, transitional upland habitat, water channels, and mud 

flats ranging between -1 to 3 m above sea level (Doughty and Cavanaugh 2019). The plant 

community can be split into two categories: mid marsh, primarily dominated by Salicornia 

pacifica (formerly Salicornia virginica, pickleweed), and high marsh, which is a mix of 

Salicornia pacifica, Jaumea carnosa (marsh jaumea), Distichlis littoralis (shore grass), 

Arthrocnemum subterminale (Parish’s glasswort), Frankenia salina (alkali heath), and a few 

other less abundant species (Doughty and Cavanaugh 2019; Myers et al. 2017). Water inputs 

come largely from tidal inundation and water inlets in the eastern portion of the marsh that 

allow for input from further inland (Brooks 2019, personal communication).  

B. Data Description and Correction 

The imagery used in this study is Sentinel-2 A and B data produced by the European 

Space Agency. The mission is composed of twin wide swath, high-resolution, multispectral 

satellites that have a revisit frequency of five days using both sensors. Both satellites carry 

optical sensors that sample in 13 spectral bands at varying spatial resolutions (European 

Space Agency n.d.; Drusch et al. 2012). The high temporal resolution of the two satellites 

allowed the assembling of a good time series for quantifying marsh changed despite the 

variable cloud cover and inundation of the CSMR. Dates were selected to represent similar 
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times of year, tide, and cloud cover. Four dates were selected to highlight pre-flow, 

immediate, and two post-flow conditions (approximately one and three years after the initial 

event). November 13, 2017 imagery was used for pre-flow as it was the data closest to the 

debris flow in which the marsh was not flooded or covered by clouds. January 12, 2018 

imagery represents the post-flow conditions as the data were collected three days after the 

flow occurred and before mechanical clean up and king tides occurred. Lastly, November 3, 

2018 and November 12, 2020 imagery represent two recovery steps and were chosen to be 

consistent with the pre-flow November image. No November 2019 imagery was selected, as 

all images available were collected when there was either dense cloud cover or the marsh 

was inundated by high tide. All Sentinel-2 imagery was downloaded from the USGS Earth 

Explorer portal (U.S. Geological Survey).  

Imagery was preprocessed in Sentinel Application Platform (SNAP) prior to being 

implemented in ENVI Classic 5.5.3 (SNAP; Harris Geospatial). First, the Sen2Cor SNAP 

add-on was used to perform atmospheric correction to obtain bottom of atmosphere L2A 

imagery from the top of atmosphere L1C imagery downloaded from the USGS (Main-Knorn 

et al. 2017). This process produced 12 atmospherically corrected L2A bands. Once 

corrected, bands 1, 9, and 10 were removed as they primarily are used for atmospheric 

properties and are too coarse (60 m resolution) to be used in assessment of the fine scale 

change in the marsh. The remaining 20 m resolution bands (bands 5, 6, 7, 8A, 11, and 12) 

were then resampled using pixel replication to match the 10 m resolution of bands 2, 3, 4, 

and 8. Resampled and native 10 m resolution bands were layer stacked for further 

processing in ENVI.  
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High density LiDAR was also used in addition to Sentinel-2 imagery to assess 

conditions immediately after the debris flows occurred (January 2018). LiDAR data were 

collected over the areas affected by the debris flows soon after the event by the Federal 

Emergency Management Agency (FEMA) at a density of at least 4 points per square meter 

(Federal Emergency Management Agency 2018). LiDAR data were corrected and processed 

using the BCAL add-on for ENVI (Harris Geospatial; BCAL Lidar Tools). Data were height 

filtered at a threshold of 30m with a 10m search window. Height filtered data were then 

processed using last returns into a digital terrain model (DTM) with 10m resolution to match 

Sentinel-2 data.  

C.  Spectral Analysis 

Before classification, corrected Sentinel-2 images were processed to obtain fractional 

cover, and to calculate the normalized difference vegetation index (NDVI)and modified 

anthocyanin reflectance index (mARI).   

Fractional cover was obtained via MESMA using the following steps. First, two spectral 

libraries were generated using the November 2017 and January 2018 processed images. 

Endmembers were selected based on site knowledge and similarity of spectra to those that 

would be expected for each landcover class (Figure 2). Both libraries had endmembers 

selected to represent four broad landcovers that are expected in the marsh: non-

photosynthetic vegetation (NPV), green vegetation, bare soil, and subtidal. Libraries were 

then optimized using the endmember average RMSE (EAR)/minimum average spectral 

angle (MASA)/count based endmember selection (CoB) (EMC; Dennison and Roberts 

2003; Dennison et al. 2004; Roberts et al. 2003) option in VIPER Tools and included a 

minimum of four endmembers per endmember class (Roberts et al. 2019). The November 
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library was used for the pre-debris and two recovery images. The January 2018 image had a 

separate spectral library for the unique conditions that were expected around the debris flow. 

With the libraries generated, MESMA was then performed to obtain fractional cover for 

all four dates. Endmember models used were 2, 3, 4, and 5-endmember models to ensure the 

inclusion of the model approaches recommended by Rosso et al. (2005).  All models were 

constrained to fractional cover between 0.0 and 1.0, shade fraction between 0.0 and 0.8, and 

a maximum root mean square error of 0.025. This process produced fractional cover for the 

four endmember classes (Figure 3).  

Figure 2: Spectral library for November 2017. Axes are (x) wavelength in nm 

and (y) reflectance values. A) non-photosynthetic vegetation spectral 

signatures, B) green vegetation spectral signatures, C) bare soil spectral 

signatures, D) subtidal spectral signatures. January spectra included in 

Appendix B. 
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To further build on the data that would guide the classification of CSMR, two 

vegetation indices were calculated from the Sentinel-2 imagery: NDVI (eq.1; Rouse et al, 

1974) and mARI (eq.2; Gitelson et al. 2006; Gitelson et al. 2009).  

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
=

𝐵𝑎𝑛𝑑 8 − 𝐵𝑎𝑛𝑑 4

𝐵𝑎𝑛𝑑 8 + 𝐵𝑎𝑛𝑑 4
    𝐸𝑞. 1 

NDVI is one of the vegetation indices recommended in the literature for wetland analysis 

and was found to be one of the more important factors in classifying landcover classes in 

CSMR in prior work (Klemas 2013; Tuxen et al. 2008, Doughty and Cavanaugh 2019, Silva 

2020). 

𝑚𝐴𝑅𝐼 = 800nm ∗ (
1

550nm
−

1

700nm
) =  Band 8 ∗ (

1

Band 3
−

1

Band 5
)   𝐸𝑞. 2 

Figure 3: An example of fractional cover in November 2020. Scale indicates 

proportion of pixel that is made up of respective endmembers or shade. 
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mARI is used to detect the levels of anthocyanins, a family of red pigments that can be 

related to stress and senescence in plants (Gitelson et al. 2001). Anthocyanin content in 

Salicornia pacifica has been found to increase in the fall and winter (Farrens 1971).  

Therefore, the mARI has the potential to further help the classification of both senesced 

vegetation and a dominant marsh plant in CSMR.  

     The last step was training data generation. Once the Sentinel-2 and LiDAR products were 

produced, data were layer stacked prior to the creation of training data. Training data were 

produced for five landcover classes—bare soil, high marsh, mid marsh, senesced, and 

subtidal—by selecting reference polygons that matched regions of corresponding landcover 

from an expert map and report of landcover prior to the debris flow and additional 

interpretation of layer values as seen in Table 1 (Myers et al. 2017). The high marsh class  

  

 

 

 

 

 

 

 

 

 

 

Table 1: Training Data Parameters 

 

Class Metric

Nov-17 Jan-18 Nov-18 Nov-20

Bare soil 10 11 17 13
High Bare Soil Fractions, 

Low NDVI, Low mARI

High Marsh 5 5 10 7

High Green Vegetation 

Fractions, High NDVI, 

High mARI

Mid Marsh 12 7 16 13

Moderate-High NDVI, 

Mixed Green Vegetation 

Fractions and Bare Soil 

Fractions

Senesced 8 5 8 5

High Non-photosynthetic 

Vegetation Fractions, 

Low NDVI, Moderate-

High mARI

Subtidal 20 7 21 19

High Subtidal Fractions, 

Low NDVI, Low mARI, 

Channels where 

expected

Training Data

Polygon Count
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represents a mixed plant community of Salicornia pacifica, Arthrocnemum subterminale, 

Frankenia salina, and Distichlis spicata. Mid marsh represents portions of the marsh 

dominated by by S. pacifica. The senesced landcover is composed of upland regions 

dominated by non-native shrubs and grasses (Myers et al. 2017). Training data were 

collected for each date by creation of rectangular polygons in ArcGIS (Environmental 

Systems Research Institute; Table 1).  Training data and layer stacked images were then 

analyzed in R (R Core Team 2019; Code included in Appendix A). 

D. Random Forest and Change Detection 

Classification was done via a random forest classifier. Random forest is a machine 

learning technique that automates the categorization of data by running a datapoint (e.g. a 

pixel) through a set number of decision trees and picking a finalized landcover class via 

majority vote. Pixel values were first extracted from the layer stacked images with the 

values and associated landcover recorded into a data frame, which was then filtered to 

remove variables with NA/NULL values. The data frame was then read into the random 

forest algorithm, with n=500 decision trees. This process produced classified maps of the 

five landcover classes. Additional outputs include variable importance, a measure that 

identifies which layer stack inputs were important in the landcover classification, mtry 

accuracy and kappa values, an accuracy assessment of the training data, and out of bag 

(OOB) error. Final results were resampled in R and accuracy values averaged to perform a 

k-fold cross validation.  

Post-classification change detection was performed in ENVI using the change detection 

statistics option. Dates were compared to each other in both chronological order (i.e. 

November 2017 to January 2018, November 2018 to November 2020) and net order 
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(November 2017 to November 2020). Comparing the dates this way allowed for tracking of 

landcover extent for all 5 classes as time progressed and obtaining net change for each 

landcover in the system. ENVI output change statistics in terms of pixel count, area in 

square meters, and percentage change. These statistics include class differences and image 

differences. Percentage change was recalculated using both pixel count and area and used in 

place of the ENVI reported percentages.  

III. Results 

A. Random Forest 

Variable importance was used to determine which of the random forest inputs were most 

important in the landcover classification of CSMR. Variable importance was measured by 

the mean decrease in Gini index, a measure in which higher values indicate higher 

importance in the model (Lee 2017). From this measure, NDVI and green vegetation 

fraction were the most important variables in three of the four years. NDVI and green 

vegetation fractions did not have the highest importance in January 2018 and November 

2020, respectively. Secondary variables that also had high importance were mARI, bare soil 

fractions, and senesced vegetation. mARI had greater importance in the recovery timesteps 

compared to the earlier dates.  Shade fractions and subtidal fractions had the lowest amount 

of importance in the majority of the dates. The bare surface model (digital elevation) was 

only available in January 2018 but had moderate importance in the model.  

Overall accuracy of the random forest classification across all dates was measured by 

mtry, OOB error, and k-fold cross-validation. Mtry indicates the number of splits that occur 

at each node within a decision tree; the random forest model then selects the mtry with the 
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highest accuracy as the final prediction. Mtry accuracy (mtry= 2, 5, 2, and 2 respectively, 

Table 1) values were high for all four dates—0.994, 0.920, 0.956. and 0.963, respectively—

with similar kappa values—0.993, 0.897, 0.956, 0.953. However, these values may be 

overpredicted as they are generated from within the training data.  

OOB error and k-fold cross validation are secondary accuracy measures used to 

confirm accuracy from mtry. OOB error measures prediction error of random forests using 

bootstrap aggregating and is recalculated as more trees are added to the random forest 

model. OOB error rates agree with mtry accuracy and indicate high accuracy values of the  

Figure 4: Variable importance measured by mean decrease in Gini Index, 

higher values indicate higher importance in random forest classification. 

NDVI and green vegetation fractions frequently had the highest importance. 

Variables appear in alphabetical order. Note: bare surface model/digital 

elevation model was only used for Jan 2018.  

 



 

 15 

 

 

 

 

 

 

 

 

 

 

Bare Soil High Marsh Mid Marsh Senesced Veg.Subtidal/Water Total (Pixels) User's Error

Bare Soil 49 0 2 0 0 51 0.03921569

High Marsh 0 112 0 0 0 112 0

Mid Marsh 0 0 80 0 0 80 0

Senesced Veg. 0 0 1 55 0 56 0.01785714

Subtidal/Water 0 0 0 0 79 79 0

Total (Pixels) 49 112 83 55 79 378

Producer's Error 0 0 0.036144578 0 0

mtry Accuracy Kappa AccuracySDKappaSD

1 2 0.9944266 0.9928624 0.006473 0.008277264

2 4 0.9889336 0.9858201 0.010455 0.013348661

3 7 0.9804847 0.9750409 0.014986 0.019107141

Bare Soil High Marsh Mid Marsh Senesced Veg.Subtidal/Water Total (Pixels) User's Error

Bare Soil 78 0 1 0 0 79 0.01265823

High Marsh 0 59 1 0 0 60 0.01666667

Mid Marsh 3 2 34 0 2 41 0.17073171

Senesced Veg. 0 0 0 47 0 47 0

Subtidal/Water 1 1 4 0 24 30 0.2

Total (Pixels) 82 62 40 47 26 257

Producer's Error 0.04878 0.0483871 0.15 0 0.076923077

mtry Accuracy Kappa AccuracySDKappaSD

1 2 0.9172968 0.8930668 0.020359 0.02645464

2 5 0.9203775 0.8970671 0.025751 0.03328449

3 8 0.9154432 0.8907413 0.025699 0.03303982

mtry

mtry

Nov. 17 Training Data Pixels

Jan. 18 Training Data Pixels

Table 2: Training Data Accuracy Tables  
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Table 2 (cont.): Training Data Accuracy Tables  

Bare Soil High MarshMid MarshSenesced Veg.Subtidal/Water Total (Pixels) User's Error

Bare Soil 61 0 4 3 0 68 0.10294118

High Marsh 0 149 0 0 0 149 0

Mid Marsh 2 0 129 0 2 133 0.03007519

Senesced Veg. 1 0 0 52 0 53 0.01886792

Subtidal/Water 2 0 5 1 67 75 0.10666667

Total (Pixels) 66 149 138 56 69 478

Producer's Error 0.075758 0 0.065217 0.071429 0.028985507

mtry Accuracy Kappa AccuracySDKappaSD

1 2 0.956424 0.943175 0.012944 0.01645829

2 4 0.95145 0.936647 0.013118 0.01679813

Bare Soil High MarshMid MarshSenesced Veg.Subtidal/Water Total (Pixels) User's Error

Bare Soil 77 0 1 1 3 82 0.06097561

High Marsh 0 173 1 0 0 174 0.005747126

Mid Marsh 0 1 119 0 6 126 0.055555556

Senesced Veg. 0 0 0 107 0 107 0

Subtidal/Water 0 0 6 0 92 98 0.06122449

Total (Pixels) 77 174 127 108 101 587

Producer's Error 0 0.005747 0.062992 0.009259 0.089108911

mtry Accuracy Kappa AccuracySDKappaSD

1 2 0.96322 0.953061 0.011581 0.01481611

2 4 0.958653 0.947234 0.012874 0.01651967

3 7 0.944668 0.929458 0.01555 0.01970101

mtry

mtry

Nov. 18 Training Data Pixels

Nov. 20 Training Data Pixels



 

 17 

random forest classifications (OOB= 0.008, 0.074, 0.044, 0.031, for Nov. 2017, Jan. 2018, 

Nov. 2018, and Nov. 2020, respectively).  K-fold cross validation is a validation technique 

in which data were iteratively resampled k-times, and prediction error or accuracy is 

averaged among all iterations (Brinberg n.d.). Data were resampled using the default 

iterations (k=25) in R and averaged to obtain accuracy rates for all dates. As with OOB 

error, k-fold cross validation showed agreement with mtry accuracy and provides further 

evidence that the results of the random forest classifier have a high degree of accuracy (k-

fold value = 0.993, 0.910, 0.957, 0.962).  

Landcover class accuracy was measured via producer’s and user’s error and allows for 

the assessment of the mapping of individual landcover classes. High marsh vegetation was  

 

 

Figure 5: Out of bag (OOB) error graphs for the four random forest 

classifications. As more trees are added to the random forest, less error 

occurs in the classification. Order from top to bottom: January 2018, 

November 2018, November 2020, and November 2017.  

 



 

 18 

the most accurately mapped with low user’s and producer’s error across all dates. Subtidal 

and mid marsh had the greatest amount of user and producer’s error, especially in January 

2018. Subtidal cover had the greatest confusion with mid marsh vegetation and bare soil, 

while mid marsh was confused with bare soil and subtidal. Error within these two classes 

was below 10% for most dates, and classification for the two classes remained relatively 

accurate. 

B. Post-Classification Change Detection 

The random forest classifier produced four landcover maps for CSMR (Figure 6). Each 

map shows the extent of the five landcover classes—bare soil, high marsh, mid marsh, 

senesced, and subtidal—and represent different states of disturbance and recovery. The high  

marsh landcover had the most area in November 2017 and January 2018, while in November 

2018 and 2020 mid marsh was the largest landcover class. Senesced vegetation and subtidal 

landcover experienced little change compared to bare soil, high marsh, and mid marsh 

vegetation.  

The post classification change detection shows that a 19.25 ha increase in bare soil 

coverage occurred between November 2017 and January 2018, amounting to 27.83 ha of the 

marsh being covered in bare soil immediately following the debris flow (Figure 7). In 

November 2020, bare soil coverage decreased by 16.59 ha (60%) since January 2018—a 

decrease of bare soil coverage to 11.24 ha (12%) of total marsh area—and resulting in a 2.66 

ha (31%) net increase in bare soil coverage between November 2017 and November 2020. 

On the other hand, overall marsh vegetation (high marsh + mid marsh) coverage changed 

little with only a 0.12% net increase in total vegetation coverage between November 2017 

and November 2020. However, when split into the two respective landcover classes, high  
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marsh vegetation coverage decreased as mid marsh vegetation increased. There are a few 

areas that where change in landcover is prominently seen in the landscape. Areas that were 

high marsh vegetation and near areas impacted by bare soil changed to mid marsh 

vegetation. This change is prominent in the areas near the salt pan in the northeast (Figure 8 

B) and some of the mudflat region in the western portion of the marsh (Figure 8 A & C). 

 

Figure 6: Maps produced by the random forest classification. Maps depict 

the extent of bare soil, high marsh, mid marsh, senesced vegetation, and 

subtidal/water landcover. Top to bottom, left to right: November 2017, 

January 2018, November 2018, and November 2020. Individual maps 

included in Appendix B. 
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Figure 7: Difference of landcover class area (ha) compared to pre-flow 

conditions. Bars are clustered by date.  

Figure 8: Maps highlighting areas where landcover change is most 

prominent. A) High marsh to mid marsh conversion, B) difference in 

salt pan and vegetated perimeter, C) difference in mudflat extent. 
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IV. Discussion 

A. Variable Importance 

The identification of important classification variables enables the identification of 

which landscape metrics are important in identifying landcover in the marsh from remote 

sensing imagery. As much of the landscape is either vegetated or covered in bare soil, 

variables that can be used to identify and classify these landcovers would be important 

metrics. Therefore, NDVI was likely used to differentiate mid and high marsh vegetation 

from the non-vegetation landcover classes, with bare soil fractions helping to differentiate 

the non-vegetated landcovers classes. Knowledge of variable importance could be useful in 

deciding which measurements to obtain when collection of field data is possible to combine 

with remotely sensed data. January 2018 had the lowest values for decrease in Gini index, 

and this could be linked to having more variables to use. However, this would have to be 

tested by adding elevation data of a similar quality to the other random forest classifications.  

B.  Accuracy Assessment 

The three accuracy metrics (mtry, OOB error, and k-fold cross validation) suggest that 

landcover was accurately mapped by the random forest classifier and that the produced maps 

are reliable for use in change detection. The accuracy of the random forest classification is 

comparable to those of other studies. For example, Wu et al. (2020) also performed a 

random forest classification for a subtropical wetland that had a similar overall accuracy 

value of 0.9296 compared to this study’s values of 0.994, 0.920, 0.956. and 0.963. The 

model also performed as well as or better than classifications done using other methods, 

such as maximum likelihood classification, Iso-cluster unsupervised classification, or 
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reclassification/recoding of vegetation indices (Tuxen et al. 2007; Nasser Mohamed Eid et 

al. 2020; Parihar et al. 2012). The random forest classification done here was more accurate 

than the maximum likelihood classification done by Parihar et al. (2012), an average 

accuracy of 0.958 vs 0.765, respectively. When compared to reclassification, the random 

forest did approximately the same or slightly better, with reclassification having accuracy 

values of 0.814 and 0.963 (Tuxen et al. 2007). Iso-cluster classification on NDVI did 

somewhat better than the random forest with accuracy values of 0.9730, 0.9750, 0.9760, and 

0.9800 for the respective dates (Nasser Mohamed Eid et al. 2020). 

High marsh had the highest accuracy, and we can be most sure of the mapping of this 

landcover class when compared to the other landcover classes. The mid marsh class had one 

of the highest user’s and producer’s errors. As mid marsh is one of the classes that 

experienced the most change following the debris flow, any error present in its classification 

presents a problem; however, this error only exceeds 10% in January 2018 (user’s: 17%, 

producer’s: 15%) and is within acceptable margins for all other dates. There are a few 

possible sources for the error observed: 1) training data may have included misclassified 

pixels and introduced error to the corresponding landcover class, 2) pixels may have had 

values similar to that of multiple landcover classes, 3) resampled 20 m resolution Sentinel-2 

bands may have still been too coarse to assess changes in the marsh, and 4) the use of a 

different spectral library for January 2018 may have led to lower accuracies for this date. To 

remedy this, the use of data from higher spatial resolution sensors may be useful in reducing 

the frequency of mixed pixels and the need for fractional cover. Additionally, higher spectral 

resolution may improve the building of spectral libraries that can better differentiate 

between endmember classes, which then improves inputs into the random forest model. 
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C. Landcover Change and Ecological Implications 

A majority of the landcover change occurred in bare soil, high marsh, and mid marsh 

vegetation. Bare soil area increased by 224% following the debris flows and dropped 

considerably in area by November 2018, likely due to the mechanical clean-up effort and 

king tides removing a large amount of the sediment. Bare soil continued to decrease until 

there was only a net 31% increase in bare soil by November 2020. This may indicate that the 

marsh is still recovering from the debris flows and continues to change over time.  

Total vegetated area in the marsh seemingly showed little change over the 3 years with 

only a 0.12% increase in total marsh vegetation between November 2017 and November 

2020. However, change is occurring, which is apparent when total vegetation is broken 

down into community types (high vs mid marsh) and compared. High marsh (a mixed 

community of Salicornia pacifica, Arthrocnemum subterminale, Frankenia salina, and 

Distichlis spicata) area decreased by about the same amount that mid marsh (primarily only 

S. pacifica) area increased, creating the illusion of little change in vegetated area. The post 

classification change detection showed that this shift from high to mid marsh community 

primarily occurred nearby changes in bare soil.  

A change in the extent of community types may pose some ecological challenges that 

are important for salt marsh management and resilience, especially in areas where a change 

in extent means a reduction in biodiversity. The conversion to mid marsh vegetation from 

high marsh vegetation signifies a decrease in plant biodiversity as the community shifts from 

a mixed community to one that is largely composed solely of S. pacifica. A less diverse 

plant community may present a few management challenges. Studies have shown that a less 

diverse community is less resilient to the effects of disturbance, and spatial heterogeneity is 
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important in the enhancement of the resilience of ecosystem functions (Oliver et al. 2015). 

Less resilience may dictate a need for more management intervention following 

disturbances, especially as the frequency of disturbances, such as wildfire, sea level rise, and 

extreme weather, are predicted to increase with global climate change (Erwin 2009). Studies 

have found that the addition of sediment via depositional events can promote plant growth 

by the delivery of mineral nutrients (Tweel and Turner 2012). These nutrients may promote 

increased primary productivity by providing limiting nutrients. However, biodiversity has 

been found to be positively linked to primary productivity and its temporal stability (Oehri 

et al. 2017). A trend of conversion from a mixed community of several plant species to one 

made of primarily only one plant species may have harmful repercussions for marsh 

productivity and other ecosystem services and functions. Determining whether this change 

to a less diverse community is a permanent change or only a short-term intermediate step as 

the marsh recovers from the debris flow would require building up a longer time series of 

imagery over several years following the debris flows.  

Sea level rise (SLR) is often considered a challenge for the conservation of coastal 

wetlands, especially in developed regions, as rising sea levels contribute to coastal squeeze, 

landcover change, fragmentation, and eventual loss of coastal marshes (Torio and Chmura 

2013). Sediment deposition and soil accretion are viewed as important processes for the 

offsetting of SLR (Tweel and Turner 2012; Rosencranz et al. 2015). However, the results 

imply that debris flow deposition is also connected to landcover and plant community 

change. Therefore, landcover change may become an important consideration when 

planning for the management of coastal wetlands that can be prone to depositional events; 
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this study may become an important example of how to inform those plans in the absence of 

field data.  

D. Limitations and Challenges 

As discussed above, the resolution of remotely sensed data is important in the 

assessment of the fine scale changes that occur in marsh ecosystems. Some Sentinel-2 bands 

do not have a native 10m resolution and, therefore, have pixels that represent an average of a 

larger mix of landcover types. Resampling, as conducted in this study, only splits this 

coarser data into smaller pixels and not into its disaggregated components. Therefore, 

landcover classification would benefit from a sensor where all bands have the same fine 

spatial resolution. Baseline landcover prior to the debris flow was limited to a single date 

due to cloud cover, tide, and the length of historical record. Baseline assessments could be 

improved by using a sensor with a longer history or by using multiple dates per year. 

Ground truthing was also limited due to the lack of prior field data to compare against 

classification of historical imagery and due to the COVID-19 pandemic limiting ability to go 

into the field to collect such data, hence the emphasis on other accuracy metrics.   

The results are also limited in their predictive power. For example, the rate at which 

sediment is being removed from the system or identification of whether the recently mapped 

sediment was the same sediment that had been deposited during the debris flow cannot be 

properly ascertained from these data. The exact process that leading to the conversion of 

high marsh to mid marsh vegetation also cannot be gauged from these data. It is also hard to 

make long term predictions from these results as the time series is short and the marsh is still 

experiencing change; therefore, it is difficult to conclude if the marsh will permanently 

convert to mid marsh or if this is only an intermediate step towards recovery.  
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V. Conclusion 

The Montecito debris flows provided a unique opportunity to study debris interactions 

with marshes in a context different than what is known from previous studies which more 

commonly focused on hurricane deposition. This study used remote sensing to assess 

wetland response to this disturbance in the absence of field-based data. The method used 

here shows promise in being applied to other wetland systems. For example, the random 

forest model identified important classification variables that can be used to classify marsh 

landcover without field-based data. The method can also play an important first step in the 

identification of regions of interest that can be used to inform field campaigns to address 

further questions that arise from the use of remote sensing (e.g. a field campaign to assess 

the factors that are leading to the transition from high marsh to mid marsh vegetation). Data 

and information are an important part of making informed management decisions, and this 

study provides a successful demonstration of the use of post-classification change detection 

to assess wetland landcover response to an episodic event and the data that can be expected 

from such an assessment.  

 Post-classification change detection tracked change of the different landcover types in 

CSMR and found that mid marsh, high marsh, and bare soil landcover changed the most in 

the dates studied. Total marsh vegetation (high marsh + mid marsh) cover returned to similar 

levels to those before the debris flows; however, assessing change as total marsh vegetation, 

as was the initial frame of the research question, does not provide the proper conclusion. 

Areas that were covered in debris transitioned from high marsh vegetation to mid marsh 

vegetation, despite total vegetated area remaining relatively unchanged, which may be 

indicative of a process not captured in the scope of this study. Additionally, the results 
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suggest that the increase in bare soil coverage is potentially left over from the debris flow 

and may continue to slowly decrease over time via continued inundation or as plant 

communities recover.  Carpinteria Salt Marsh is still changing, and the ecological 

implications of these changes are important considerations for wetland managers going into 

the future.   
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Appendix A: Code 

I. Opening, reading, and classifying data 

setwd("C:/Users/German/Desktop/Thesis/2020/11-November")#set directory to 

wherever the files are saved and will be saved 

 

library(raster) 

library(rgdal) 

library(caret) 

library(snow) 

library(tidyverse) 

library(wvtool) 

library(randomForest) 

library(calecopal) 

library(ggplot2) 

 

# open the files and save them to variables. Use raster() for single band imagery and 

brick() for multiband imagery 

#EX:Fractions <- brick("jan_18_clipped_SMA_20201207T13H40M43S"), mARI <- 

raster("mARI_Jan_18.tif") 

Fractions <- brick("11_12_20_clipped_SMA_20210331T13H45M44S") 

NDVI <- raster("NDVI_11_12_20.tif") 

ARI <- raster("mARI_11_12_20.tif") 

 

#plot to make sure the data looks like you expect it to 

#EX:plot(Fractions) 

#plot(Fractions) 

#plot(NDVI) 

#plot(ARI) 

#plot(DTM) 

 

#DTM<-setExtent(DTM, extent(Fractions), snap = TRUE) 

#DTM <- resample(DTM, Fractions, method='bilinear') 

 

# create a layer stack with the layers you want from the data. use the $variable you see 

here when it was a brick variable to parse out individual layers 

#Stacked_layers <- 

raster::stack(Fractions$BARE.SOIL_fraction,Fractions$GV_fraction,Fractions$SENESCED

_fraction, Fractions$SUBTIDAL_fraction, Fractions$shade_fraction, NDVI, ARI, DTM) 

Stacked_layers <- 

raster::stack(Fractions$BARE.SOIL_fraction,Fractions$GV_fraction,Fractions$SENESCED

_fraction, Fractions$SUBTIDAL_fraction, Fractions$shade_fraction, NDVI, ARI) 

 

#export if you wanna keep the stacked layer and use in a differnt program you can 

output to ENVI with filename = "example.envi", format="ENVI" 
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# arcgis perfers geotiffs and won't typically open the envi files I have had 

#writeRaster(Stacked_layers, filename = "Nov_2020_stack.tif", format="GTiff", 

overwrite=TRUE) 

 

#plot to see if all the correct lyers were attached 

#plot(Stacked_layers) 

 

#open stacked layers or call the layer stack variable 

img <- brick("Nov_2020_stack.tif") 

 

#open up the training data, i typically have 2 attribute field names of ID and 

corresponding class EX: 1 Water... 2 Tree... etc. 

trainData <- shapefile("Training.shp") 

 

#which attribute field to call, i have found numerical variables have done better for me. 

responseCol <- "Id" 

 

#Extract pixel values 

#begin cluster allows you do to multicore processing and speeds up computing time. 

beginCluster() 

dfAll = data.frame(matrix(vector(), nrow = 0, ncol = length(names(img)) + 1))   

for (i in 1:length(unique(trainData[[responseCol]]))){ 

  category <- unique(trainData[[responseCol]])[i] 

  categorymap <- trainData[trainData[[responseCol]] == category,] 

  dataSet <- raster::extract(img, categorymap) 

  dataSet <- sapply(dataSet, function(x){cbind(x, class = 

rep(categorymap[[responseCol]], nrow(x)))}) 

  df <- do.call("rbind", dataSet) 

  dfAll <- rbind(dfAll,df) 

} 

endCluster() 

 

#clean the variables of Null/NA rows/columns 

dfAll <-as.data.frame(dfAll) 

dfAll <- drop_na(dfAll) 

 

#model fitting and image classification. I'm sure there are more variables that can be 

used in these functions 

modFit_rf <- train(as.factor(class) ~ ., method = "rf", data = dfAll, keepX= TRUE) 

beginCluster() 

preds_rf <- clusterR(img, raster::predict, args = list(model = modFit_rf)) 

endCluster() 

plot(preds_rf, col= rev(cal_palette("bigsur2", n=5, type = "continuous"))) 

 

#output final classified map 
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writeRaster(preds_rf, filename = "Nov_class_2020", format="GTiff", overwrite = 

TRUE) 

 

II. Accuracy and Data metrics 

#importance can be inferred from Mean Decrease in Gini. Higher values mean higher 

importance. 

modFit_rf[["finalModel"]][["importance"]] 

 

#class confusion/error can come from confusion matrix from the following source. 

modFit_rf[["finalModel"]][["confusion"]] 

 

#tree # / size of forest comes from 

modFit_rf[["finalModel"]][["ntree"]] 

 

#accuracy as overall and kappa value 

modFit_rf[["results"]] 

 

#Obtaining/graphing OOB error for all trees 

Error_rate_11_20 <- as.data.frame(modFit_rf[["finalModel"]][["err.rate"]]) 

 

graph <- ggplot(Error_rate_11_20, aes(x= c(1:500),y=OOB))+ 

  geom_line()+ 

  labs(title="November 2020 Out of Bag (OOB) Error",x="Number of Trees",y="OOB 

Error Rate")+ 

  theme(plot.title = element_text(size=20, face="bold", 

hjust=.5),axis.text.x=element_text(size=9,face="italic")) 

graph 

Error_rate_11_20[500,] 

 

#resample/K-fold 

modFit_rf$resample 

K_fold_11_20 <- sum(modFit_rf$resample$Accuracy)/25 

K_fold_11_20 

 

III. Graphing Example 

Line graph 

OOB <- read.csv("OOB_Error.csv") 

 

colors <- c("2017/11"="#E29244", "2018/01"="#AD7E38", 

"2018/11"="#58ADC5", "2020/11"="#6B6D9F") 

 

graph <- ggplot(OOB, aes(x= c(1:500)))+ 
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  geom_line(aes(y=OOB_11_17, color= "2017/11"))+ 

  geom_line(aes(y=OOB_01_18, color= "2018/01"))+ 

  geom_line(aes(y=OOB_11_18, color= "2018/11"))+ 

  geom_line(aes(y=OOB_11_20, color= "2020/11"))+ 

  labs(title="Out of Bag (OOB) Error",x="Number of Trees",y="OOB Error 

Rate", color= "Legend")+ 

  scale_color_manual(values = colors)+ 

  theme(plot.title = element_text(size=20, face="bold", 

hjust=.5),axis.text.x=element_text(size=9,face="italic")) 

  

graph 

 

Bar Graph 

library(tidyverse) 

library(ggplot2) 

library(gridExtra) 

library(cowplot) 

library(calecopal) 

 

gini <- read.csv("gini.csv") 

 

gini$Date<-

factor(gini$Date,levels=unique(gini$Date)[order(gini$ID,decreasing=F)]) 

 

graph <- ggplot(gini, aes(fill=Variable, y=Gini.Value, x=Date)) + 

  geom_bar(position="dodge", stat="identity")+ 

  labs(title="Variable Importance",y="Mean Decrease in Gini Index",x="Date")+ 

  scale_fill_manual(values = c("#E29244", "#F8A102", "#AD7E38", 

"#58ADC5", "#5FACF8", "#4F94F7", "#5780D1", "#6B6D9F")) 

 

graph + theme(plot.title = element_text(size=20, face="bold", 

hjust=.5),axis.text.x=element_text(size=9,face="italic")) 
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Appendix B: Supplemental Figures 

I. January Spectra 

 

 

 

 

 

 

 

Figure 10: Spectral library for January 2018. Axes are (x) wavelength in nm 

and (y) reflectance values. A) non-photosynthetic vegetation spectral 

signatures, B) green vegetation spectral signatures, C) bare soil spectral 

signatures, D) subtidal spectral signatures. 
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II. Classification Maps 

Figure 10: Random forest generated map for November 2017 

Figure 11: Random forest generated map for January 2018. 
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Figure 12: Random forest generated map for November 2018 

Figure 13: Random forest generated map for November 2020 




